]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
Fix some #includes in CAN drivers (rebased for net-next-2.6)
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/hash.h>
83#include <linux/slab.h>
84#include <linux/sched.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <net/net_namespace.h>
99#include <net/sock.h>
100#include <linux/rtnetlink.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/stat.h>
104#include <linux/if_bridge.h>
105#include <linux/if_macvlan.h>
106#include <net/dst.h>
107#include <net/pkt_sched.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/kmod.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/wext.h>
118#include <net/iw_handler.h>
119#include <asm/current.h>
120#include <linux/audit.h>
121#include <linux/dmaengine.h>
122#include <linux/err.h>
123#include <linux/ctype.h>
124#include <linux/if_arp.h>
125#include <linux/if_vlan.h>
126#include <linux/ip.h>
127#include <net/ip.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <linux/pci.h>
134
135#include "net-sysfs.h"
136
137/* Instead of increasing this, you should create a hash table. */
138#define MAX_GRO_SKBS 8
139
140/* This should be increased if a protocol with a bigger head is added. */
141#define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143/*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171#define PTYPE_HASH_SIZE (16)
172#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174static DEFINE_SPINLOCK(ptype_lock);
175static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176static struct list_head ptype_all __read_mostly; /* Taps */
177
178/*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197DEFINE_RWLOCK(dev_base_lock);
198EXPORT_SYMBOL(dev_base_lock);
199
200static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201{
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204}
205
206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207{
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209}
210
211static inline void rps_lock(struct softnet_data *queue)
212{
213#ifdef CONFIG_RPS
214 spin_lock(&queue->input_pkt_queue.lock);
215#endif
216}
217
218static inline void rps_unlock(struct softnet_data *queue)
219{
220#ifdef CONFIG_RPS
221 spin_unlock(&queue->input_pkt_queue.lock);
222#endif
223}
224
225/* Device list insertion */
226static int list_netdevice(struct net_device *dev)
227{
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239}
240
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254}
255
256/*
257 * Our notifier list
258 */
259
260static RAW_NOTIFIER_HEAD(netdev_chain);
261
262/*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267DEFINE_PER_CPU(struct softnet_data, softnet_data);
268EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270#ifdef CONFIG_LOCKDEP
271/*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
344#else
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350{
351}
352#endif
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376/**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389void dev_add_pack(struct packet_type *pt)
390{
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401}
402EXPORT_SYMBOL(dev_add_pack);
403
404/**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417void __dev_remove_pack(struct packet_type *pt)
418{
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437out:
438 spin_unlock_bh(&ptype_lock);
439}
440EXPORT_SYMBOL(__dev_remove_pack);
441
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459}
460EXPORT_SYMBOL(dev_remove_pack);
461
462/******************************************************************************
463
464 Device Boot-time Settings Routines
465
466*******************************************************************************/
467
468/* Boot time configuration table */
469static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471/**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480static int netdev_boot_setup_add(char *name, struct ifmap *map)
481{
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496}
497
498/**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507int netdev_boot_setup_check(struct net_device *dev)
508{
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523}
524EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527/**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537unsigned long netdev_boot_base(const char *prefix, int unit)
538{
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556}
557
558/*
559 * Saves at boot time configured settings for any netdevice.
560 */
561int __init netdev_boot_setup(char *str)
562{
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583}
584
585__setup("netdev=", netdev_boot_setup);
586
587/*******************************************************************************
588
589 Device Interface Subroutines
590
591*******************************************************************************/
592
593/**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605struct net_device *__dev_get_by_name(struct net *net, const char *name)
606{
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616}
617EXPORT_SYMBOL(__dev_get_by_name);
618
619/**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632{
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642}
643EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645/**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657struct net_device *dev_get_by_name(struct net *net, const char *name)
658{
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667}
668EXPORT_SYMBOL(dev_get_by_name);
669
670/**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683{
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693}
694EXPORT_SYMBOL(__dev_get_by_index);
695
696/**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708{
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718}
719EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722/**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733struct net_device *dev_get_by_index(struct net *net, int ifindex)
734{
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743}
744EXPORT_SYMBOL(dev_get_by_index);
745
746/**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762{
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773}
774EXPORT_SYMBOL(dev_getbyhwaddr);
775
776struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777{
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786}
787EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790{
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802}
803EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805/**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819{
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833}
834EXPORT_SYMBOL(dev_get_by_flags);
835
836/**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844int dev_valid_name(const char *name)
845{
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859}
860EXPORT_SYMBOL(dev_valid_name);
861
862/**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878{
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926}
927
928/**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942int dev_alloc_name(struct net_device *dev, const char *name)
943{
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954}
955EXPORT_SYMBOL(dev_alloc_name);
956
957static int dev_get_valid_name(struct net *net, const char *name, char *buf,
958 bool fmt)
959{
960 if (!dev_valid_name(name))
961 return -EINVAL;
962
963 if (fmt && strchr(name, '%'))
964 return __dev_alloc_name(net, name, buf);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (buf != name)
968 strlcpy(buf, name, IFNAMSIZ);
969
970 return 0;
971}
972
973/**
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
977 *
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
980 */
981int dev_change_name(struct net_device *dev, const char *newname)
982{
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
987
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
990
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
994
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
997
998 memcpy(oldname, dev->name, IFNAMSIZ);
999
1000 err = dev_get_valid_name(net, newname, dev->name, 1);
1001 if (err < 0)
1002 return err;
1003
1004rollback:
1005 /* For now only devices in the initial network namespace
1006 * are in sysfs.
1007 */
1008 if (net_eq(net, &init_net)) {
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014 }
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_del(&dev->name_hlist);
1018 write_unlock_bh(&dev_base_lock);
1019
1020 synchronize_rcu();
1021
1022 write_lock_bh(&dev_base_lock);
1023 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1024 write_unlock_bh(&dev_base_lock);
1025
1026 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1027 ret = notifier_to_errno(ret);
1028
1029 if (ret) {
1030 /* err >= 0 after dev_alloc_name() or stores the first errno */
1031 if (err >= 0) {
1032 err = ret;
1033 memcpy(dev->name, oldname, IFNAMSIZ);
1034 goto rollback;
1035 } else {
1036 printk(KERN_ERR
1037 "%s: name change rollback failed: %d.\n",
1038 dev->name, ret);
1039 }
1040 }
1041
1042 return err;
1043}
1044
1045/**
1046 * dev_set_alias - change ifalias of a device
1047 * @dev: device
1048 * @alias: name up to IFALIASZ
1049 * @len: limit of bytes to copy from info
1050 *
1051 * Set ifalias for a device,
1052 */
1053int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1054{
1055 ASSERT_RTNL();
1056
1057 if (len >= IFALIASZ)
1058 return -EINVAL;
1059
1060 if (!len) {
1061 if (dev->ifalias) {
1062 kfree(dev->ifalias);
1063 dev->ifalias = NULL;
1064 }
1065 return 0;
1066 }
1067
1068 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1069 if (!dev->ifalias)
1070 return -ENOMEM;
1071
1072 strlcpy(dev->ifalias, alias, len+1);
1073 return len;
1074}
1075
1076
1077/**
1078 * netdev_features_change - device changes features
1079 * @dev: device to cause notification
1080 *
1081 * Called to indicate a device has changed features.
1082 */
1083void netdev_features_change(struct net_device *dev)
1084{
1085 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1086}
1087EXPORT_SYMBOL(netdev_features_change);
1088
1089/**
1090 * netdev_state_change - device changes state
1091 * @dev: device to cause notification
1092 *
1093 * Called to indicate a device has changed state. This function calls
1094 * the notifier chains for netdev_chain and sends a NEWLINK message
1095 * to the routing socket.
1096 */
1097void netdev_state_change(struct net_device *dev)
1098{
1099 if (dev->flags & IFF_UP) {
1100 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1101 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1102 }
1103}
1104EXPORT_SYMBOL(netdev_state_change);
1105
1106int netdev_bonding_change(struct net_device *dev, unsigned long event)
1107{
1108 return call_netdevice_notifiers(event, dev);
1109}
1110EXPORT_SYMBOL(netdev_bonding_change);
1111
1112/**
1113 * dev_load - load a network module
1114 * @net: the applicable net namespace
1115 * @name: name of interface
1116 *
1117 * If a network interface is not present and the process has suitable
1118 * privileges this function loads the module. If module loading is not
1119 * available in this kernel then it becomes a nop.
1120 */
1121
1122void dev_load(struct net *net, const char *name)
1123{
1124 struct net_device *dev;
1125
1126 rcu_read_lock();
1127 dev = dev_get_by_name_rcu(net, name);
1128 rcu_read_unlock();
1129
1130 if (!dev && capable(CAP_NET_ADMIN))
1131 request_module("%s", name);
1132}
1133EXPORT_SYMBOL(dev_load);
1134
1135static int __dev_open(struct net_device *dev)
1136{
1137 const struct net_device_ops *ops = dev->netdev_ops;
1138 int ret;
1139
1140 ASSERT_RTNL();
1141
1142 /*
1143 * Is it even present?
1144 */
1145 if (!netif_device_present(dev))
1146 return -ENODEV;
1147
1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 ret = notifier_to_errno(ret);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Call device private open method
1155 */
1156 set_bit(__LINK_STATE_START, &dev->state);
1157
1158 if (ops->ndo_validate_addr)
1159 ret = ops->ndo_validate_addr(dev);
1160
1161 if (!ret && ops->ndo_open)
1162 ret = ops->ndo_open(dev);
1163
1164 /*
1165 * If it went open OK then:
1166 */
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 /*
1172 * Set the flags.
1173 */
1174 dev->flags |= IFF_UP;
1175
1176 /*
1177 * Enable NET_DMA
1178 */
1179 net_dmaengine_get();
1180
1181 /*
1182 * Initialize multicasting status
1183 */
1184 dev_set_rx_mode(dev);
1185
1186 /*
1187 * Wakeup transmit queue engine
1188 */
1189 dev_activate(dev);
1190 }
1191
1192 return ret;
1193}
1194
1195/**
1196 * dev_open - prepare an interface for use.
1197 * @dev: device to open
1198 *
1199 * Takes a device from down to up state. The device's private open
1200 * function is invoked and then the multicast lists are loaded. Finally
1201 * the device is moved into the up state and a %NETDEV_UP message is
1202 * sent to the netdev notifier chain.
1203 *
1204 * Calling this function on an active interface is a nop. On a failure
1205 * a negative errno code is returned.
1206 */
1207int dev_open(struct net_device *dev)
1208{
1209 int ret;
1210
1211 /*
1212 * Is it already up?
1213 */
1214 if (dev->flags & IFF_UP)
1215 return 0;
1216
1217 /*
1218 * Open device
1219 */
1220 ret = __dev_open(dev);
1221 if (ret < 0)
1222 return ret;
1223
1224 /*
1225 * ... and announce new interface.
1226 */
1227 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1228 call_netdevice_notifiers(NETDEV_UP, dev);
1229
1230 return ret;
1231}
1232EXPORT_SYMBOL(dev_open);
1233
1234static int __dev_close(struct net_device *dev)
1235{
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237
1238 ASSERT_RTNL();
1239 might_sleep();
1240
1241 /*
1242 * Tell people we are going down, so that they can
1243 * prepare to death, when device is still operating.
1244 */
1245 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1246
1247 clear_bit(__LINK_STATE_START, &dev->state);
1248
1249 /* Synchronize to scheduled poll. We cannot touch poll list,
1250 * it can be even on different cpu. So just clear netif_running().
1251 *
1252 * dev->stop() will invoke napi_disable() on all of it's
1253 * napi_struct instances on this device.
1254 */
1255 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1256
1257 dev_deactivate(dev);
1258
1259 /*
1260 * Call the device specific close. This cannot fail.
1261 * Only if device is UP
1262 *
1263 * We allow it to be called even after a DETACH hot-plug
1264 * event.
1265 */
1266 if (ops->ndo_stop)
1267 ops->ndo_stop(dev);
1268
1269 /*
1270 * Device is now down.
1271 */
1272
1273 dev->flags &= ~IFF_UP;
1274
1275 /*
1276 * Shutdown NET_DMA
1277 */
1278 net_dmaengine_put();
1279
1280 return 0;
1281}
1282
1283/**
1284 * dev_close - shutdown an interface.
1285 * @dev: device to shutdown
1286 *
1287 * This function moves an active device into down state. A
1288 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1289 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1290 * chain.
1291 */
1292int dev_close(struct net_device *dev)
1293{
1294 if (!(dev->flags & IFF_UP))
1295 return 0;
1296
1297 __dev_close(dev);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1303 call_netdevice_notifiers(NETDEV_DOWN, dev);
1304
1305 return 0;
1306}
1307EXPORT_SYMBOL(dev_close);
1308
1309
1310/**
1311 * dev_disable_lro - disable Large Receive Offload on a device
1312 * @dev: device
1313 *
1314 * Disable Large Receive Offload (LRO) on a net device. Must be
1315 * called under RTNL. This is needed if received packets may be
1316 * forwarded to another interface.
1317 */
1318void dev_disable_lro(struct net_device *dev)
1319{
1320 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1321 dev->ethtool_ops->set_flags) {
1322 u32 flags = dev->ethtool_ops->get_flags(dev);
1323 if (flags & ETH_FLAG_LRO) {
1324 flags &= ~ETH_FLAG_LRO;
1325 dev->ethtool_ops->set_flags(dev, flags);
1326 }
1327 }
1328 WARN_ON(dev->features & NETIF_F_LRO);
1329}
1330EXPORT_SYMBOL(dev_disable_lro);
1331
1332
1333static int dev_boot_phase = 1;
1334
1335/*
1336 * Device change register/unregister. These are not inline or static
1337 * as we export them to the world.
1338 */
1339
1340/**
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1343 *
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1348 *
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1352 */
1353
1354int register_netdevice_notifier(struct notifier_block *nb)
1355{
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1360
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1373
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1376
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1378 }
1379 }
1380
1381unlock:
1382 rtnl_unlock();
1383 return err;
1384
1385rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 break;
1391
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 }
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 }
1399 }
1400
1401 raw_notifier_chain_unregister(&netdev_chain, nb);
1402 goto unlock;
1403}
1404EXPORT_SYMBOL(register_netdevice_notifier);
1405
1406/**
1407 * unregister_netdevice_notifier - unregister a network notifier block
1408 * @nb: notifier
1409 *
1410 * Unregister a notifier previously registered by
1411 * register_netdevice_notifier(). The notifier is unlinked into the
1412 * kernel structures and may then be reused. A negative errno code
1413 * is returned on a failure.
1414 */
1415
1416int unregister_netdevice_notifier(struct notifier_block *nb)
1417{
1418 int err;
1419
1420 rtnl_lock();
1421 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1422 rtnl_unlock();
1423 return err;
1424}
1425EXPORT_SYMBOL(unregister_netdevice_notifier);
1426
1427/**
1428 * call_netdevice_notifiers - call all network notifier blocks
1429 * @val: value passed unmodified to notifier function
1430 * @dev: net_device pointer passed unmodified to notifier function
1431 *
1432 * Call all network notifier blocks. Parameters and return value
1433 * are as for raw_notifier_call_chain().
1434 */
1435
1436int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1437{
1438 return raw_notifier_call_chain(&netdev_chain, val, dev);
1439}
1440
1441/* When > 0 there are consumers of rx skb time stamps */
1442static atomic_t netstamp_needed = ATOMIC_INIT(0);
1443
1444void net_enable_timestamp(void)
1445{
1446 atomic_inc(&netstamp_needed);
1447}
1448EXPORT_SYMBOL(net_enable_timestamp);
1449
1450void net_disable_timestamp(void)
1451{
1452 atomic_dec(&netstamp_needed);
1453}
1454EXPORT_SYMBOL(net_disable_timestamp);
1455
1456static inline void net_timestamp(struct sk_buff *skb)
1457{
1458 if (atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 else
1461 skb->tstamp.tv64 = 0;
1462}
1463
1464/**
1465 * dev_forward_skb - loopback an skb to another netif
1466 *
1467 * @dev: destination network device
1468 * @skb: buffer to forward
1469 *
1470 * return values:
1471 * NET_RX_SUCCESS (no congestion)
1472 * NET_RX_DROP (packet was dropped)
1473 *
1474 * dev_forward_skb can be used for injecting an skb from the
1475 * start_xmit function of one device into the receive queue
1476 * of another device.
1477 *
1478 * The receiving device may be in another namespace, so
1479 * we have to clear all information in the skb that could
1480 * impact namespace isolation.
1481 */
1482int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1483{
1484 skb_orphan(skb);
1485
1486 if (!(dev->flags & IFF_UP))
1487 return NET_RX_DROP;
1488
1489 if (skb->len > (dev->mtu + dev->hard_header_len))
1490 return NET_RX_DROP;
1491
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1497}
1498EXPORT_SYMBOL_GPL(dev_forward_skb);
1499
1500/*
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1503 */
1504
1505static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506{
1507 struct packet_type *ptype;
1508
1509#ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp(skb);
1512#else
1513 net_timestamp(skb);
1514#endif
1515
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1520 */
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1527
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1531 */
1532 skb_reset_mac_header(skb2);
1533
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 skb2->protocol, dev->name);
1540 skb_reset_network_header(skb2);
1541 }
1542
1543 skb2->transport_header = skb2->network_header;
1544 skb2->pkt_type = PACKET_OUTGOING;
1545 ptype->func(skb2, skb->dev, ptype, skb->dev);
1546 }
1547 }
1548 rcu_read_unlock();
1549}
1550
1551
1552static inline void __netif_reschedule(struct Qdisc *q)
1553{
1554 struct softnet_data *sd;
1555 unsigned long flags;
1556
1557 local_irq_save(flags);
1558 sd = &__get_cpu_var(softnet_data);
1559 q->next_sched = sd->output_queue;
1560 sd->output_queue = q;
1561 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1562 local_irq_restore(flags);
1563}
1564
1565void __netif_schedule(struct Qdisc *q)
1566{
1567 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1568 __netif_reschedule(q);
1569}
1570EXPORT_SYMBOL(__netif_schedule);
1571
1572void dev_kfree_skb_irq(struct sk_buff *skb)
1573{
1574 if (atomic_dec_and_test(&skb->users)) {
1575 struct softnet_data *sd;
1576 unsigned long flags;
1577
1578 local_irq_save(flags);
1579 sd = &__get_cpu_var(softnet_data);
1580 skb->next = sd->completion_queue;
1581 sd->completion_queue = skb;
1582 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1583 local_irq_restore(flags);
1584 }
1585}
1586EXPORT_SYMBOL(dev_kfree_skb_irq);
1587
1588void dev_kfree_skb_any(struct sk_buff *skb)
1589{
1590 if (in_irq() || irqs_disabled())
1591 dev_kfree_skb_irq(skb);
1592 else
1593 dev_kfree_skb(skb);
1594}
1595EXPORT_SYMBOL(dev_kfree_skb_any);
1596
1597
1598/**
1599 * netif_device_detach - mark device as removed
1600 * @dev: network device
1601 *
1602 * Mark device as removed from system and therefore no longer available.
1603 */
1604void netif_device_detach(struct net_device *dev)
1605{
1606 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1607 netif_running(dev)) {
1608 netif_tx_stop_all_queues(dev);
1609 }
1610}
1611EXPORT_SYMBOL(netif_device_detach);
1612
1613/**
1614 * netif_device_attach - mark device as attached
1615 * @dev: network device
1616 *
1617 * Mark device as attached from system and restart if needed.
1618 */
1619void netif_device_attach(struct net_device *dev)
1620{
1621 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1622 netif_running(dev)) {
1623 netif_tx_wake_all_queues(dev);
1624 __netdev_watchdog_up(dev);
1625 }
1626}
1627EXPORT_SYMBOL(netif_device_attach);
1628
1629static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1630{
1631 return ((features & NETIF_F_GEN_CSUM) ||
1632 ((features & NETIF_F_IP_CSUM) &&
1633 protocol == htons(ETH_P_IP)) ||
1634 ((features & NETIF_F_IPV6_CSUM) &&
1635 protocol == htons(ETH_P_IPV6)) ||
1636 ((features & NETIF_F_FCOE_CRC) &&
1637 protocol == htons(ETH_P_FCOE)));
1638}
1639
1640static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1641{
1642 if (can_checksum_protocol(dev->features, skb->protocol))
1643 return true;
1644
1645 if (skb->protocol == htons(ETH_P_8021Q)) {
1646 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1647 if (can_checksum_protocol(dev->features & dev->vlan_features,
1648 veh->h_vlan_encapsulated_proto))
1649 return true;
1650 }
1651
1652 return false;
1653}
1654
1655/**
1656 * skb_dev_set -- assign a new device to a buffer
1657 * @skb: buffer for the new device
1658 * @dev: network device
1659 *
1660 * If an skb is owned by a device already, we have to reset
1661 * all data private to the namespace a device belongs to
1662 * before assigning it a new device.
1663 */
1664#ifdef CONFIG_NET_NS
1665void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1666{
1667 skb_dst_drop(skb);
1668 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1669 secpath_reset(skb);
1670 nf_reset(skb);
1671 skb_init_secmark(skb);
1672 skb->mark = 0;
1673 skb->priority = 0;
1674 skb->nf_trace = 0;
1675 skb->ipvs_property = 0;
1676#ifdef CONFIG_NET_SCHED
1677 skb->tc_index = 0;
1678#endif
1679 }
1680 skb->dev = dev;
1681}
1682EXPORT_SYMBOL(skb_set_dev);
1683#endif /* CONFIG_NET_NS */
1684
1685/*
1686 * Invalidate hardware checksum when packet is to be mangled, and
1687 * complete checksum manually on outgoing path.
1688 */
1689int skb_checksum_help(struct sk_buff *skb)
1690{
1691 __wsum csum;
1692 int ret = 0, offset;
1693
1694 if (skb->ip_summed == CHECKSUM_COMPLETE)
1695 goto out_set_summed;
1696
1697 if (unlikely(skb_shinfo(skb)->gso_size)) {
1698 /* Let GSO fix up the checksum. */
1699 goto out_set_summed;
1700 }
1701
1702 offset = skb->csum_start - skb_headroom(skb);
1703 BUG_ON(offset >= skb_headlen(skb));
1704 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1705
1706 offset += skb->csum_offset;
1707 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1708
1709 if (skb_cloned(skb) &&
1710 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1711 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1712 if (ret)
1713 goto out;
1714 }
1715
1716 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1717out_set_summed:
1718 skb->ip_summed = CHECKSUM_NONE;
1719out:
1720 return ret;
1721}
1722EXPORT_SYMBOL(skb_checksum_help);
1723
1724/**
1725 * skb_gso_segment - Perform segmentation on skb.
1726 * @skb: buffer to segment
1727 * @features: features for the output path (see dev->features)
1728 *
1729 * This function segments the given skb and returns a list of segments.
1730 *
1731 * It may return NULL if the skb requires no segmentation. This is
1732 * only possible when GSO is used for verifying header integrity.
1733 */
1734struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1735{
1736 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1737 struct packet_type *ptype;
1738 __be16 type = skb->protocol;
1739 int err;
1740
1741 skb_reset_mac_header(skb);
1742 skb->mac_len = skb->network_header - skb->mac_header;
1743 __skb_pull(skb, skb->mac_len);
1744
1745 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1746 struct net_device *dev = skb->dev;
1747 struct ethtool_drvinfo info = {};
1748
1749 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1750 dev->ethtool_ops->get_drvinfo(dev, &info);
1751
1752 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1753 "ip_summed=%d",
1754 info.driver, dev ? dev->features : 0L,
1755 skb->sk ? skb->sk->sk_route_caps : 0L,
1756 skb->len, skb->data_len, skb->ip_summed);
1757
1758 if (skb_header_cloned(skb) &&
1759 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1760 return ERR_PTR(err);
1761 }
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype,
1765 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1766 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1767 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1768 err = ptype->gso_send_check(skb);
1769 segs = ERR_PTR(err);
1770 if (err || skb_gso_ok(skb, features))
1771 break;
1772 __skb_push(skb, (skb->data -
1773 skb_network_header(skb)));
1774 }
1775 segs = ptype->gso_segment(skb, features);
1776 break;
1777 }
1778 }
1779 rcu_read_unlock();
1780
1781 __skb_push(skb, skb->data - skb_mac_header(skb));
1782
1783 return segs;
1784}
1785EXPORT_SYMBOL(skb_gso_segment);
1786
1787/* Take action when hardware reception checksum errors are detected. */
1788#ifdef CONFIG_BUG
1789void netdev_rx_csum_fault(struct net_device *dev)
1790{
1791 if (net_ratelimit()) {
1792 printk(KERN_ERR "%s: hw csum failure.\n",
1793 dev ? dev->name : "<unknown>");
1794 dump_stack();
1795 }
1796}
1797EXPORT_SYMBOL(netdev_rx_csum_fault);
1798#endif
1799
1800/* Actually, we should eliminate this check as soon as we know, that:
1801 * 1. IOMMU is present and allows to map all the memory.
1802 * 2. No high memory really exists on this machine.
1803 */
1804
1805static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1806{
1807#ifdef CONFIG_HIGHMEM
1808 int i;
1809 if (!(dev->features & NETIF_F_HIGHDMA)) {
1810 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1811 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1812 return 1;
1813 }
1814
1815 if (PCI_DMA_BUS_IS_PHYS) {
1816 struct device *pdev = dev->dev.parent;
1817
1818 if (!pdev)
1819 return 0;
1820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1821 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1822 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1823 return 1;
1824 }
1825 }
1826#endif
1827 return 0;
1828}
1829
1830struct dev_gso_cb {
1831 void (*destructor)(struct sk_buff *skb);
1832};
1833
1834#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1835
1836static void dev_gso_skb_destructor(struct sk_buff *skb)
1837{
1838 struct dev_gso_cb *cb;
1839
1840 do {
1841 struct sk_buff *nskb = skb->next;
1842
1843 skb->next = nskb->next;
1844 nskb->next = NULL;
1845 kfree_skb(nskb);
1846 } while (skb->next);
1847
1848 cb = DEV_GSO_CB(skb);
1849 if (cb->destructor)
1850 cb->destructor(skb);
1851}
1852
1853/**
1854 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1855 * @skb: buffer to segment
1856 *
1857 * This function segments the given skb and stores the list of segments
1858 * in skb->next.
1859 */
1860static int dev_gso_segment(struct sk_buff *skb)
1861{
1862 struct net_device *dev = skb->dev;
1863 struct sk_buff *segs;
1864 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1865 NETIF_F_SG : 0);
1866
1867 segs = skb_gso_segment(skb, features);
1868
1869 /* Verifying header integrity only. */
1870 if (!segs)
1871 return 0;
1872
1873 if (IS_ERR(segs))
1874 return PTR_ERR(segs);
1875
1876 skb->next = segs;
1877 DEV_GSO_CB(skb)->destructor = skb->destructor;
1878 skb->destructor = dev_gso_skb_destructor;
1879
1880 return 0;
1881}
1882
1883int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1884 struct netdev_queue *txq)
1885{
1886 const struct net_device_ops *ops = dev->netdev_ops;
1887 int rc = NETDEV_TX_OK;
1888
1889 if (likely(!skb->next)) {
1890 if (!list_empty(&ptype_all))
1891 dev_queue_xmit_nit(skb, dev);
1892
1893 if (netif_needs_gso(dev, skb)) {
1894 if (unlikely(dev_gso_segment(skb)))
1895 goto out_kfree_skb;
1896 if (skb->next)
1897 goto gso;
1898 }
1899
1900 /*
1901 * If device doesnt need skb->dst, release it right now while
1902 * its hot in this cpu cache
1903 */
1904 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1905 skb_dst_drop(skb);
1906
1907 rc = ops->ndo_start_xmit(skb, dev);
1908 if (rc == NETDEV_TX_OK)
1909 txq_trans_update(txq);
1910 /*
1911 * TODO: if skb_orphan() was called by
1912 * dev->hard_start_xmit() (for example, the unmodified
1913 * igb driver does that; bnx2 doesn't), then
1914 * skb_tx_software_timestamp() will be unable to send
1915 * back the time stamp.
1916 *
1917 * How can this be prevented? Always create another
1918 * reference to the socket before calling
1919 * dev->hard_start_xmit()? Prevent that skb_orphan()
1920 * does anything in dev->hard_start_xmit() by clearing
1921 * the skb destructor before the call and restoring it
1922 * afterwards, then doing the skb_orphan() ourselves?
1923 */
1924 return rc;
1925 }
1926
1927gso:
1928 do {
1929 struct sk_buff *nskb = skb->next;
1930
1931 skb->next = nskb->next;
1932 nskb->next = NULL;
1933
1934 /*
1935 * If device doesnt need nskb->dst, release it right now while
1936 * its hot in this cpu cache
1937 */
1938 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1939 skb_dst_drop(nskb);
1940
1941 rc = ops->ndo_start_xmit(nskb, dev);
1942 if (unlikely(rc != NETDEV_TX_OK)) {
1943 if (rc & ~NETDEV_TX_MASK)
1944 goto out_kfree_gso_skb;
1945 nskb->next = skb->next;
1946 skb->next = nskb;
1947 return rc;
1948 }
1949 txq_trans_update(txq);
1950 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1951 return NETDEV_TX_BUSY;
1952 } while (skb->next);
1953
1954out_kfree_gso_skb:
1955 if (likely(skb->next == NULL))
1956 skb->destructor = DEV_GSO_CB(skb)->destructor;
1957out_kfree_skb:
1958 kfree_skb(skb);
1959 return rc;
1960}
1961
1962static u32 hashrnd __read_mostly;
1963
1964u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1965{
1966 u32 hash;
1967
1968 if (skb_rx_queue_recorded(skb)) {
1969 hash = skb_get_rx_queue(skb);
1970 while (unlikely(hash >= dev->real_num_tx_queues))
1971 hash -= dev->real_num_tx_queues;
1972 return hash;
1973 }
1974
1975 if (skb->sk && skb->sk->sk_hash)
1976 hash = skb->sk->sk_hash;
1977 else
1978 hash = skb->protocol;
1979
1980 hash = jhash_1word(hash, hashrnd);
1981
1982 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1983}
1984EXPORT_SYMBOL(skb_tx_hash);
1985
1986static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1987{
1988 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1989 if (net_ratelimit()) {
1990 pr_warning("%s selects TX queue %d, but "
1991 "real number of TX queues is %d\n",
1992 dev->name, queue_index, dev->real_num_tx_queues);
1993 }
1994 return 0;
1995 }
1996 return queue_index;
1997}
1998
1999static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2000 struct sk_buff *skb)
2001{
2002 u16 queue_index;
2003 struct sock *sk = skb->sk;
2004
2005 if (sk_tx_queue_recorded(sk)) {
2006 queue_index = sk_tx_queue_get(sk);
2007 } else {
2008 const struct net_device_ops *ops = dev->netdev_ops;
2009
2010 if (ops->ndo_select_queue) {
2011 queue_index = ops->ndo_select_queue(dev, skb);
2012 queue_index = dev_cap_txqueue(dev, queue_index);
2013 } else {
2014 queue_index = 0;
2015 if (dev->real_num_tx_queues > 1)
2016 queue_index = skb_tx_hash(dev, skb);
2017
2018 if (sk && rcu_dereference_check(sk->sk_dst_cache, 1))
2019 sk_tx_queue_set(sk, queue_index);
2020 }
2021 }
2022
2023 skb_set_queue_mapping(skb, queue_index);
2024 return netdev_get_tx_queue(dev, queue_index);
2025}
2026
2027static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2028 struct net_device *dev,
2029 struct netdev_queue *txq)
2030{
2031 spinlock_t *root_lock = qdisc_lock(q);
2032 int rc;
2033
2034 spin_lock(root_lock);
2035 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2036 kfree_skb(skb);
2037 rc = NET_XMIT_DROP;
2038 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2039 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2040 /*
2041 * This is a work-conserving queue; there are no old skbs
2042 * waiting to be sent out; and the qdisc is not running -
2043 * xmit the skb directly.
2044 */
2045 __qdisc_update_bstats(q, skb->len);
2046 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2047 __qdisc_run(q);
2048 else
2049 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2050
2051 rc = NET_XMIT_SUCCESS;
2052 } else {
2053 rc = qdisc_enqueue_root(skb, q);
2054 qdisc_run(q);
2055 }
2056 spin_unlock(root_lock);
2057
2058 return rc;
2059}
2060
2061/*
2062 * Returns true if either:
2063 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2064 * 2. skb is fragmented and the device does not support SG, or if
2065 * at least one of fragments is in highmem and device does not
2066 * support DMA from it.
2067 */
2068static inline int skb_needs_linearize(struct sk_buff *skb,
2069 struct net_device *dev)
2070{
2071 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2072 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2073 illegal_highdma(dev, skb)));
2074}
2075
2076/**
2077 * dev_queue_xmit - transmit a buffer
2078 * @skb: buffer to transmit
2079 *
2080 * Queue a buffer for transmission to a network device. The caller must
2081 * have set the device and priority and built the buffer before calling
2082 * this function. The function can be called from an interrupt.
2083 *
2084 * A negative errno code is returned on a failure. A success does not
2085 * guarantee the frame will be transmitted as it may be dropped due
2086 * to congestion or traffic shaping.
2087 *
2088 * -----------------------------------------------------------------------------------
2089 * I notice this method can also return errors from the queue disciplines,
2090 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2091 * be positive.
2092 *
2093 * Regardless of the return value, the skb is consumed, so it is currently
2094 * difficult to retry a send to this method. (You can bump the ref count
2095 * before sending to hold a reference for retry if you are careful.)
2096 *
2097 * When calling this method, interrupts MUST be enabled. This is because
2098 * the BH enable code must have IRQs enabled so that it will not deadlock.
2099 * --BLG
2100 */
2101int dev_queue_xmit(struct sk_buff *skb)
2102{
2103 struct net_device *dev = skb->dev;
2104 struct netdev_queue *txq;
2105 struct Qdisc *q;
2106 int rc = -ENOMEM;
2107
2108 /* GSO will handle the following emulations directly. */
2109 if (netif_needs_gso(dev, skb))
2110 goto gso;
2111
2112 /* Convert a paged skb to linear, if required */
2113 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2114 goto out_kfree_skb;
2115
2116 /* If packet is not checksummed and device does not support
2117 * checksumming for this protocol, complete checksumming here.
2118 */
2119 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2120 skb_set_transport_header(skb, skb->csum_start -
2121 skb_headroom(skb));
2122 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2123 goto out_kfree_skb;
2124 }
2125
2126gso:
2127 /* Disable soft irqs for various locks below. Also
2128 * stops preemption for RCU.
2129 */
2130 rcu_read_lock_bh();
2131
2132 txq = dev_pick_tx(dev, skb);
2133 q = rcu_dereference_bh(txq->qdisc);
2134
2135#ifdef CONFIG_NET_CLS_ACT
2136 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2137#endif
2138 if (q->enqueue) {
2139 rc = __dev_xmit_skb(skb, q, dev, txq);
2140 goto out;
2141 }
2142
2143 /* The device has no queue. Common case for software devices:
2144 loopback, all the sorts of tunnels...
2145
2146 Really, it is unlikely that netif_tx_lock protection is necessary
2147 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2148 counters.)
2149 However, it is possible, that they rely on protection
2150 made by us here.
2151
2152 Check this and shot the lock. It is not prone from deadlocks.
2153 Either shot noqueue qdisc, it is even simpler 8)
2154 */
2155 if (dev->flags & IFF_UP) {
2156 int cpu = smp_processor_id(); /* ok because BHs are off */
2157
2158 if (txq->xmit_lock_owner != cpu) {
2159
2160 HARD_TX_LOCK(dev, txq, cpu);
2161
2162 if (!netif_tx_queue_stopped(txq)) {
2163 rc = dev_hard_start_xmit(skb, dev, txq);
2164 if (dev_xmit_complete(rc)) {
2165 HARD_TX_UNLOCK(dev, txq);
2166 goto out;
2167 }
2168 }
2169 HARD_TX_UNLOCK(dev, txq);
2170 if (net_ratelimit())
2171 printk(KERN_CRIT "Virtual device %s asks to "
2172 "queue packet!\n", dev->name);
2173 } else {
2174 /* Recursion is detected! It is possible,
2175 * unfortunately */
2176 if (net_ratelimit())
2177 printk(KERN_CRIT "Dead loop on virtual device "
2178 "%s, fix it urgently!\n", dev->name);
2179 }
2180 }
2181
2182 rc = -ENETDOWN;
2183 rcu_read_unlock_bh();
2184
2185out_kfree_skb:
2186 kfree_skb(skb);
2187 return rc;
2188out:
2189 rcu_read_unlock_bh();
2190 return rc;
2191}
2192EXPORT_SYMBOL(dev_queue_xmit);
2193
2194
2195/*=======================================================================
2196 Receiver routines
2197 =======================================================================*/
2198
2199int netdev_max_backlog __read_mostly = 1000;
2200int netdev_budget __read_mostly = 300;
2201int weight_p __read_mostly = 64; /* old backlog weight */
2202
2203DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2204
2205#ifdef CONFIG_RPS
2206/*
2207 * get_rps_cpu is called from netif_receive_skb and returns the target
2208 * CPU from the RPS map of the receiving queue for a given skb.
2209 */
2210static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb)
2211{
2212 struct ipv6hdr *ip6;
2213 struct iphdr *ip;
2214 struct netdev_rx_queue *rxqueue;
2215 struct rps_map *map;
2216 int cpu = -1;
2217 u8 ip_proto;
2218 u32 addr1, addr2, ports, ihl;
2219
2220 rcu_read_lock();
2221
2222 if (skb_rx_queue_recorded(skb)) {
2223 u16 index = skb_get_rx_queue(skb);
2224 if (unlikely(index >= dev->num_rx_queues)) {
2225 if (net_ratelimit()) {
2226 pr_warning("%s received packet on queue "
2227 "%u, but number of RX queues is %u\n",
2228 dev->name, index, dev->num_rx_queues);
2229 }
2230 goto done;
2231 }
2232 rxqueue = dev->_rx + index;
2233 } else
2234 rxqueue = dev->_rx;
2235
2236 if (!rxqueue->rps_map)
2237 goto done;
2238
2239 if (skb->rxhash)
2240 goto got_hash; /* Skip hash computation on packet header */
2241
2242 switch (skb->protocol) {
2243 case __constant_htons(ETH_P_IP):
2244 if (!pskb_may_pull(skb, sizeof(*ip)))
2245 goto done;
2246
2247 ip = (struct iphdr *) skb->data;
2248 ip_proto = ip->protocol;
2249 addr1 = ip->saddr;
2250 addr2 = ip->daddr;
2251 ihl = ip->ihl;
2252 break;
2253 case __constant_htons(ETH_P_IPV6):
2254 if (!pskb_may_pull(skb, sizeof(*ip6)))
2255 goto done;
2256
2257 ip6 = (struct ipv6hdr *) skb->data;
2258 ip_proto = ip6->nexthdr;
2259 addr1 = ip6->saddr.s6_addr32[3];
2260 addr2 = ip6->daddr.s6_addr32[3];
2261 ihl = (40 >> 2);
2262 break;
2263 default:
2264 goto done;
2265 }
2266 ports = 0;
2267 switch (ip_proto) {
2268 case IPPROTO_TCP:
2269 case IPPROTO_UDP:
2270 case IPPROTO_DCCP:
2271 case IPPROTO_ESP:
2272 case IPPROTO_AH:
2273 case IPPROTO_SCTP:
2274 case IPPROTO_UDPLITE:
2275 if (pskb_may_pull(skb, (ihl * 4) + 4))
2276 ports = *((u32 *) (skb->data + (ihl * 4)));
2277 break;
2278
2279 default:
2280 break;
2281 }
2282
2283 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2284 if (!skb->rxhash)
2285 skb->rxhash = 1;
2286
2287got_hash:
2288 map = rcu_dereference(rxqueue->rps_map);
2289 if (map) {
2290 u16 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2291
2292 if (cpu_online(tcpu)) {
2293 cpu = tcpu;
2294 goto done;
2295 }
2296 }
2297
2298done:
2299 rcu_read_unlock();
2300 return cpu;
2301}
2302
2303/*
2304 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2305 * to be sent to kick remote softirq processing. There are two masks since
2306 * the sending of IPIs must be done with interrupts enabled. The select field
2307 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2308 * select is flipped before net_rps_action is called while still under lock,
2309 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2310 * it without conflicting with enqueue_backlog operation.
2311 */
2312struct rps_remote_softirq_cpus {
2313 cpumask_t mask[2];
2314 int select;
2315};
2316static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2317
2318/* Called from hardirq (IPI) context */
2319static void trigger_softirq(void *data)
2320{
2321 struct softnet_data *queue = data;
2322 __napi_schedule(&queue->backlog);
2323 __get_cpu_var(netdev_rx_stat).received_rps++;
2324}
2325#endif /* CONFIG_SMP */
2326
2327/*
2328 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2329 * queue (may be a remote CPU queue).
2330 */
2331static int enqueue_to_backlog(struct sk_buff *skb, int cpu)
2332{
2333 struct softnet_data *queue;
2334 unsigned long flags;
2335
2336 queue = &per_cpu(softnet_data, cpu);
2337
2338 local_irq_save(flags);
2339 __get_cpu_var(netdev_rx_stat).total++;
2340
2341 rps_lock(queue);
2342 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2343 if (queue->input_pkt_queue.qlen) {
2344enqueue:
2345 __skb_queue_tail(&queue->input_pkt_queue, skb);
2346 rps_unlock(queue);
2347 local_irq_restore(flags);
2348 return NET_RX_SUCCESS;
2349 }
2350
2351 /* Schedule NAPI for backlog device */
2352 if (napi_schedule_prep(&queue->backlog)) {
2353#ifdef CONFIG_RPS
2354 if (cpu != smp_processor_id()) {
2355 struct rps_remote_softirq_cpus *rcpus =
2356 &__get_cpu_var(rps_remote_softirq_cpus);
2357
2358 cpu_set(cpu, rcpus->mask[rcpus->select]);
2359 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2360 } else
2361 __napi_schedule(&queue->backlog);
2362#else
2363 __napi_schedule(&queue->backlog);
2364#endif
2365 }
2366 goto enqueue;
2367 }
2368
2369 rps_unlock(queue);
2370
2371 __get_cpu_var(netdev_rx_stat).dropped++;
2372 local_irq_restore(flags);
2373
2374 kfree_skb(skb);
2375 return NET_RX_DROP;
2376}
2377
2378/**
2379 * netif_rx - post buffer to the network code
2380 * @skb: buffer to post
2381 *
2382 * This function receives a packet from a device driver and queues it for
2383 * the upper (protocol) levels to process. It always succeeds. The buffer
2384 * may be dropped during processing for congestion control or by the
2385 * protocol layers.
2386 *
2387 * return values:
2388 * NET_RX_SUCCESS (no congestion)
2389 * NET_RX_DROP (packet was dropped)
2390 *
2391 */
2392
2393int netif_rx(struct sk_buff *skb)
2394{
2395 int cpu;
2396
2397 /* if netpoll wants it, pretend we never saw it */
2398 if (netpoll_rx(skb))
2399 return NET_RX_DROP;
2400
2401 if (!skb->tstamp.tv64)
2402 net_timestamp(skb);
2403
2404#ifdef CONFIG_RPS
2405 cpu = get_rps_cpu(skb->dev, skb);
2406 if (cpu < 0)
2407 cpu = smp_processor_id();
2408#else
2409 cpu = smp_processor_id();
2410#endif
2411
2412 return enqueue_to_backlog(skb, cpu);
2413}
2414EXPORT_SYMBOL(netif_rx);
2415
2416int netif_rx_ni(struct sk_buff *skb)
2417{
2418 int err;
2419
2420 preempt_disable();
2421 err = netif_rx(skb);
2422 if (local_softirq_pending())
2423 do_softirq();
2424 preempt_enable();
2425
2426 return err;
2427}
2428EXPORT_SYMBOL(netif_rx_ni);
2429
2430static void net_tx_action(struct softirq_action *h)
2431{
2432 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2433
2434 if (sd->completion_queue) {
2435 struct sk_buff *clist;
2436
2437 local_irq_disable();
2438 clist = sd->completion_queue;
2439 sd->completion_queue = NULL;
2440 local_irq_enable();
2441
2442 while (clist) {
2443 struct sk_buff *skb = clist;
2444 clist = clist->next;
2445
2446 WARN_ON(atomic_read(&skb->users));
2447 __kfree_skb(skb);
2448 }
2449 }
2450
2451 if (sd->output_queue) {
2452 struct Qdisc *head;
2453
2454 local_irq_disable();
2455 head = sd->output_queue;
2456 sd->output_queue = NULL;
2457 local_irq_enable();
2458
2459 while (head) {
2460 struct Qdisc *q = head;
2461 spinlock_t *root_lock;
2462
2463 head = head->next_sched;
2464
2465 root_lock = qdisc_lock(q);
2466 if (spin_trylock(root_lock)) {
2467 smp_mb__before_clear_bit();
2468 clear_bit(__QDISC_STATE_SCHED,
2469 &q->state);
2470 qdisc_run(q);
2471 spin_unlock(root_lock);
2472 } else {
2473 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2474 &q->state)) {
2475 __netif_reschedule(q);
2476 } else {
2477 smp_mb__before_clear_bit();
2478 clear_bit(__QDISC_STATE_SCHED,
2479 &q->state);
2480 }
2481 }
2482 }
2483 }
2484}
2485
2486static inline int deliver_skb(struct sk_buff *skb,
2487 struct packet_type *pt_prev,
2488 struct net_device *orig_dev)
2489{
2490 atomic_inc(&skb->users);
2491 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2492}
2493
2494#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2495
2496#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2497/* This hook is defined here for ATM LANE */
2498int (*br_fdb_test_addr_hook)(struct net_device *dev,
2499 unsigned char *addr) __read_mostly;
2500EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2501#endif
2502
2503/*
2504 * If bridge module is loaded call bridging hook.
2505 * returns NULL if packet was consumed.
2506 */
2507struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2508 struct sk_buff *skb) __read_mostly;
2509EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2510
2511static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2512 struct packet_type **pt_prev, int *ret,
2513 struct net_device *orig_dev)
2514{
2515 struct net_bridge_port *port;
2516
2517 if (skb->pkt_type == PACKET_LOOPBACK ||
2518 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2519 return skb;
2520
2521 if (*pt_prev) {
2522 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2523 *pt_prev = NULL;
2524 }
2525
2526 return br_handle_frame_hook(port, skb);
2527}
2528#else
2529#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2530#endif
2531
2532#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2533struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2534EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2535
2536static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2537 struct packet_type **pt_prev,
2538 int *ret,
2539 struct net_device *orig_dev)
2540{
2541 if (skb->dev->macvlan_port == NULL)
2542 return skb;
2543
2544 if (*pt_prev) {
2545 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2546 *pt_prev = NULL;
2547 }
2548 return macvlan_handle_frame_hook(skb);
2549}
2550#else
2551#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2552#endif
2553
2554#ifdef CONFIG_NET_CLS_ACT
2555/* TODO: Maybe we should just force sch_ingress to be compiled in
2556 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2557 * a compare and 2 stores extra right now if we dont have it on
2558 * but have CONFIG_NET_CLS_ACT
2559 * NOTE: This doesnt stop any functionality; if you dont have
2560 * the ingress scheduler, you just cant add policies on ingress.
2561 *
2562 */
2563static int ing_filter(struct sk_buff *skb)
2564{
2565 struct net_device *dev = skb->dev;
2566 u32 ttl = G_TC_RTTL(skb->tc_verd);
2567 struct netdev_queue *rxq;
2568 int result = TC_ACT_OK;
2569 struct Qdisc *q;
2570
2571 if (MAX_RED_LOOP < ttl++) {
2572 printk(KERN_WARNING
2573 "Redir loop detected Dropping packet (%d->%d)\n",
2574 skb->skb_iif, dev->ifindex);
2575 return TC_ACT_SHOT;
2576 }
2577
2578 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2579 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2580
2581 rxq = &dev->rx_queue;
2582
2583 q = rxq->qdisc;
2584 if (q != &noop_qdisc) {
2585 spin_lock(qdisc_lock(q));
2586 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2587 result = qdisc_enqueue_root(skb, q);
2588 spin_unlock(qdisc_lock(q));
2589 }
2590
2591 return result;
2592}
2593
2594static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2595 struct packet_type **pt_prev,
2596 int *ret, struct net_device *orig_dev)
2597{
2598 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2599 goto out;
2600
2601 if (*pt_prev) {
2602 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2603 *pt_prev = NULL;
2604 } else {
2605 /* Huh? Why does turning on AF_PACKET affect this? */
2606 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2607 }
2608
2609 switch (ing_filter(skb)) {
2610 case TC_ACT_SHOT:
2611 case TC_ACT_STOLEN:
2612 kfree_skb(skb);
2613 return NULL;
2614 }
2615
2616out:
2617 skb->tc_verd = 0;
2618 return skb;
2619}
2620#endif
2621
2622/*
2623 * netif_nit_deliver - deliver received packets to network taps
2624 * @skb: buffer
2625 *
2626 * This function is used to deliver incoming packets to network
2627 * taps. It should be used when the normal netif_receive_skb path
2628 * is bypassed, for example because of VLAN acceleration.
2629 */
2630void netif_nit_deliver(struct sk_buff *skb)
2631{
2632 struct packet_type *ptype;
2633
2634 if (list_empty(&ptype_all))
2635 return;
2636
2637 skb_reset_network_header(skb);
2638 skb_reset_transport_header(skb);
2639 skb->mac_len = skb->network_header - skb->mac_header;
2640
2641 rcu_read_lock();
2642 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2643 if (!ptype->dev || ptype->dev == skb->dev)
2644 deliver_skb(skb, ptype, skb->dev);
2645 }
2646 rcu_read_unlock();
2647}
2648
2649static int __netif_receive_skb(struct sk_buff *skb)
2650{
2651 struct packet_type *ptype, *pt_prev;
2652 struct net_device *orig_dev;
2653 struct net_device *master;
2654 struct net_device *null_or_orig;
2655 struct net_device *null_or_bond;
2656 int ret = NET_RX_DROP;
2657 __be16 type;
2658
2659 if (!skb->tstamp.tv64)
2660 net_timestamp(skb);
2661
2662 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2663 return NET_RX_SUCCESS;
2664
2665 /* if we've gotten here through NAPI, check netpoll */
2666 if (netpoll_receive_skb(skb))
2667 return NET_RX_DROP;
2668
2669 if (!skb->skb_iif)
2670 skb->skb_iif = skb->dev->ifindex;
2671
2672 null_or_orig = NULL;
2673 orig_dev = skb->dev;
2674 master = ACCESS_ONCE(orig_dev->master);
2675 if (master) {
2676 if (skb_bond_should_drop(skb, master))
2677 null_or_orig = orig_dev; /* deliver only exact match */
2678 else
2679 skb->dev = master;
2680 }
2681
2682 __get_cpu_var(netdev_rx_stat).total++;
2683
2684 skb_reset_network_header(skb);
2685 skb_reset_transport_header(skb);
2686 skb->mac_len = skb->network_header - skb->mac_header;
2687
2688 pt_prev = NULL;
2689
2690 rcu_read_lock();
2691
2692#ifdef CONFIG_NET_CLS_ACT
2693 if (skb->tc_verd & TC_NCLS) {
2694 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2695 goto ncls;
2696 }
2697#endif
2698
2699 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2700 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2701 ptype->dev == orig_dev) {
2702 if (pt_prev)
2703 ret = deliver_skb(skb, pt_prev, orig_dev);
2704 pt_prev = ptype;
2705 }
2706 }
2707
2708#ifdef CONFIG_NET_CLS_ACT
2709 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2710 if (!skb)
2711 goto out;
2712ncls:
2713#endif
2714
2715 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2716 if (!skb)
2717 goto out;
2718 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2719 if (!skb)
2720 goto out;
2721
2722 /*
2723 * Make sure frames received on VLAN interfaces stacked on
2724 * bonding interfaces still make their way to any base bonding
2725 * device that may have registered for a specific ptype. The
2726 * handler may have to adjust skb->dev and orig_dev.
2727 */
2728 null_or_bond = NULL;
2729 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2730 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2731 null_or_bond = vlan_dev_real_dev(skb->dev);
2732 }
2733
2734 type = skb->protocol;
2735 list_for_each_entry_rcu(ptype,
2736 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2737 if (ptype->type == type && (ptype->dev == null_or_orig ||
2738 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2739 ptype->dev == null_or_bond)) {
2740 if (pt_prev)
2741 ret = deliver_skb(skb, pt_prev, orig_dev);
2742 pt_prev = ptype;
2743 }
2744 }
2745
2746 if (pt_prev) {
2747 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2748 } else {
2749 kfree_skb(skb);
2750 /* Jamal, now you will not able to escape explaining
2751 * me how you were going to use this. :-)
2752 */
2753 ret = NET_RX_DROP;
2754 }
2755
2756out:
2757 rcu_read_unlock();
2758 return ret;
2759}
2760
2761/**
2762 * netif_receive_skb - process receive buffer from network
2763 * @skb: buffer to process
2764 *
2765 * netif_receive_skb() is the main receive data processing function.
2766 * It always succeeds. The buffer may be dropped during processing
2767 * for congestion control or by the protocol layers.
2768 *
2769 * This function may only be called from softirq context and interrupts
2770 * should be enabled.
2771 *
2772 * Return values (usually ignored):
2773 * NET_RX_SUCCESS: no congestion
2774 * NET_RX_DROP: packet was dropped
2775 */
2776int netif_receive_skb(struct sk_buff *skb)
2777{
2778#ifdef CONFIG_RPS
2779 int cpu;
2780
2781 cpu = get_rps_cpu(skb->dev, skb);
2782
2783 if (cpu < 0)
2784 return __netif_receive_skb(skb);
2785 else
2786 return enqueue_to_backlog(skb, cpu);
2787#else
2788 return __netif_receive_skb(skb);
2789#endif
2790}
2791EXPORT_SYMBOL(netif_receive_skb);
2792
2793/* Network device is going away, flush any packets still pending */
2794static void flush_backlog(void *arg)
2795{
2796 struct net_device *dev = arg;
2797 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2798 struct sk_buff *skb, *tmp;
2799
2800 rps_lock(queue);
2801 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2802 if (skb->dev == dev) {
2803 __skb_unlink(skb, &queue->input_pkt_queue);
2804 kfree_skb(skb);
2805 }
2806 rps_unlock(queue);
2807}
2808
2809static int napi_gro_complete(struct sk_buff *skb)
2810{
2811 struct packet_type *ptype;
2812 __be16 type = skb->protocol;
2813 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2814 int err = -ENOENT;
2815
2816 if (NAPI_GRO_CB(skb)->count == 1) {
2817 skb_shinfo(skb)->gso_size = 0;
2818 goto out;
2819 }
2820
2821 rcu_read_lock();
2822 list_for_each_entry_rcu(ptype, head, list) {
2823 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2824 continue;
2825
2826 err = ptype->gro_complete(skb);
2827 break;
2828 }
2829 rcu_read_unlock();
2830
2831 if (err) {
2832 WARN_ON(&ptype->list == head);
2833 kfree_skb(skb);
2834 return NET_RX_SUCCESS;
2835 }
2836
2837out:
2838 return netif_receive_skb(skb);
2839}
2840
2841static void napi_gro_flush(struct napi_struct *napi)
2842{
2843 struct sk_buff *skb, *next;
2844
2845 for (skb = napi->gro_list; skb; skb = next) {
2846 next = skb->next;
2847 skb->next = NULL;
2848 napi_gro_complete(skb);
2849 }
2850
2851 napi->gro_count = 0;
2852 napi->gro_list = NULL;
2853}
2854
2855enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2856{
2857 struct sk_buff **pp = NULL;
2858 struct packet_type *ptype;
2859 __be16 type = skb->protocol;
2860 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2861 int same_flow;
2862 int mac_len;
2863 enum gro_result ret;
2864
2865 if (!(skb->dev->features & NETIF_F_GRO))
2866 goto normal;
2867
2868 if (skb_is_gso(skb) || skb_has_frags(skb))
2869 goto normal;
2870
2871 rcu_read_lock();
2872 list_for_each_entry_rcu(ptype, head, list) {
2873 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2874 continue;
2875
2876 skb_set_network_header(skb, skb_gro_offset(skb));
2877 mac_len = skb->network_header - skb->mac_header;
2878 skb->mac_len = mac_len;
2879 NAPI_GRO_CB(skb)->same_flow = 0;
2880 NAPI_GRO_CB(skb)->flush = 0;
2881 NAPI_GRO_CB(skb)->free = 0;
2882
2883 pp = ptype->gro_receive(&napi->gro_list, skb);
2884 break;
2885 }
2886 rcu_read_unlock();
2887
2888 if (&ptype->list == head)
2889 goto normal;
2890
2891 same_flow = NAPI_GRO_CB(skb)->same_flow;
2892 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2893
2894 if (pp) {
2895 struct sk_buff *nskb = *pp;
2896
2897 *pp = nskb->next;
2898 nskb->next = NULL;
2899 napi_gro_complete(nskb);
2900 napi->gro_count--;
2901 }
2902
2903 if (same_flow)
2904 goto ok;
2905
2906 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2907 goto normal;
2908
2909 napi->gro_count++;
2910 NAPI_GRO_CB(skb)->count = 1;
2911 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2912 skb->next = napi->gro_list;
2913 napi->gro_list = skb;
2914 ret = GRO_HELD;
2915
2916pull:
2917 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2918 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2919
2920 BUG_ON(skb->end - skb->tail < grow);
2921
2922 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2923
2924 skb->tail += grow;
2925 skb->data_len -= grow;
2926
2927 skb_shinfo(skb)->frags[0].page_offset += grow;
2928 skb_shinfo(skb)->frags[0].size -= grow;
2929
2930 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2931 put_page(skb_shinfo(skb)->frags[0].page);
2932 memmove(skb_shinfo(skb)->frags,
2933 skb_shinfo(skb)->frags + 1,
2934 --skb_shinfo(skb)->nr_frags);
2935 }
2936 }
2937
2938ok:
2939 return ret;
2940
2941normal:
2942 ret = GRO_NORMAL;
2943 goto pull;
2944}
2945EXPORT_SYMBOL(dev_gro_receive);
2946
2947static gro_result_t
2948__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2949{
2950 struct sk_buff *p;
2951
2952 if (netpoll_rx_on(skb))
2953 return GRO_NORMAL;
2954
2955 for (p = napi->gro_list; p; p = p->next) {
2956 NAPI_GRO_CB(p)->same_flow =
2957 (p->dev == skb->dev) &&
2958 !compare_ether_header(skb_mac_header(p),
2959 skb_gro_mac_header(skb));
2960 NAPI_GRO_CB(p)->flush = 0;
2961 }
2962
2963 return dev_gro_receive(napi, skb);
2964}
2965
2966gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2967{
2968 switch (ret) {
2969 case GRO_NORMAL:
2970 if (netif_receive_skb(skb))
2971 ret = GRO_DROP;
2972 break;
2973
2974 case GRO_DROP:
2975 case GRO_MERGED_FREE:
2976 kfree_skb(skb);
2977 break;
2978
2979 case GRO_HELD:
2980 case GRO_MERGED:
2981 break;
2982 }
2983
2984 return ret;
2985}
2986EXPORT_SYMBOL(napi_skb_finish);
2987
2988void skb_gro_reset_offset(struct sk_buff *skb)
2989{
2990 NAPI_GRO_CB(skb)->data_offset = 0;
2991 NAPI_GRO_CB(skb)->frag0 = NULL;
2992 NAPI_GRO_CB(skb)->frag0_len = 0;
2993
2994 if (skb->mac_header == skb->tail &&
2995 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2996 NAPI_GRO_CB(skb)->frag0 =
2997 page_address(skb_shinfo(skb)->frags[0].page) +
2998 skb_shinfo(skb)->frags[0].page_offset;
2999 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3000 }
3001}
3002EXPORT_SYMBOL(skb_gro_reset_offset);
3003
3004gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3005{
3006 skb_gro_reset_offset(skb);
3007
3008 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3009}
3010EXPORT_SYMBOL(napi_gro_receive);
3011
3012void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3013{
3014 __skb_pull(skb, skb_headlen(skb));
3015 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3016
3017 napi->skb = skb;
3018}
3019EXPORT_SYMBOL(napi_reuse_skb);
3020
3021struct sk_buff *napi_get_frags(struct napi_struct *napi)
3022{
3023 struct sk_buff *skb = napi->skb;
3024
3025 if (!skb) {
3026 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3027 if (skb)
3028 napi->skb = skb;
3029 }
3030 return skb;
3031}
3032EXPORT_SYMBOL(napi_get_frags);
3033
3034gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3035 gro_result_t ret)
3036{
3037 switch (ret) {
3038 case GRO_NORMAL:
3039 case GRO_HELD:
3040 skb->protocol = eth_type_trans(skb, skb->dev);
3041
3042 if (ret == GRO_HELD)
3043 skb_gro_pull(skb, -ETH_HLEN);
3044 else if (netif_receive_skb(skb))
3045 ret = GRO_DROP;
3046 break;
3047
3048 case GRO_DROP:
3049 case GRO_MERGED_FREE:
3050 napi_reuse_skb(napi, skb);
3051 break;
3052
3053 case GRO_MERGED:
3054 break;
3055 }
3056
3057 return ret;
3058}
3059EXPORT_SYMBOL(napi_frags_finish);
3060
3061struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3062{
3063 struct sk_buff *skb = napi->skb;
3064 struct ethhdr *eth;
3065 unsigned int hlen;
3066 unsigned int off;
3067
3068 napi->skb = NULL;
3069
3070 skb_reset_mac_header(skb);
3071 skb_gro_reset_offset(skb);
3072
3073 off = skb_gro_offset(skb);
3074 hlen = off + sizeof(*eth);
3075 eth = skb_gro_header_fast(skb, off);
3076 if (skb_gro_header_hard(skb, hlen)) {
3077 eth = skb_gro_header_slow(skb, hlen, off);
3078 if (unlikely(!eth)) {
3079 napi_reuse_skb(napi, skb);
3080 skb = NULL;
3081 goto out;
3082 }
3083 }
3084
3085 skb_gro_pull(skb, sizeof(*eth));
3086
3087 /*
3088 * This works because the only protocols we care about don't require
3089 * special handling. We'll fix it up properly at the end.
3090 */
3091 skb->protocol = eth->h_proto;
3092
3093out:
3094 return skb;
3095}
3096EXPORT_SYMBOL(napi_frags_skb);
3097
3098gro_result_t napi_gro_frags(struct napi_struct *napi)
3099{
3100 struct sk_buff *skb = napi_frags_skb(napi);
3101
3102 if (!skb)
3103 return GRO_DROP;
3104
3105 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3106}
3107EXPORT_SYMBOL(napi_gro_frags);
3108
3109static int process_backlog(struct napi_struct *napi, int quota)
3110{
3111 int work = 0;
3112 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3113 unsigned long start_time = jiffies;
3114
3115 napi->weight = weight_p;
3116 do {
3117 struct sk_buff *skb;
3118
3119 local_irq_disable();
3120 rps_lock(queue);
3121 skb = __skb_dequeue(&queue->input_pkt_queue);
3122 if (!skb) {
3123 __napi_complete(napi);
3124 rps_unlock(queue);
3125 local_irq_enable();
3126 break;
3127 }
3128 rps_unlock(queue);
3129 local_irq_enable();
3130
3131 __netif_receive_skb(skb);
3132 } while (++work < quota && jiffies == start_time);
3133
3134 return work;
3135}
3136
3137/**
3138 * __napi_schedule - schedule for receive
3139 * @n: entry to schedule
3140 *
3141 * The entry's receive function will be scheduled to run
3142 */
3143void __napi_schedule(struct napi_struct *n)
3144{
3145 unsigned long flags;
3146
3147 local_irq_save(flags);
3148 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3149 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3150 local_irq_restore(flags);
3151}
3152EXPORT_SYMBOL(__napi_schedule);
3153
3154void __napi_complete(struct napi_struct *n)
3155{
3156 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3157 BUG_ON(n->gro_list);
3158
3159 list_del(&n->poll_list);
3160 smp_mb__before_clear_bit();
3161 clear_bit(NAPI_STATE_SCHED, &n->state);
3162}
3163EXPORT_SYMBOL(__napi_complete);
3164
3165void napi_complete(struct napi_struct *n)
3166{
3167 unsigned long flags;
3168
3169 /*
3170 * don't let napi dequeue from the cpu poll list
3171 * just in case its running on a different cpu
3172 */
3173 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3174 return;
3175
3176 napi_gro_flush(n);
3177 local_irq_save(flags);
3178 __napi_complete(n);
3179 local_irq_restore(flags);
3180}
3181EXPORT_SYMBOL(napi_complete);
3182
3183void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3184 int (*poll)(struct napi_struct *, int), int weight)
3185{
3186 INIT_LIST_HEAD(&napi->poll_list);
3187 napi->gro_count = 0;
3188 napi->gro_list = NULL;
3189 napi->skb = NULL;
3190 napi->poll = poll;
3191 napi->weight = weight;
3192 list_add(&napi->dev_list, &dev->napi_list);
3193 napi->dev = dev;
3194#ifdef CONFIG_NETPOLL
3195 spin_lock_init(&napi->poll_lock);
3196 napi->poll_owner = -1;
3197#endif
3198 set_bit(NAPI_STATE_SCHED, &napi->state);
3199}
3200EXPORT_SYMBOL(netif_napi_add);
3201
3202void netif_napi_del(struct napi_struct *napi)
3203{
3204 struct sk_buff *skb, *next;
3205
3206 list_del_init(&napi->dev_list);
3207 napi_free_frags(napi);
3208
3209 for (skb = napi->gro_list; skb; skb = next) {
3210 next = skb->next;
3211 skb->next = NULL;
3212 kfree_skb(skb);
3213 }
3214
3215 napi->gro_list = NULL;
3216 napi->gro_count = 0;
3217}
3218EXPORT_SYMBOL(netif_napi_del);
3219
3220#ifdef CONFIG_RPS
3221/*
3222 * net_rps_action sends any pending IPI's for rps. This is only called from
3223 * softirq and interrupts must be enabled.
3224 */
3225static void net_rps_action(cpumask_t *mask)
3226{
3227 int cpu;
3228
3229 /* Send pending IPI's to kick RPS processing on remote cpus. */
3230 for_each_cpu_mask_nr(cpu, *mask) {
3231 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3232 if (cpu_online(cpu))
3233 __smp_call_function_single(cpu, &queue->csd, 0);
3234 }
3235 cpus_clear(*mask);
3236}
3237#endif
3238
3239static void net_rx_action(struct softirq_action *h)
3240{
3241 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3242 unsigned long time_limit = jiffies + 2;
3243 int budget = netdev_budget;
3244 void *have;
3245#ifdef CONFIG_RPS
3246 int select;
3247 struct rps_remote_softirq_cpus *rcpus;
3248#endif
3249
3250 local_irq_disable();
3251
3252 while (!list_empty(list)) {
3253 struct napi_struct *n;
3254 int work, weight;
3255
3256 /* If softirq window is exhuasted then punt.
3257 * Allow this to run for 2 jiffies since which will allow
3258 * an average latency of 1.5/HZ.
3259 */
3260 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3261 goto softnet_break;
3262
3263 local_irq_enable();
3264
3265 /* Even though interrupts have been re-enabled, this
3266 * access is safe because interrupts can only add new
3267 * entries to the tail of this list, and only ->poll()
3268 * calls can remove this head entry from the list.
3269 */
3270 n = list_first_entry(list, struct napi_struct, poll_list);
3271
3272 have = netpoll_poll_lock(n);
3273
3274 weight = n->weight;
3275
3276 /* This NAPI_STATE_SCHED test is for avoiding a race
3277 * with netpoll's poll_napi(). Only the entity which
3278 * obtains the lock and sees NAPI_STATE_SCHED set will
3279 * actually make the ->poll() call. Therefore we avoid
3280 * accidently calling ->poll() when NAPI is not scheduled.
3281 */
3282 work = 0;
3283 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3284 work = n->poll(n, weight);
3285 trace_napi_poll(n);
3286 }
3287
3288 WARN_ON_ONCE(work > weight);
3289
3290 budget -= work;
3291
3292 local_irq_disable();
3293
3294 /* Drivers must not modify the NAPI state if they
3295 * consume the entire weight. In such cases this code
3296 * still "owns" the NAPI instance and therefore can
3297 * move the instance around on the list at-will.
3298 */
3299 if (unlikely(work == weight)) {
3300 if (unlikely(napi_disable_pending(n))) {
3301 local_irq_enable();
3302 napi_complete(n);
3303 local_irq_disable();
3304 } else
3305 list_move_tail(&n->poll_list, list);
3306 }
3307
3308 netpoll_poll_unlock(have);
3309 }
3310out:
3311#ifdef CONFIG_RPS
3312 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3313 select = rcpus->select;
3314 rcpus->select ^= 1;
3315
3316 local_irq_enable();
3317
3318 net_rps_action(&rcpus->mask[select]);
3319#else
3320 local_irq_enable();
3321#endif
3322
3323#ifdef CONFIG_NET_DMA
3324 /*
3325 * There may not be any more sk_buffs coming right now, so push
3326 * any pending DMA copies to hardware
3327 */
3328 dma_issue_pending_all();
3329#endif
3330
3331 return;
3332
3333softnet_break:
3334 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3335 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3336 goto out;
3337}
3338
3339static gifconf_func_t *gifconf_list[NPROTO];
3340
3341/**
3342 * register_gifconf - register a SIOCGIF handler
3343 * @family: Address family
3344 * @gifconf: Function handler
3345 *
3346 * Register protocol dependent address dumping routines. The handler
3347 * that is passed must not be freed or reused until it has been replaced
3348 * by another handler.
3349 */
3350int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3351{
3352 if (family >= NPROTO)
3353 return -EINVAL;
3354 gifconf_list[family] = gifconf;
3355 return 0;
3356}
3357EXPORT_SYMBOL(register_gifconf);
3358
3359
3360/*
3361 * Map an interface index to its name (SIOCGIFNAME)
3362 */
3363
3364/*
3365 * We need this ioctl for efficient implementation of the
3366 * if_indextoname() function required by the IPv6 API. Without
3367 * it, we would have to search all the interfaces to find a
3368 * match. --pb
3369 */
3370
3371static int dev_ifname(struct net *net, struct ifreq __user *arg)
3372{
3373 struct net_device *dev;
3374 struct ifreq ifr;
3375
3376 /*
3377 * Fetch the caller's info block.
3378 */
3379
3380 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3381 return -EFAULT;
3382
3383 rcu_read_lock();
3384 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3385 if (!dev) {
3386 rcu_read_unlock();
3387 return -ENODEV;
3388 }
3389
3390 strcpy(ifr.ifr_name, dev->name);
3391 rcu_read_unlock();
3392
3393 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3394 return -EFAULT;
3395 return 0;
3396}
3397
3398/*
3399 * Perform a SIOCGIFCONF call. This structure will change
3400 * size eventually, and there is nothing I can do about it.
3401 * Thus we will need a 'compatibility mode'.
3402 */
3403
3404static int dev_ifconf(struct net *net, char __user *arg)
3405{
3406 struct ifconf ifc;
3407 struct net_device *dev;
3408 char __user *pos;
3409 int len;
3410 int total;
3411 int i;
3412
3413 /*
3414 * Fetch the caller's info block.
3415 */
3416
3417 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3418 return -EFAULT;
3419
3420 pos = ifc.ifc_buf;
3421 len = ifc.ifc_len;
3422
3423 /*
3424 * Loop over the interfaces, and write an info block for each.
3425 */
3426
3427 total = 0;
3428 for_each_netdev(net, dev) {
3429 for (i = 0; i < NPROTO; i++) {
3430 if (gifconf_list[i]) {
3431 int done;
3432 if (!pos)
3433 done = gifconf_list[i](dev, NULL, 0);
3434 else
3435 done = gifconf_list[i](dev, pos + total,
3436 len - total);
3437 if (done < 0)
3438 return -EFAULT;
3439 total += done;
3440 }
3441 }
3442 }
3443
3444 /*
3445 * All done. Write the updated control block back to the caller.
3446 */
3447 ifc.ifc_len = total;
3448
3449 /*
3450 * Both BSD and Solaris return 0 here, so we do too.
3451 */
3452 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3453}
3454
3455#ifdef CONFIG_PROC_FS
3456/*
3457 * This is invoked by the /proc filesystem handler to display a device
3458 * in detail.
3459 */
3460void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3461 __acquires(RCU)
3462{
3463 struct net *net = seq_file_net(seq);
3464 loff_t off;
3465 struct net_device *dev;
3466
3467 rcu_read_lock();
3468 if (!*pos)
3469 return SEQ_START_TOKEN;
3470
3471 off = 1;
3472 for_each_netdev_rcu(net, dev)
3473 if (off++ == *pos)
3474 return dev;
3475
3476 return NULL;
3477}
3478
3479void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3480{
3481 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3482 first_net_device(seq_file_net(seq)) :
3483 next_net_device((struct net_device *)v);
3484
3485 ++*pos;
3486 return rcu_dereference(dev);
3487}
3488
3489void dev_seq_stop(struct seq_file *seq, void *v)
3490 __releases(RCU)
3491{
3492 rcu_read_unlock();
3493}
3494
3495static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3496{
3497 const struct net_device_stats *stats = dev_get_stats(dev);
3498
3499 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3500 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3501 dev->name, stats->rx_bytes, stats->rx_packets,
3502 stats->rx_errors,
3503 stats->rx_dropped + stats->rx_missed_errors,
3504 stats->rx_fifo_errors,
3505 stats->rx_length_errors + stats->rx_over_errors +
3506 stats->rx_crc_errors + stats->rx_frame_errors,
3507 stats->rx_compressed, stats->multicast,
3508 stats->tx_bytes, stats->tx_packets,
3509 stats->tx_errors, stats->tx_dropped,
3510 stats->tx_fifo_errors, stats->collisions,
3511 stats->tx_carrier_errors +
3512 stats->tx_aborted_errors +
3513 stats->tx_window_errors +
3514 stats->tx_heartbeat_errors,
3515 stats->tx_compressed);
3516}
3517
3518/*
3519 * Called from the PROCfs module. This now uses the new arbitrary sized
3520 * /proc/net interface to create /proc/net/dev
3521 */
3522static int dev_seq_show(struct seq_file *seq, void *v)
3523{
3524 if (v == SEQ_START_TOKEN)
3525 seq_puts(seq, "Inter-| Receive "
3526 " | Transmit\n"
3527 " face |bytes packets errs drop fifo frame "
3528 "compressed multicast|bytes packets errs "
3529 "drop fifo colls carrier compressed\n");
3530 else
3531 dev_seq_printf_stats(seq, v);
3532 return 0;
3533}
3534
3535static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3536{
3537 struct netif_rx_stats *rc = NULL;
3538
3539 while (*pos < nr_cpu_ids)
3540 if (cpu_online(*pos)) {
3541 rc = &per_cpu(netdev_rx_stat, *pos);
3542 break;
3543 } else
3544 ++*pos;
3545 return rc;
3546}
3547
3548static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3549{
3550 return softnet_get_online(pos);
3551}
3552
3553static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3554{
3555 ++*pos;
3556 return softnet_get_online(pos);
3557}
3558
3559static void softnet_seq_stop(struct seq_file *seq, void *v)
3560{
3561}
3562
3563static int softnet_seq_show(struct seq_file *seq, void *v)
3564{
3565 struct netif_rx_stats *s = v;
3566
3567 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3568 s->total, s->dropped, s->time_squeeze, 0,
3569 0, 0, 0, 0, /* was fastroute */
3570 s->cpu_collision, s->received_rps);
3571 return 0;
3572}
3573
3574static const struct seq_operations dev_seq_ops = {
3575 .start = dev_seq_start,
3576 .next = dev_seq_next,
3577 .stop = dev_seq_stop,
3578 .show = dev_seq_show,
3579};
3580
3581static int dev_seq_open(struct inode *inode, struct file *file)
3582{
3583 return seq_open_net(inode, file, &dev_seq_ops,
3584 sizeof(struct seq_net_private));
3585}
3586
3587static const struct file_operations dev_seq_fops = {
3588 .owner = THIS_MODULE,
3589 .open = dev_seq_open,
3590 .read = seq_read,
3591 .llseek = seq_lseek,
3592 .release = seq_release_net,
3593};
3594
3595static const struct seq_operations softnet_seq_ops = {
3596 .start = softnet_seq_start,
3597 .next = softnet_seq_next,
3598 .stop = softnet_seq_stop,
3599 .show = softnet_seq_show,
3600};
3601
3602static int softnet_seq_open(struct inode *inode, struct file *file)
3603{
3604 return seq_open(file, &softnet_seq_ops);
3605}
3606
3607static const struct file_operations softnet_seq_fops = {
3608 .owner = THIS_MODULE,
3609 .open = softnet_seq_open,
3610 .read = seq_read,
3611 .llseek = seq_lseek,
3612 .release = seq_release,
3613};
3614
3615static void *ptype_get_idx(loff_t pos)
3616{
3617 struct packet_type *pt = NULL;
3618 loff_t i = 0;
3619 int t;
3620
3621 list_for_each_entry_rcu(pt, &ptype_all, list) {
3622 if (i == pos)
3623 return pt;
3624 ++i;
3625 }
3626
3627 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3628 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3629 if (i == pos)
3630 return pt;
3631 ++i;
3632 }
3633 }
3634 return NULL;
3635}
3636
3637static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3638 __acquires(RCU)
3639{
3640 rcu_read_lock();
3641 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3642}
3643
3644static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3645{
3646 struct packet_type *pt;
3647 struct list_head *nxt;
3648 int hash;
3649
3650 ++*pos;
3651 if (v == SEQ_START_TOKEN)
3652 return ptype_get_idx(0);
3653
3654 pt = v;
3655 nxt = pt->list.next;
3656 if (pt->type == htons(ETH_P_ALL)) {
3657 if (nxt != &ptype_all)
3658 goto found;
3659 hash = 0;
3660 nxt = ptype_base[0].next;
3661 } else
3662 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3663
3664 while (nxt == &ptype_base[hash]) {
3665 if (++hash >= PTYPE_HASH_SIZE)
3666 return NULL;
3667 nxt = ptype_base[hash].next;
3668 }
3669found:
3670 return list_entry(nxt, struct packet_type, list);
3671}
3672
3673static void ptype_seq_stop(struct seq_file *seq, void *v)
3674 __releases(RCU)
3675{
3676 rcu_read_unlock();
3677}
3678
3679static int ptype_seq_show(struct seq_file *seq, void *v)
3680{
3681 struct packet_type *pt = v;
3682
3683 if (v == SEQ_START_TOKEN)
3684 seq_puts(seq, "Type Device Function\n");
3685 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3686 if (pt->type == htons(ETH_P_ALL))
3687 seq_puts(seq, "ALL ");
3688 else
3689 seq_printf(seq, "%04x", ntohs(pt->type));
3690
3691 seq_printf(seq, " %-8s %pF\n",
3692 pt->dev ? pt->dev->name : "", pt->func);
3693 }
3694
3695 return 0;
3696}
3697
3698static const struct seq_operations ptype_seq_ops = {
3699 .start = ptype_seq_start,
3700 .next = ptype_seq_next,
3701 .stop = ptype_seq_stop,
3702 .show = ptype_seq_show,
3703};
3704
3705static int ptype_seq_open(struct inode *inode, struct file *file)
3706{
3707 return seq_open_net(inode, file, &ptype_seq_ops,
3708 sizeof(struct seq_net_private));
3709}
3710
3711static const struct file_operations ptype_seq_fops = {
3712 .owner = THIS_MODULE,
3713 .open = ptype_seq_open,
3714 .read = seq_read,
3715 .llseek = seq_lseek,
3716 .release = seq_release_net,
3717};
3718
3719
3720static int __net_init dev_proc_net_init(struct net *net)
3721{
3722 int rc = -ENOMEM;
3723
3724 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3725 goto out;
3726 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3727 goto out_dev;
3728 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3729 goto out_softnet;
3730
3731 if (wext_proc_init(net))
3732 goto out_ptype;
3733 rc = 0;
3734out:
3735 return rc;
3736out_ptype:
3737 proc_net_remove(net, "ptype");
3738out_softnet:
3739 proc_net_remove(net, "softnet_stat");
3740out_dev:
3741 proc_net_remove(net, "dev");
3742 goto out;
3743}
3744
3745static void __net_exit dev_proc_net_exit(struct net *net)
3746{
3747 wext_proc_exit(net);
3748
3749 proc_net_remove(net, "ptype");
3750 proc_net_remove(net, "softnet_stat");
3751 proc_net_remove(net, "dev");
3752}
3753
3754static struct pernet_operations __net_initdata dev_proc_ops = {
3755 .init = dev_proc_net_init,
3756 .exit = dev_proc_net_exit,
3757};
3758
3759static int __init dev_proc_init(void)
3760{
3761 return register_pernet_subsys(&dev_proc_ops);
3762}
3763#else
3764#define dev_proc_init() 0
3765#endif /* CONFIG_PROC_FS */
3766
3767
3768/**
3769 * netdev_set_master - set up master/slave pair
3770 * @slave: slave device
3771 * @master: new master device
3772 *
3773 * Changes the master device of the slave. Pass %NULL to break the
3774 * bonding. The caller must hold the RTNL semaphore. On a failure
3775 * a negative errno code is returned. On success the reference counts
3776 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3777 * function returns zero.
3778 */
3779int netdev_set_master(struct net_device *slave, struct net_device *master)
3780{
3781 struct net_device *old = slave->master;
3782
3783 ASSERT_RTNL();
3784
3785 if (master) {
3786 if (old)
3787 return -EBUSY;
3788 dev_hold(master);
3789 }
3790
3791 slave->master = master;
3792
3793 if (old) {
3794 synchronize_net();
3795 dev_put(old);
3796 }
3797 if (master)
3798 slave->flags |= IFF_SLAVE;
3799 else
3800 slave->flags &= ~IFF_SLAVE;
3801
3802 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3803 return 0;
3804}
3805EXPORT_SYMBOL(netdev_set_master);
3806
3807static void dev_change_rx_flags(struct net_device *dev, int flags)
3808{
3809 const struct net_device_ops *ops = dev->netdev_ops;
3810
3811 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3812 ops->ndo_change_rx_flags(dev, flags);
3813}
3814
3815static int __dev_set_promiscuity(struct net_device *dev, int inc)
3816{
3817 unsigned short old_flags = dev->flags;
3818 uid_t uid;
3819 gid_t gid;
3820
3821 ASSERT_RTNL();
3822
3823 dev->flags |= IFF_PROMISC;
3824 dev->promiscuity += inc;
3825 if (dev->promiscuity == 0) {
3826 /*
3827 * Avoid overflow.
3828 * If inc causes overflow, untouch promisc and return error.
3829 */
3830 if (inc < 0)
3831 dev->flags &= ~IFF_PROMISC;
3832 else {
3833 dev->promiscuity -= inc;
3834 printk(KERN_WARNING "%s: promiscuity touches roof, "
3835 "set promiscuity failed, promiscuity feature "
3836 "of device might be broken.\n", dev->name);
3837 return -EOVERFLOW;
3838 }
3839 }
3840 if (dev->flags != old_flags) {
3841 printk(KERN_INFO "device %s %s promiscuous mode\n",
3842 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3843 "left");
3844 if (audit_enabled) {
3845 current_uid_gid(&uid, &gid);
3846 audit_log(current->audit_context, GFP_ATOMIC,
3847 AUDIT_ANOM_PROMISCUOUS,
3848 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3849 dev->name, (dev->flags & IFF_PROMISC),
3850 (old_flags & IFF_PROMISC),
3851 audit_get_loginuid(current),
3852 uid, gid,
3853 audit_get_sessionid(current));
3854 }
3855
3856 dev_change_rx_flags(dev, IFF_PROMISC);
3857 }
3858 return 0;
3859}
3860
3861/**
3862 * dev_set_promiscuity - update promiscuity count on a device
3863 * @dev: device
3864 * @inc: modifier
3865 *
3866 * Add or remove promiscuity from a device. While the count in the device
3867 * remains above zero the interface remains promiscuous. Once it hits zero
3868 * the device reverts back to normal filtering operation. A negative inc
3869 * value is used to drop promiscuity on the device.
3870 * Return 0 if successful or a negative errno code on error.
3871 */
3872int dev_set_promiscuity(struct net_device *dev, int inc)
3873{
3874 unsigned short old_flags = dev->flags;
3875 int err;
3876
3877 err = __dev_set_promiscuity(dev, inc);
3878 if (err < 0)
3879 return err;
3880 if (dev->flags != old_flags)
3881 dev_set_rx_mode(dev);
3882 return err;
3883}
3884EXPORT_SYMBOL(dev_set_promiscuity);
3885
3886/**
3887 * dev_set_allmulti - update allmulti count on a device
3888 * @dev: device
3889 * @inc: modifier
3890 *
3891 * Add or remove reception of all multicast frames to a device. While the
3892 * count in the device remains above zero the interface remains listening
3893 * to all interfaces. Once it hits zero the device reverts back to normal
3894 * filtering operation. A negative @inc value is used to drop the counter
3895 * when releasing a resource needing all multicasts.
3896 * Return 0 if successful or a negative errno code on error.
3897 */
3898
3899int dev_set_allmulti(struct net_device *dev, int inc)
3900{
3901 unsigned short old_flags = dev->flags;
3902
3903 ASSERT_RTNL();
3904
3905 dev->flags |= IFF_ALLMULTI;
3906 dev->allmulti += inc;
3907 if (dev->allmulti == 0) {
3908 /*
3909 * Avoid overflow.
3910 * If inc causes overflow, untouch allmulti and return error.
3911 */
3912 if (inc < 0)
3913 dev->flags &= ~IFF_ALLMULTI;
3914 else {
3915 dev->allmulti -= inc;
3916 printk(KERN_WARNING "%s: allmulti touches roof, "
3917 "set allmulti failed, allmulti feature of "
3918 "device might be broken.\n", dev->name);
3919 return -EOVERFLOW;
3920 }
3921 }
3922 if (dev->flags ^ old_flags) {
3923 dev_change_rx_flags(dev, IFF_ALLMULTI);
3924 dev_set_rx_mode(dev);
3925 }
3926 return 0;
3927}
3928EXPORT_SYMBOL(dev_set_allmulti);
3929
3930/*
3931 * Upload unicast and multicast address lists to device and
3932 * configure RX filtering. When the device doesn't support unicast
3933 * filtering it is put in promiscuous mode while unicast addresses
3934 * are present.
3935 */
3936void __dev_set_rx_mode(struct net_device *dev)
3937{
3938 const struct net_device_ops *ops = dev->netdev_ops;
3939
3940 /* dev_open will call this function so the list will stay sane. */
3941 if (!(dev->flags&IFF_UP))
3942 return;
3943
3944 if (!netif_device_present(dev))
3945 return;
3946
3947 if (ops->ndo_set_rx_mode)
3948 ops->ndo_set_rx_mode(dev);
3949 else {
3950 /* Unicast addresses changes may only happen under the rtnl,
3951 * therefore calling __dev_set_promiscuity here is safe.
3952 */
3953 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3954 __dev_set_promiscuity(dev, 1);
3955 dev->uc_promisc = 1;
3956 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3957 __dev_set_promiscuity(dev, -1);
3958 dev->uc_promisc = 0;
3959 }
3960
3961 if (ops->ndo_set_multicast_list)
3962 ops->ndo_set_multicast_list(dev);
3963 }
3964}
3965
3966void dev_set_rx_mode(struct net_device *dev)
3967{
3968 netif_addr_lock_bh(dev);
3969 __dev_set_rx_mode(dev);
3970 netif_addr_unlock_bh(dev);
3971}
3972
3973/**
3974 * dev_get_flags - get flags reported to userspace
3975 * @dev: device
3976 *
3977 * Get the combination of flag bits exported through APIs to userspace.
3978 */
3979unsigned dev_get_flags(const struct net_device *dev)
3980{
3981 unsigned flags;
3982
3983 flags = (dev->flags & ~(IFF_PROMISC |
3984 IFF_ALLMULTI |
3985 IFF_RUNNING |
3986 IFF_LOWER_UP |
3987 IFF_DORMANT)) |
3988 (dev->gflags & (IFF_PROMISC |
3989 IFF_ALLMULTI));
3990
3991 if (netif_running(dev)) {
3992 if (netif_oper_up(dev))
3993 flags |= IFF_RUNNING;
3994 if (netif_carrier_ok(dev))
3995 flags |= IFF_LOWER_UP;
3996 if (netif_dormant(dev))
3997 flags |= IFF_DORMANT;
3998 }
3999
4000 return flags;
4001}
4002EXPORT_SYMBOL(dev_get_flags);
4003
4004int __dev_change_flags(struct net_device *dev, unsigned int flags)
4005{
4006 int old_flags = dev->flags;
4007 int ret;
4008
4009 ASSERT_RTNL();
4010
4011 /*
4012 * Set the flags on our device.
4013 */
4014
4015 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4016 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4017 IFF_AUTOMEDIA)) |
4018 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4019 IFF_ALLMULTI));
4020
4021 /*
4022 * Load in the correct multicast list now the flags have changed.
4023 */
4024
4025 if ((old_flags ^ flags) & IFF_MULTICAST)
4026 dev_change_rx_flags(dev, IFF_MULTICAST);
4027
4028 dev_set_rx_mode(dev);
4029
4030 /*
4031 * Have we downed the interface. We handle IFF_UP ourselves
4032 * according to user attempts to set it, rather than blindly
4033 * setting it.
4034 */
4035
4036 ret = 0;
4037 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4038 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4039
4040 if (!ret)
4041 dev_set_rx_mode(dev);
4042 }
4043
4044 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4045 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4046
4047 dev->gflags ^= IFF_PROMISC;
4048 dev_set_promiscuity(dev, inc);
4049 }
4050
4051 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4052 is important. Some (broken) drivers set IFF_PROMISC, when
4053 IFF_ALLMULTI is requested not asking us and not reporting.
4054 */
4055 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4056 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4057
4058 dev->gflags ^= IFF_ALLMULTI;
4059 dev_set_allmulti(dev, inc);
4060 }
4061
4062 return ret;
4063}
4064
4065void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4066{
4067 unsigned int changes = dev->flags ^ old_flags;
4068
4069 if (changes & IFF_UP) {
4070 if (dev->flags & IFF_UP)
4071 call_netdevice_notifiers(NETDEV_UP, dev);
4072 else
4073 call_netdevice_notifiers(NETDEV_DOWN, dev);
4074 }
4075
4076 if (dev->flags & IFF_UP &&
4077 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4078 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4079}
4080
4081/**
4082 * dev_change_flags - change device settings
4083 * @dev: device
4084 * @flags: device state flags
4085 *
4086 * Change settings on device based state flags. The flags are
4087 * in the userspace exported format.
4088 */
4089int dev_change_flags(struct net_device *dev, unsigned flags)
4090{
4091 int ret, changes;
4092 int old_flags = dev->flags;
4093
4094 ret = __dev_change_flags(dev, flags);
4095 if (ret < 0)
4096 return ret;
4097
4098 changes = old_flags ^ dev->flags;
4099 if (changes)
4100 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4101
4102 __dev_notify_flags(dev, old_flags);
4103 return ret;
4104}
4105EXPORT_SYMBOL(dev_change_flags);
4106
4107/**
4108 * dev_set_mtu - Change maximum transfer unit
4109 * @dev: device
4110 * @new_mtu: new transfer unit
4111 *
4112 * Change the maximum transfer size of the network device.
4113 */
4114int dev_set_mtu(struct net_device *dev, int new_mtu)
4115{
4116 const struct net_device_ops *ops = dev->netdev_ops;
4117 int err;
4118
4119 if (new_mtu == dev->mtu)
4120 return 0;
4121
4122 /* MTU must be positive. */
4123 if (new_mtu < 0)
4124 return -EINVAL;
4125
4126 if (!netif_device_present(dev))
4127 return -ENODEV;
4128
4129 err = 0;
4130 if (ops->ndo_change_mtu)
4131 err = ops->ndo_change_mtu(dev, new_mtu);
4132 else
4133 dev->mtu = new_mtu;
4134
4135 if (!err && dev->flags & IFF_UP)
4136 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4137 return err;
4138}
4139EXPORT_SYMBOL(dev_set_mtu);
4140
4141/**
4142 * dev_set_mac_address - Change Media Access Control Address
4143 * @dev: device
4144 * @sa: new address
4145 *
4146 * Change the hardware (MAC) address of the device
4147 */
4148int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4149{
4150 const struct net_device_ops *ops = dev->netdev_ops;
4151 int err;
4152
4153 if (!ops->ndo_set_mac_address)
4154 return -EOPNOTSUPP;
4155 if (sa->sa_family != dev->type)
4156 return -EINVAL;
4157 if (!netif_device_present(dev))
4158 return -ENODEV;
4159 err = ops->ndo_set_mac_address(dev, sa);
4160 if (!err)
4161 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4162 return err;
4163}
4164EXPORT_SYMBOL(dev_set_mac_address);
4165
4166/*
4167 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4168 */
4169static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4170{
4171 int err;
4172 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4173
4174 if (!dev)
4175 return -ENODEV;
4176
4177 switch (cmd) {
4178 case SIOCGIFFLAGS: /* Get interface flags */
4179 ifr->ifr_flags = (short) dev_get_flags(dev);
4180 return 0;
4181
4182 case SIOCGIFMETRIC: /* Get the metric on the interface
4183 (currently unused) */
4184 ifr->ifr_metric = 0;
4185 return 0;
4186
4187 case SIOCGIFMTU: /* Get the MTU of a device */
4188 ifr->ifr_mtu = dev->mtu;
4189 return 0;
4190
4191 case SIOCGIFHWADDR:
4192 if (!dev->addr_len)
4193 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4194 else
4195 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4196 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4197 ifr->ifr_hwaddr.sa_family = dev->type;
4198 return 0;
4199
4200 case SIOCGIFSLAVE:
4201 err = -EINVAL;
4202 break;
4203
4204 case SIOCGIFMAP:
4205 ifr->ifr_map.mem_start = dev->mem_start;
4206 ifr->ifr_map.mem_end = dev->mem_end;
4207 ifr->ifr_map.base_addr = dev->base_addr;
4208 ifr->ifr_map.irq = dev->irq;
4209 ifr->ifr_map.dma = dev->dma;
4210 ifr->ifr_map.port = dev->if_port;
4211 return 0;
4212
4213 case SIOCGIFINDEX:
4214 ifr->ifr_ifindex = dev->ifindex;
4215 return 0;
4216
4217 case SIOCGIFTXQLEN:
4218 ifr->ifr_qlen = dev->tx_queue_len;
4219 return 0;
4220
4221 default:
4222 /* dev_ioctl() should ensure this case
4223 * is never reached
4224 */
4225 WARN_ON(1);
4226 err = -EINVAL;
4227 break;
4228
4229 }
4230 return err;
4231}
4232
4233/*
4234 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4235 */
4236static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4237{
4238 int err;
4239 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4240 const struct net_device_ops *ops;
4241
4242 if (!dev)
4243 return -ENODEV;
4244
4245 ops = dev->netdev_ops;
4246
4247 switch (cmd) {
4248 case SIOCSIFFLAGS: /* Set interface flags */
4249 return dev_change_flags(dev, ifr->ifr_flags);
4250
4251 case SIOCSIFMETRIC: /* Set the metric on the interface
4252 (currently unused) */
4253 return -EOPNOTSUPP;
4254
4255 case SIOCSIFMTU: /* Set the MTU of a device */
4256 return dev_set_mtu(dev, ifr->ifr_mtu);
4257
4258 case SIOCSIFHWADDR:
4259 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4260
4261 case SIOCSIFHWBROADCAST:
4262 if (ifr->ifr_hwaddr.sa_family != dev->type)
4263 return -EINVAL;
4264 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4265 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4266 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4267 return 0;
4268
4269 case SIOCSIFMAP:
4270 if (ops->ndo_set_config) {
4271 if (!netif_device_present(dev))
4272 return -ENODEV;
4273 return ops->ndo_set_config(dev, &ifr->ifr_map);
4274 }
4275 return -EOPNOTSUPP;
4276
4277 case SIOCADDMULTI:
4278 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4279 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4280 return -EINVAL;
4281 if (!netif_device_present(dev))
4282 return -ENODEV;
4283 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4284
4285 case SIOCDELMULTI:
4286 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4287 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4288 return -EINVAL;
4289 if (!netif_device_present(dev))
4290 return -ENODEV;
4291 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4292
4293 case SIOCSIFTXQLEN:
4294 if (ifr->ifr_qlen < 0)
4295 return -EINVAL;
4296 dev->tx_queue_len = ifr->ifr_qlen;
4297 return 0;
4298
4299 case SIOCSIFNAME:
4300 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4301 return dev_change_name(dev, ifr->ifr_newname);
4302
4303 /*
4304 * Unknown or private ioctl
4305 */
4306 default:
4307 if ((cmd >= SIOCDEVPRIVATE &&
4308 cmd <= SIOCDEVPRIVATE + 15) ||
4309 cmd == SIOCBONDENSLAVE ||
4310 cmd == SIOCBONDRELEASE ||
4311 cmd == SIOCBONDSETHWADDR ||
4312 cmd == SIOCBONDSLAVEINFOQUERY ||
4313 cmd == SIOCBONDINFOQUERY ||
4314 cmd == SIOCBONDCHANGEACTIVE ||
4315 cmd == SIOCGMIIPHY ||
4316 cmd == SIOCGMIIREG ||
4317 cmd == SIOCSMIIREG ||
4318 cmd == SIOCBRADDIF ||
4319 cmd == SIOCBRDELIF ||
4320 cmd == SIOCSHWTSTAMP ||
4321 cmd == SIOCWANDEV) {
4322 err = -EOPNOTSUPP;
4323 if (ops->ndo_do_ioctl) {
4324 if (netif_device_present(dev))
4325 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4326 else
4327 err = -ENODEV;
4328 }
4329 } else
4330 err = -EINVAL;
4331
4332 }
4333 return err;
4334}
4335
4336/*
4337 * This function handles all "interface"-type I/O control requests. The actual
4338 * 'doing' part of this is dev_ifsioc above.
4339 */
4340
4341/**
4342 * dev_ioctl - network device ioctl
4343 * @net: the applicable net namespace
4344 * @cmd: command to issue
4345 * @arg: pointer to a struct ifreq in user space
4346 *
4347 * Issue ioctl functions to devices. This is normally called by the
4348 * user space syscall interfaces but can sometimes be useful for
4349 * other purposes. The return value is the return from the syscall if
4350 * positive or a negative errno code on error.
4351 */
4352
4353int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4354{
4355 struct ifreq ifr;
4356 int ret;
4357 char *colon;
4358
4359 /* One special case: SIOCGIFCONF takes ifconf argument
4360 and requires shared lock, because it sleeps writing
4361 to user space.
4362 */
4363
4364 if (cmd == SIOCGIFCONF) {
4365 rtnl_lock();
4366 ret = dev_ifconf(net, (char __user *) arg);
4367 rtnl_unlock();
4368 return ret;
4369 }
4370 if (cmd == SIOCGIFNAME)
4371 return dev_ifname(net, (struct ifreq __user *)arg);
4372
4373 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4374 return -EFAULT;
4375
4376 ifr.ifr_name[IFNAMSIZ-1] = 0;
4377
4378 colon = strchr(ifr.ifr_name, ':');
4379 if (colon)
4380 *colon = 0;
4381
4382 /*
4383 * See which interface the caller is talking about.
4384 */
4385
4386 switch (cmd) {
4387 /*
4388 * These ioctl calls:
4389 * - can be done by all.
4390 * - atomic and do not require locking.
4391 * - return a value
4392 */
4393 case SIOCGIFFLAGS:
4394 case SIOCGIFMETRIC:
4395 case SIOCGIFMTU:
4396 case SIOCGIFHWADDR:
4397 case SIOCGIFSLAVE:
4398 case SIOCGIFMAP:
4399 case SIOCGIFINDEX:
4400 case SIOCGIFTXQLEN:
4401 dev_load(net, ifr.ifr_name);
4402 rcu_read_lock();
4403 ret = dev_ifsioc_locked(net, &ifr, cmd);
4404 rcu_read_unlock();
4405 if (!ret) {
4406 if (colon)
4407 *colon = ':';
4408 if (copy_to_user(arg, &ifr,
4409 sizeof(struct ifreq)))
4410 ret = -EFAULT;
4411 }
4412 return ret;
4413
4414 case SIOCETHTOOL:
4415 dev_load(net, ifr.ifr_name);
4416 rtnl_lock();
4417 ret = dev_ethtool(net, &ifr);
4418 rtnl_unlock();
4419 if (!ret) {
4420 if (colon)
4421 *colon = ':';
4422 if (copy_to_user(arg, &ifr,
4423 sizeof(struct ifreq)))
4424 ret = -EFAULT;
4425 }
4426 return ret;
4427
4428 /*
4429 * These ioctl calls:
4430 * - require superuser power.
4431 * - require strict serialization.
4432 * - return a value
4433 */
4434 case SIOCGMIIPHY:
4435 case SIOCGMIIREG:
4436 case SIOCSIFNAME:
4437 if (!capable(CAP_NET_ADMIN))
4438 return -EPERM;
4439 dev_load(net, ifr.ifr_name);
4440 rtnl_lock();
4441 ret = dev_ifsioc(net, &ifr, cmd);
4442 rtnl_unlock();
4443 if (!ret) {
4444 if (colon)
4445 *colon = ':';
4446 if (copy_to_user(arg, &ifr,
4447 sizeof(struct ifreq)))
4448 ret = -EFAULT;
4449 }
4450 return ret;
4451
4452 /*
4453 * These ioctl calls:
4454 * - require superuser power.
4455 * - require strict serialization.
4456 * - do not return a value
4457 */
4458 case SIOCSIFFLAGS:
4459 case SIOCSIFMETRIC:
4460 case SIOCSIFMTU:
4461 case SIOCSIFMAP:
4462 case SIOCSIFHWADDR:
4463 case SIOCSIFSLAVE:
4464 case SIOCADDMULTI:
4465 case SIOCDELMULTI:
4466 case SIOCSIFHWBROADCAST:
4467 case SIOCSIFTXQLEN:
4468 case SIOCSMIIREG:
4469 case SIOCBONDENSLAVE:
4470 case SIOCBONDRELEASE:
4471 case SIOCBONDSETHWADDR:
4472 case SIOCBONDCHANGEACTIVE:
4473 case SIOCBRADDIF:
4474 case SIOCBRDELIF:
4475 case SIOCSHWTSTAMP:
4476 if (!capable(CAP_NET_ADMIN))
4477 return -EPERM;
4478 /* fall through */
4479 case SIOCBONDSLAVEINFOQUERY:
4480 case SIOCBONDINFOQUERY:
4481 dev_load(net, ifr.ifr_name);
4482 rtnl_lock();
4483 ret = dev_ifsioc(net, &ifr, cmd);
4484 rtnl_unlock();
4485 return ret;
4486
4487 case SIOCGIFMEM:
4488 /* Get the per device memory space. We can add this but
4489 * currently do not support it */
4490 case SIOCSIFMEM:
4491 /* Set the per device memory buffer space.
4492 * Not applicable in our case */
4493 case SIOCSIFLINK:
4494 return -EINVAL;
4495
4496 /*
4497 * Unknown or private ioctl.
4498 */
4499 default:
4500 if (cmd == SIOCWANDEV ||
4501 (cmd >= SIOCDEVPRIVATE &&
4502 cmd <= SIOCDEVPRIVATE + 15)) {
4503 dev_load(net, ifr.ifr_name);
4504 rtnl_lock();
4505 ret = dev_ifsioc(net, &ifr, cmd);
4506 rtnl_unlock();
4507 if (!ret && copy_to_user(arg, &ifr,
4508 sizeof(struct ifreq)))
4509 ret = -EFAULT;
4510 return ret;
4511 }
4512 /* Take care of Wireless Extensions */
4513 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4514 return wext_handle_ioctl(net, &ifr, cmd, arg);
4515 return -EINVAL;
4516 }
4517}
4518
4519
4520/**
4521 * dev_new_index - allocate an ifindex
4522 * @net: the applicable net namespace
4523 *
4524 * Returns a suitable unique value for a new device interface
4525 * number. The caller must hold the rtnl semaphore or the
4526 * dev_base_lock to be sure it remains unique.
4527 */
4528static int dev_new_index(struct net *net)
4529{
4530 static int ifindex;
4531 for (;;) {
4532 if (++ifindex <= 0)
4533 ifindex = 1;
4534 if (!__dev_get_by_index(net, ifindex))
4535 return ifindex;
4536 }
4537}
4538
4539/* Delayed registration/unregisteration */
4540static LIST_HEAD(net_todo_list);
4541
4542static void net_set_todo(struct net_device *dev)
4543{
4544 list_add_tail(&dev->todo_list, &net_todo_list);
4545}
4546
4547static void rollback_registered_many(struct list_head *head)
4548{
4549 struct net_device *dev, *tmp;
4550
4551 BUG_ON(dev_boot_phase);
4552 ASSERT_RTNL();
4553
4554 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4555 /* Some devices call without registering
4556 * for initialization unwind. Remove those
4557 * devices and proceed with the remaining.
4558 */
4559 if (dev->reg_state == NETREG_UNINITIALIZED) {
4560 pr_debug("unregister_netdevice: device %s/%p never "
4561 "was registered\n", dev->name, dev);
4562
4563 WARN_ON(1);
4564 list_del(&dev->unreg_list);
4565 continue;
4566 }
4567
4568 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4569
4570 /* If device is running, close it first. */
4571 dev_close(dev);
4572
4573 /* And unlink it from device chain. */
4574 unlist_netdevice(dev);
4575
4576 dev->reg_state = NETREG_UNREGISTERING;
4577 }
4578
4579 synchronize_net();
4580
4581 list_for_each_entry(dev, head, unreg_list) {
4582 /* Shutdown queueing discipline. */
4583 dev_shutdown(dev);
4584
4585
4586 /* Notify protocols, that we are about to destroy
4587 this device. They should clean all the things.
4588 */
4589 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4590
4591 if (!dev->rtnl_link_ops ||
4592 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4593 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4594
4595 /*
4596 * Flush the unicast and multicast chains
4597 */
4598 dev_uc_flush(dev);
4599 dev_mc_flush(dev);
4600
4601 if (dev->netdev_ops->ndo_uninit)
4602 dev->netdev_ops->ndo_uninit(dev);
4603
4604 /* Notifier chain MUST detach us from master device. */
4605 WARN_ON(dev->master);
4606
4607 /* Remove entries from kobject tree */
4608 netdev_unregister_kobject(dev);
4609 }
4610
4611 /* Process any work delayed until the end of the batch */
4612 dev = list_first_entry(head, struct net_device, unreg_list);
4613 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4614
4615 synchronize_net();
4616
4617 list_for_each_entry(dev, head, unreg_list)
4618 dev_put(dev);
4619}
4620
4621static void rollback_registered(struct net_device *dev)
4622{
4623 LIST_HEAD(single);
4624
4625 list_add(&dev->unreg_list, &single);
4626 rollback_registered_many(&single);
4627}
4628
4629static void __netdev_init_queue_locks_one(struct net_device *dev,
4630 struct netdev_queue *dev_queue,
4631 void *_unused)
4632{
4633 spin_lock_init(&dev_queue->_xmit_lock);
4634 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4635 dev_queue->xmit_lock_owner = -1;
4636}
4637
4638static void netdev_init_queue_locks(struct net_device *dev)
4639{
4640 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4641 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4642}
4643
4644unsigned long netdev_fix_features(unsigned long features, const char *name)
4645{
4646 /* Fix illegal SG+CSUM combinations. */
4647 if ((features & NETIF_F_SG) &&
4648 !(features & NETIF_F_ALL_CSUM)) {
4649 if (name)
4650 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4651 "checksum feature.\n", name);
4652 features &= ~NETIF_F_SG;
4653 }
4654
4655 /* TSO requires that SG is present as well. */
4656 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4657 if (name)
4658 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4659 "SG feature.\n", name);
4660 features &= ~NETIF_F_TSO;
4661 }
4662
4663 if (features & NETIF_F_UFO) {
4664 if (!(features & NETIF_F_GEN_CSUM)) {
4665 if (name)
4666 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4667 "since no NETIF_F_HW_CSUM feature.\n",
4668 name);
4669 features &= ~NETIF_F_UFO;
4670 }
4671
4672 if (!(features & NETIF_F_SG)) {
4673 if (name)
4674 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4675 "since no NETIF_F_SG feature.\n", name);
4676 features &= ~NETIF_F_UFO;
4677 }
4678 }
4679
4680 return features;
4681}
4682EXPORT_SYMBOL(netdev_fix_features);
4683
4684/**
4685 * netif_stacked_transfer_operstate - transfer operstate
4686 * @rootdev: the root or lower level device to transfer state from
4687 * @dev: the device to transfer operstate to
4688 *
4689 * Transfer operational state from root to device. This is normally
4690 * called when a stacking relationship exists between the root
4691 * device and the device(a leaf device).
4692 */
4693void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4694 struct net_device *dev)
4695{
4696 if (rootdev->operstate == IF_OPER_DORMANT)
4697 netif_dormant_on(dev);
4698 else
4699 netif_dormant_off(dev);
4700
4701 if (netif_carrier_ok(rootdev)) {
4702 if (!netif_carrier_ok(dev))
4703 netif_carrier_on(dev);
4704 } else {
4705 if (netif_carrier_ok(dev))
4706 netif_carrier_off(dev);
4707 }
4708}
4709EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4710
4711/**
4712 * register_netdevice - register a network device
4713 * @dev: device to register
4714 *
4715 * Take a completed network device structure and add it to the kernel
4716 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4717 * chain. 0 is returned on success. A negative errno code is returned
4718 * on a failure to set up the device, or if the name is a duplicate.
4719 *
4720 * Callers must hold the rtnl semaphore. You may want
4721 * register_netdev() instead of this.
4722 *
4723 * BUGS:
4724 * The locking appears insufficient to guarantee two parallel registers
4725 * will not get the same name.
4726 */
4727
4728int register_netdevice(struct net_device *dev)
4729{
4730 int ret;
4731 struct net *net = dev_net(dev);
4732
4733 BUG_ON(dev_boot_phase);
4734 ASSERT_RTNL();
4735
4736 might_sleep();
4737
4738 /* When net_device's are persistent, this will be fatal. */
4739 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4740 BUG_ON(!net);
4741
4742 spin_lock_init(&dev->addr_list_lock);
4743 netdev_set_addr_lockdep_class(dev);
4744 netdev_init_queue_locks(dev);
4745
4746 dev->iflink = -1;
4747
4748#ifdef CONFIG_RPS
4749 if (!dev->num_rx_queues) {
4750 /*
4751 * Allocate a single RX queue if driver never called
4752 * alloc_netdev_mq
4753 */
4754
4755 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4756 if (!dev->_rx) {
4757 ret = -ENOMEM;
4758 goto out;
4759 }
4760
4761 dev->_rx->first = dev->_rx;
4762 atomic_set(&dev->_rx->count, 1);
4763 dev->num_rx_queues = 1;
4764 }
4765#endif
4766 /* Init, if this function is available */
4767 if (dev->netdev_ops->ndo_init) {
4768 ret = dev->netdev_ops->ndo_init(dev);
4769 if (ret) {
4770 if (ret > 0)
4771 ret = -EIO;
4772 goto out;
4773 }
4774 }
4775
4776 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4777 if (ret)
4778 goto err_uninit;
4779
4780 dev->ifindex = dev_new_index(net);
4781 if (dev->iflink == -1)
4782 dev->iflink = dev->ifindex;
4783
4784 /* Fix illegal checksum combinations */
4785 if ((dev->features & NETIF_F_HW_CSUM) &&
4786 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4787 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4788 dev->name);
4789 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4790 }
4791
4792 if ((dev->features & NETIF_F_NO_CSUM) &&
4793 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4794 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4795 dev->name);
4796 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4797 }
4798
4799 dev->features = netdev_fix_features(dev->features, dev->name);
4800
4801 /* Enable software GSO if SG is supported. */
4802 if (dev->features & NETIF_F_SG)
4803 dev->features |= NETIF_F_GSO;
4804
4805 netdev_initialize_kobject(dev);
4806
4807 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4808 ret = notifier_to_errno(ret);
4809 if (ret)
4810 goto err_uninit;
4811
4812 ret = netdev_register_kobject(dev);
4813 if (ret)
4814 goto err_uninit;
4815 dev->reg_state = NETREG_REGISTERED;
4816
4817 /*
4818 * Default initial state at registry is that the
4819 * device is present.
4820 */
4821
4822 set_bit(__LINK_STATE_PRESENT, &dev->state);
4823
4824 dev_init_scheduler(dev);
4825 dev_hold(dev);
4826 list_netdevice(dev);
4827
4828 /* Notify protocols, that a new device appeared. */
4829 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4830 ret = notifier_to_errno(ret);
4831 if (ret) {
4832 rollback_registered(dev);
4833 dev->reg_state = NETREG_UNREGISTERED;
4834 }
4835 /*
4836 * Prevent userspace races by waiting until the network
4837 * device is fully setup before sending notifications.
4838 */
4839 if (!dev->rtnl_link_ops ||
4840 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4841 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
4842
4843out:
4844 return ret;
4845
4846err_uninit:
4847 if (dev->netdev_ops->ndo_uninit)
4848 dev->netdev_ops->ndo_uninit(dev);
4849 goto out;
4850}
4851EXPORT_SYMBOL(register_netdevice);
4852
4853/**
4854 * init_dummy_netdev - init a dummy network device for NAPI
4855 * @dev: device to init
4856 *
4857 * This takes a network device structure and initialize the minimum
4858 * amount of fields so it can be used to schedule NAPI polls without
4859 * registering a full blown interface. This is to be used by drivers
4860 * that need to tie several hardware interfaces to a single NAPI
4861 * poll scheduler due to HW limitations.
4862 */
4863int init_dummy_netdev(struct net_device *dev)
4864{
4865 /* Clear everything. Note we don't initialize spinlocks
4866 * are they aren't supposed to be taken by any of the
4867 * NAPI code and this dummy netdev is supposed to be
4868 * only ever used for NAPI polls
4869 */
4870 memset(dev, 0, sizeof(struct net_device));
4871
4872 /* make sure we BUG if trying to hit standard
4873 * register/unregister code path
4874 */
4875 dev->reg_state = NETREG_DUMMY;
4876
4877 /* initialize the ref count */
4878 atomic_set(&dev->refcnt, 1);
4879
4880 /* NAPI wants this */
4881 INIT_LIST_HEAD(&dev->napi_list);
4882
4883 /* a dummy interface is started by default */
4884 set_bit(__LINK_STATE_PRESENT, &dev->state);
4885 set_bit(__LINK_STATE_START, &dev->state);
4886
4887 return 0;
4888}
4889EXPORT_SYMBOL_GPL(init_dummy_netdev);
4890
4891
4892/**
4893 * register_netdev - register a network device
4894 * @dev: device to register
4895 *
4896 * Take a completed network device structure and add it to the kernel
4897 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4898 * chain. 0 is returned on success. A negative errno code is returned
4899 * on a failure to set up the device, or if the name is a duplicate.
4900 *
4901 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4902 * and expands the device name if you passed a format string to
4903 * alloc_netdev.
4904 */
4905int register_netdev(struct net_device *dev)
4906{
4907 int err;
4908
4909 rtnl_lock();
4910
4911 /*
4912 * If the name is a format string the caller wants us to do a
4913 * name allocation.
4914 */
4915 if (strchr(dev->name, '%')) {
4916 err = dev_alloc_name(dev, dev->name);
4917 if (err < 0)
4918 goto out;
4919 }
4920
4921 err = register_netdevice(dev);
4922out:
4923 rtnl_unlock();
4924 return err;
4925}
4926EXPORT_SYMBOL(register_netdev);
4927
4928/*
4929 * netdev_wait_allrefs - wait until all references are gone.
4930 *
4931 * This is called when unregistering network devices.
4932 *
4933 * Any protocol or device that holds a reference should register
4934 * for netdevice notification, and cleanup and put back the
4935 * reference if they receive an UNREGISTER event.
4936 * We can get stuck here if buggy protocols don't correctly
4937 * call dev_put.
4938 */
4939static void netdev_wait_allrefs(struct net_device *dev)
4940{
4941 unsigned long rebroadcast_time, warning_time;
4942
4943 linkwatch_forget_dev(dev);
4944
4945 rebroadcast_time = warning_time = jiffies;
4946 while (atomic_read(&dev->refcnt) != 0) {
4947 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4948 rtnl_lock();
4949
4950 /* Rebroadcast unregister notification */
4951 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4952 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
4953 * should have already handle it the first time */
4954
4955 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4956 &dev->state)) {
4957 /* We must not have linkwatch events
4958 * pending on unregister. If this
4959 * happens, we simply run the queue
4960 * unscheduled, resulting in a noop
4961 * for this device.
4962 */
4963 linkwatch_run_queue();
4964 }
4965
4966 __rtnl_unlock();
4967
4968 rebroadcast_time = jiffies;
4969 }
4970
4971 msleep(250);
4972
4973 if (time_after(jiffies, warning_time + 10 * HZ)) {
4974 printk(KERN_EMERG "unregister_netdevice: "
4975 "waiting for %s to become free. Usage "
4976 "count = %d\n",
4977 dev->name, atomic_read(&dev->refcnt));
4978 warning_time = jiffies;
4979 }
4980 }
4981}
4982
4983/* The sequence is:
4984 *
4985 * rtnl_lock();
4986 * ...
4987 * register_netdevice(x1);
4988 * register_netdevice(x2);
4989 * ...
4990 * unregister_netdevice(y1);
4991 * unregister_netdevice(y2);
4992 * ...
4993 * rtnl_unlock();
4994 * free_netdev(y1);
4995 * free_netdev(y2);
4996 *
4997 * We are invoked by rtnl_unlock().
4998 * This allows us to deal with problems:
4999 * 1) We can delete sysfs objects which invoke hotplug
5000 * without deadlocking with linkwatch via keventd.
5001 * 2) Since we run with the RTNL semaphore not held, we can sleep
5002 * safely in order to wait for the netdev refcnt to drop to zero.
5003 *
5004 * We must not return until all unregister events added during
5005 * the interval the lock was held have been completed.
5006 */
5007void netdev_run_todo(void)
5008{
5009 struct list_head list;
5010
5011 /* Snapshot list, allow later requests */
5012 list_replace_init(&net_todo_list, &list);
5013
5014 __rtnl_unlock();
5015
5016 while (!list_empty(&list)) {
5017 struct net_device *dev
5018 = list_first_entry(&list, struct net_device, todo_list);
5019 list_del(&dev->todo_list);
5020
5021 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5022 printk(KERN_ERR "network todo '%s' but state %d\n",
5023 dev->name, dev->reg_state);
5024 dump_stack();
5025 continue;
5026 }
5027
5028 dev->reg_state = NETREG_UNREGISTERED;
5029
5030 on_each_cpu(flush_backlog, dev, 1);
5031
5032 netdev_wait_allrefs(dev);
5033
5034 /* paranoia */
5035 BUG_ON(atomic_read(&dev->refcnt));
5036 WARN_ON(dev->ip_ptr);
5037 WARN_ON(dev->ip6_ptr);
5038 WARN_ON(dev->dn_ptr);
5039
5040 if (dev->destructor)
5041 dev->destructor(dev);
5042
5043 /* Free network device */
5044 kobject_put(&dev->dev.kobj);
5045 }
5046}
5047
5048/**
5049 * dev_txq_stats_fold - fold tx_queues stats
5050 * @dev: device to get statistics from
5051 * @stats: struct net_device_stats to hold results
5052 */
5053void dev_txq_stats_fold(const struct net_device *dev,
5054 struct net_device_stats *stats)
5055{
5056 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5057 unsigned int i;
5058 struct netdev_queue *txq;
5059
5060 for (i = 0; i < dev->num_tx_queues; i++) {
5061 txq = netdev_get_tx_queue(dev, i);
5062 tx_bytes += txq->tx_bytes;
5063 tx_packets += txq->tx_packets;
5064 tx_dropped += txq->tx_dropped;
5065 }
5066 if (tx_bytes || tx_packets || tx_dropped) {
5067 stats->tx_bytes = tx_bytes;
5068 stats->tx_packets = tx_packets;
5069 stats->tx_dropped = tx_dropped;
5070 }
5071}
5072EXPORT_SYMBOL(dev_txq_stats_fold);
5073
5074/**
5075 * dev_get_stats - get network device statistics
5076 * @dev: device to get statistics from
5077 *
5078 * Get network statistics from device. The device driver may provide
5079 * its own method by setting dev->netdev_ops->get_stats; otherwise
5080 * the internal statistics structure is used.
5081 */
5082const struct net_device_stats *dev_get_stats(struct net_device *dev)
5083{
5084 const struct net_device_ops *ops = dev->netdev_ops;
5085
5086 if (ops->ndo_get_stats)
5087 return ops->ndo_get_stats(dev);
5088
5089 dev_txq_stats_fold(dev, &dev->stats);
5090 return &dev->stats;
5091}
5092EXPORT_SYMBOL(dev_get_stats);
5093
5094static void netdev_init_one_queue(struct net_device *dev,
5095 struct netdev_queue *queue,
5096 void *_unused)
5097{
5098 queue->dev = dev;
5099}
5100
5101static void netdev_init_queues(struct net_device *dev)
5102{
5103 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5104 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5105 spin_lock_init(&dev->tx_global_lock);
5106}
5107
5108/**
5109 * alloc_netdev_mq - allocate network device
5110 * @sizeof_priv: size of private data to allocate space for
5111 * @name: device name format string
5112 * @setup: callback to initialize device
5113 * @queue_count: the number of subqueues to allocate
5114 *
5115 * Allocates a struct net_device with private data area for driver use
5116 * and performs basic initialization. Also allocates subquue structs
5117 * for each queue on the device at the end of the netdevice.
5118 */
5119struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5120 void (*setup)(struct net_device *), unsigned int queue_count)
5121{
5122 struct netdev_queue *tx;
5123 struct net_device *dev;
5124 size_t alloc_size;
5125 struct net_device *p;
5126#ifdef CONFIG_RPS
5127 struct netdev_rx_queue *rx;
5128 int i;
5129#endif
5130
5131 BUG_ON(strlen(name) >= sizeof(dev->name));
5132
5133 alloc_size = sizeof(struct net_device);
5134 if (sizeof_priv) {
5135 /* ensure 32-byte alignment of private area */
5136 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5137 alloc_size += sizeof_priv;
5138 }
5139 /* ensure 32-byte alignment of whole construct */
5140 alloc_size += NETDEV_ALIGN - 1;
5141
5142 p = kzalloc(alloc_size, GFP_KERNEL);
5143 if (!p) {
5144 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5145 return NULL;
5146 }
5147
5148 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5149 if (!tx) {
5150 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5151 "tx qdiscs.\n");
5152 goto free_p;
5153 }
5154
5155#ifdef CONFIG_RPS
5156 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5157 if (!rx) {
5158 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5159 "rx queues.\n");
5160 goto free_tx;
5161 }
5162
5163 atomic_set(&rx->count, queue_count);
5164
5165 /*
5166 * Set a pointer to first element in the array which holds the
5167 * reference count.
5168 */
5169 for (i = 0; i < queue_count; i++)
5170 rx[i].first = rx;
5171#endif
5172
5173 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5174 dev->padded = (char *)dev - (char *)p;
5175
5176 if (dev_addr_init(dev))
5177 goto free_rx;
5178
5179 dev_mc_init(dev);
5180 dev_uc_init(dev);
5181
5182 dev_net_set(dev, &init_net);
5183
5184 dev->_tx = tx;
5185 dev->num_tx_queues = queue_count;
5186 dev->real_num_tx_queues = queue_count;
5187
5188#ifdef CONFIG_RPS
5189 dev->_rx = rx;
5190 dev->num_rx_queues = queue_count;
5191#endif
5192
5193 dev->gso_max_size = GSO_MAX_SIZE;
5194
5195 netdev_init_queues(dev);
5196
5197 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5198 dev->ethtool_ntuple_list.count = 0;
5199 INIT_LIST_HEAD(&dev->napi_list);
5200 INIT_LIST_HEAD(&dev->unreg_list);
5201 INIT_LIST_HEAD(&dev->link_watch_list);
5202 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5203 setup(dev);
5204 strcpy(dev->name, name);
5205 return dev;
5206
5207free_rx:
5208#ifdef CONFIG_RPS
5209 kfree(rx);
5210free_tx:
5211#endif
5212 kfree(tx);
5213free_p:
5214 kfree(p);
5215 return NULL;
5216}
5217EXPORT_SYMBOL(alloc_netdev_mq);
5218
5219/**
5220 * free_netdev - free network device
5221 * @dev: device
5222 *
5223 * This function does the last stage of destroying an allocated device
5224 * interface. The reference to the device object is released.
5225 * If this is the last reference then it will be freed.
5226 */
5227void free_netdev(struct net_device *dev)
5228{
5229 struct napi_struct *p, *n;
5230
5231 release_net(dev_net(dev));
5232
5233 kfree(dev->_tx);
5234
5235 /* Flush device addresses */
5236 dev_addr_flush(dev);
5237
5238 /* Clear ethtool n-tuple list */
5239 ethtool_ntuple_flush(dev);
5240
5241 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5242 netif_napi_del(p);
5243
5244 /* Compatibility with error handling in drivers */
5245 if (dev->reg_state == NETREG_UNINITIALIZED) {
5246 kfree((char *)dev - dev->padded);
5247 return;
5248 }
5249
5250 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5251 dev->reg_state = NETREG_RELEASED;
5252
5253 /* will free via device release */
5254 put_device(&dev->dev);
5255}
5256EXPORT_SYMBOL(free_netdev);
5257
5258/**
5259 * synchronize_net - Synchronize with packet receive processing
5260 *
5261 * Wait for packets currently being received to be done.
5262 * Does not block later packets from starting.
5263 */
5264void synchronize_net(void)
5265{
5266 might_sleep();
5267 synchronize_rcu();
5268}
5269EXPORT_SYMBOL(synchronize_net);
5270
5271/**
5272 * unregister_netdevice_queue - remove device from the kernel
5273 * @dev: device
5274 * @head: list
5275 *
5276 * This function shuts down a device interface and removes it
5277 * from the kernel tables.
5278 * If head not NULL, device is queued to be unregistered later.
5279 *
5280 * Callers must hold the rtnl semaphore. You may want
5281 * unregister_netdev() instead of this.
5282 */
5283
5284void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5285{
5286 ASSERT_RTNL();
5287
5288 if (head) {
5289 list_move_tail(&dev->unreg_list, head);
5290 } else {
5291 rollback_registered(dev);
5292 /* Finish processing unregister after unlock */
5293 net_set_todo(dev);
5294 }
5295}
5296EXPORT_SYMBOL(unregister_netdevice_queue);
5297
5298/**
5299 * unregister_netdevice_many - unregister many devices
5300 * @head: list of devices
5301 */
5302void unregister_netdevice_many(struct list_head *head)
5303{
5304 struct net_device *dev;
5305
5306 if (!list_empty(head)) {
5307 rollback_registered_many(head);
5308 list_for_each_entry(dev, head, unreg_list)
5309 net_set_todo(dev);
5310 }
5311}
5312EXPORT_SYMBOL(unregister_netdevice_many);
5313
5314/**
5315 * unregister_netdev - remove device from the kernel
5316 * @dev: device
5317 *
5318 * This function shuts down a device interface and removes it
5319 * from the kernel tables.
5320 *
5321 * This is just a wrapper for unregister_netdevice that takes
5322 * the rtnl semaphore. In general you want to use this and not
5323 * unregister_netdevice.
5324 */
5325void unregister_netdev(struct net_device *dev)
5326{
5327 rtnl_lock();
5328 unregister_netdevice(dev);
5329 rtnl_unlock();
5330}
5331EXPORT_SYMBOL(unregister_netdev);
5332
5333/**
5334 * dev_change_net_namespace - move device to different nethost namespace
5335 * @dev: device
5336 * @net: network namespace
5337 * @pat: If not NULL name pattern to try if the current device name
5338 * is already taken in the destination network namespace.
5339 *
5340 * This function shuts down a device interface and moves it
5341 * to a new network namespace. On success 0 is returned, on
5342 * a failure a netagive errno code is returned.
5343 *
5344 * Callers must hold the rtnl semaphore.
5345 */
5346
5347int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5348{
5349 int err;
5350
5351 ASSERT_RTNL();
5352
5353 /* Don't allow namespace local devices to be moved. */
5354 err = -EINVAL;
5355 if (dev->features & NETIF_F_NETNS_LOCAL)
5356 goto out;
5357
5358#ifdef CONFIG_SYSFS
5359 /* Don't allow real devices to be moved when sysfs
5360 * is enabled.
5361 */
5362 err = -EINVAL;
5363 if (dev->dev.parent)
5364 goto out;
5365#endif
5366
5367 /* Ensure the device has been registrered */
5368 err = -EINVAL;
5369 if (dev->reg_state != NETREG_REGISTERED)
5370 goto out;
5371
5372 /* Get out if there is nothing todo */
5373 err = 0;
5374 if (net_eq(dev_net(dev), net))
5375 goto out;
5376
5377 /* Pick the destination device name, and ensure
5378 * we can use it in the destination network namespace.
5379 */
5380 err = -EEXIST;
5381 if (__dev_get_by_name(net, dev->name)) {
5382 /* We get here if we can't use the current device name */
5383 if (!pat)
5384 goto out;
5385 if (dev_get_valid_name(net, pat, dev->name, 1))
5386 goto out;
5387 }
5388
5389 /*
5390 * And now a mini version of register_netdevice unregister_netdevice.
5391 */
5392
5393 /* If device is running close it first. */
5394 dev_close(dev);
5395
5396 /* And unlink it from device chain */
5397 err = -ENODEV;
5398 unlist_netdevice(dev);
5399
5400 synchronize_net();
5401
5402 /* Shutdown queueing discipline. */
5403 dev_shutdown(dev);
5404
5405 /* Notify protocols, that we are about to destroy
5406 this device. They should clean all the things.
5407 */
5408 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5409 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5410
5411 /*
5412 * Flush the unicast and multicast chains
5413 */
5414 dev_uc_flush(dev);
5415 dev_mc_flush(dev);
5416
5417 netdev_unregister_kobject(dev);
5418
5419 /* Actually switch the network namespace */
5420 dev_net_set(dev, net);
5421
5422 /* If there is an ifindex conflict assign a new one */
5423 if (__dev_get_by_index(net, dev->ifindex)) {
5424 int iflink = (dev->iflink == dev->ifindex);
5425 dev->ifindex = dev_new_index(net);
5426 if (iflink)
5427 dev->iflink = dev->ifindex;
5428 }
5429
5430 /* Fixup kobjects */
5431 err = netdev_register_kobject(dev);
5432 WARN_ON(err);
5433
5434 /* Add the device back in the hashes */
5435 list_netdevice(dev);
5436
5437 /* Notify protocols, that a new device appeared. */
5438 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5439
5440 /*
5441 * Prevent userspace races by waiting until the network
5442 * device is fully setup before sending notifications.
5443 */
5444 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5445
5446 synchronize_net();
5447 err = 0;
5448out:
5449 return err;
5450}
5451EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5452
5453static int dev_cpu_callback(struct notifier_block *nfb,
5454 unsigned long action,
5455 void *ocpu)
5456{
5457 struct sk_buff **list_skb;
5458 struct Qdisc **list_net;
5459 struct sk_buff *skb;
5460 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5461 struct softnet_data *sd, *oldsd;
5462
5463 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5464 return NOTIFY_OK;
5465
5466 local_irq_disable();
5467 cpu = smp_processor_id();
5468 sd = &per_cpu(softnet_data, cpu);
5469 oldsd = &per_cpu(softnet_data, oldcpu);
5470
5471 /* Find end of our completion_queue. */
5472 list_skb = &sd->completion_queue;
5473 while (*list_skb)
5474 list_skb = &(*list_skb)->next;
5475 /* Append completion queue from offline CPU. */
5476 *list_skb = oldsd->completion_queue;
5477 oldsd->completion_queue = NULL;
5478
5479 /* Find end of our output_queue. */
5480 list_net = &sd->output_queue;
5481 while (*list_net)
5482 list_net = &(*list_net)->next_sched;
5483 /* Append output queue from offline CPU. */
5484 *list_net = oldsd->output_queue;
5485 oldsd->output_queue = NULL;
5486
5487 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5488 local_irq_enable();
5489
5490 /* Process offline CPU's input_pkt_queue */
5491 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5492 netif_rx(skb);
5493
5494 return NOTIFY_OK;
5495}
5496
5497
5498/**
5499 * netdev_increment_features - increment feature set by one
5500 * @all: current feature set
5501 * @one: new feature set
5502 * @mask: mask feature set
5503 *
5504 * Computes a new feature set after adding a device with feature set
5505 * @one to the master device with current feature set @all. Will not
5506 * enable anything that is off in @mask. Returns the new feature set.
5507 */
5508unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5509 unsigned long mask)
5510{
5511 /* If device needs checksumming, downgrade to it. */
5512 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5513 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5514 else if (mask & NETIF_F_ALL_CSUM) {
5515 /* If one device supports v4/v6 checksumming, set for all. */
5516 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5517 !(all & NETIF_F_GEN_CSUM)) {
5518 all &= ~NETIF_F_ALL_CSUM;
5519 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5520 }
5521
5522 /* If one device supports hw checksumming, set for all. */
5523 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5524 all &= ~NETIF_F_ALL_CSUM;
5525 all |= NETIF_F_HW_CSUM;
5526 }
5527 }
5528
5529 one |= NETIF_F_ALL_CSUM;
5530
5531 one |= all & NETIF_F_ONE_FOR_ALL;
5532 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5533 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5534
5535 return all;
5536}
5537EXPORT_SYMBOL(netdev_increment_features);
5538
5539static struct hlist_head *netdev_create_hash(void)
5540{
5541 int i;
5542 struct hlist_head *hash;
5543
5544 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5545 if (hash != NULL)
5546 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5547 INIT_HLIST_HEAD(&hash[i]);
5548
5549 return hash;
5550}
5551
5552/* Initialize per network namespace state */
5553static int __net_init netdev_init(struct net *net)
5554{
5555 INIT_LIST_HEAD(&net->dev_base_head);
5556
5557 net->dev_name_head = netdev_create_hash();
5558 if (net->dev_name_head == NULL)
5559 goto err_name;
5560
5561 net->dev_index_head = netdev_create_hash();
5562 if (net->dev_index_head == NULL)
5563 goto err_idx;
5564
5565 return 0;
5566
5567err_idx:
5568 kfree(net->dev_name_head);
5569err_name:
5570 return -ENOMEM;
5571}
5572
5573/**
5574 * netdev_drivername - network driver for the device
5575 * @dev: network device
5576 * @buffer: buffer for resulting name
5577 * @len: size of buffer
5578 *
5579 * Determine network driver for device.
5580 */
5581char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5582{
5583 const struct device_driver *driver;
5584 const struct device *parent;
5585
5586 if (len <= 0 || !buffer)
5587 return buffer;
5588 buffer[0] = 0;
5589
5590 parent = dev->dev.parent;
5591
5592 if (!parent)
5593 return buffer;
5594
5595 driver = parent->driver;
5596 if (driver && driver->name)
5597 strlcpy(buffer, driver->name, len);
5598 return buffer;
5599}
5600
5601static void __net_exit netdev_exit(struct net *net)
5602{
5603 kfree(net->dev_name_head);
5604 kfree(net->dev_index_head);
5605}
5606
5607static struct pernet_operations __net_initdata netdev_net_ops = {
5608 .init = netdev_init,
5609 .exit = netdev_exit,
5610};
5611
5612static void __net_exit default_device_exit(struct net *net)
5613{
5614 struct net_device *dev, *aux;
5615 /*
5616 * Push all migratable network devices back to the
5617 * initial network namespace
5618 */
5619 rtnl_lock();
5620 for_each_netdev_safe(net, dev, aux) {
5621 int err;
5622 char fb_name[IFNAMSIZ];
5623
5624 /* Ignore unmoveable devices (i.e. loopback) */
5625 if (dev->features & NETIF_F_NETNS_LOCAL)
5626 continue;
5627
5628 /* Leave virtual devices for the generic cleanup */
5629 if (dev->rtnl_link_ops)
5630 continue;
5631
5632 /* Push remaing network devices to init_net */
5633 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5634 err = dev_change_net_namespace(dev, &init_net, fb_name);
5635 if (err) {
5636 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5637 __func__, dev->name, err);
5638 BUG();
5639 }
5640 }
5641 rtnl_unlock();
5642}
5643
5644static void __net_exit default_device_exit_batch(struct list_head *net_list)
5645{
5646 /* At exit all network devices most be removed from a network
5647 * namespace. Do this in the reverse order of registeration.
5648 * Do this across as many network namespaces as possible to
5649 * improve batching efficiency.
5650 */
5651 struct net_device *dev;
5652 struct net *net;
5653 LIST_HEAD(dev_kill_list);
5654
5655 rtnl_lock();
5656 list_for_each_entry(net, net_list, exit_list) {
5657 for_each_netdev_reverse(net, dev) {
5658 if (dev->rtnl_link_ops)
5659 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5660 else
5661 unregister_netdevice_queue(dev, &dev_kill_list);
5662 }
5663 }
5664 unregister_netdevice_many(&dev_kill_list);
5665 rtnl_unlock();
5666}
5667
5668static struct pernet_operations __net_initdata default_device_ops = {
5669 .exit = default_device_exit,
5670 .exit_batch = default_device_exit_batch,
5671};
5672
5673/*
5674 * Initialize the DEV module. At boot time this walks the device list and
5675 * unhooks any devices that fail to initialise (normally hardware not
5676 * present) and leaves us with a valid list of present and active devices.
5677 *
5678 */
5679
5680/*
5681 * This is called single threaded during boot, so no need
5682 * to take the rtnl semaphore.
5683 */
5684static int __init net_dev_init(void)
5685{
5686 int i, rc = -ENOMEM;
5687
5688 BUG_ON(!dev_boot_phase);
5689
5690 if (dev_proc_init())
5691 goto out;
5692
5693 if (netdev_kobject_init())
5694 goto out;
5695
5696 INIT_LIST_HEAD(&ptype_all);
5697 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5698 INIT_LIST_HEAD(&ptype_base[i]);
5699
5700 if (register_pernet_subsys(&netdev_net_ops))
5701 goto out;
5702
5703 /*
5704 * Initialise the packet receive queues.
5705 */
5706
5707 for_each_possible_cpu(i) {
5708 struct softnet_data *queue;
5709
5710 queue = &per_cpu(softnet_data, i);
5711 skb_queue_head_init(&queue->input_pkt_queue);
5712 queue->completion_queue = NULL;
5713 INIT_LIST_HEAD(&queue->poll_list);
5714
5715#ifdef CONFIG_RPS
5716 queue->csd.func = trigger_softirq;
5717 queue->csd.info = queue;
5718 queue->csd.flags = 0;
5719#endif
5720
5721 queue->backlog.poll = process_backlog;
5722 queue->backlog.weight = weight_p;
5723 queue->backlog.gro_list = NULL;
5724 queue->backlog.gro_count = 0;
5725 }
5726
5727 dev_boot_phase = 0;
5728
5729 /* The loopback device is special if any other network devices
5730 * is present in a network namespace the loopback device must
5731 * be present. Since we now dynamically allocate and free the
5732 * loopback device ensure this invariant is maintained by
5733 * keeping the loopback device as the first device on the
5734 * list of network devices. Ensuring the loopback devices
5735 * is the first device that appears and the last network device
5736 * that disappears.
5737 */
5738 if (register_pernet_device(&loopback_net_ops))
5739 goto out;
5740
5741 if (register_pernet_device(&default_device_ops))
5742 goto out;
5743
5744 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5745 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5746
5747 hotcpu_notifier(dev_cpu_callback, 0);
5748 dst_init();
5749 dev_mcast_init();
5750 rc = 0;
5751out:
5752 return rc;
5753}
5754
5755subsys_initcall(net_dev_init);
5756
5757static int __init initialize_hashrnd(void)
5758{
5759 get_random_bytes(&hashrnd, sizeof(hashrnd));
5760 return 0;
5761}
5762
5763late_initcall_sync(initialize_hashrnd);
5764