]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
drivers/net/sunvnet.c: Use pr_<level> and netdev_<level>
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/hash.h>
83#include <linux/slab.h>
84#include <linux/sched.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <net/net_namespace.h>
99#include <net/sock.h>
100#include <linux/rtnetlink.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/stat.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <net/xfrm.h>
108#include <linux/highmem.h>
109#include <linux/init.h>
110#include <linux/kmod.h>
111#include <linux/module.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
115#include <net/wext.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <linux/ipv6.h>
127#include <linux/in.h>
128#include <linux/jhash.h>
129#include <linux/random.h>
130#include <trace/events/napi.h>
131#include <linux/pci.h>
132
133#include "net-sysfs.h"
134
135/* Instead of increasing this, you should create a hash table. */
136#define MAX_GRO_SKBS 8
137
138/* This should be increased if a protocol with a bigger head is added. */
139#define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141/*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
169#define PTYPE_HASH_SIZE (16)
170#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
172static DEFINE_SPINLOCK(ptype_lock);
173static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174static struct list_head ptype_all __read_mostly; /* Taps */
175
176/*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195DEFINE_RWLOCK(dev_base_lock);
196EXPORT_SYMBOL(dev_base_lock);
197
198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199{
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202}
203
204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205{
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207}
208
209static inline void rps_lock(struct softnet_data *sd)
210{
211#ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213#endif
214}
215
216static inline void rps_unlock(struct softnet_data *sd)
217{
218#ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220#endif
221}
222
223/* Device list insertion */
224static int list_netdevice(struct net_device *dev)
225{
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236 return 0;
237}
238
239/* Device list removal
240 * caller must respect a RCU grace period before freeing/reusing dev
241 */
242static void unlist_netdevice(struct net_device *dev)
243{
244 ASSERT_RTNL();
245
246 /* Unlink dev from the device chain */
247 write_lock_bh(&dev_base_lock);
248 list_del_rcu(&dev->dev_list);
249 hlist_del_rcu(&dev->name_hlist);
250 hlist_del_rcu(&dev->index_hlist);
251 write_unlock_bh(&dev_base_lock);
252}
253
254/*
255 * Our notifier list
256 */
257
258static RAW_NOTIFIER_HEAD(netdev_chain);
259
260/*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268#ifdef CONFIG_LOCKDEP
269/*
270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271 * according to dev->type
272 */
273static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
287 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
288 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
289 ARPHRD_VOID, ARPHRD_NONE};
290
291static const char *const netdev_lock_name[] =
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
305 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
306 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
307 "_xmit_VOID", "_xmit_NONE"};
308
309static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311
312static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313{
314 int i;
315
316 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 if (netdev_lock_type[i] == dev_type)
318 return i;
319 /* the last key is used by default */
320 return ARRAY_SIZE(netdev_lock_type) - 1;
321}
322
323static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 unsigned short dev_type)
325{
326 int i;
327
328 i = netdev_lock_pos(dev_type);
329 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 netdev_lock_name[i]);
331}
332
333static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334{
335 int i;
336
337 i = netdev_lock_pos(dev->type);
338 lockdep_set_class_and_name(&dev->addr_list_lock,
339 &netdev_addr_lock_key[i],
340 netdev_lock_name[i]);
341}
342#else
343static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 unsigned short dev_type)
345{
346}
347static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348{
349}
350#endif
351
352/*******************************************************************************
353
354 Protocol management and registration routines
355
356*******************************************************************************/
357
358/*
359 * Add a protocol ID to the list. Now that the input handler is
360 * smarter we can dispense with all the messy stuff that used to be
361 * here.
362 *
363 * BEWARE!!! Protocol handlers, mangling input packets,
364 * MUST BE last in hash buckets and checking protocol handlers
365 * MUST start from promiscuous ptype_all chain in net_bh.
366 * It is true now, do not change it.
367 * Explanation follows: if protocol handler, mangling packet, will
368 * be the first on list, it is not able to sense, that packet
369 * is cloned and should be copied-on-write, so that it will
370 * change it and subsequent readers will get broken packet.
371 * --ANK (980803)
372 */
373
374/**
375 * dev_add_pack - add packet handler
376 * @pt: packet type declaration
377 *
378 * Add a protocol handler to the networking stack. The passed &packet_type
379 * is linked into kernel lists and may not be freed until it has been
380 * removed from the kernel lists.
381 *
382 * This call does not sleep therefore it can not
383 * guarantee all CPU's that are in middle of receiving packets
384 * will see the new packet type (until the next received packet).
385 */
386
387void dev_add_pack(struct packet_type *pt)
388{
389 int hash;
390
391 spin_lock_bh(&ptype_lock);
392 if (pt->type == htons(ETH_P_ALL))
393 list_add_rcu(&pt->list, &ptype_all);
394 else {
395 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
396 list_add_rcu(&pt->list, &ptype_base[hash]);
397 }
398 spin_unlock_bh(&ptype_lock);
399}
400EXPORT_SYMBOL(dev_add_pack);
401
402/**
403 * __dev_remove_pack - remove packet handler
404 * @pt: packet type declaration
405 *
406 * Remove a protocol handler that was previously added to the kernel
407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
408 * from the kernel lists and can be freed or reused once this function
409 * returns.
410 *
411 * The packet type might still be in use by receivers
412 * and must not be freed until after all the CPU's have gone
413 * through a quiescent state.
414 */
415void __dev_remove_pack(struct packet_type *pt)
416{
417 struct list_head *head;
418 struct packet_type *pt1;
419
420 spin_lock_bh(&ptype_lock);
421
422 if (pt->type == htons(ETH_P_ALL))
423 head = &ptype_all;
424 else
425 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
435out:
436 spin_unlock_bh(&ptype_lock);
437}
438EXPORT_SYMBOL(__dev_remove_pack);
439
440/**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452void dev_remove_pack(struct packet_type *pt)
453{
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457}
458EXPORT_SYMBOL(dev_remove_pack);
459
460/******************************************************************************
461
462 Device Boot-time Settings Routines
463
464*******************************************************************************/
465
466/* Boot time configuration table */
467static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
468
469/**
470 * netdev_boot_setup_add - add new setup entry
471 * @name: name of the device
472 * @map: configured settings for the device
473 *
474 * Adds new setup entry to the dev_boot_setup list. The function
475 * returns 0 on error and 1 on success. This is a generic routine to
476 * all netdevices.
477 */
478static int netdev_boot_setup_add(char *name, struct ifmap *map)
479{
480 struct netdev_boot_setup *s;
481 int i;
482
483 s = dev_boot_setup;
484 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
486 memset(s[i].name, 0, sizeof(s[i].name));
487 strlcpy(s[i].name, name, IFNAMSIZ);
488 memcpy(&s[i].map, map, sizeof(s[i].map));
489 break;
490 }
491 }
492
493 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
494}
495
496/**
497 * netdev_boot_setup_check - check boot time settings
498 * @dev: the netdevice
499 *
500 * Check boot time settings for the device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found, 1 if they are.
504 */
505int netdev_boot_setup_check(struct net_device *dev)
506{
507 struct netdev_boot_setup *s = dev_boot_setup;
508 int i;
509
510 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
511 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
512 !strcmp(dev->name, s[i].name)) {
513 dev->irq = s[i].map.irq;
514 dev->base_addr = s[i].map.base_addr;
515 dev->mem_start = s[i].map.mem_start;
516 dev->mem_end = s[i].map.mem_end;
517 return 1;
518 }
519 }
520 return 0;
521}
522EXPORT_SYMBOL(netdev_boot_setup_check);
523
524
525/**
526 * netdev_boot_base - get address from boot time settings
527 * @prefix: prefix for network device
528 * @unit: id for network device
529 *
530 * Check boot time settings for the base address of device.
531 * The found settings are set for the device to be used
532 * later in the device probing.
533 * Returns 0 if no settings found.
534 */
535unsigned long netdev_boot_base(const char *prefix, int unit)
536{
537 const struct netdev_boot_setup *s = dev_boot_setup;
538 char name[IFNAMSIZ];
539 int i;
540
541 sprintf(name, "%s%d", prefix, unit);
542
543 /*
544 * If device already registered then return base of 1
545 * to indicate not to probe for this interface
546 */
547 if (__dev_get_by_name(&init_net, name))
548 return 1;
549
550 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
551 if (!strcmp(name, s[i].name))
552 return s[i].map.base_addr;
553 return 0;
554}
555
556/*
557 * Saves at boot time configured settings for any netdevice.
558 */
559int __init netdev_boot_setup(char *str)
560{
561 int ints[5];
562 struct ifmap map;
563
564 str = get_options(str, ARRAY_SIZE(ints), ints);
565 if (!str || !*str)
566 return 0;
567
568 /* Save settings */
569 memset(&map, 0, sizeof(map));
570 if (ints[0] > 0)
571 map.irq = ints[1];
572 if (ints[0] > 1)
573 map.base_addr = ints[2];
574 if (ints[0] > 2)
575 map.mem_start = ints[3];
576 if (ints[0] > 3)
577 map.mem_end = ints[4];
578
579 /* Add new entry to the list */
580 return netdev_boot_setup_add(str, &map);
581}
582
583__setup("netdev=", netdev_boot_setup);
584
585/*******************************************************************************
586
587 Device Interface Subroutines
588
589*******************************************************************************/
590
591/**
592 * __dev_get_by_name - find a device by its name
593 * @net: the applicable net namespace
594 * @name: name to find
595 *
596 * Find an interface by name. Must be called under RTNL semaphore
597 * or @dev_base_lock. If the name is found a pointer to the device
598 * is returned. If the name is not found then %NULL is returned. The
599 * reference counters are not incremented so the caller must be
600 * careful with locks.
601 */
602
603struct net_device *__dev_get_by_name(struct net *net, const char *name)
604{
605 struct hlist_node *p;
606 struct net_device *dev;
607 struct hlist_head *head = dev_name_hash(net, name);
608
609 hlist_for_each_entry(dev, p, head, name_hlist)
610 if (!strncmp(dev->name, name, IFNAMSIZ))
611 return dev;
612
613 return NULL;
614}
615EXPORT_SYMBOL(__dev_get_by_name);
616
617/**
618 * dev_get_by_name_rcu - find a device by its name
619 * @net: the applicable net namespace
620 * @name: name to find
621 *
622 * Find an interface by name.
623 * If the name is found a pointer to the device is returned.
624 * If the name is not found then %NULL is returned.
625 * The reference counters are not incremented so the caller must be
626 * careful with locks. The caller must hold RCU lock.
627 */
628
629struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
630{
631 struct hlist_node *p;
632 struct net_device *dev;
633 struct hlist_head *head = dev_name_hash(net, name);
634
635 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
636 if (!strncmp(dev->name, name, IFNAMSIZ))
637 return dev;
638
639 return NULL;
640}
641EXPORT_SYMBOL(dev_get_by_name_rcu);
642
643/**
644 * dev_get_by_name - find a device by its name
645 * @net: the applicable net namespace
646 * @name: name to find
647 *
648 * Find an interface by name. This can be called from any
649 * context and does its own locking. The returned handle has
650 * the usage count incremented and the caller must use dev_put() to
651 * release it when it is no longer needed. %NULL is returned if no
652 * matching device is found.
653 */
654
655struct net_device *dev_get_by_name(struct net *net, const char *name)
656{
657 struct net_device *dev;
658
659 rcu_read_lock();
660 dev = dev_get_by_name_rcu(net, name);
661 if (dev)
662 dev_hold(dev);
663 rcu_read_unlock();
664 return dev;
665}
666EXPORT_SYMBOL(dev_get_by_name);
667
668/**
669 * __dev_get_by_index - find a device by its ifindex
670 * @net: the applicable net namespace
671 * @ifindex: index of device
672 *
673 * Search for an interface by index. Returns %NULL if the device
674 * is not found or a pointer to the device. The device has not
675 * had its reference counter increased so the caller must be careful
676 * about locking. The caller must hold either the RTNL semaphore
677 * or @dev_base_lock.
678 */
679
680struct net_device *__dev_get_by_index(struct net *net, int ifindex)
681{
682 struct hlist_node *p;
683 struct net_device *dev;
684 struct hlist_head *head = dev_index_hash(net, ifindex);
685
686 hlist_for_each_entry(dev, p, head, index_hlist)
687 if (dev->ifindex == ifindex)
688 return dev;
689
690 return NULL;
691}
692EXPORT_SYMBOL(__dev_get_by_index);
693
694/**
695 * dev_get_by_index_rcu - find a device by its ifindex
696 * @net: the applicable net namespace
697 * @ifindex: index of device
698 *
699 * Search for an interface by index. Returns %NULL if the device
700 * is not found or a pointer to the device. The device has not
701 * had its reference counter increased so the caller must be careful
702 * about locking. The caller must hold RCU lock.
703 */
704
705struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
706{
707 struct hlist_node *p;
708 struct net_device *dev;
709 struct hlist_head *head = dev_index_hash(net, ifindex);
710
711 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
712 if (dev->ifindex == ifindex)
713 return dev;
714
715 return NULL;
716}
717EXPORT_SYMBOL(dev_get_by_index_rcu);
718
719
720/**
721 * dev_get_by_index - find a device by its ifindex
722 * @net: the applicable net namespace
723 * @ifindex: index of device
724 *
725 * Search for an interface by index. Returns NULL if the device
726 * is not found or a pointer to the device. The device returned has
727 * had a reference added and the pointer is safe until the user calls
728 * dev_put to indicate they have finished with it.
729 */
730
731struct net_device *dev_get_by_index(struct net *net, int ifindex)
732{
733 struct net_device *dev;
734
735 rcu_read_lock();
736 dev = dev_get_by_index_rcu(net, ifindex);
737 if (dev)
738 dev_hold(dev);
739 rcu_read_unlock();
740 return dev;
741}
742EXPORT_SYMBOL(dev_get_by_index);
743
744/**
745 * dev_getbyhwaddr - find a device by its hardware address
746 * @net: the applicable net namespace
747 * @type: media type of device
748 * @ha: hardware address
749 *
750 * Search for an interface by MAC address. Returns NULL if the device
751 * is not found or a pointer to the device. The caller must hold the
752 * rtnl semaphore. The returned device has not had its ref count increased
753 * and the caller must therefore be careful about locking
754 *
755 * BUGS:
756 * If the API was consistent this would be __dev_get_by_hwaddr
757 */
758
759struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
760{
761 struct net_device *dev;
762
763 ASSERT_RTNL();
764
765 for_each_netdev(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_getbyhwaddr);
773
774struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775{
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784}
785EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788{
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800}
801EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803/**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816{
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827}
828EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830/**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838int dev_valid_name(const char *name)
839{
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853}
854EXPORT_SYMBOL(dev_valid_name);
855
856/**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872{
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920}
921
922/**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936int dev_alloc_name(struct net_device *dev, const char *name)
937{
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948}
949EXPORT_SYMBOL(dev_alloc_name);
950
951static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952{
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969}
970
971/**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979int dev_change_name(struct net_device *dev, const char *newname)
980{
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036}
1037
1038/**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047{
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067}
1068
1069
1070/**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076void netdev_features_change(struct net_device *dev)
1077{
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079}
1080EXPORT_SYMBOL(netdev_features_change);
1081
1082/**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090void netdev_state_change(struct net_device *dev)
1091{
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096}
1097EXPORT_SYMBOL(netdev_state_change);
1098
1099int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100{
1101 return call_netdevice_notifiers(event, dev);
1102}
1103EXPORT_SYMBOL(netdev_bonding_change);
1104
1105/**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115void dev_load(struct net *net, const char *name)
1116{
1117 struct net_device *dev;
1118
1119 rcu_read_lock();
1120 dev = dev_get_by_name_rcu(net, name);
1121 rcu_read_unlock();
1122
1123 if (!dev && capable(CAP_NET_ADMIN))
1124 request_module("%s", name);
1125}
1126EXPORT_SYMBOL(dev_load);
1127
1128static int __dev_open(struct net_device *dev)
1129{
1130 const struct net_device_ops *ops = dev->netdev_ops;
1131 int ret;
1132
1133 ASSERT_RTNL();
1134
1135 /*
1136 * Is it even present?
1137 */
1138 if (!netif_device_present(dev))
1139 return -ENODEV;
1140
1141 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1142 ret = notifier_to_errno(ret);
1143 if (ret)
1144 return ret;
1145
1146 /*
1147 * Call device private open method
1148 */
1149 set_bit(__LINK_STATE_START, &dev->state);
1150
1151 if (ops->ndo_validate_addr)
1152 ret = ops->ndo_validate_addr(dev);
1153
1154 if (!ret && ops->ndo_open)
1155 ret = ops->ndo_open(dev);
1156
1157 /*
1158 * If it went open OK then:
1159 */
1160
1161 if (ret)
1162 clear_bit(__LINK_STATE_START, &dev->state);
1163 else {
1164 /*
1165 * Set the flags.
1166 */
1167 dev->flags |= IFF_UP;
1168
1169 /*
1170 * Enable NET_DMA
1171 */
1172 net_dmaengine_get();
1173
1174 /*
1175 * Initialize multicasting status
1176 */
1177 dev_set_rx_mode(dev);
1178
1179 /*
1180 * Wakeup transmit queue engine
1181 */
1182 dev_activate(dev);
1183 }
1184
1185 return ret;
1186}
1187
1188/**
1189 * dev_open - prepare an interface for use.
1190 * @dev: device to open
1191 *
1192 * Takes a device from down to up state. The device's private open
1193 * function is invoked and then the multicast lists are loaded. Finally
1194 * the device is moved into the up state and a %NETDEV_UP message is
1195 * sent to the netdev notifier chain.
1196 *
1197 * Calling this function on an active interface is a nop. On a failure
1198 * a negative errno code is returned.
1199 */
1200int dev_open(struct net_device *dev)
1201{
1202 int ret;
1203
1204 /*
1205 * Is it already up?
1206 */
1207 if (dev->flags & IFF_UP)
1208 return 0;
1209
1210 /*
1211 * Open device
1212 */
1213 ret = __dev_open(dev);
1214 if (ret < 0)
1215 return ret;
1216
1217 /*
1218 * ... and announce new interface.
1219 */
1220 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1221 call_netdevice_notifiers(NETDEV_UP, dev);
1222
1223 return ret;
1224}
1225EXPORT_SYMBOL(dev_open);
1226
1227static int __dev_close(struct net_device *dev)
1228{
1229 const struct net_device_ops *ops = dev->netdev_ops;
1230
1231 ASSERT_RTNL();
1232 might_sleep();
1233
1234 /*
1235 * Tell people we are going down, so that they can
1236 * prepare to death, when device is still operating.
1237 */
1238 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1239
1240 clear_bit(__LINK_STATE_START, &dev->state);
1241
1242 /* Synchronize to scheduled poll. We cannot touch poll list,
1243 * it can be even on different cpu. So just clear netif_running().
1244 *
1245 * dev->stop() will invoke napi_disable() on all of it's
1246 * napi_struct instances on this device.
1247 */
1248 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1249
1250 dev_deactivate(dev);
1251
1252 /*
1253 * Call the device specific close. This cannot fail.
1254 * Only if device is UP
1255 *
1256 * We allow it to be called even after a DETACH hot-plug
1257 * event.
1258 */
1259 if (ops->ndo_stop)
1260 ops->ndo_stop(dev);
1261
1262 /*
1263 * Device is now down.
1264 */
1265
1266 dev->flags &= ~IFF_UP;
1267
1268 /*
1269 * Shutdown NET_DMA
1270 */
1271 net_dmaengine_put();
1272
1273 return 0;
1274}
1275
1276/**
1277 * dev_close - shutdown an interface.
1278 * @dev: device to shutdown
1279 *
1280 * This function moves an active device into down state. A
1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283 * chain.
1284 */
1285int dev_close(struct net_device *dev)
1286{
1287 if (!(dev->flags & IFF_UP))
1288 return 0;
1289
1290 __dev_close(dev);
1291
1292 /*
1293 * Tell people we are down
1294 */
1295 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1296 call_netdevice_notifiers(NETDEV_DOWN, dev);
1297
1298 return 0;
1299}
1300EXPORT_SYMBOL(dev_close);
1301
1302
1303/**
1304 * dev_disable_lro - disable Large Receive Offload on a device
1305 * @dev: device
1306 *
1307 * Disable Large Receive Offload (LRO) on a net device. Must be
1308 * called under RTNL. This is needed if received packets may be
1309 * forwarded to another interface.
1310 */
1311void dev_disable_lro(struct net_device *dev)
1312{
1313 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1314 dev->ethtool_ops->set_flags) {
1315 u32 flags = dev->ethtool_ops->get_flags(dev);
1316 if (flags & ETH_FLAG_LRO) {
1317 flags &= ~ETH_FLAG_LRO;
1318 dev->ethtool_ops->set_flags(dev, flags);
1319 }
1320 }
1321 WARN_ON(dev->features & NETIF_F_LRO);
1322}
1323EXPORT_SYMBOL(dev_disable_lro);
1324
1325
1326static int dev_boot_phase = 1;
1327
1328/*
1329 * Device change register/unregister. These are not inline or static
1330 * as we export them to the world.
1331 */
1332
1333/**
1334 * register_netdevice_notifier - register a network notifier block
1335 * @nb: notifier
1336 *
1337 * Register a notifier to be called when network device events occur.
1338 * The notifier passed is linked into the kernel structures and must
1339 * not be reused until it has been unregistered. A negative errno code
1340 * is returned on a failure.
1341 *
1342 * When registered all registration and up events are replayed
1343 * to the new notifier to allow device to have a race free
1344 * view of the network device list.
1345 */
1346
1347int register_netdevice_notifier(struct notifier_block *nb)
1348{
1349 struct net_device *dev;
1350 struct net_device *last;
1351 struct net *net;
1352 int err;
1353
1354 rtnl_lock();
1355 err = raw_notifier_chain_register(&netdev_chain, nb);
1356 if (err)
1357 goto unlock;
1358 if (dev_boot_phase)
1359 goto unlock;
1360 for_each_net(net) {
1361 for_each_netdev(net, dev) {
1362 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1363 err = notifier_to_errno(err);
1364 if (err)
1365 goto rollback;
1366
1367 if (!(dev->flags & IFF_UP))
1368 continue;
1369
1370 nb->notifier_call(nb, NETDEV_UP, dev);
1371 }
1372 }
1373
1374unlock:
1375 rtnl_unlock();
1376 return err;
1377
1378rollback:
1379 last = dev;
1380 for_each_net(net) {
1381 for_each_netdev(net, dev) {
1382 if (dev == last)
1383 break;
1384
1385 if (dev->flags & IFF_UP) {
1386 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1387 nb->notifier_call(nb, NETDEV_DOWN, dev);
1388 }
1389 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1390 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1391 }
1392 }
1393
1394 raw_notifier_chain_unregister(&netdev_chain, nb);
1395 goto unlock;
1396}
1397EXPORT_SYMBOL(register_netdevice_notifier);
1398
1399/**
1400 * unregister_netdevice_notifier - unregister a network notifier block
1401 * @nb: notifier
1402 *
1403 * Unregister a notifier previously registered by
1404 * register_netdevice_notifier(). The notifier is unlinked into the
1405 * kernel structures and may then be reused. A negative errno code
1406 * is returned on a failure.
1407 */
1408
1409int unregister_netdevice_notifier(struct notifier_block *nb)
1410{
1411 int err;
1412
1413 rtnl_lock();
1414 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1415 rtnl_unlock();
1416 return err;
1417}
1418EXPORT_SYMBOL(unregister_netdevice_notifier);
1419
1420/**
1421 * call_netdevice_notifiers - call all network notifier blocks
1422 * @val: value passed unmodified to notifier function
1423 * @dev: net_device pointer passed unmodified to notifier function
1424 *
1425 * Call all network notifier blocks. Parameters and return value
1426 * are as for raw_notifier_call_chain().
1427 */
1428
1429int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1430{
1431 ASSERT_RTNL();
1432 return raw_notifier_call_chain(&netdev_chain, val, dev);
1433}
1434
1435/* When > 0 there are consumers of rx skb time stamps */
1436static atomic_t netstamp_needed = ATOMIC_INIT(0);
1437
1438void net_enable_timestamp(void)
1439{
1440 atomic_inc(&netstamp_needed);
1441}
1442EXPORT_SYMBOL(net_enable_timestamp);
1443
1444void net_disable_timestamp(void)
1445{
1446 atomic_dec(&netstamp_needed);
1447}
1448EXPORT_SYMBOL(net_disable_timestamp);
1449
1450static inline void net_timestamp_set(struct sk_buff *skb)
1451{
1452 if (atomic_read(&netstamp_needed))
1453 __net_timestamp(skb);
1454 else
1455 skb->tstamp.tv64 = 0;
1456}
1457
1458static inline void net_timestamp_check(struct sk_buff *skb)
1459{
1460 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1461 __net_timestamp(skb);
1462}
1463
1464/**
1465 * dev_forward_skb - loopback an skb to another netif
1466 *
1467 * @dev: destination network device
1468 * @skb: buffer to forward
1469 *
1470 * return values:
1471 * NET_RX_SUCCESS (no congestion)
1472 * NET_RX_DROP (packet was dropped, but freed)
1473 *
1474 * dev_forward_skb can be used for injecting an skb from the
1475 * start_xmit function of one device into the receive queue
1476 * of another device.
1477 *
1478 * The receiving device may be in another namespace, so
1479 * we have to clear all information in the skb that could
1480 * impact namespace isolation.
1481 */
1482int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1483{
1484 skb_orphan(skb);
1485 nf_reset(skb);
1486
1487 if (!(dev->flags & IFF_UP) ||
1488 (skb->len > (dev->mtu + dev->hard_header_len))) {
1489 kfree_skb(skb);
1490 return NET_RX_DROP;
1491 }
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1497}
1498EXPORT_SYMBOL_GPL(dev_forward_skb);
1499
1500/*
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1503 */
1504
1505static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506{
1507 struct packet_type *ptype;
1508
1509#ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp_set(skb);
1512#else
1513 net_timestamp_set(skb);
1514#endif
1515
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1520 */
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1527
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1531 */
1532 skb_reset_mac_header(skb2);
1533
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 ntohs(skb2->protocol),
1540 dev->name);
1541 skb_reset_network_header(skb2);
1542 }
1543
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 }
1548 }
1549 rcu_read_unlock();
1550}
1551
1552/*
1553 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1554 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1555 */
1556void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1557{
1558 unsigned int real_num = dev->real_num_tx_queues;
1559
1560 if (unlikely(txq > dev->num_tx_queues))
1561 ;
1562 else if (txq > real_num)
1563 dev->real_num_tx_queues = txq;
1564 else if (txq < real_num) {
1565 dev->real_num_tx_queues = txq;
1566 qdisc_reset_all_tx_gt(dev, txq);
1567 }
1568}
1569EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1570
1571static inline void __netif_reschedule(struct Qdisc *q)
1572{
1573 struct softnet_data *sd;
1574 unsigned long flags;
1575
1576 local_irq_save(flags);
1577 sd = &__get_cpu_var(softnet_data);
1578 q->next_sched = NULL;
1579 *sd->output_queue_tailp = q;
1580 sd->output_queue_tailp = &q->next_sched;
1581 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1582 local_irq_restore(flags);
1583}
1584
1585void __netif_schedule(struct Qdisc *q)
1586{
1587 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1588 __netif_reschedule(q);
1589}
1590EXPORT_SYMBOL(__netif_schedule);
1591
1592void dev_kfree_skb_irq(struct sk_buff *skb)
1593{
1594 if (atomic_dec_and_test(&skb->users)) {
1595 struct softnet_data *sd;
1596 unsigned long flags;
1597
1598 local_irq_save(flags);
1599 sd = &__get_cpu_var(softnet_data);
1600 skb->next = sd->completion_queue;
1601 sd->completion_queue = skb;
1602 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1603 local_irq_restore(flags);
1604 }
1605}
1606EXPORT_SYMBOL(dev_kfree_skb_irq);
1607
1608void dev_kfree_skb_any(struct sk_buff *skb)
1609{
1610 if (in_irq() || irqs_disabled())
1611 dev_kfree_skb_irq(skb);
1612 else
1613 dev_kfree_skb(skb);
1614}
1615EXPORT_SYMBOL(dev_kfree_skb_any);
1616
1617
1618/**
1619 * netif_device_detach - mark device as removed
1620 * @dev: network device
1621 *
1622 * Mark device as removed from system and therefore no longer available.
1623 */
1624void netif_device_detach(struct net_device *dev)
1625{
1626 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1627 netif_running(dev)) {
1628 netif_tx_stop_all_queues(dev);
1629 }
1630}
1631EXPORT_SYMBOL(netif_device_detach);
1632
1633/**
1634 * netif_device_attach - mark device as attached
1635 * @dev: network device
1636 *
1637 * Mark device as attached from system and restart if needed.
1638 */
1639void netif_device_attach(struct net_device *dev)
1640{
1641 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1642 netif_running(dev)) {
1643 netif_tx_wake_all_queues(dev);
1644 __netdev_watchdog_up(dev);
1645 }
1646}
1647EXPORT_SYMBOL(netif_device_attach);
1648
1649static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1650{
1651 return ((features & NETIF_F_GEN_CSUM) ||
1652 ((features & NETIF_F_IP_CSUM) &&
1653 protocol == htons(ETH_P_IP)) ||
1654 ((features & NETIF_F_IPV6_CSUM) &&
1655 protocol == htons(ETH_P_IPV6)) ||
1656 ((features & NETIF_F_FCOE_CRC) &&
1657 protocol == htons(ETH_P_FCOE)));
1658}
1659
1660static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1661{
1662 if (can_checksum_protocol(dev->features, skb->protocol))
1663 return true;
1664
1665 if (skb->protocol == htons(ETH_P_8021Q)) {
1666 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1667 if (can_checksum_protocol(dev->features & dev->vlan_features,
1668 veh->h_vlan_encapsulated_proto))
1669 return true;
1670 }
1671
1672 return false;
1673}
1674
1675/**
1676 * skb_dev_set -- assign a new device to a buffer
1677 * @skb: buffer for the new device
1678 * @dev: network device
1679 *
1680 * If an skb is owned by a device already, we have to reset
1681 * all data private to the namespace a device belongs to
1682 * before assigning it a new device.
1683 */
1684#ifdef CONFIG_NET_NS
1685void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1686{
1687 skb_dst_drop(skb);
1688 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1689 secpath_reset(skb);
1690 nf_reset(skb);
1691 skb_init_secmark(skb);
1692 skb->mark = 0;
1693 skb->priority = 0;
1694 skb->nf_trace = 0;
1695 skb->ipvs_property = 0;
1696#ifdef CONFIG_NET_SCHED
1697 skb->tc_index = 0;
1698#endif
1699 }
1700 skb->dev = dev;
1701}
1702EXPORT_SYMBOL(skb_set_dev);
1703#endif /* CONFIG_NET_NS */
1704
1705/*
1706 * Invalidate hardware checksum when packet is to be mangled, and
1707 * complete checksum manually on outgoing path.
1708 */
1709int skb_checksum_help(struct sk_buff *skb)
1710{
1711 __wsum csum;
1712 int ret = 0, offset;
1713
1714 if (skb->ip_summed == CHECKSUM_COMPLETE)
1715 goto out_set_summed;
1716
1717 if (unlikely(skb_shinfo(skb)->gso_size)) {
1718 /* Let GSO fix up the checksum. */
1719 goto out_set_summed;
1720 }
1721
1722 offset = skb->csum_start - skb_headroom(skb);
1723 BUG_ON(offset >= skb_headlen(skb));
1724 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1725
1726 offset += skb->csum_offset;
1727 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1728
1729 if (skb_cloned(skb) &&
1730 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1731 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1732 if (ret)
1733 goto out;
1734 }
1735
1736 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1737out_set_summed:
1738 skb->ip_summed = CHECKSUM_NONE;
1739out:
1740 return ret;
1741}
1742EXPORT_SYMBOL(skb_checksum_help);
1743
1744/**
1745 * skb_gso_segment - Perform segmentation on skb.
1746 * @skb: buffer to segment
1747 * @features: features for the output path (see dev->features)
1748 *
1749 * This function segments the given skb and returns a list of segments.
1750 *
1751 * It may return NULL if the skb requires no segmentation. This is
1752 * only possible when GSO is used for verifying header integrity.
1753 */
1754struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1755{
1756 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1757 struct packet_type *ptype;
1758 __be16 type = skb->protocol;
1759 int err;
1760
1761 skb_reset_mac_header(skb);
1762 skb->mac_len = skb->network_header - skb->mac_header;
1763 __skb_pull(skb, skb->mac_len);
1764
1765 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1766 struct net_device *dev = skb->dev;
1767 struct ethtool_drvinfo info = {};
1768
1769 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1770 dev->ethtool_ops->get_drvinfo(dev, &info);
1771
1772 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1773 "ip_summed=%d",
1774 info.driver, dev ? dev->features : 0L,
1775 skb->sk ? skb->sk->sk_route_caps : 0L,
1776 skb->len, skb->data_len, skb->ip_summed);
1777
1778 if (skb_header_cloned(skb) &&
1779 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1780 return ERR_PTR(err);
1781 }
1782
1783 rcu_read_lock();
1784 list_for_each_entry_rcu(ptype,
1785 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1786 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1787 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1788 err = ptype->gso_send_check(skb);
1789 segs = ERR_PTR(err);
1790 if (err || skb_gso_ok(skb, features))
1791 break;
1792 __skb_push(skb, (skb->data -
1793 skb_network_header(skb)));
1794 }
1795 segs = ptype->gso_segment(skb, features);
1796 break;
1797 }
1798 }
1799 rcu_read_unlock();
1800
1801 __skb_push(skb, skb->data - skb_mac_header(skb));
1802
1803 return segs;
1804}
1805EXPORT_SYMBOL(skb_gso_segment);
1806
1807/* Take action when hardware reception checksum errors are detected. */
1808#ifdef CONFIG_BUG
1809void netdev_rx_csum_fault(struct net_device *dev)
1810{
1811 if (net_ratelimit()) {
1812 printk(KERN_ERR "%s: hw csum failure.\n",
1813 dev ? dev->name : "<unknown>");
1814 dump_stack();
1815 }
1816}
1817EXPORT_SYMBOL(netdev_rx_csum_fault);
1818#endif
1819
1820/* Actually, we should eliminate this check as soon as we know, that:
1821 * 1. IOMMU is present and allows to map all the memory.
1822 * 2. No high memory really exists on this machine.
1823 */
1824
1825static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1826{
1827#ifdef CONFIG_HIGHMEM
1828 int i;
1829 if (!(dev->features & NETIF_F_HIGHDMA)) {
1830 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1831 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1832 return 1;
1833 }
1834
1835 if (PCI_DMA_BUS_IS_PHYS) {
1836 struct device *pdev = dev->dev.parent;
1837
1838 if (!pdev)
1839 return 0;
1840 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1841 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1842 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1843 return 1;
1844 }
1845 }
1846#endif
1847 return 0;
1848}
1849
1850struct dev_gso_cb {
1851 void (*destructor)(struct sk_buff *skb);
1852};
1853
1854#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1855
1856static void dev_gso_skb_destructor(struct sk_buff *skb)
1857{
1858 struct dev_gso_cb *cb;
1859
1860 do {
1861 struct sk_buff *nskb = skb->next;
1862
1863 skb->next = nskb->next;
1864 nskb->next = NULL;
1865 kfree_skb(nskb);
1866 } while (skb->next);
1867
1868 cb = DEV_GSO_CB(skb);
1869 if (cb->destructor)
1870 cb->destructor(skb);
1871}
1872
1873/**
1874 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1875 * @skb: buffer to segment
1876 *
1877 * This function segments the given skb and stores the list of segments
1878 * in skb->next.
1879 */
1880static int dev_gso_segment(struct sk_buff *skb)
1881{
1882 struct net_device *dev = skb->dev;
1883 struct sk_buff *segs;
1884 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1885 NETIF_F_SG : 0);
1886
1887 segs = skb_gso_segment(skb, features);
1888
1889 /* Verifying header integrity only. */
1890 if (!segs)
1891 return 0;
1892
1893 if (IS_ERR(segs))
1894 return PTR_ERR(segs);
1895
1896 skb->next = segs;
1897 DEV_GSO_CB(skb)->destructor = skb->destructor;
1898 skb->destructor = dev_gso_skb_destructor;
1899
1900 return 0;
1901}
1902
1903/*
1904 * Try to orphan skb early, right before transmission by the device.
1905 * We cannot orphan skb if tx timestamp is requested, since
1906 * drivers need to call skb_tstamp_tx() to send the timestamp.
1907 */
1908static inline void skb_orphan_try(struct sk_buff *skb)
1909{
1910 struct sock *sk = skb->sk;
1911
1912 if (sk && !skb_tx(skb)->flags) {
1913 /* skb_tx_hash() wont be able to get sk.
1914 * We copy sk_hash into skb->rxhash
1915 */
1916 if (!skb->rxhash)
1917 skb->rxhash = sk->sk_hash;
1918 skb_orphan(skb);
1919 }
1920}
1921
1922/*
1923 * Returns true if either:
1924 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1925 * 2. skb is fragmented and the device does not support SG, or if
1926 * at least one of fragments is in highmem and device does not
1927 * support DMA from it.
1928 */
1929static inline int skb_needs_linearize(struct sk_buff *skb,
1930 struct net_device *dev)
1931{
1932 return skb_is_nonlinear(skb) &&
1933 ((skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1934 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1935 illegal_highdma(dev, skb))));
1936}
1937
1938int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1939 struct netdev_queue *txq)
1940{
1941 const struct net_device_ops *ops = dev->netdev_ops;
1942 int rc = NETDEV_TX_OK;
1943
1944 if (likely(!skb->next)) {
1945 if (!list_empty(&ptype_all))
1946 dev_queue_xmit_nit(skb, dev);
1947
1948 /*
1949 * If device doesnt need skb->dst, release it right now while
1950 * its hot in this cpu cache
1951 */
1952 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1953 skb_dst_drop(skb);
1954
1955 skb_orphan_try(skb);
1956
1957 if (netif_needs_gso(dev, skb)) {
1958 if (unlikely(dev_gso_segment(skb)))
1959 goto out_kfree_skb;
1960 if (skb->next)
1961 goto gso;
1962 } else {
1963 if (skb_needs_linearize(skb, dev) &&
1964 __skb_linearize(skb))
1965 goto out_kfree_skb;
1966
1967 /* If packet is not checksummed and device does not
1968 * support checksumming for this protocol, complete
1969 * checksumming here.
1970 */
1971 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1972 skb_set_transport_header(skb, skb->csum_start -
1973 skb_headroom(skb));
1974 if (!dev_can_checksum(dev, skb) &&
1975 skb_checksum_help(skb))
1976 goto out_kfree_skb;
1977 }
1978 }
1979
1980 rc = ops->ndo_start_xmit(skb, dev);
1981 if (rc == NETDEV_TX_OK)
1982 txq_trans_update(txq);
1983 return rc;
1984 }
1985
1986gso:
1987 do {
1988 struct sk_buff *nskb = skb->next;
1989
1990 skb->next = nskb->next;
1991 nskb->next = NULL;
1992
1993 /*
1994 * If device doesnt need nskb->dst, release it right now while
1995 * its hot in this cpu cache
1996 */
1997 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1998 skb_dst_drop(nskb);
1999
2000 rc = ops->ndo_start_xmit(nskb, dev);
2001 if (unlikely(rc != NETDEV_TX_OK)) {
2002 if (rc & ~NETDEV_TX_MASK)
2003 goto out_kfree_gso_skb;
2004 nskb->next = skb->next;
2005 skb->next = nskb;
2006 return rc;
2007 }
2008 txq_trans_update(txq);
2009 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2010 return NETDEV_TX_BUSY;
2011 } while (skb->next);
2012
2013out_kfree_gso_skb:
2014 if (likely(skb->next == NULL))
2015 skb->destructor = DEV_GSO_CB(skb)->destructor;
2016out_kfree_skb:
2017 kfree_skb(skb);
2018 return rc;
2019}
2020
2021static u32 hashrnd __read_mostly;
2022
2023u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2024{
2025 u32 hash;
2026
2027 if (skb_rx_queue_recorded(skb)) {
2028 hash = skb_get_rx_queue(skb);
2029 while (unlikely(hash >= dev->real_num_tx_queues))
2030 hash -= dev->real_num_tx_queues;
2031 return hash;
2032 }
2033
2034 if (skb->sk && skb->sk->sk_hash)
2035 hash = skb->sk->sk_hash;
2036 else
2037 hash = (__force u16) skb->protocol ^ skb->rxhash;
2038 hash = jhash_1word(hash, hashrnd);
2039
2040 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2041}
2042EXPORT_SYMBOL(skb_tx_hash);
2043
2044static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2045{
2046 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2047 if (net_ratelimit()) {
2048 pr_warning("%s selects TX queue %d, but "
2049 "real number of TX queues is %d\n",
2050 dev->name, queue_index, dev->real_num_tx_queues);
2051 }
2052 return 0;
2053 }
2054 return queue_index;
2055}
2056
2057static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2058 struct sk_buff *skb)
2059{
2060 int queue_index;
2061 struct sock *sk = skb->sk;
2062
2063 queue_index = sk_tx_queue_get(sk);
2064 if (queue_index < 0) {
2065 const struct net_device_ops *ops = dev->netdev_ops;
2066
2067 if (ops->ndo_select_queue) {
2068 queue_index = ops->ndo_select_queue(dev, skb);
2069 queue_index = dev_cap_txqueue(dev, queue_index);
2070 } else {
2071 queue_index = 0;
2072 if (dev->real_num_tx_queues > 1)
2073 queue_index = skb_tx_hash(dev, skb);
2074
2075 if (sk) {
2076 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2077
2078 if (dst && skb_dst(skb) == dst)
2079 sk_tx_queue_set(sk, queue_index);
2080 }
2081 }
2082 }
2083
2084 skb_set_queue_mapping(skb, queue_index);
2085 return netdev_get_tx_queue(dev, queue_index);
2086}
2087
2088static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2089 struct net_device *dev,
2090 struct netdev_queue *txq)
2091{
2092 spinlock_t *root_lock = qdisc_lock(q);
2093 bool contended = qdisc_is_running(q);
2094 int rc;
2095
2096 /*
2097 * Heuristic to force contended enqueues to serialize on a
2098 * separate lock before trying to get qdisc main lock.
2099 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2100 * and dequeue packets faster.
2101 */
2102 if (unlikely(contended))
2103 spin_lock(&q->busylock);
2104
2105 spin_lock(root_lock);
2106 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2107 kfree_skb(skb);
2108 rc = NET_XMIT_DROP;
2109 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2110 qdisc_run_begin(q)) {
2111 /*
2112 * This is a work-conserving queue; there are no old skbs
2113 * waiting to be sent out; and the qdisc is not running -
2114 * xmit the skb directly.
2115 */
2116 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2117 skb_dst_force(skb);
2118 __qdisc_update_bstats(q, skb->len);
2119 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2120 if (unlikely(contended)) {
2121 spin_unlock(&q->busylock);
2122 contended = false;
2123 }
2124 __qdisc_run(q);
2125 } else
2126 qdisc_run_end(q);
2127
2128 rc = NET_XMIT_SUCCESS;
2129 } else {
2130 skb_dst_force(skb);
2131 rc = qdisc_enqueue_root(skb, q);
2132 if (qdisc_run_begin(q)) {
2133 if (unlikely(contended)) {
2134 spin_unlock(&q->busylock);
2135 contended = false;
2136 }
2137 __qdisc_run(q);
2138 }
2139 }
2140 spin_unlock(root_lock);
2141 if (unlikely(contended))
2142 spin_unlock(&q->busylock);
2143 return rc;
2144}
2145
2146/**
2147 * dev_queue_xmit - transmit a buffer
2148 * @skb: buffer to transmit
2149 *
2150 * Queue a buffer for transmission to a network device. The caller must
2151 * have set the device and priority and built the buffer before calling
2152 * this function. The function can be called from an interrupt.
2153 *
2154 * A negative errno code is returned on a failure. A success does not
2155 * guarantee the frame will be transmitted as it may be dropped due
2156 * to congestion or traffic shaping.
2157 *
2158 * -----------------------------------------------------------------------------------
2159 * I notice this method can also return errors from the queue disciplines,
2160 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2161 * be positive.
2162 *
2163 * Regardless of the return value, the skb is consumed, so it is currently
2164 * difficult to retry a send to this method. (You can bump the ref count
2165 * before sending to hold a reference for retry if you are careful.)
2166 *
2167 * When calling this method, interrupts MUST be enabled. This is because
2168 * the BH enable code must have IRQs enabled so that it will not deadlock.
2169 * --BLG
2170 */
2171int dev_queue_xmit(struct sk_buff *skb)
2172{
2173 struct net_device *dev = skb->dev;
2174 struct netdev_queue *txq;
2175 struct Qdisc *q;
2176 int rc = -ENOMEM;
2177
2178 /* Disable soft irqs for various locks below. Also
2179 * stops preemption for RCU.
2180 */
2181 rcu_read_lock_bh();
2182
2183 txq = dev_pick_tx(dev, skb);
2184 q = rcu_dereference_bh(txq->qdisc);
2185
2186#ifdef CONFIG_NET_CLS_ACT
2187 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2188#endif
2189 if (q->enqueue) {
2190 rc = __dev_xmit_skb(skb, q, dev, txq);
2191 goto out;
2192 }
2193
2194 /* The device has no queue. Common case for software devices:
2195 loopback, all the sorts of tunnels...
2196
2197 Really, it is unlikely that netif_tx_lock protection is necessary
2198 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2199 counters.)
2200 However, it is possible, that they rely on protection
2201 made by us here.
2202
2203 Check this and shot the lock. It is not prone from deadlocks.
2204 Either shot noqueue qdisc, it is even simpler 8)
2205 */
2206 if (dev->flags & IFF_UP) {
2207 int cpu = smp_processor_id(); /* ok because BHs are off */
2208
2209 if (txq->xmit_lock_owner != cpu) {
2210
2211 HARD_TX_LOCK(dev, txq, cpu);
2212
2213 if (!netif_tx_queue_stopped(txq)) {
2214 rc = dev_hard_start_xmit(skb, dev, txq);
2215 if (dev_xmit_complete(rc)) {
2216 HARD_TX_UNLOCK(dev, txq);
2217 goto out;
2218 }
2219 }
2220 HARD_TX_UNLOCK(dev, txq);
2221 if (net_ratelimit())
2222 printk(KERN_CRIT "Virtual device %s asks to "
2223 "queue packet!\n", dev->name);
2224 } else {
2225 /* Recursion is detected! It is possible,
2226 * unfortunately */
2227 if (net_ratelimit())
2228 printk(KERN_CRIT "Dead loop on virtual device "
2229 "%s, fix it urgently!\n", dev->name);
2230 }
2231 }
2232
2233 rc = -ENETDOWN;
2234 rcu_read_unlock_bh();
2235
2236 kfree_skb(skb);
2237 return rc;
2238out:
2239 rcu_read_unlock_bh();
2240 return rc;
2241}
2242EXPORT_SYMBOL(dev_queue_xmit);
2243
2244
2245/*=======================================================================
2246 Receiver routines
2247 =======================================================================*/
2248
2249int netdev_max_backlog __read_mostly = 1000;
2250int netdev_tstamp_prequeue __read_mostly = 1;
2251int netdev_budget __read_mostly = 300;
2252int weight_p __read_mostly = 64; /* old backlog weight */
2253
2254/* Called with irq disabled */
2255static inline void ____napi_schedule(struct softnet_data *sd,
2256 struct napi_struct *napi)
2257{
2258 list_add_tail(&napi->poll_list, &sd->poll_list);
2259 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2260}
2261
2262/*
2263 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2264 * and src/dst port numbers. Returns a non-zero hash number on success
2265 * and 0 on failure.
2266 */
2267__u32 __skb_get_rxhash(struct sk_buff *skb)
2268{
2269 int nhoff, hash = 0;
2270 struct ipv6hdr *ip6;
2271 struct iphdr *ip;
2272 u8 ip_proto;
2273 u32 addr1, addr2, ihl;
2274 union {
2275 u32 v32;
2276 u16 v16[2];
2277 } ports;
2278
2279 nhoff = skb_network_offset(skb);
2280
2281 switch (skb->protocol) {
2282 case __constant_htons(ETH_P_IP):
2283 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2284 goto done;
2285
2286 ip = (struct iphdr *) skb->data + nhoff;
2287 ip_proto = ip->protocol;
2288 addr1 = (__force u32) ip->saddr;
2289 addr2 = (__force u32) ip->daddr;
2290 ihl = ip->ihl;
2291 break;
2292 case __constant_htons(ETH_P_IPV6):
2293 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2294 goto done;
2295
2296 ip6 = (struct ipv6hdr *) skb->data + nhoff;
2297 ip_proto = ip6->nexthdr;
2298 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2299 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2300 ihl = (40 >> 2);
2301 break;
2302 default:
2303 goto done;
2304 }
2305
2306 switch (ip_proto) {
2307 case IPPROTO_TCP:
2308 case IPPROTO_UDP:
2309 case IPPROTO_DCCP:
2310 case IPPROTO_ESP:
2311 case IPPROTO_AH:
2312 case IPPROTO_SCTP:
2313 case IPPROTO_UDPLITE:
2314 if (pskb_may_pull(skb, (ihl * 4) + 4 + nhoff)) {
2315 ports.v32 = * (__force u32 *) (skb->data + nhoff +
2316 (ihl * 4));
2317 if (ports.v16[1] < ports.v16[0])
2318 swap(ports.v16[0], ports.v16[1]);
2319 break;
2320 }
2321 default:
2322 ports.v32 = 0;
2323 break;
2324 }
2325
2326 /* get a consistent hash (same value on both flow directions) */
2327 if (addr2 < addr1)
2328 swap(addr1, addr2);
2329
2330 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2331 if (!hash)
2332 hash = 1;
2333
2334done:
2335 return hash;
2336}
2337EXPORT_SYMBOL(__skb_get_rxhash);
2338
2339#ifdef CONFIG_RPS
2340
2341/* One global table that all flow-based protocols share. */
2342struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2343EXPORT_SYMBOL(rps_sock_flow_table);
2344
2345/*
2346 * get_rps_cpu is called from netif_receive_skb and returns the target
2347 * CPU from the RPS map of the receiving queue for a given skb.
2348 * rcu_read_lock must be held on entry.
2349 */
2350static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2351 struct rps_dev_flow **rflowp)
2352{
2353 struct netdev_rx_queue *rxqueue;
2354 struct rps_map *map;
2355 struct rps_dev_flow_table *flow_table;
2356 struct rps_sock_flow_table *sock_flow_table;
2357 int cpu = -1;
2358 u16 tcpu;
2359
2360 if (skb_rx_queue_recorded(skb)) {
2361 u16 index = skb_get_rx_queue(skb);
2362 if (unlikely(index >= dev->num_rx_queues)) {
2363 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2364 "on queue %u, but number of RX queues is %u\n",
2365 dev->name, index, dev->num_rx_queues);
2366 goto done;
2367 }
2368 rxqueue = dev->_rx + index;
2369 } else
2370 rxqueue = dev->_rx;
2371
2372 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2373 goto done;
2374
2375 if (!skb_get_rxhash(skb))
2376 goto done;
2377
2378 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2379 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2380 if (flow_table && sock_flow_table) {
2381 u16 next_cpu;
2382 struct rps_dev_flow *rflow;
2383
2384 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2385 tcpu = rflow->cpu;
2386
2387 next_cpu = sock_flow_table->ents[skb->rxhash &
2388 sock_flow_table->mask];
2389
2390 /*
2391 * If the desired CPU (where last recvmsg was done) is
2392 * different from current CPU (one in the rx-queue flow
2393 * table entry), switch if one of the following holds:
2394 * - Current CPU is unset (equal to RPS_NO_CPU).
2395 * - Current CPU is offline.
2396 * - The current CPU's queue tail has advanced beyond the
2397 * last packet that was enqueued using this table entry.
2398 * This guarantees that all previous packets for the flow
2399 * have been dequeued, thus preserving in order delivery.
2400 */
2401 if (unlikely(tcpu != next_cpu) &&
2402 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2403 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2404 rflow->last_qtail)) >= 0)) {
2405 tcpu = rflow->cpu = next_cpu;
2406 if (tcpu != RPS_NO_CPU)
2407 rflow->last_qtail = per_cpu(softnet_data,
2408 tcpu).input_queue_head;
2409 }
2410 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2411 *rflowp = rflow;
2412 cpu = tcpu;
2413 goto done;
2414 }
2415 }
2416
2417 map = rcu_dereference(rxqueue->rps_map);
2418 if (map) {
2419 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2420
2421 if (cpu_online(tcpu)) {
2422 cpu = tcpu;
2423 goto done;
2424 }
2425 }
2426
2427done:
2428 return cpu;
2429}
2430
2431/* Called from hardirq (IPI) context */
2432static void rps_trigger_softirq(void *data)
2433{
2434 struct softnet_data *sd = data;
2435
2436 ____napi_schedule(sd, &sd->backlog);
2437 sd->received_rps++;
2438}
2439
2440#endif /* CONFIG_RPS */
2441
2442/*
2443 * Check if this softnet_data structure is another cpu one
2444 * If yes, queue it to our IPI list and return 1
2445 * If no, return 0
2446 */
2447static int rps_ipi_queued(struct softnet_data *sd)
2448{
2449#ifdef CONFIG_RPS
2450 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2451
2452 if (sd != mysd) {
2453 sd->rps_ipi_next = mysd->rps_ipi_list;
2454 mysd->rps_ipi_list = sd;
2455
2456 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2457 return 1;
2458 }
2459#endif /* CONFIG_RPS */
2460 return 0;
2461}
2462
2463/*
2464 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2465 * queue (may be a remote CPU queue).
2466 */
2467static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2468 unsigned int *qtail)
2469{
2470 struct softnet_data *sd;
2471 unsigned long flags;
2472
2473 sd = &per_cpu(softnet_data, cpu);
2474
2475 local_irq_save(flags);
2476
2477 rps_lock(sd);
2478 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2479 if (skb_queue_len(&sd->input_pkt_queue)) {
2480enqueue:
2481 __skb_queue_tail(&sd->input_pkt_queue, skb);
2482 input_queue_tail_incr_save(sd, qtail);
2483 rps_unlock(sd);
2484 local_irq_restore(flags);
2485 return NET_RX_SUCCESS;
2486 }
2487
2488 /* Schedule NAPI for backlog device
2489 * We can use non atomic operation since we own the queue lock
2490 */
2491 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2492 if (!rps_ipi_queued(sd))
2493 ____napi_schedule(sd, &sd->backlog);
2494 }
2495 goto enqueue;
2496 }
2497
2498 sd->dropped++;
2499 rps_unlock(sd);
2500
2501 local_irq_restore(flags);
2502
2503 kfree_skb(skb);
2504 return NET_RX_DROP;
2505}
2506
2507/**
2508 * netif_rx - post buffer to the network code
2509 * @skb: buffer to post
2510 *
2511 * This function receives a packet from a device driver and queues it for
2512 * the upper (protocol) levels to process. It always succeeds. The buffer
2513 * may be dropped during processing for congestion control or by the
2514 * protocol layers.
2515 *
2516 * return values:
2517 * NET_RX_SUCCESS (no congestion)
2518 * NET_RX_DROP (packet was dropped)
2519 *
2520 */
2521
2522int netif_rx(struct sk_buff *skb)
2523{
2524 int ret;
2525
2526 /* if netpoll wants it, pretend we never saw it */
2527 if (netpoll_rx(skb))
2528 return NET_RX_DROP;
2529
2530 if (netdev_tstamp_prequeue)
2531 net_timestamp_check(skb);
2532
2533#ifdef CONFIG_RPS
2534 {
2535 struct rps_dev_flow voidflow, *rflow = &voidflow;
2536 int cpu;
2537
2538 preempt_disable();
2539 rcu_read_lock();
2540
2541 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2542 if (cpu < 0)
2543 cpu = smp_processor_id();
2544
2545 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2546
2547 rcu_read_unlock();
2548 preempt_enable();
2549 }
2550#else
2551 {
2552 unsigned int qtail;
2553 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2554 put_cpu();
2555 }
2556#endif
2557 return ret;
2558}
2559EXPORT_SYMBOL(netif_rx);
2560
2561int netif_rx_ni(struct sk_buff *skb)
2562{
2563 int err;
2564
2565 preempt_disable();
2566 err = netif_rx(skb);
2567 if (local_softirq_pending())
2568 do_softirq();
2569 preempt_enable();
2570
2571 return err;
2572}
2573EXPORT_SYMBOL(netif_rx_ni);
2574
2575static void net_tx_action(struct softirq_action *h)
2576{
2577 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2578
2579 if (sd->completion_queue) {
2580 struct sk_buff *clist;
2581
2582 local_irq_disable();
2583 clist = sd->completion_queue;
2584 sd->completion_queue = NULL;
2585 local_irq_enable();
2586
2587 while (clist) {
2588 struct sk_buff *skb = clist;
2589 clist = clist->next;
2590
2591 WARN_ON(atomic_read(&skb->users));
2592 __kfree_skb(skb);
2593 }
2594 }
2595
2596 if (sd->output_queue) {
2597 struct Qdisc *head;
2598
2599 local_irq_disable();
2600 head = sd->output_queue;
2601 sd->output_queue = NULL;
2602 sd->output_queue_tailp = &sd->output_queue;
2603 local_irq_enable();
2604
2605 while (head) {
2606 struct Qdisc *q = head;
2607 spinlock_t *root_lock;
2608
2609 head = head->next_sched;
2610
2611 root_lock = qdisc_lock(q);
2612 if (spin_trylock(root_lock)) {
2613 smp_mb__before_clear_bit();
2614 clear_bit(__QDISC_STATE_SCHED,
2615 &q->state);
2616 qdisc_run(q);
2617 spin_unlock(root_lock);
2618 } else {
2619 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2620 &q->state)) {
2621 __netif_reschedule(q);
2622 } else {
2623 smp_mb__before_clear_bit();
2624 clear_bit(__QDISC_STATE_SCHED,
2625 &q->state);
2626 }
2627 }
2628 }
2629 }
2630}
2631
2632static inline int deliver_skb(struct sk_buff *skb,
2633 struct packet_type *pt_prev,
2634 struct net_device *orig_dev)
2635{
2636 atomic_inc(&skb->users);
2637 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2638}
2639
2640#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2641 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2642/* This hook is defined here for ATM LANE */
2643int (*br_fdb_test_addr_hook)(struct net_device *dev,
2644 unsigned char *addr) __read_mostly;
2645EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2646#endif
2647
2648#ifdef CONFIG_NET_CLS_ACT
2649/* TODO: Maybe we should just force sch_ingress to be compiled in
2650 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2651 * a compare and 2 stores extra right now if we dont have it on
2652 * but have CONFIG_NET_CLS_ACT
2653 * NOTE: This doesnt stop any functionality; if you dont have
2654 * the ingress scheduler, you just cant add policies on ingress.
2655 *
2656 */
2657static int ing_filter(struct sk_buff *skb)
2658{
2659 struct net_device *dev = skb->dev;
2660 u32 ttl = G_TC_RTTL(skb->tc_verd);
2661 struct netdev_queue *rxq;
2662 int result = TC_ACT_OK;
2663 struct Qdisc *q;
2664
2665 if (unlikely(MAX_RED_LOOP < ttl++)) {
2666 if (net_ratelimit())
2667 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2668 skb->skb_iif, dev->ifindex);
2669 return TC_ACT_SHOT;
2670 }
2671
2672 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2673 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2674
2675 rxq = &dev->rx_queue;
2676
2677 q = rxq->qdisc;
2678 if (q != &noop_qdisc) {
2679 spin_lock(qdisc_lock(q));
2680 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2681 result = qdisc_enqueue_root(skb, q);
2682 spin_unlock(qdisc_lock(q));
2683 }
2684
2685 return result;
2686}
2687
2688static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2689 struct packet_type **pt_prev,
2690 int *ret, struct net_device *orig_dev)
2691{
2692 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2693 goto out;
2694
2695 if (*pt_prev) {
2696 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2697 *pt_prev = NULL;
2698 }
2699
2700 switch (ing_filter(skb)) {
2701 case TC_ACT_SHOT:
2702 case TC_ACT_STOLEN:
2703 kfree_skb(skb);
2704 return NULL;
2705 }
2706
2707out:
2708 skb->tc_verd = 0;
2709 return skb;
2710}
2711#endif
2712
2713/*
2714 * netif_nit_deliver - deliver received packets to network taps
2715 * @skb: buffer
2716 *
2717 * This function is used to deliver incoming packets to network
2718 * taps. It should be used when the normal netif_receive_skb path
2719 * is bypassed, for example because of VLAN acceleration.
2720 */
2721void netif_nit_deliver(struct sk_buff *skb)
2722{
2723 struct packet_type *ptype;
2724
2725 if (list_empty(&ptype_all))
2726 return;
2727
2728 skb_reset_network_header(skb);
2729 skb_reset_transport_header(skb);
2730 skb->mac_len = skb->network_header - skb->mac_header;
2731
2732 rcu_read_lock();
2733 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2734 if (!ptype->dev || ptype->dev == skb->dev)
2735 deliver_skb(skb, ptype, skb->dev);
2736 }
2737 rcu_read_unlock();
2738}
2739
2740/**
2741 * netdev_rx_handler_register - register receive handler
2742 * @dev: device to register a handler for
2743 * @rx_handler: receive handler to register
2744 * @rx_handler_data: data pointer that is used by rx handler
2745 *
2746 * Register a receive hander for a device. This handler will then be
2747 * called from __netif_receive_skb. A negative errno code is returned
2748 * on a failure.
2749 *
2750 * The caller must hold the rtnl_mutex.
2751 */
2752int netdev_rx_handler_register(struct net_device *dev,
2753 rx_handler_func_t *rx_handler,
2754 void *rx_handler_data)
2755{
2756 ASSERT_RTNL();
2757
2758 if (dev->rx_handler)
2759 return -EBUSY;
2760
2761 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2762 rcu_assign_pointer(dev->rx_handler, rx_handler);
2763
2764 return 0;
2765}
2766EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2767
2768/**
2769 * netdev_rx_handler_unregister - unregister receive handler
2770 * @dev: device to unregister a handler from
2771 *
2772 * Unregister a receive hander from a device.
2773 *
2774 * The caller must hold the rtnl_mutex.
2775 */
2776void netdev_rx_handler_unregister(struct net_device *dev)
2777{
2778
2779 ASSERT_RTNL();
2780 rcu_assign_pointer(dev->rx_handler, NULL);
2781 rcu_assign_pointer(dev->rx_handler_data, NULL);
2782}
2783EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2784
2785static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2786 struct net_device *master)
2787{
2788 if (skb->pkt_type == PACKET_HOST) {
2789 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2790
2791 memcpy(dest, master->dev_addr, ETH_ALEN);
2792 }
2793}
2794
2795/* On bonding slaves other than the currently active slave, suppress
2796 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2797 * ARP on active-backup slaves with arp_validate enabled.
2798 */
2799int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2800{
2801 struct net_device *dev = skb->dev;
2802
2803 if (master->priv_flags & IFF_MASTER_ARPMON)
2804 dev->last_rx = jiffies;
2805
2806 if ((master->priv_flags & IFF_MASTER_ALB) &&
2807 (master->priv_flags & IFF_BRIDGE_PORT)) {
2808 /* Do address unmangle. The local destination address
2809 * will be always the one master has. Provides the right
2810 * functionality in a bridge.
2811 */
2812 skb_bond_set_mac_by_master(skb, master);
2813 }
2814
2815 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2816 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2817 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2818 return 0;
2819
2820 if (master->priv_flags & IFF_MASTER_ALB) {
2821 if (skb->pkt_type != PACKET_BROADCAST &&
2822 skb->pkt_type != PACKET_MULTICAST)
2823 return 0;
2824 }
2825 if (master->priv_flags & IFF_MASTER_8023AD &&
2826 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2827 return 0;
2828
2829 return 1;
2830 }
2831 return 0;
2832}
2833EXPORT_SYMBOL(__skb_bond_should_drop);
2834
2835static int __netif_receive_skb(struct sk_buff *skb)
2836{
2837 struct packet_type *ptype, *pt_prev;
2838 rx_handler_func_t *rx_handler;
2839 struct net_device *orig_dev;
2840 struct net_device *master;
2841 struct net_device *null_or_orig;
2842 struct net_device *orig_or_bond;
2843 int ret = NET_RX_DROP;
2844 __be16 type;
2845
2846 if (!netdev_tstamp_prequeue)
2847 net_timestamp_check(skb);
2848
2849 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2850 return NET_RX_SUCCESS;
2851
2852 /* if we've gotten here through NAPI, check netpoll */
2853 if (netpoll_receive_skb(skb))
2854 return NET_RX_DROP;
2855
2856 if (!skb->skb_iif)
2857 skb->skb_iif = skb->dev->ifindex;
2858
2859 /*
2860 * bonding note: skbs received on inactive slaves should only
2861 * be delivered to pkt handlers that are exact matches. Also
2862 * the deliver_no_wcard flag will be set. If packet handlers
2863 * are sensitive to duplicate packets these skbs will need to
2864 * be dropped at the handler. The vlan accel path may have
2865 * already set the deliver_no_wcard flag.
2866 */
2867 null_or_orig = NULL;
2868 orig_dev = skb->dev;
2869 master = ACCESS_ONCE(orig_dev->master);
2870 if (skb->deliver_no_wcard)
2871 null_or_orig = orig_dev;
2872 else if (master) {
2873 if (skb_bond_should_drop(skb, master)) {
2874 skb->deliver_no_wcard = 1;
2875 null_or_orig = orig_dev; /* deliver only exact match */
2876 } else
2877 skb->dev = master;
2878 }
2879
2880 __this_cpu_inc(softnet_data.processed);
2881 skb_reset_network_header(skb);
2882 skb_reset_transport_header(skb);
2883 skb->mac_len = skb->network_header - skb->mac_header;
2884
2885 pt_prev = NULL;
2886
2887 rcu_read_lock();
2888
2889#ifdef CONFIG_NET_CLS_ACT
2890 if (skb->tc_verd & TC_NCLS) {
2891 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2892 goto ncls;
2893 }
2894#endif
2895
2896 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2897 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2898 ptype->dev == orig_dev) {
2899 if (pt_prev)
2900 ret = deliver_skb(skb, pt_prev, orig_dev);
2901 pt_prev = ptype;
2902 }
2903 }
2904
2905#ifdef CONFIG_NET_CLS_ACT
2906 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2907 if (!skb)
2908 goto out;
2909ncls:
2910#endif
2911
2912 /* Handle special case of bridge or macvlan */
2913 rx_handler = rcu_dereference(skb->dev->rx_handler);
2914 if (rx_handler) {
2915 if (pt_prev) {
2916 ret = deliver_skb(skb, pt_prev, orig_dev);
2917 pt_prev = NULL;
2918 }
2919 skb = rx_handler(skb);
2920 if (!skb)
2921 goto out;
2922 }
2923
2924 /*
2925 * Make sure frames received on VLAN interfaces stacked on
2926 * bonding interfaces still make their way to any base bonding
2927 * device that may have registered for a specific ptype. The
2928 * handler may have to adjust skb->dev and orig_dev.
2929 */
2930 orig_or_bond = orig_dev;
2931 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2932 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2933 orig_or_bond = vlan_dev_real_dev(skb->dev);
2934 }
2935
2936 type = skb->protocol;
2937 list_for_each_entry_rcu(ptype,
2938 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2939 if (ptype->type == type && (ptype->dev == null_or_orig ||
2940 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2941 ptype->dev == orig_or_bond)) {
2942 if (pt_prev)
2943 ret = deliver_skb(skb, pt_prev, orig_dev);
2944 pt_prev = ptype;
2945 }
2946 }
2947
2948 if (pt_prev) {
2949 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2950 } else {
2951 kfree_skb(skb);
2952 /* Jamal, now you will not able to escape explaining
2953 * me how you were going to use this. :-)
2954 */
2955 ret = NET_RX_DROP;
2956 }
2957
2958out:
2959 rcu_read_unlock();
2960 return ret;
2961}
2962
2963/**
2964 * netif_receive_skb - process receive buffer from network
2965 * @skb: buffer to process
2966 *
2967 * netif_receive_skb() is the main receive data processing function.
2968 * It always succeeds. The buffer may be dropped during processing
2969 * for congestion control or by the protocol layers.
2970 *
2971 * This function may only be called from softirq context and interrupts
2972 * should be enabled.
2973 *
2974 * Return values (usually ignored):
2975 * NET_RX_SUCCESS: no congestion
2976 * NET_RX_DROP: packet was dropped
2977 */
2978int netif_receive_skb(struct sk_buff *skb)
2979{
2980 if (netdev_tstamp_prequeue)
2981 net_timestamp_check(skb);
2982
2983 if (skb_defer_rx_timestamp(skb))
2984 return NET_RX_SUCCESS;
2985
2986#ifdef CONFIG_RPS
2987 {
2988 struct rps_dev_flow voidflow, *rflow = &voidflow;
2989 int cpu, ret;
2990
2991 rcu_read_lock();
2992
2993 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2994
2995 if (cpu >= 0) {
2996 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2997 rcu_read_unlock();
2998 } else {
2999 rcu_read_unlock();
3000 ret = __netif_receive_skb(skb);
3001 }
3002
3003 return ret;
3004 }
3005#else
3006 return __netif_receive_skb(skb);
3007#endif
3008}
3009EXPORT_SYMBOL(netif_receive_skb);
3010
3011/* Network device is going away, flush any packets still pending
3012 * Called with irqs disabled.
3013 */
3014static void flush_backlog(void *arg)
3015{
3016 struct net_device *dev = arg;
3017 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3018 struct sk_buff *skb, *tmp;
3019
3020 rps_lock(sd);
3021 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3022 if (skb->dev == dev) {
3023 __skb_unlink(skb, &sd->input_pkt_queue);
3024 kfree_skb(skb);
3025 input_queue_head_incr(sd);
3026 }
3027 }
3028 rps_unlock(sd);
3029
3030 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3031 if (skb->dev == dev) {
3032 __skb_unlink(skb, &sd->process_queue);
3033 kfree_skb(skb);
3034 input_queue_head_incr(sd);
3035 }
3036 }
3037}
3038
3039static int napi_gro_complete(struct sk_buff *skb)
3040{
3041 struct packet_type *ptype;
3042 __be16 type = skb->protocol;
3043 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3044 int err = -ENOENT;
3045
3046 if (NAPI_GRO_CB(skb)->count == 1) {
3047 skb_shinfo(skb)->gso_size = 0;
3048 goto out;
3049 }
3050
3051 rcu_read_lock();
3052 list_for_each_entry_rcu(ptype, head, list) {
3053 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3054 continue;
3055
3056 err = ptype->gro_complete(skb);
3057 break;
3058 }
3059 rcu_read_unlock();
3060
3061 if (err) {
3062 WARN_ON(&ptype->list == head);
3063 kfree_skb(skb);
3064 return NET_RX_SUCCESS;
3065 }
3066
3067out:
3068 return netif_receive_skb(skb);
3069}
3070
3071static void napi_gro_flush(struct napi_struct *napi)
3072{
3073 struct sk_buff *skb, *next;
3074
3075 for (skb = napi->gro_list; skb; skb = next) {
3076 next = skb->next;
3077 skb->next = NULL;
3078 napi_gro_complete(skb);
3079 }
3080
3081 napi->gro_count = 0;
3082 napi->gro_list = NULL;
3083}
3084
3085enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3086{
3087 struct sk_buff **pp = NULL;
3088 struct packet_type *ptype;
3089 __be16 type = skb->protocol;
3090 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3091 int same_flow;
3092 int mac_len;
3093 enum gro_result ret;
3094
3095 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3096 goto normal;
3097
3098 if (skb_is_gso(skb) || skb_has_frags(skb))
3099 goto normal;
3100
3101 rcu_read_lock();
3102 list_for_each_entry_rcu(ptype, head, list) {
3103 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3104 continue;
3105
3106 skb_set_network_header(skb, skb_gro_offset(skb));
3107 mac_len = skb->network_header - skb->mac_header;
3108 skb->mac_len = mac_len;
3109 NAPI_GRO_CB(skb)->same_flow = 0;
3110 NAPI_GRO_CB(skb)->flush = 0;
3111 NAPI_GRO_CB(skb)->free = 0;
3112
3113 pp = ptype->gro_receive(&napi->gro_list, skb);
3114 break;
3115 }
3116 rcu_read_unlock();
3117
3118 if (&ptype->list == head)
3119 goto normal;
3120
3121 same_flow = NAPI_GRO_CB(skb)->same_flow;
3122 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3123
3124 if (pp) {
3125 struct sk_buff *nskb = *pp;
3126
3127 *pp = nskb->next;
3128 nskb->next = NULL;
3129 napi_gro_complete(nskb);
3130 napi->gro_count--;
3131 }
3132
3133 if (same_flow)
3134 goto ok;
3135
3136 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3137 goto normal;
3138
3139 napi->gro_count++;
3140 NAPI_GRO_CB(skb)->count = 1;
3141 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3142 skb->next = napi->gro_list;
3143 napi->gro_list = skb;
3144 ret = GRO_HELD;
3145
3146pull:
3147 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3148 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3149
3150 BUG_ON(skb->end - skb->tail < grow);
3151
3152 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3153
3154 skb->tail += grow;
3155 skb->data_len -= grow;
3156
3157 skb_shinfo(skb)->frags[0].page_offset += grow;
3158 skb_shinfo(skb)->frags[0].size -= grow;
3159
3160 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3161 put_page(skb_shinfo(skb)->frags[0].page);
3162 memmove(skb_shinfo(skb)->frags,
3163 skb_shinfo(skb)->frags + 1,
3164 --skb_shinfo(skb)->nr_frags);
3165 }
3166 }
3167
3168ok:
3169 return ret;
3170
3171normal:
3172 ret = GRO_NORMAL;
3173 goto pull;
3174}
3175EXPORT_SYMBOL(dev_gro_receive);
3176
3177static gro_result_t
3178__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3179{
3180 struct sk_buff *p;
3181
3182 for (p = napi->gro_list; p; p = p->next) {
3183 NAPI_GRO_CB(p)->same_flow =
3184 (p->dev == skb->dev) &&
3185 !compare_ether_header(skb_mac_header(p),
3186 skb_gro_mac_header(skb));
3187 NAPI_GRO_CB(p)->flush = 0;
3188 }
3189
3190 return dev_gro_receive(napi, skb);
3191}
3192
3193gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3194{
3195 switch (ret) {
3196 case GRO_NORMAL:
3197 if (netif_receive_skb(skb))
3198 ret = GRO_DROP;
3199 break;
3200
3201 case GRO_DROP:
3202 case GRO_MERGED_FREE:
3203 kfree_skb(skb);
3204 break;
3205
3206 case GRO_HELD:
3207 case GRO_MERGED:
3208 break;
3209 }
3210
3211 return ret;
3212}
3213EXPORT_SYMBOL(napi_skb_finish);
3214
3215void skb_gro_reset_offset(struct sk_buff *skb)
3216{
3217 NAPI_GRO_CB(skb)->data_offset = 0;
3218 NAPI_GRO_CB(skb)->frag0 = NULL;
3219 NAPI_GRO_CB(skb)->frag0_len = 0;
3220
3221 if (skb->mac_header == skb->tail &&
3222 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3223 NAPI_GRO_CB(skb)->frag0 =
3224 page_address(skb_shinfo(skb)->frags[0].page) +
3225 skb_shinfo(skb)->frags[0].page_offset;
3226 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3227 }
3228}
3229EXPORT_SYMBOL(skb_gro_reset_offset);
3230
3231gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3232{
3233 skb_gro_reset_offset(skb);
3234
3235 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3236}
3237EXPORT_SYMBOL(napi_gro_receive);
3238
3239void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3240{
3241 __skb_pull(skb, skb_headlen(skb));
3242 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3243
3244 napi->skb = skb;
3245}
3246EXPORT_SYMBOL(napi_reuse_skb);
3247
3248struct sk_buff *napi_get_frags(struct napi_struct *napi)
3249{
3250 struct sk_buff *skb = napi->skb;
3251
3252 if (!skb) {
3253 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3254 if (skb)
3255 napi->skb = skb;
3256 }
3257 return skb;
3258}
3259EXPORT_SYMBOL(napi_get_frags);
3260
3261gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3262 gro_result_t ret)
3263{
3264 switch (ret) {
3265 case GRO_NORMAL:
3266 case GRO_HELD:
3267 skb->protocol = eth_type_trans(skb, skb->dev);
3268
3269 if (ret == GRO_HELD)
3270 skb_gro_pull(skb, -ETH_HLEN);
3271 else if (netif_receive_skb(skb))
3272 ret = GRO_DROP;
3273 break;
3274
3275 case GRO_DROP:
3276 case GRO_MERGED_FREE:
3277 napi_reuse_skb(napi, skb);
3278 break;
3279
3280 case GRO_MERGED:
3281 break;
3282 }
3283
3284 return ret;
3285}
3286EXPORT_SYMBOL(napi_frags_finish);
3287
3288struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3289{
3290 struct sk_buff *skb = napi->skb;
3291 struct ethhdr *eth;
3292 unsigned int hlen;
3293 unsigned int off;
3294
3295 napi->skb = NULL;
3296
3297 skb_reset_mac_header(skb);
3298 skb_gro_reset_offset(skb);
3299
3300 off = skb_gro_offset(skb);
3301 hlen = off + sizeof(*eth);
3302 eth = skb_gro_header_fast(skb, off);
3303 if (skb_gro_header_hard(skb, hlen)) {
3304 eth = skb_gro_header_slow(skb, hlen, off);
3305 if (unlikely(!eth)) {
3306 napi_reuse_skb(napi, skb);
3307 skb = NULL;
3308 goto out;
3309 }
3310 }
3311
3312 skb_gro_pull(skb, sizeof(*eth));
3313
3314 /*
3315 * This works because the only protocols we care about don't require
3316 * special handling. We'll fix it up properly at the end.
3317 */
3318 skb->protocol = eth->h_proto;
3319
3320out:
3321 return skb;
3322}
3323EXPORT_SYMBOL(napi_frags_skb);
3324
3325gro_result_t napi_gro_frags(struct napi_struct *napi)
3326{
3327 struct sk_buff *skb = napi_frags_skb(napi);
3328
3329 if (!skb)
3330 return GRO_DROP;
3331
3332 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3333}
3334EXPORT_SYMBOL(napi_gro_frags);
3335
3336/*
3337 * net_rps_action sends any pending IPI's for rps.
3338 * Note: called with local irq disabled, but exits with local irq enabled.
3339 */
3340static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3341{
3342#ifdef CONFIG_RPS
3343 struct softnet_data *remsd = sd->rps_ipi_list;
3344
3345 if (remsd) {
3346 sd->rps_ipi_list = NULL;
3347
3348 local_irq_enable();
3349
3350 /* Send pending IPI's to kick RPS processing on remote cpus. */
3351 while (remsd) {
3352 struct softnet_data *next = remsd->rps_ipi_next;
3353
3354 if (cpu_online(remsd->cpu))
3355 __smp_call_function_single(remsd->cpu,
3356 &remsd->csd, 0);
3357 remsd = next;
3358 }
3359 } else
3360#endif
3361 local_irq_enable();
3362}
3363
3364static int process_backlog(struct napi_struct *napi, int quota)
3365{
3366 int work = 0;
3367 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3368
3369#ifdef CONFIG_RPS
3370 /* Check if we have pending ipi, its better to send them now,
3371 * not waiting net_rx_action() end.
3372 */
3373 if (sd->rps_ipi_list) {
3374 local_irq_disable();
3375 net_rps_action_and_irq_enable(sd);
3376 }
3377#endif
3378 napi->weight = weight_p;
3379 local_irq_disable();
3380 while (work < quota) {
3381 struct sk_buff *skb;
3382 unsigned int qlen;
3383
3384 while ((skb = __skb_dequeue(&sd->process_queue))) {
3385 local_irq_enable();
3386 __netif_receive_skb(skb);
3387 local_irq_disable();
3388 input_queue_head_incr(sd);
3389 if (++work >= quota) {
3390 local_irq_enable();
3391 return work;
3392 }
3393 }
3394
3395 rps_lock(sd);
3396 qlen = skb_queue_len(&sd->input_pkt_queue);
3397 if (qlen)
3398 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3399 &sd->process_queue);
3400
3401 if (qlen < quota - work) {
3402 /*
3403 * Inline a custom version of __napi_complete().
3404 * only current cpu owns and manipulates this napi,
3405 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3406 * we can use a plain write instead of clear_bit(),
3407 * and we dont need an smp_mb() memory barrier.
3408 */
3409 list_del(&napi->poll_list);
3410 napi->state = 0;
3411
3412 quota = work + qlen;
3413 }
3414 rps_unlock(sd);
3415 }
3416 local_irq_enable();
3417
3418 return work;
3419}
3420
3421/**
3422 * __napi_schedule - schedule for receive
3423 * @n: entry to schedule
3424 *
3425 * The entry's receive function will be scheduled to run
3426 */
3427void __napi_schedule(struct napi_struct *n)
3428{
3429 unsigned long flags;
3430
3431 local_irq_save(flags);
3432 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3433 local_irq_restore(flags);
3434}
3435EXPORT_SYMBOL(__napi_schedule);
3436
3437void __napi_complete(struct napi_struct *n)
3438{
3439 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3440 BUG_ON(n->gro_list);
3441
3442 list_del(&n->poll_list);
3443 smp_mb__before_clear_bit();
3444 clear_bit(NAPI_STATE_SCHED, &n->state);
3445}
3446EXPORT_SYMBOL(__napi_complete);
3447
3448void napi_complete(struct napi_struct *n)
3449{
3450 unsigned long flags;
3451
3452 /*
3453 * don't let napi dequeue from the cpu poll list
3454 * just in case its running on a different cpu
3455 */
3456 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3457 return;
3458
3459 napi_gro_flush(n);
3460 local_irq_save(flags);
3461 __napi_complete(n);
3462 local_irq_restore(flags);
3463}
3464EXPORT_SYMBOL(napi_complete);
3465
3466void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3467 int (*poll)(struct napi_struct *, int), int weight)
3468{
3469 INIT_LIST_HEAD(&napi->poll_list);
3470 napi->gro_count = 0;
3471 napi->gro_list = NULL;
3472 napi->skb = NULL;
3473 napi->poll = poll;
3474 napi->weight = weight;
3475 list_add(&napi->dev_list, &dev->napi_list);
3476 napi->dev = dev;
3477#ifdef CONFIG_NETPOLL
3478 spin_lock_init(&napi->poll_lock);
3479 napi->poll_owner = -1;
3480#endif
3481 set_bit(NAPI_STATE_SCHED, &napi->state);
3482}
3483EXPORT_SYMBOL(netif_napi_add);
3484
3485void netif_napi_del(struct napi_struct *napi)
3486{
3487 struct sk_buff *skb, *next;
3488
3489 list_del_init(&napi->dev_list);
3490 napi_free_frags(napi);
3491
3492 for (skb = napi->gro_list; skb; skb = next) {
3493 next = skb->next;
3494 skb->next = NULL;
3495 kfree_skb(skb);
3496 }
3497
3498 napi->gro_list = NULL;
3499 napi->gro_count = 0;
3500}
3501EXPORT_SYMBOL(netif_napi_del);
3502
3503static void net_rx_action(struct softirq_action *h)
3504{
3505 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3506 unsigned long time_limit = jiffies + 2;
3507 int budget = netdev_budget;
3508 void *have;
3509
3510 local_irq_disable();
3511
3512 while (!list_empty(&sd->poll_list)) {
3513 struct napi_struct *n;
3514 int work, weight;
3515
3516 /* If softirq window is exhuasted then punt.
3517 * Allow this to run for 2 jiffies since which will allow
3518 * an average latency of 1.5/HZ.
3519 */
3520 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3521 goto softnet_break;
3522
3523 local_irq_enable();
3524
3525 /* Even though interrupts have been re-enabled, this
3526 * access is safe because interrupts can only add new
3527 * entries to the tail of this list, and only ->poll()
3528 * calls can remove this head entry from the list.
3529 */
3530 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3531
3532 have = netpoll_poll_lock(n);
3533
3534 weight = n->weight;
3535
3536 /* This NAPI_STATE_SCHED test is for avoiding a race
3537 * with netpoll's poll_napi(). Only the entity which
3538 * obtains the lock and sees NAPI_STATE_SCHED set will
3539 * actually make the ->poll() call. Therefore we avoid
3540 * accidently calling ->poll() when NAPI is not scheduled.
3541 */
3542 work = 0;
3543 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3544 work = n->poll(n, weight);
3545 trace_napi_poll(n);
3546 }
3547
3548 WARN_ON_ONCE(work > weight);
3549
3550 budget -= work;
3551
3552 local_irq_disable();
3553
3554 /* Drivers must not modify the NAPI state if they
3555 * consume the entire weight. In such cases this code
3556 * still "owns" the NAPI instance and therefore can
3557 * move the instance around on the list at-will.
3558 */
3559 if (unlikely(work == weight)) {
3560 if (unlikely(napi_disable_pending(n))) {
3561 local_irq_enable();
3562 napi_complete(n);
3563 local_irq_disable();
3564 } else
3565 list_move_tail(&n->poll_list, &sd->poll_list);
3566 }
3567
3568 netpoll_poll_unlock(have);
3569 }
3570out:
3571 net_rps_action_and_irq_enable(sd);
3572
3573#ifdef CONFIG_NET_DMA
3574 /*
3575 * There may not be any more sk_buffs coming right now, so push
3576 * any pending DMA copies to hardware
3577 */
3578 dma_issue_pending_all();
3579#endif
3580
3581 return;
3582
3583softnet_break:
3584 sd->time_squeeze++;
3585 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3586 goto out;
3587}
3588
3589static gifconf_func_t *gifconf_list[NPROTO];
3590
3591/**
3592 * register_gifconf - register a SIOCGIF handler
3593 * @family: Address family
3594 * @gifconf: Function handler
3595 *
3596 * Register protocol dependent address dumping routines. The handler
3597 * that is passed must not be freed or reused until it has been replaced
3598 * by another handler.
3599 */
3600int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3601{
3602 if (family >= NPROTO)
3603 return -EINVAL;
3604 gifconf_list[family] = gifconf;
3605 return 0;
3606}
3607EXPORT_SYMBOL(register_gifconf);
3608
3609
3610/*
3611 * Map an interface index to its name (SIOCGIFNAME)
3612 */
3613
3614/*
3615 * We need this ioctl for efficient implementation of the
3616 * if_indextoname() function required by the IPv6 API. Without
3617 * it, we would have to search all the interfaces to find a
3618 * match. --pb
3619 */
3620
3621static int dev_ifname(struct net *net, struct ifreq __user *arg)
3622{
3623 struct net_device *dev;
3624 struct ifreq ifr;
3625
3626 /*
3627 * Fetch the caller's info block.
3628 */
3629
3630 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3631 return -EFAULT;
3632
3633 rcu_read_lock();
3634 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3635 if (!dev) {
3636 rcu_read_unlock();
3637 return -ENODEV;
3638 }
3639
3640 strcpy(ifr.ifr_name, dev->name);
3641 rcu_read_unlock();
3642
3643 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3644 return -EFAULT;
3645 return 0;
3646}
3647
3648/*
3649 * Perform a SIOCGIFCONF call. This structure will change
3650 * size eventually, and there is nothing I can do about it.
3651 * Thus we will need a 'compatibility mode'.
3652 */
3653
3654static int dev_ifconf(struct net *net, char __user *arg)
3655{
3656 struct ifconf ifc;
3657 struct net_device *dev;
3658 char __user *pos;
3659 int len;
3660 int total;
3661 int i;
3662
3663 /*
3664 * Fetch the caller's info block.
3665 */
3666
3667 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3668 return -EFAULT;
3669
3670 pos = ifc.ifc_buf;
3671 len = ifc.ifc_len;
3672
3673 /*
3674 * Loop over the interfaces, and write an info block for each.
3675 */
3676
3677 total = 0;
3678 for_each_netdev(net, dev) {
3679 for (i = 0; i < NPROTO; i++) {
3680 if (gifconf_list[i]) {
3681 int done;
3682 if (!pos)
3683 done = gifconf_list[i](dev, NULL, 0);
3684 else
3685 done = gifconf_list[i](dev, pos + total,
3686 len - total);
3687 if (done < 0)
3688 return -EFAULT;
3689 total += done;
3690 }
3691 }
3692 }
3693
3694 /*
3695 * All done. Write the updated control block back to the caller.
3696 */
3697 ifc.ifc_len = total;
3698
3699 /*
3700 * Both BSD and Solaris return 0 here, so we do too.
3701 */
3702 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3703}
3704
3705#ifdef CONFIG_PROC_FS
3706/*
3707 * This is invoked by the /proc filesystem handler to display a device
3708 * in detail.
3709 */
3710void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3711 __acquires(RCU)
3712{
3713 struct net *net = seq_file_net(seq);
3714 loff_t off;
3715 struct net_device *dev;
3716
3717 rcu_read_lock();
3718 if (!*pos)
3719 return SEQ_START_TOKEN;
3720
3721 off = 1;
3722 for_each_netdev_rcu(net, dev)
3723 if (off++ == *pos)
3724 return dev;
3725
3726 return NULL;
3727}
3728
3729void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3730{
3731 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3732 first_net_device(seq_file_net(seq)) :
3733 next_net_device((struct net_device *)v);
3734
3735 ++*pos;
3736 return rcu_dereference(dev);
3737}
3738
3739void dev_seq_stop(struct seq_file *seq, void *v)
3740 __releases(RCU)
3741{
3742 rcu_read_unlock();
3743}
3744
3745static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3746{
3747 struct rtnl_link_stats64 temp;
3748 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3749
3750 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3751 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3752 dev->name, stats->rx_bytes, stats->rx_packets,
3753 stats->rx_errors,
3754 stats->rx_dropped + stats->rx_missed_errors,
3755 stats->rx_fifo_errors,
3756 stats->rx_length_errors + stats->rx_over_errors +
3757 stats->rx_crc_errors + stats->rx_frame_errors,
3758 stats->rx_compressed, stats->multicast,
3759 stats->tx_bytes, stats->tx_packets,
3760 stats->tx_errors, stats->tx_dropped,
3761 stats->tx_fifo_errors, stats->collisions,
3762 stats->tx_carrier_errors +
3763 stats->tx_aborted_errors +
3764 stats->tx_window_errors +
3765 stats->tx_heartbeat_errors,
3766 stats->tx_compressed);
3767}
3768
3769/*
3770 * Called from the PROCfs module. This now uses the new arbitrary sized
3771 * /proc/net interface to create /proc/net/dev
3772 */
3773static int dev_seq_show(struct seq_file *seq, void *v)
3774{
3775 if (v == SEQ_START_TOKEN)
3776 seq_puts(seq, "Inter-| Receive "
3777 " | Transmit\n"
3778 " face |bytes packets errs drop fifo frame "
3779 "compressed multicast|bytes packets errs "
3780 "drop fifo colls carrier compressed\n");
3781 else
3782 dev_seq_printf_stats(seq, v);
3783 return 0;
3784}
3785
3786static struct softnet_data *softnet_get_online(loff_t *pos)
3787{
3788 struct softnet_data *sd = NULL;
3789
3790 while (*pos < nr_cpu_ids)
3791 if (cpu_online(*pos)) {
3792 sd = &per_cpu(softnet_data, *pos);
3793 break;
3794 } else
3795 ++*pos;
3796 return sd;
3797}
3798
3799static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3800{
3801 return softnet_get_online(pos);
3802}
3803
3804static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3805{
3806 ++*pos;
3807 return softnet_get_online(pos);
3808}
3809
3810static void softnet_seq_stop(struct seq_file *seq, void *v)
3811{
3812}
3813
3814static int softnet_seq_show(struct seq_file *seq, void *v)
3815{
3816 struct softnet_data *sd = v;
3817
3818 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3819 sd->processed, sd->dropped, sd->time_squeeze, 0,
3820 0, 0, 0, 0, /* was fastroute */
3821 sd->cpu_collision, sd->received_rps);
3822 return 0;
3823}
3824
3825static const struct seq_operations dev_seq_ops = {
3826 .start = dev_seq_start,
3827 .next = dev_seq_next,
3828 .stop = dev_seq_stop,
3829 .show = dev_seq_show,
3830};
3831
3832static int dev_seq_open(struct inode *inode, struct file *file)
3833{
3834 return seq_open_net(inode, file, &dev_seq_ops,
3835 sizeof(struct seq_net_private));
3836}
3837
3838static const struct file_operations dev_seq_fops = {
3839 .owner = THIS_MODULE,
3840 .open = dev_seq_open,
3841 .read = seq_read,
3842 .llseek = seq_lseek,
3843 .release = seq_release_net,
3844};
3845
3846static const struct seq_operations softnet_seq_ops = {
3847 .start = softnet_seq_start,
3848 .next = softnet_seq_next,
3849 .stop = softnet_seq_stop,
3850 .show = softnet_seq_show,
3851};
3852
3853static int softnet_seq_open(struct inode *inode, struct file *file)
3854{
3855 return seq_open(file, &softnet_seq_ops);
3856}
3857
3858static const struct file_operations softnet_seq_fops = {
3859 .owner = THIS_MODULE,
3860 .open = softnet_seq_open,
3861 .read = seq_read,
3862 .llseek = seq_lseek,
3863 .release = seq_release,
3864};
3865
3866static void *ptype_get_idx(loff_t pos)
3867{
3868 struct packet_type *pt = NULL;
3869 loff_t i = 0;
3870 int t;
3871
3872 list_for_each_entry_rcu(pt, &ptype_all, list) {
3873 if (i == pos)
3874 return pt;
3875 ++i;
3876 }
3877
3878 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3879 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3880 if (i == pos)
3881 return pt;
3882 ++i;
3883 }
3884 }
3885 return NULL;
3886}
3887
3888static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3889 __acquires(RCU)
3890{
3891 rcu_read_lock();
3892 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3893}
3894
3895static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3896{
3897 struct packet_type *pt;
3898 struct list_head *nxt;
3899 int hash;
3900
3901 ++*pos;
3902 if (v == SEQ_START_TOKEN)
3903 return ptype_get_idx(0);
3904
3905 pt = v;
3906 nxt = pt->list.next;
3907 if (pt->type == htons(ETH_P_ALL)) {
3908 if (nxt != &ptype_all)
3909 goto found;
3910 hash = 0;
3911 nxt = ptype_base[0].next;
3912 } else
3913 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3914
3915 while (nxt == &ptype_base[hash]) {
3916 if (++hash >= PTYPE_HASH_SIZE)
3917 return NULL;
3918 nxt = ptype_base[hash].next;
3919 }
3920found:
3921 return list_entry(nxt, struct packet_type, list);
3922}
3923
3924static void ptype_seq_stop(struct seq_file *seq, void *v)
3925 __releases(RCU)
3926{
3927 rcu_read_unlock();
3928}
3929
3930static int ptype_seq_show(struct seq_file *seq, void *v)
3931{
3932 struct packet_type *pt = v;
3933
3934 if (v == SEQ_START_TOKEN)
3935 seq_puts(seq, "Type Device Function\n");
3936 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3937 if (pt->type == htons(ETH_P_ALL))
3938 seq_puts(seq, "ALL ");
3939 else
3940 seq_printf(seq, "%04x", ntohs(pt->type));
3941
3942 seq_printf(seq, " %-8s %pF\n",
3943 pt->dev ? pt->dev->name : "", pt->func);
3944 }
3945
3946 return 0;
3947}
3948
3949static const struct seq_operations ptype_seq_ops = {
3950 .start = ptype_seq_start,
3951 .next = ptype_seq_next,
3952 .stop = ptype_seq_stop,
3953 .show = ptype_seq_show,
3954};
3955
3956static int ptype_seq_open(struct inode *inode, struct file *file)
3957{
3958 return seq_open_net(inode, file, &ptype_seq_ops,
3959 sizeof(struct seq_net_private));
3960}
3961
3962static const struct file_operations ptype_seq_fops = {
3963 .owner = THIS_MODULE,
3964 .open = ptype_seq_open,
3965 .read = seq_read,
3966 .llseek = seq_lseek,
3967 .release = seq_release_net,
3968};
3969
3970
3971static int __net_init dev_proc_net_init(struct net *net)
3972{
3973 int rc = -ENOMEM;
3974
3975 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3976 goto out;
3977 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3978 goto out_dev;
3979 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3980 goto out_softnet;
3981
3982 if (wext_proc_init(net))
3983 goto out_ptype;
3984 rc = 0;
3985out:
3986 return rc;
3987out_ptype:
3988 proc_net_remove(net, "ptype");
3989out_softnet:
3990 proc_net_remove(net, "softnet_stat");
3991out_dev:
3992 proc_net_remove(net, "dev");
3993 goto out;
3994}
3995
3996static void __net_exit dev_proc_net_exit(struct net *net)
3997{
3998 wext_proc_exit(net);
3999
4000 proc_net_remove(net, "ptype");
4001 proc_net_remove(net, "softnet_stat");
4002 proc_net_remove(net, "dev");
4003}
4004
4005static struct pernet_operations __net_initdata dev_proc_ops = {
4006 .init = dev_proc_net_init,
4007 .exit = dev_proc_net_exit,
4008};
4009
4010static int __init dev_proc_init(void)
4011{
4012 return register_pernet_subsys(&dev_proc_ops);
4013}
4014#else
4015#define dev_proc_init() 0
4016#endif /* CONFIG_PROC_FS */
4017
4018
4019/**
4020 * netdev_set_master - set up master/slave pair
4021 * @slave: slave device
4022 * @master: new master device
4023 *
4024 * Changes the master device of the slave. Pass %NULL to break the
4025 * bonding. The caller must hold the RTNL semaphore. On a failure
4026 * a negative errno code is returned. On success the reference counts
4027 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4028 * function returns zero.
4029 */
4030int netdev_set_master(struct net_device *slave, struct net_device *master)
4031{
4032 struct net_device *old = slave->master;
4033
4034 ASSERT_RTNL();
4035
4036 if (master) {
4037 if (old)
4038 return -EBUSY;
4039 dev_hold(master);
4040 }
4041
4042 slave->master = master;
4043
4044 if (old) {
4045 synchronize_net();
4046 dev_put(old);
4047 }
4048 if (master)
4049 slave->flags |= IFF_SLAVE;
4050 else
4051 slave->flags &= ~IFF_SLAVE;
4052
4053 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4054 return 0;
4055}
4056EXPORT_SYMBOL(netdev_set_master);
4057
4058static void dev_change_rx_flags(struct net_device *dev, int flags)
4059{
4060 const struct net_device_ops *ops = dev->netdev_ops;
4061
4062 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4063 ops->ndo_change_rx_flags(dev, flags);
4064}
4065
4066static int __dev_set_promiscuity(struct net_device *dev, int inc)
4067{
4068 unsigned short old_flags = dev->flags;
4069 uid_t uid;
4070 gid_t gid;
4071
4072 ASSERT_RTNL();
4073
4074 dev->flags |= IFF_PROMISC;
4075 dev->promiscuity += inc;
4076 if (dev->promiscuity == 0) {
4077 /*
4078 * Avoid overflow.
4079 * If inc causes overflow, untouch promisc and return error.
4080 */
4081 if (inc < 0)
4082 dev->flags &= ~IFF_PROMISC;
4083 else {
4084 dev->promiscuity -= inc;
4085 printk(KERN_WARNING "%s: promiscuity touches roof, "
4086 "set promiscuity failed, promiscuity feature "
4087 "of device might be broken.\n", dev->name);
4088 return -EOVERFLOW;
4089 }
4090 }
4091 if (dev->flags != old_flags) {
4092 printk(KERN_INFO "device %s %s promiscuous mode\n",
4093 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4094 "left");
4095 if (audit_enabled) {
4096 current_uid_gid(&uid, &gid);
4097 audit_log(current->audit_context, GFP_ATOMIC,
4098 AUDIT_ANOM_PROMISCUOUS,
4099 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4100 dev->name, (dev->flags & IFF_PROMISC),
4101 (old_flags & IFF_PROMISC),
4102 audit_get_loginuid(current),
4103 uid, gid,
4104 audit_get_sessionid(current));
4105 }
4106
4107 dev_change_rx_flags(dev, IFF_PROMISC);
4108 }
4109 return 0;
4110}
4111
4112/**
4113 * dev_set_promiscuity - update promiscuity count on a device
4114 * @dev: device
4115 * @inc: modifier
4116 *
4117 * Add or remove promiscuity from a device. While the count in the device
4118 * remains above zero the interface remains promiscuous. Once it hits zero
4119 * the device reverts back to normal filtering operation. A negative inc
4120 * value is used to drop promiscuity on the device.
4121 * Return 0 if successful or a negative errno code on error.
4122 */
4123int dev_set_promiscuity(struct net_device *dev, int inc)
4124{
4125 unsigned short old_flags = dev->flags;
4126 int err;
4127
4128 err = __dev_set_promiscuity(dev, inc);
4129 if (err < 0)
4130 return err;
4131 if (dev->flags != old_flags)
4132 dev_set_rx_mode(dev);
4133 return err;
4134}
4135EXPORT_SYMBOL(dev_set_promiscuity);
4136
4137/**
4138 * dev_set_allmulti - update allmulti count on a device
4139 * @dev: device
4140 * @inc: modifier
4141 *
4142 * Add or remove reception of all multicast frames to a device. While the
4143 * count in the device remains above zero the interface remains listening
4144 * to all interfaces. Once it hits zero the device reverts back to normal
4145 * filtering operation. A negative @inc value is used to drop the counter
4146 * when releasing a resource needing all multicasts.
4147 * Return 0 if successful or a negative errno code on error.
4148 */
4149
4150int dev_set_allmulti(struct net_device *dev, int inc)
4151{
4152 unsigned short old_flags = dev->flags;
4153
4154 ASSERT_RTNL();
4155
4156 dev->flags |= IFF_ALLMULTI;
4157 dev->allmulti += inc;
4158 if (dev->allmulti == 0) {
4159 /*
4160 * Avoid overflow.
4161 * If inc causes overflow, untouch allmulti and return error.
4162 */
4163 if (inc < 0)
4164 dev->flags &= ~IFF_ALLMULTI;
4165 else {
4166 dev->allmulti -= inc;
4167 printk(KERN_WARNING "%s: allmulti touches roof, "
4168 "set allmulti failed, allmulti feature of "
4169 "device might be broken.\n", dev->name);
4170 return -EOVERFLOW;
4171 }
4172 }
4173 if (dev->flags ^ old_flags) {
4174 dev_change_rx_flags(dev, IFF_ALLMULTI);
4175 dev_set_rx_mode(dev);
4176 }
4177 return 0;
4178}
4179EXPORT_SYMBOL(dev_set_allmulti);
4180
4181/*
4182 * Upload unicast and multicast address lists to device and
4183 * configure RX filtering. When the device doesn't support unicast
4184 * filtering it is put in promiscuous mode while unicast addresses
4185 * are present.
4186 */
4187void __dev_set_rx_mode(struct net_device *dev)
4188{
4189 const struct net_device_ops *ops = dev->netdev_ops;
4190
4191 /* dev_open will call this function so the list will stay sane. */
4192 if (!(dev->flags&IFF_UP))
4193 return;
4194
4195 if (!netif_device_present(dev))
4196 return;
4197
4198 if (ops->ndo_set_rx_mode)
4199 ops->ndo_set_rx_mode(dev);
4200 else {
4201 /* Unicast addresses changes may only happen under the rtnl,
4202 * therefore calling __dev_set_promiscuity here is safe.
4203 */
4204 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4205 __dev_set_promiscuity(dev, 1);
4206 dev->uc_promisc = 1;
4207 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4208 __dev_set_promiscuity(dev, -1);
4209 dev->uc_promisc = 0;
4210 }
4211
4212 if (ops->ndo_set_multicast_list)
4213 ops->ndo_set_multicast_list(dev);
4214 }
4215}
4216
4217void dev_set_rx_mode(struct net_device *dev)
4218{
4219 netif_addr_lock_bh(dev);
4220 __dev_set_rx_mode(dev);
4221 netif_addr_unlock_bh(dev);
4222}
4223
4224/**
4225 * dev_get_flags - get flags reported to userspace
4226 * @dev: device
4227 *
4228 * Get the combination of flag bits exported through APIs to userspace.
4229 */
4230unsigned dev_get_flags(const struct net_device *dev)
4231{
4232 unsigned flags;
4233
4234 flags = (dev->flags & ~(IFF_PROMISC |
4235 IFF_ALLMULTI |
4236 IFF_RUNNING |
4237 IFF_LOWER_UP |
4238 IFF_DORMANT)) |
4239 (dev->gflags & (IFF_PROMISC |
4240 IFF_ALLMULTI));
4241
4242 if (netif_running(dev)) {
4243 if (netif_oper_up(dev))
4244 flags |= IFF_RUNNING;
4245 if (netif_carrier_ok(dev))
4246 flags |= IFF_LOWER_UP;
4247 if (netif_dormant(dev))
4248 flags |= IFF_DORMANT;
4249 }
4250
4251 return flags;
4252}
4253EXPORT_SYMBOL(dev_get_flags);
4254
4255int __dev_change_flags(struct net_device *dev, unsigned int flags)
4256{
4257 int old_flags = dev->flags;
4258 int ret;
4259
4260 ASSERT_RTNL();
4261
4262 /*
4263 * Set the flags on our device.
4264 */
4265
4266 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4267 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4268 IFF_AUTOMEDIA)) |
4269 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4270 IFF_ALLMULTI));
4271
4272 /*
4273 * Load in the correct multicast list now the flags have changed.
4274 */
4275
4276 if ((old_flags ^ flags) & IFF_MULTICAST)
4277 dev_change_rx_flags(dev, IFF_MULTICAST);
4278
4279 dev_set_rx_mode(dev);
4280
4281 /*
4282 * Have we downed the interface. We handle IFF_UP ourselves
4283 * according to user attempts to set it, rather than blindly
4284 * setting it.
4285 */
4286
4287 ret = 0;
4288 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4289 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4290
4291 if (!ret)
4292 dev_set_rx_mode(dev);
4293 }
4294
4295 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4296 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4297
4298 dev->gflags ^= IFF_PROMISC;
4299 dev_set_promiscuity(dev, inc);
4300 }
4301
4302 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4303 is important. Some (broken) drivers set IFF_PROMISC, when
4304 IFF_ALLMULTI is requested not asking us and not reporting.
4305 */
4306 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4307 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4308
4309 dev->gflags ^= IFF_ALLMULTI;
4310 dev_set_allmulti(dev, inc);
4311 }
4312
4313 return ret;
4314}
4315
4316void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4317{
4318 unsigned int changes = dev->flags ^ old_flags;
4319
4320 if (changes & IFF_UP) {
4321 if (dev->flags & IFF_UP)
4322 call_netdevice_notifiers(NETDEV_UP, dev);
4323 else
4324 call_netdevice_notifiers(NETDEV_DOWN, dev);
4325 }
4326
4327 if (dev->flags & IFF_UP &&
4328 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4329 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4330}
4331
4332/**
4333 * dev_change_flags - change device settings
4334 * @dev: device
4335 * @flags: device state flags
4336 *
4337 * Change settings on device based state flags. The flags are
4338 * in the userspace exported format.
4339 */
4340int dev_change_flags(struct net_device *dev, unsigned flags)
4341{
4342 int ret, changes;
4343 int old_flags = dev->flags;
4344
4345 ret = __dev_change_flags(dev, flags);
4346 if (ret < 0)
4347 return ret;
4348
4349 changes = old_flags ^ dev->flags;
4350 if (changes)
4351 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4352
4353 __dev_notify_flags(dev, old_flags);
4354 return ret;
4355}
4356EXPORT_SYMBOL(dev_change_flags);
4357
4358/**
4359 * dev_set_mtu - Change maximum transfer unit
4360 * @dev: device
4361 * @new_mtu: new transfer unit
4362 *
4363 * Change the maximum transfer size of the network device.
4364 */
4365int dev_set_mtu(struct net_device *dev, int new_mtu)
4366{
4367 const struct net_device_ops *ops = dev->netdev_ops;
4368 int err;
4369
4370 if (new_mtu == dev->mtu)
4371 return 0;
4372
4373 /* MTU must be positive. */
4374 if (new_mtu < 0)
4375 return -EINVAL;
4376
4377 if (!netif_device_present(dev))
4378 return -ENODEV;
4379
4380 err = 0;
4381 if (ops->ndo_change_mtu)
4382 err = ops->ndo_change_mtu(dev, new_mtu);
4383 else
4384 dev->mtu = new_mtu;
4385
4386 if (!err && dev->flags & IFF_UP)
4387 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4388 return err;
4389}
4390EXPORT_SYMBOL(dev_set_mtu);
4391
4392/**
4393 * dev_set_mac_address - Change Media Access Control Address
4394 * @dev: device
4395 * @sa: new address
4396 *
4397 * Change the hardware (MAC) address of the device
4398 */
4399int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4400{
4401 const struct net_device_ops *ops = dev->netdev_ops;
4402 int err;
4403
4404 if (!ops->ndo_set_mac_address)
4405 return -EOPNOTSUPP;
4406 if (sa->sa_family != dev->type)
4407 return -EINVAL;
4408 if (!netif_device_present(dev))
4409 return -ENODEV;
4410 err = ops->ndo_set_mac_address(dev, sa);
4411 if (!err)
4412 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4413 return err;
4414}
4415EXPORT_SYMBOL(dev_set_mac_address);
4416
4417/*
4418 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4419 */
4420static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4421{
4422 int err;
4423 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4424
4425 if (!dev)
4426 return -ENODEV;
4427
4428 switch (cmd) {
4429 case SIOCGIFFLAGS: /* Get interface flags */
4430 ifr->ifr_flags = (short) dev_get_flags(dev);
4431 return 0;
4432
4433 case SIOCGIFMETRIC: /* Get the metric on the interface
4434 (currently unused) */
4435 ifr->ifr_metric = 0;
4436 return 0;
4437
4438 case SIOCGIFMTU: /* Get the MTU of a device */
4439 ifr->ifr_mtu = dev->mtu;
4440 return 0;
4441
4442 case SIOCGIFHWADDR:
4443 if (!dev->addr_len)
4444 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4445 else
4446 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4447 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4448 ifr->ifr_hwaddr.sa_family = dev->type;
4449 return 0;
4450
4451 case SIOCGIFSLAVE:
4452 err = -EINVAL;
4453 break;
4454
4455 case SIOCGIFMAP:
4456 ifr->ifr_map.mem_start = dev->mem_start;
4457 ifr->ifr_map.mem_end = dev->mem_end;
4458 ifr->ifr_map.base_addr = dev->base_addr;
4459 ifr->ifr_map.irq = dev->irq;
4460 ifr->ifr_map.dma = dev->dma;
4461 ifr->ifr_map.port = dev->if_port;
4462 return 0;
4463
4464 case SIOCGIFINDEX:
4465 ifr->ifr_ifindex = dev->ifindex;
4466 return 0;
4467
4468 case SIOCGIFTXQLEN:
4469 ifr->ifr_qlen = dev->tx_queue_len;
4470 return 0;
4471
4472 default:
4473 /* dev_ioctl() should ensure this case
4474 * is never reached
4475 */
4476 WARN_ON(1);
4477 err = -EINVAL;
4478 break;
4479
4480 }
4481 return err;
4482}
4483
4484/*
4485 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4486 */
4487static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4488{
4489 int err;
4490 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4491 const struct net_device_ops *ops;
4492
4493 if (!dev)
4494 return -ENODEV;
4495
4496 ops = dev->netdev_ops;
4497
4498 switch (cmd) {
4499 case SIOCSIFFLAGS: /* Set interface flags */
4500 return dev_change_flags(dev, ifr->ifr_flags);
4501
4502 case SIOCSIFMETRIC: /* Set the metric on the interface
4503 (currently unused) */
4504 return -EOPNOTSUPP;
4505
4506 case SIOCSIFMTU: /* Set the MTU of a device */
4507 return dev_set_mtu(dev, ifr->ifr_mtu);
4508
4509 case SIOCSIFHWADDR:
4510 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4511
4512 case SIOCSIFHWBROADCAST:
4513 if (ifr->ifr_hwaddr.sa_family != dev->type)
4514 return -EINVAL;
4515 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4516 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4517 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4518 return 0;
4519
4520 case SIOCSIFMAP:
4521 if (ops->ndo_set_config) {
4522 if (!netif_device_present(dev))
4523 return -ENODEV;
4524 return ops->ndo_set_config(dev, &ifr->ifr_map);
4525 }
4526 return -EOPNOTSUPP;
4527
4528 case SIOCADDMULTI:
4529 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4530 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4531 return -EINVAL;
4532 if (!netif_device_present(dev))
4533 return -ENODEV;
4534 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4535
4536 case SIOCDELMULTI:
4537 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4538 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4539 return -EINVAL;
4540 if (!netif_device_present(dev))
4541 return -ENODEV;
4542 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4543
4544 case SIOCSIFTXQLEN:
4545 if (ifr->ifr_qlen < 0)
4546 return -EINVAL;
4547 dev->tx_queue_len = ifr->ifr_qlen;
4548 return 0;
4549
4550 case SIOCSIFNAME:
4551 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4552 return dev_change_name(dev, ifr->ifr_newname);
4553
4554 /*
4555 * Unknown or private ioctl
4556 */
4557 default:
4558 if ((cmd >= SIOCDEVPRIVATE &&
4559 cmd <= SIOCDEVPRIVATE + 15) ||
4560 cmd == SIOCBONDENSLAVE ||
4561 cmd == SIOCBONDRELEASE ||
4562 cmd == SIOCBONDSETHWADDR ||
4563 cmd == SIOCBONDSLAVEINFOQUERY ||
4564 cmd == SIOCBONDINFOQUERY ||
4565 cmd == SIOCBONDCHANGEACTIVE ||
4566 cmd == SIOCGMIIPHY ||
4567 cmd == SIOCGMIIREG ||
4568 cmd == SIOCSMIIREG ||
4569 cmd == SIOCBRADDIF ||
4570 cmd == SIOCBRDELIF ||
4571 cmd == SIOCSHWTSTAMP ||
4572 cmd == SIOCWANDEV) {
4573 err = -EOPNOTSUPP;
4574 if (ops->ndo_do_ioctl) {
4575 if (netif_device_present(dev))
4576 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4577 else
4578 err = -ENODEV;
4579 }
4580 } else
4581 err = -EINVAL;
4582
4583 }
4584 return err;
4585}
4586
4587/*
4588 * This function handles all "interface"-type I/O control requests. The actual
4589 * 'doing' part of this is dev_ifsioc above.
4590 */
4591
4592/**
4593 * dev_ioctl - network device ioctl
4594 * @net: the applicable net namespace
4595 * @cmd: command to issue
4596 * @arg: pointer to a struct ifreq in user space
4597 *
4598 * Issue ioctl functions to devices. This is normally called by the
4599 * user space syscall interfaces but can sometimes be useful for
4600 * other purposes. The return value is the return from the syscall if
4601 * positive or a negative errno code on error.
4602 */
4603
4604int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4605{
4606 struct ifreq ifr;
4607 int ret;
4608 char *colon;
4609
4610 /* One special case: SIOCGIFCONF takes ifconf argument
4611 and requires shared lock, because it sleeps writing
4612 to user space.
4613 */
4614
4615 if (cmd == SIOCGIFCONF) {
4616 rtnl_lock();
4617 ret = dev_ifconf(net, (char __user *) arg);
4618 rtnl_unlock();
4619 return ret;
4620 }
4621 if (cmd == SIOCGIFNAME)
4622 return dev_ifname(net, (struct ifreq __user *)arg);
4623
4624 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4625 return -EFAULT;
4626
4627 ifr.ifr_name[IFNAMSIZ-1] = 0;
4628
4629 colon = strchr(ifr.ifr_name, ':');
4630 if (colon)
4631 *colon = 0;
4632
4633 /*
4634 * See which interface the caller is talking about.
4635 */
4636
4637 switch (cmd) {
4638 /*
4639 * These ioctl calls:
4640 * - can be done by all.
4641 * - atomic and do not require locking.
4642 * - return a value
4643 */
4644 case SIOCGIFFLAGS:
4645 case SIOCGIFMETRIC:
4646 case SIOCGIFMTU:
4647 case SIOCGIFHWADDR:
4648 case SIOCGIFSLAVE:
4649 case SIOCGIFMAP:
4650 case SIOCGIFINDEX:
4651 case SIOCGIFTXQLEN:
4652 dev_load(net, ifr.ifr_name);
4653 rcu_read_lock();
4654 ret = dev_ifsioc_locked(net, &ifr, cmd);
4655 rcu_read_unlock();
4656 if (!ret) {
4657 if (colon)
4658 *colon = ':';
4659 if (copy_to_user(arg, &ifr,
4660 sizeof(struct ifreq)))
4661 ret = -EFAULT;
4662 }
4663 return ret;
4664
4665 case SIOCETHTOOL:
4666 dev_load(net, ifr.ifr_name);
4667 rtnl_lock();
4668 ret = dev_ethtool(net, &ifr);
4669 rtnl_unlock();
4670 if (!ret) {
4671 if (colon)
4672 *colon = ':';
4673 if (copy_to_user(arg, &ifr,
4674 sizeof(struct ifreq)))
4675 ret = -EFAULT;
4676 }
4677 return ret;
4678
4679 /*
4680 * These ioctl calls:
4681 * - require superuser power.
4682 * - require strict serialization.
4683 * - return a value
4684 */
4685 case SIOCGMIIPHY:
4686 case SIOCGMIIREG:
4687 case SIOCSIFNAME:
4688 if (!capable(CAP_NET_ADMIN))
4689 return -EPERM;
4690 dev_load(net, ifr.ifr_name);
4691 rtnl_lock();
4692 ret = dev_ifsioc(net, &ifr, cmd);
4693 rtnl_unlock();
4694 if (!ret) {
4695 if (colon)
4696 *colon = ':';
4697 if (copy_to_user(arg, &ifr,
4698 sizeof(struct ifreq)))
4699 ret = -EFAULT;
4700 }
4701 return ret;
4702
4703 /*
4704 * These ioctl calls:
4705 * - require superuser power.
4706 * - require strict serialization.
4707 * - do not return a value
4708 */
4709 case SIOCSIFFLAGS:
4710 case SIOCSIFMETRIC:
4711 case SIOCSIFMTU:
4712 case SIOCSIFMAP:
4713 case SIOCSIFHWADDR:
4714 case SIOCSIFSLAVE:
4715 case SIOCADDMULTI:
4716 case SIOCDELMULTI:
4717 case SIOCSIFHWBROADCAST:
4718 case SIOCSIFTXQLEN:
4719 case SIOCSMIIREG:
4720 case SIOCBONDENSLAVE:
4721 case SIOCBONDRELEASE:
4722 case SIOCBONDSETHWADDR:
4723 case SIOCBONDCHANGEACTIVE:
4724 case SIOCBRADDIF:
4725 case SIOCBRDELIF:
4726 case SIOCSHWTSTAMP:
4727 if (!capable(CAP_NET_ADMIN))
4728 return -EPERM;
4729 /* fall through */
4730 case SIOCBONDSLAVEINFOQUERY:
4731 case SIOCBONDINFOQUERY:
4732 dev_load(net, ifr.ifr_name);
4733 rtnl_lock();
4734 ret = dev_ifsioc(net, &ifr, cmd);
4735 rtnl_unlock();
4736 return ret;
4737
4738 case SIOCGIFMEM:
4739 /* Get the per device memory space. We can add this but
4740 * currently do not support it */
4741 case SIOCSIFMEM:
4742 /* Set the per device memory buffer space.
4743 * Not applicable in our case */
4744 case SIOCSIFLINK:
4745 return -EINVAL;
4746
4747 /*
4748 * Unknown or private ioctl.
4749 */
4750 default:
4751 if (cmd == SIOCWANDEV ||
4752 (cmd >= SIOCDEVPRIVATE &&
4753 cmd <= SIOCDEVPRIVATE + 15)) {
4754 dev_load(net, ifr.ifr_name);
4755 rtnl_lock();
4756 ret = dev_ifsioc(net, &ifr, cmd);
4757 rtnl_unlock();
4758 if (!ret && copy_to_user(arg, &ifr,
4759 sizeof(struct ifreq)))
4760 ret = -EFAULT;
4761 return ret;
4762 }
4763 /* Take care of Wireless Extensions */
4764 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4765 return wext_handle_ioctl(net, &ifr, cmd, arg);
4766 return -EINVAL;
4767 }
4768}
4769
4770
4771/**
4772 * dev_new_index - allocate an ifindex
4773 * @net: the applicable net namespace
4774 *
4775 * Returns a suitable unique value for a new device interface
4776 * number. The caller must hold the rtnl semaphore or the
4777 * dev_base_lock to be sure it remains unique.
4778 */
4779static int dev_new_index(struct net *net)
4780{
4781 static int ifindex;
4782 for (;;) {
4783 if (++ifindex <= 0)
4784 ifindex = 1;
4785 if (!__dev_get_by_index(net, ifindex))
4786 return ifindex;
4787 }
4788}
4789
4790/* Delayed registration/unregisteration */
4791static LIST_HEAD(net_todo_list);
4792
4793static void net_set_todo(struct net_device *dev)
4794{
4795 list_add_tail(&dev->todo_list, &net_todo_list);
4796}
4797
4798static void rollback_registered_many(struct list_head *head)
4799{
4800 struct net_device *dev, *tmp;
4801
4802 BUG_ON(dev_boot_phase);
4803 ASSERT_RTNL();
4804
4805 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4806 /* Some devices call without registering
4807 * for initialization unwind. Remove those
4808 * devices and proceed with the remaining.
4809 */
4810 if (dev->reg_state == NETREG_UNINITIALIZED) {
4811 pr_debug("unregister_netdevice: device %s/%p never "
4812 "was registered\n", dev->name, dev);
4813
4814 WARN_ON(1);
4815 list_del(&dev->unreg_list);
4816 continue;
4817 }
4818
4819 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4820
4821 /* If device is running, close it first. */
4822 dev_close(dev);
4823
4824 /* And unlink it from device chain. */
4825 unlist_netdevice(dev);
4826
4827 dev->reg_state = NETREG_UNREGISTERING;
4828 }
4829
4830 synchronize_net();
4831
4832 list_for_each_entry(dev, head, unreg_list) {
4833 /* Shutdown queueing discipline. */
4834 dev_shutdown(dev);
4835
4836
4837 /* Notify protocols, that we are about to destroy
4838 this device. They should clean all the things.
4839 */
4840 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4841
4842 if (!dev->rtnl_link_ops ||
4843 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4844 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4845
4846 /*
4847 * Flush the unicast and multicast chains
4848 */
4849 dev_uc_flush(dev);
4850 dev_mc_flush(dev);
4851
4852 if (dev->netdev_ops->ndo_uninit)
4853 dev->netdev_ops->ndo_uninit(dev);
4854
4855 /* Notifier chain MUST detach us from master device. */
4856 WARN_ON(dev->master);
4857
4858 /* Remove entries from kobject tree */
4859 netdev_unregister_kobject(dev);
4860 }
4861
4862 /* Process any work delayed until the end of the batch */
4863 dev = list_first_entry(head, struct net_device, unreg_list);
4864 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4865
4866 synchronize_net();
4867
4868 list_for_each_entry(dev, head, unreg_list)
4869 dev_put(dev);
4870}
4871
4872static void rollback_registered(struct net_device *dev)
4873{
4874 LIST_HEAD(single);
4875
4876 list_add(&dev->unreg_list, &single);
4877 rollback_registered_many(&single);
4878}
4879
4880static void __netdev_init_queue_locks_one(struct net_device *dev,
4881 struct netdev_queue *dev_queue,
4882 void *_unused)
4883{
4884 spin_lock_init(&dev_queue->_xmit_lock);
4885 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4886 dev_queue->xmit_lock_owner = -1;
4887}
4888
4889static void netdev_init_queue_locks(struct net_device *dev)
4890{
4891 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4892 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4893}
4894
4895unsigned long netdev_fix_features(unsigned long features, const char *name)
4896{
4897 /* Fix illegal SG+CSUM combinations. */
4898 if ((features & NETIF_F_SG) &&
4899 !(features & NETIF_F_ALL_CSUM)) {
4900 if (name)
4901 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4902 "checksum feature.\n", name);
4903 features &= ~NETIF_F_SG;
4904 }
4905
4906 /* TSO requires that SG is present as well. */
4907 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4908 if (name)
4909 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4910 "SG feature.\n", name);
4911 features &= ~NETIF_F_TSO;
4912 }
4913
4914 if (features & NETIF_F_UFO) {
4915 if (!(features & NETIF_F_GEN_CSUM)) {
4916 if (name)
4917 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4918 "since no NETIF_F_HW_CSUM feature.\n",
4919 name);
4920 features &= ~NETIF_F_UFO;
4921 }
4922
4923 if (!(features & NETIF_F_SG)) {
4924 if (name)
4925 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4926 "since no NETIF_F_SG feature.\n", name);
4927 features &= ~NETIF_F_UFO;
4928 }
4929 }
4930
4931 return features;
4932}
4933EXPORT_SYMBOL(netdev_fix_features);
4934
4935/**
4936 * netif_stacked_transfer_operstate - transfer operstate
4937 * @rootdev: the root or lower level device to transfer state from
4938 * @dev: the device to transfer operstate to
4939 *
4940 * Transfer operational state from root to device. This is normally
4941 * called when a stacking relationship exists between the root
4942 * device and the device(a leaf device).
4943 */
4944void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4945 struct net_device *dev)
4946{
4947 if (rootdev->operstate == IF_OPER_DORMANT)
4948 netif_dormant_on(dev);
4949 else
4950 netif_dormant_off(dev);
4951
4952 if (netif_carrier_ok(rootdev)) {
4953 if (!netif_carrier_ok(dev))
4954 netif_carrier_on(dev);
4955 } else {
4956 if (netif_carrier_ok(dev))
4957 netif_carrier_off(dev);
4958 }
4959}
4960EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4961
4962/**
4963 * register_netdevice - register a network device
4964 * @dev: device to register
4965 *
4966 * Take a completed network device structure and add it to the kernel
4967 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4968 * chain. 0 is returned on success. A negative errno code is returned
4969 * on a failure to set up the device, or if the name is a duplicate.
4970 *
4971 * Callers must hold the rtnl semaphore. You may want
4972 * register_netdev() instead of this.
4973 *
4974 * BUGS:
4975 * The locking appears insufficient to guarantee two parallel registers
4976 * will not get the same name.
4977 */
4978
4979int register_netdevice(struct net_device *dev)
4980{
4981 int ret;
4982 struct net *net = dev_net(dev);
4983
4984 BUG_ON(dev_boot_phase);
4985 ASSERT_RTNL();
4986
4987 might_sleep();
4988
4989 /* When net_device's are persistent, this will be fatal. */
4990 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4991 BUG_ON(!net);
4992
4993 spin_lock_init(&dev->addr_list_lock);
4994 netdev_set_addr_lockdep_class(dev);
4995 netdev_init_queue_locks(dev);
4996
4997 dev->iflink = -1;
4998
4999#ifdef CONFIG_RPS
5000 if (!dev->num_rx_queues) {
5001 /*
5002 * Allocate a single RX queue if driver never called
5003 * alloc_netdev_mq
5004 */
5005
5006 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5007 if (!dev->_rx) {
5008 ret = -ENOMEM;
5009 goto out;
5010 }
5011
5012 dev->_rx->first = dev->_rx;
5013 atomic_set(&dev->_rx->count, 1);
5014 dev->num_rx_queues = 1;
5015 }
5016#endif
5017 /* Init, if this function is available */
5018 if (dev->netdev_ops->ndo_init) {
5019 ret = dev->netdev_ops->ndo_init(dev);
5020 if (ret) {
5021 if (ret > 0)
5022 ret = -EIO;
5023 goto out;
5024 }
5025 }
5026
5027 ret = dev_get_valid_name(dev, dev->name, 0);
5028 if (ret)
5029 goto err_uninit;
5030
5031 dev->ifindex = dev_new_index(net);
5032 if (dev->iflink == -1)
5033 dev->iflink = dev->ifindex;
5034
5035 /* Fix illegal checksum combinations */
5036 if ((dev->features & NETIF_F_HW_CSUM) &&
5037 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5038 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5039 dev->name);
5040 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5041 }
5042
5043 if ((dev->features & NETIF_F_NO_CSUM) &&
5044 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5045 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5046 dev->name);
5047 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5048 }
5049
5050 dev->features = netdev_fix_features(dev->features, dev->name);
5051
5052 /* Enable software GSO if SG is supported. */
5053 if (dev->features & NETIF_F_SG)
5054 dev->features |= NETIF_F_GSO;
5055
5056 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5057 ret = notifier_to_errno(ret);
5058 if (ret)
5059 goto err_uninit;
5060
5061 ret = netdev_register_kobject(dev);
5062 if (ret)
5063 goto err_uninit;
5064 dev->reg_state = NETREG_REGISTERED;
5065
5066 /*
5067 * Default initial state at registry is that the
5068 * device is present.
5069 */
5070
5071 set_bit(__LINK_STATE_PRESENT, &dev->state);
5072
5073 dev_init_scheduler(dev);
5074 dev_hold(dev);
5075 list_netdevice(dev);
5076
5077 /* Notify protocols, that a new device appeared. */
5078 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5079 ret = notifier_to_errno(ret);
5080 if (ret) {
5081 rollback_registered(dev);
5082 dev->reg_state = NETREG_UNREGISTERED;
5083 }
5084 /*
5085 * Prevent userspace races by waiting until the network
5086 * device is fully setup before sending notifications.
5087 */
5088 if (!dev->rtnl_link_ops ||
5089 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5090 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5091
5092out:
5093 return ret;
5094
5095err_uninit:
5096 if (dev->netdev_ops->ndo_uninit)
5097 dev->netdev_ops->ndo_uninit(dev);
5098 goto out;
5099}
5100EXPORT_SYMBOL(register_netdevice);
5101
5102/**
5103 * init_dummy_netdev - init a dummy network device for NAPI
5104 * @dev: device to init
5105 *
5106 * This takes a network device structure and initialize the minimum
5107 * amount of fields so it can be used to schedule NAPI polls without
5108 * registering a full blown interface. This is to be used by drivers
5109 * that need to tie several hardware interfaces to a single NAPI
5110 * poll scheduler due to HW limitations.
5111 */
5112int init_dummy_netdev(struct net_device *dev)
5113{
5114 /* Clear everything. Note we don't initialize spinlocks
5115 * are they aren't supposed to be taken by any of the
5116 * NAPI code and this dummy netdev is supposed to be
5117 * only ever used for NAPI polls
5118 */
5119 memset(dev, 0, sizeof(struct net_device));
5120
5121 /* make sure we BUG if trying to hit standard
5122 * register/unregister code path
5123 */
5124 dev->reg_state = NETREG_DUMMY;
5125
5126 /* initialize the ref count */
5127 atomic_set(&dev->refcnt, 1);
5128
5129 /* NAPI wants this */
5130 INIT_LIST_HEAD(&dev->napi_list);
5131
5132 /* a dummy interface is started by default */
5133 set_bit(__LINK_STATE_PRESENT, &dev->state);
5134 set_bit(__LINK_STATE_START, &dev->state);
5135
5136 return 0;
5137}
5138EXPORT_SYMBOL_GPL(init_dummy_netdev);
5139
5140
5141/**
5142 * register_netdev - register a network device
5143 * @dev: device to register
5144 *
5145 * Take a completed network device structure and add it to the kernel
5146 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5147 * chain. 0 is returned on success. A negative errno code is returned
5148 * on a failure to set up the device, or if the name is a duplicate.
5149 *
5150 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5151 * and expands the device name if you passed a format string to
5152 * alloc_netdev.
5153 */
5154int register_netdev(struct net_device *dev)
5155{
5156 int err;
5157
5158 rtnl_lock();
5159
5160 /*
5161 * If the name is a format string the caller wants us to do a
5162 * name allocation.
5163 */
5164 if (strchr(dev->name, '%')) {
5165 err = dev_alloc_name(dev, dev->name);
5166 if (err < 0)
5167 goto out;
5168 }
5169
5170 err = register_netdevice(dev);
5171out:
5172 rtnl_unlock();
5173 return err;
5174}
5175EXPORT_SYMBOL(register_netdev);
5176
5177/*
5178 * netdev_wait_allrefs - wait until all references are gone.
5179 *
5180 * This is called when unregistering network devices.
5181 *
5182 * Any protocol or device that holds a reference should register
5183 * for netdevice notification, and cleanup and put back the
5184 * reference if they receive an UNREGISTER event.
5185 * We can get stuck here if buggy protocols don't correctly
5186 * call dev_put.
5187 */
5188static void netdev_wait_allrefs(struct net_device *dev)
5189{
5190 unsigned long rebroadcast_time, warning_time;
5191
5192 linkwatch_forget_dev(dev);
5193
5194 rebroadcast_time = warning_time = jiffies;
5195 while (atomic_read(&dev->refcnt) != 0) {
5196 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5197 rtnl_lock();
5198
5199 /* Rebroadcast unregister notification */
5200 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5201 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5202 * should have already handle it the first time */
5203
5204 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5205 &dev->state)) {
5206 /* We must not have linkwatch events
5207 * pending on unregister. If this
5208 * happens, we simply run the queue
5209 * unscheduled, resulting in a noop
5210 * for this device.
5211 */
5212 linkwatch_run_queue();
5213 }
5214
5215 __rtnl_unlock();
5216
5217 rebroadcast_time = jiffies;
5218 }
5219
5220 msleep(250);
5221
5222 if (time_after(jiffies, warning_time + 10 * HZ)) {
5223 printk(KERN_EMERG "unregister_netdevice: "
5224 "waiting for %s to become free. Usage "
5225 "count = %d\n",
5226 dev->name, atomic_read(&dev->refcnt));
5227 warning_time = jiffies;
5228 }
5229 }
5230}
5231
5232/* The sequence is:
5233 *
5234 * rtnl_lock();
5235 * ...
5236 * register_netdevice(x1);
5237 * register_netdevice(x2);
5238 * ...
5239 * unregister_netdevice(y1);
5240 * unregister_netdevice(y2);
5241 * ...
5242 * rtnl_unlock();
5243 * free_netdev(y1);
5244 * free_netdev(y2);
5245 *
5246 * We are invoked by rtnl_unlock().
5247 * This allows us to deal with problems:
5248 * 1) We can delete sysfs objects which invoke hotplug
5249 * without deadlocking with linkwatch via keventd.
5250 * 2) Since we run with the RTNL semaphore not held, we can sleep
5251 * safely in order to wait for the netdev refcnt to drop to zero.
5252 *
5253 * We must not return until all unregister events added during
5254 * the interval the lock was held have been completed.
5255 */
5256void netdev_run_todo(void)
5257{
5258 struct list_head list;
5259
5260 /* Snapshot list, allow later requests */
5261 list_replace_init(&net_todo_list, &list);
5262
5263 __rtnl_unlock();
5264
5265 while (!list_empty(&list)) {
5266 struct net_device *dev
5267 = list_first_entry(&list, struct net_device, todo_list);
5268 list_del(&dev->todo_list);
5269
5270 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5271 printk(KERN_ERR "network todo '%s' but state %d\n",
5272 dev->name, dev->reg_state);
5273 dump_stack();
5274 continue;
5275 }
5276
5277 dev->reg_state = NETREG_UNREGISTERED;
5278
5279 on_each_cpu(flush_backlog, dev, 1);
5280
5281 netdev_wait_allrefs(dev);
5282
5283 /* paranoia */
5284 BUG_ON(atomic_read(&dev->refcnt));
5285 WARN_ON(dev->ip_ptr);
5286 WARN_ON(dev->ip6_ptr);
5287 WARN_ON(dev->dn_ptr);
5288
5289 if (dev->destructor)
5290 dev->destructor(dev);
5291
5292 /* Free network device */
5293 kobject_put(&dev->dev.kobj);
5294 }
5295}
5296
5297/**
5298 * dev_txq_stats_fold - fold tx_queues stats
5299 * @dev: device to get statistics from
5300 * @stats: struct rtnl_link_stats64 to hold results
5301 */
5302void dev_txq_stats_fold(const struct net_device *dev,
5303 struct rtnl_link_stats64 *stats)
5304{
5305 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5306 unsigned int i;
5307 struct netdev_queue *txq;
5308
5309 for (i = 0; i < dev->num_tx_queues; i++) {
5310 txq = netdev_get_tx_queue(dev, i);
5311 spin_lock_bh(&txq->_xmit_lock);
5312 tx_bytes += txq->tx_bytes;
5313 tx_packets += txq->tx_packets;
5314 tx_dropped += txq->tx_dropped;
5315 spin_unlock_bh(&txq->_xmit_lock);
5316 }
5317 if (tx_bytes || tx_packets || tx_dropped) {
5318 stats->tx_bytes = tx_bytes;
5319 stats->tx_packets = tx_packets;
5320 stats->tx_dropped = tx_dropped;
5321 }
5322}
5323EXPORT_SYMBOL(dev_txq_stats_fold);
5324
5325/* Convert net_device_stats to rtnl_link_stats64. They have the same
5326 * fields in the same order, with only the type differing.
5327 */
5328static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5329 const struct net_device_stats *netdev_stats)
5330{
5331#if BITS_PER_LONG == 64
5332 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5333 memcpy(stats64, netdev_stats, sizeof(*stats64));
5334#else
5335 size_t i, n = sizeof(*stats64) / sizeof(u64);
5336 const unsigned long *src = (const unsigned long *)netdev_stats;
5337 u64 *dst = (u64 *)stats64;
5338
5339 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5340 sizeof(*stats64) / sizeof(u64));
5341 for (i = 0; i < n; i++)
5342 dst[i] = src[i];
5343#endif
5344}
5345
5346/**
5347 * dev_get_stats - get network device statistics
5348 * @dev: device to get statistics from
5349 * @storage: place to store stats
5350 *
5351 * Get network statistics from device. Return @storage.
5352 * The device driver may provide its own method by setting
5353 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5354 * otherwise the internal statistics structure is used.
5355 */
5356struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5357 struct rtnl_link_stats64 *storage)
5358{
5359 const struct net_device_ops *ops = dev->netdev_ops;
5360
5361 if (ops->ndo_get_stats64) {
5362 memset(storage, 0, sizeof(*storage));
5363 return ops->ndo_get_stats64(dev, storage);
5364 }
5365 if (ops->ndo_get_stats) {
5366 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5367 return storage;
5368 }
5369 netdev_stats_to_stats64(storage, &dev->stats);
5370 dev_txq_stats_fold(dev, storage);
5371 return storage;
5372}
5373EXPORT_SYMBOL(dev_get_stats);
5374
5375static void netdev_init_one_queue(struct net_device *dev,
5376 struct netdev_queue *queue,
5377 void *_unused)
5378{
5379 queue->dev = dev;
5380}
5381
5382static void netdev_init_queues(struct net_device *dev)
5383{
5384 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5385 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5386 spin_lock_init(&dev->tx_global_lock);
5387}
5388
5389/**
5390 * alloc_netdev_mq - allocate network device
5391 * @sizeof_priv: size of private data to allocate space for
5392 * @name: device name format string
5393 * @setup: callback to initialize device
5394 * @queue_count: the number of subqueues to allocate
5395 *
5396 * Allocates a struct net_device with private data area for driver use
5397 * and performs basic initialization. Also allocates subquue structs
5398 * for each queue on the device at the end of the netdevice.
5399 */
5400struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5401 void (*setup)(struct net_device *), unsigned int queue_count)
5402{
5403 struct netdev_queue *tx;
5404 struct net_device *dev;
5405 size_t alloc_size;
5406 struct net_device *p;
5407#ifdef CONFIG_RPS
5408 struct netdev_rx_queue *rx;
5409 int i;
5410#endif
5411
5412 BUG_ON(strlen(name) >= sizeof(dev->name));
5413
5414 alloc_size = sizeof(struct net_device);
5415 if (sizeof_priv) {
5416 /* ensure 32-byte alignment of private area */
5417 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5418 alloc_size += sizeof_priv;
5419 }
5420 /* ensure 32-byte alignment of whole construct */
5421 alloc_size += NETDEV_ALIGN - 1;
5422
5423 p = kzalloc(alloc_size, GFP_KERNEL);
5424 if (!p) {
5425 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5426 return NULL;
5427 }
5428
5429 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5430 if (!tx) {
5431 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5432 "tx qdiscs.\n");
5433 goto free_p;
5434 }
5435
5436#ifdef CONFIG_RPS
5437 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5438 if (!rx) {
5439 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5440 "rx queues.\n");
5441 goto free_tx;
5442 }
5443
5444 atomic_set(&rx->count, queue_count);
5445
5446 /*
5447 * Set a pointer to first element in the array which holds the
5448 * reference count.
5449 */
5450 for (i = 0; i < queue_count; i++)
5451 rx[i].first = rx;
5452#endif
5453
5454 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5455 dev->padded = (char *)dev - (char *)p;
5456
5457 if (dev_addr_init(dev))
5458 goto free_rx;
5459
5460 dev_mc_init(dev);
5461 dev_uc_init(dev);
5462
5463 dev_net_set(dev, &init_net);
5464
5465 dev->_tx = tx;
5466 dev->num_tx_queues = queue_count;
5467 dev->real_num_tx_queues = queue_count;
5468
5469#ifdef CONFIG_RPS
5470 dev->_rx = rx;
5471 dev->num_rx_queues = queue_count;
5472#endif
5473
5474 dev->gso_max_size = GSO_MAX_SIZE;
5475
5476 netdev_init_queues(dev);
5477
5478 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5479 dev->ethtool_ntuple_list.count = 0;
5480 INIT_LIST_HEAD(&dev->napi_list);
5481 INIT_LIST_HEAD(&dev->unreg_list);
5482 INIT_LIST_HEAD(&dev->link_watch_list);
5483 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5484 setup(dev);
5485 strcpy(dev->name, name);
5486 return dev;
5487
5488free_rx:
5489#ifdef CONFIG_RPS
5490 kfree(rx);
5491free_tx:
5492#endif
5493 kfree(tx);
5494free_p:
5495 kfree(p);
5496 return NULL;
5497}
5498EXPORT_SYMBOL(alloc_netdev_mq);
5499
5500/**
5501 * free_netdev - free network device
5502 * @dev: device
5503 *
5504 * This function does the last stage of destroying an allocated device
5505 * interface. The reference to the device object is released.
5506 * If this is the last reference then it will be freed.
5507 */
5508void free_netdev(struct net_device *dev)
5509{
5510 struct napi_struct *p, *n;
5511
5512 release_net(dev_net(dev));
5513
5514 kfree(dev->_tx);
5515
5516 /* Flush device addresses */
5517 dev_addr_flush(dev);
5518
5519 /* Clear ethtool n-tuple list */
5520 ethtool_ntuple_flush(dev);
5521
5522 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5523 netif_napi_del(p);
5524
5525 /* Compatibility with error handling in drivers */
5526 if (dev->reg_state == NETREG_UNINITIALIZED) {
5527 kfree((char *)dev - dev->padded);
5528 return;
5529 }
5530
5531 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5532 dev->reg_state = NETREG_RELEASED;
5533
5534 /* will free via device release */
5535 put_device(&dev->dev);
5536}
5537EXPORT_SYMBOL(free_netdev);
5538
5539/**
5540 * synchronize_net - Synchronize with packet receive processing
5541 *
5542 * Wait for packets currently being received to be done.
5543 * Does not block later packets from starting.
5544 */
5545void synchronize_net(void)
5546{
5547 might_sleep();
5548 synchronize_rcu();
5549}
5550EXPORT_SYMBOL(synchronize_net);
5551
5552/**
5553 * unregister_netdevice_queue - remove device from the kernel
5554 * @dev: device
5555 * @head: list
5556 *
5557 * This function shuts down a device interface and removes it
5558 * from the kernel tables.
5559 * If head not NULL, device is queued to be unregistered later.
5560 *
5561 * Callers must hold the rtnl semaphore. You may want
5562 * unregister_netdev() instead of this.
5563 */
5564
5565void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5566{
5567 ASSERT_RTNL();
5568
5569 if (head) {
5570 list_move_tail(&dev->unreg_list, head);
5571 } else {
5572 rollback_registered(dev);
5573 /* Finish processing unregister after unlock */
5574 net_set_todo(dev);
5575 }
5576}
5577EXPORT_SYMBOL(unregister_netdevice_queue);
5578
5579/**
5580 * unregister_netdevice_many - unregister many devices
5581 * @head: list of devices
5582 */
5583void unregister_netdevice_many(struct list_head *head)
5584{
5585 struct net_device *dev;
5586
5587 if (!list_empty(head)) {
5588 rollback_registered_many(head);
5589 list_for_each_entry(dev, head, unreg_list)
5590 net_set_todo(dev);
5591 }
5592}
5593EXPORT_SYMBOL(unregister_netdevice_many);
5594
5595/**
5596 * unregister_netdev - remove device from the kernel
5597 * @dev: device
5598 *
5599 * This function shuts down a device interface and removes it
5600 * from the kernel tables.
5601 *
5602 * This is just a wrapper for unregister_netdevice that takes
5603 * the rtnl semaphore. In general you want to use this and not
5604 * unregister_netdevice.
5605 */
5606void unregister_netdev(struct net_device *dev)
5607{
5608 rtnl_lock();
5609 unregister_netdevice(dev);
5610 rtnl_unlock();
5611}
5612EXPORT_SYMBOL(unregister_netdev);
5613
5614/**
5615 * dev_change_net_namespace - move device to different nethost namespace
5616 * @dev: device
5617 * @net: network namespace
5618 * @pat: If not NULL name pattern to try if the current device name
5619 * is already taken in the destination network namespace.
5620 *
5621 * This function shuts down a device interface and moves it
5622 * to a new network namespace. On success 0 is returned, on
5623 * a failure a netagive errno code is returned.
5624 *
5625 * Callers must hold the rtnl semaphore.
5626 */
5627
5628int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5629{
5630 int err;
5631
5632 ASSERT_RTNL();
5633
5634 /* Don't allow namespace local devices to be moved. */
5635 err = -EINVAL;
5636 if (dev->features & NETIF_F_NETNS_LOCAL)
5637 goto out;
5638
5639 /* Ensure the device has been registrered */
5640 err = -EINVAL;
5641 if (dev->reg_state != NETREG_REGISTERED)
5642 goto out;
5643
5644 /* Get out if there is nothing todo */
5645 err = 0;
5646 if (net_eq(dev_net(dev), net))
5647 goto out;
5648
5649 /* Pick the destination device name, and ensure
5650 * we can use it in the destination network namespace.
5651 */
5652 err = -EEXIST;
5653 if (__dev_get_by_name(net, dev->name)) {
5654 /* We get here if we can't use the current device name */
5655 if (!pat)
5656 goto out;
5657 if (dev_get_valid_name(dev, pat, 1))
5658 goto out;
5659 }
5660
5661 /*
5662 * And now a mini version of register_netdevice unregister_netdevice.
5663 */
5664
5665 /* If device is running close it first. */
5666 dev_close(dev);
5667
5668 /* And unlink it from device chain */
5669 err = -ENODEV;
5670 unlist_netdevice(dev);
5671
5672 synchronize_net();
5673
5674 /* Shutdown queueing discipline. */
5675 dev_shutdown(dev);
5676
5677 /* Notify protocols, that we are about to destroy
5678 this device. They should clean all the things.
5679 */
5680 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5681 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5682
5683 /*
5684 * Flush the unicast and multicast chains
5685 */
5686 dev_uc_flush(dev);
5687 dev_mc_flush(dev);
5688
5689 /* Actually switch the network namespace */
5690 dev_net_set(dev, net);
5691
5692 /* If there is an ifindex conflict assign a new one */
5693 if (__dev_get_by_index(net, dev->ifindex)) {
5694 int iflink = (dev->iflink == dev->ifindex);
5695 dev->ifindex = dev_new_index(net);
5696 if (iflink)
5697 dev->iflink = dev->ifindex;
5698 }
5699
5700 /* Fixup kobjects */
5701 err = device_rename(&dev->dev, dev->name);
5702 WARN_ON(err);
5703
5704 /* Add the device back in the hashes */
5705 list_netdevice(dev);
5706
5707 /* Notify protocols, that a new device appeared. */
5708 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5709
5710 /*
5711 * Prevent userspace races by waiting until the network
5712 * device is fully setup before sending notifications.
5713 */
5714 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5715
5716 synchronize_net();
5717 err = 0;
5718out:
5719 return err;
5720}
5721EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5722
5723static int dev_cpu_callback(struct notifier_block *nfb,
5724 unsigned long action,
5725 void *ocpu)
5726{
5727 struct sk_buff **list_skb;
5728 struct sk_buff *skb;
5729 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5730 struct softnet_data *sd, *oldsd;
5731
5732 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5733 return NOTIFY_OK;
5734
5735 local_irq_disable();
5736 cpu = smp_processor_id();
5737 sd = &per_cpu(softnet_data, cpu);
5738 oldsd = &per_cpu(softnet_data, oldcpu);
5739
5740 /* Find end of our completion_queue. */
5741 list_skb = &sd->completion_queue;
5742 while (*list_skb)
5743 list_skb = &(*list_skb)->next;
5744 /* Append completion queue from offline CPU. */
5745 *list_skb = oldsd->completion_queue;
5746 oldsd->completion_queue = NULL;
5747
5748 /* Append output queue from offline CPU. */
5749 if (oldsd->output_queue) {
5750 *sd->output_queue_tailp = oldsd->output_queue;
5751 sd->output_queue_tailp = oldsd->output_queue_tailp;
5752 oldsd->output_queue = NULL;
5753 oldsd->output_queue_tailp = &oldsd->output_queue;
5754 }
5755
5756 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5757 local_irq_enable();
5758
5759 /* Process offline CPU's input_pkt_queue */
5760 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5761 netif_rx(skb);
5762 input_queue_head_incr(oldsd);
5763 }
5764 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5765 netif_rx(skb);
5766 input_queue_head_incr(oldsd);
5767 }
5768
5769 return NOTIFY_OK;
5770}
5771
5772
5773/**
5774 * netdev_increment_features - increment feature set by one
5775 * @all: current feature set
5776 * @one: new feature set
5777 * @mask: mask feature set
5778 *
5779 * Computes a new feature set after adding a device with feature set
5780 * @one to the master device with current feature set @all. Will not
5781 * enable anything that is off in @mask. Returns the new feature set.
5782 */
5783unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5784 unsigned long mask)
5785{
5786 /* If device needs checksumming, downgrade to it. */
5787 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5788 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5789 else if (mask & NETIF_F_ALL_CSUM) {
5790 /* If one device supports v4/v6 checksumming, set for all. */
5791 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5792 !(all & NETIF_F_GEN_CSUM)) {
5793 all &= ~NETIF_F_ALL_CSUM;
5794 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5795 }
5796
5797 /* If one device supports hw checksumming, set for all. */
5798 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5799 all &= ~NETIF_F_ALL_CSUM;
5800 all |= NETIF_F_HW_CSUM;
5801 }
5802 }
5803
5804 one |= NETIF_F_ALL_CSUM;
5805
5806 one |= all & NETIF_F_ONE_FOR_ALL;
5807 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5808 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5809
5810 return all;
5811}
5812EXPORT_SYMBOL(netdev_increment_features);
5813
5814static struct hlist_head *netdev_create_hash(void)
5815{
5816 int i;
5817 struct hlist_head *hash;
5818
5819 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5820 if (hash != NULL)
5821 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5822 INIT_HLIST_HEAD(&hash[i]);
5823
5824 return hash;
5825}
5826
5827/* Initialize per network namespace state */
5828static int __net_init netdev_init(struct net *net)
5829{
5830 INIT_LIST_HEAD(&net->dev_base_head);
5831
5832 net->dev_name_head = netdev_create_hash();
5833 if (net->dev_name_head == NULL)
5834 goto err_name;
5835
5836 net->dev_index_head = netdev_create_hash();
5837 if (net->dev_index_head == NULL)
5838 goto err_idx;
5839
5840 return 0;
5841
5842err_idx:
5843 kfree(net->dev_name_head);
5844err_name:
5845 return -ENOMEM;
5846}
5847
5848/**
5849 * netdev_drivername - network driver for the device
5850 * @dev: network device
5851 * @buffer: buffer for resulting name
5852 * @len: size of buffer
5853 *
5854 * Determine network driver for device.
5855 */
5856char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5857{
5858 const struct device_driver *driver;
5859 const struct device *parent;
5860
5861 if (len <= 0 || !buffer)
5862 return buffer;
5863 buffer[0] = 0;
5864
5865 parent = dev->dev.parent;
5866
5867 if (!parent)
5868 return buffer;
5869
5870 driver = parent->driver;
5871 if (driver && driver->name)
5872 strlcpy(buffer, driver->name, len);
5873 return buffer;
5874}
5875
5876static int __netdev_printk(const char *level, const struct net_device *dev,
5877 struct va_format *vaf)
5878{
5879 int r;
5880
5881 if (dev && dev->dev.parent)
5882 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5883 netdev_name(dev), vaf);
5884 else if (dev)
5885 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5886 else
5887 r = printk("%s(NULL net_device): %pV", level, vaf);
5888
5889 return r;
5890}
5891
5892int netdev_printk(const char *level, const struct net_device *dev,
5893 const char *format, ...)
5894{
5895 struct va_format vaf;
5896 va_list args;
5897 int r;
5898
5899 va_start(args, format);
5900
5901 vaf.fmt = format;
5902 vaf.va = &args;
5903
5904 r = __netdev_printk(level, dev, &vaf);
5905 va_end(args);
5906
5907 return r;
5908}
5909EXPORT_SYMBOL(netdev_printk);
5910
5911#define define_netdev_printk_level(func, level) \
5912int func(const struct net_device *dev, const char *fmt, ...) \
5913{ \
5914 int r; \
5915 struct va_format vaf; \
5916 va_list args; \
5917 \
5918 va_start(args, fmt); \
5919 \
5920 vaf.fmt = fmt; \
5921 vaf.va = &args; \
5922 \
5923 r = __netdev_printk(level, dev, &vaf); \
5924 va_end(args); \
5925 \
5926 return r; \
5927} \
5928EXPORT_SYMBOL(func);
5929
5930define_netdev_printk_level(netdev_emerg, KERN_EMERG);
5931define_netdev_printk_level(netdev_alert, KERN_ALERT);
5932define_netdev_printk_level(netdev_crit, KERN_CRIT);
5933define_netdev_printk_level(netdev_err, KERN_ERR);
5934define_netdev_printk_level(netdev_warn, KERN_WARNING);
5935define_netdev_printk_level(netdev_notice, KERN_NOTICE);
5936define_netdev_printk_level(netdev_info, KERN_INFO);
5937
5938static void __net_exit netdev_exit(struct net *net)
5939{
5940 kfree(net->dev_name_head);
5941 kfree(net->dev_index_head);
5942}
5943
5944static struct pernet_operations __net_initdata netdev_net_ops = {
5945 .init = netdev_init,
5946 .exit = netdev_exit,
5947};
5948
5949static void __net_exit default_device_exit(struct net *net)
5950{
5951 struct net_device *dev, *aux;
5952 /*
5953 * Push all migratable network devices back to the
5954 * initial network namespace
5955 */
5956 rtnl_lock();
5957 for_each_netdev_safe(net, dev, aux) {
5958 int err;
5959 char fb_name[IFNAMSIZ];
5960
5961 /* Ignore unmoveable devices (i.e. loopback) */
5962 if (dev->features & NETIF_F_NETNS_LOCAL)
5963 continue;
5964
5965 /* Leave virtual devices for the generic cleanup */
5966 if (dev->rtnl_link_ops)
5967 continue;
5968
5969 /* Push remaing network devices to init_net */
5970 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5971 err = dev_change_net_namespace(dev, &init_net, fb_name);
5972 if (err) {
5973 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5974 __func__, dev->name, err);
5975 BUG();
5976 }
5977 }
5978 rtnl_unlock();
5979}
5980
5981static void __net_exit default_device_exit_batch(struct list_head *net_list)
5982{
5983 /* At exit all network devices most be removed from a network
5984 * namespace. Do this in the reverse order of registeration.
5985 * Do this across as many network namespaces as possible to
5986 * improve batching efficiency.
5987 */
5988 struct net_device *dev;
5989 struct net *net;
5990 LIST_HEAD(dev_kill_list);
5991
5992 rtnl_lock();
5993 list_for_each_entry(net, net_list, exit_list) {
5994 for_each_netdev_reverse(net, dev) {
5995 if (dev->rtnl_link_ops)
5996 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5997 else
5998 unregister_netdevice_queue(dev, &dev_kill_list);
5999 }
6000 }
6001 unregister_netdevice_many(&dev_kill_list);
6002 rtnl_unlock();
6003}
6004
6005static struct pernet_operations __net_initdata default_device_ops = {
6006 .exit = default_device_exit,
6007 .exit_batch = default_device_exit_batch,
6008};
6009
6010/*
6011 * Initialize the DEV module. At boot time this walks the device list and
6012 * unhooks any devices that fail to initialise (normally hardware not
6013 * present) and leaves us with a valid list of present and active devices.
6014 *
6015 */
6016
6017/*
6018 * This is called single threaded during boot, so no need
6019 * to take the rtnl semaphore.
6020 */
6021static int __init net_dev_init(void)
6022{
6023 int i, rc = -ENOMEM;
6024
6025 BUG_ON(!dev_boot_phase);
6026
6027 if (dev_proc_init())
6028 goto out;
6029
6030 if (netdev_kobject_init())
6031 goto out;
6032
6033 INIT_LIST_HEAD(&ptype_all);
6034 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6035 INIT_LIST_HEAD(&ptype_base[i]);
6036
6037 if (register_pernet_subsys(&netdev_net_ops))
6038 goto out;
6039
6040 /*
6041 * Initialise the packet receive queues.
6042 */
6043
6044 for_each_possible_cpu(i) {
6045 struct softnet_data *sd = &per_cpu(softnet_data, i);
6046
6047 memset(sd, 0, sizeof(*sd));
6048 skb_queue_head_init(&sd->input_pkt_queue);
6049 skb_queue_head_init(&sd->process_queue);
6050 sd->completion_queue = NULL;
6051 INIT_LIST_HEAD(&sd->poll_list);
6052 sd->output_queue = NULL;
6053 sd->output_queue_tailp = &sd->output_queue;
6054#ifdef CONFIG_RPS
6055 sd->csd.func = rps_trigger_softirq;
6056 sd->csd.info = sd;
6057 sd->csd.flags = 0;
6058 sd->cpu = i;
6059#endif
6060
6061 sd->backlog.poll = process_backlog;
6062 sd->backlog.weight = weight_p;
6063 sd->backlog.gro_list = NULL;
6064 sd->backlog.gro_count = 0;
6065 }
6066
6067 dev_boot_phase = 0;
6068
6069 /* The loopback device is special if any other network devices
6070 * is present in a network namespace the loopback device must
6071 * be present. Since we now dynamically allocate and free the
6072 * loopback device ensure this invariant is maintained by
6073 * keeping the loopback device as the first device on the
6074 * list of network devices. Ensuring the loopback devices
6075 * is the first device that appears and the last network device
6076 * that disappears.
6077 */
6078 if (register_pernet_device(&loopback_net_ops))
6079 goto out;
6080
6081 if (register_pernet_device(&default_device_ops))
6082 goto out;
6083
6084 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6085 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6086
6087 hotcpu_notifier(dev_cpu_callback, 0);
6088 dst_init();
6089 dev_mcast_init();
6090 rc = 0;
6091out:
6092 return rc;
6093}
6094
6095subsys_initcall(net_dev_init);
6096
6097static int __init initialize_hashrnd(void)
6098{
6099 get_random_bytes(&hashrnd, sizeof(hashrnd));
6100 return 0;
6101}
6102
6103late_initcall_sync(initialize_hashrnd);
6104