]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
net: sk_free_datagram() should use sk_mem_reclaim_partial()
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
83#include <linux/mutex.h>
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/ethtool.h>
94#include <linux/notifier.h>
95#include <linux/skbuff.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <linux/rtnetlink.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/stat.h>
102#include <linux/if_bridge.h>
103#include <linux/if_macvlan.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/kallsyms.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
115#include <net/wext.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <linux/ipv6.h>
127#include <linux/in.h>
128#include <linux/jhash.h>
129#include <linux/random.h>
130
131#include "net-sysfs.h"
132
133/*
134 * The list of packet types we will receive (as opposed to discard)
135 * and the routines to invoke.
136 *
137 * Why 16. Because with 16 the only overlap we get on a hash of the
138 * low nibble of the protocol value is RARP/SNAP/X.25.
139 *
140 * NOTE: That is no longer true with the addition of VLAN tags. Not
141 * sure which should go first, but I bet it won't make much
142 * difference if we are running VLANs. The good news is that
143 * this protocol won't be in the list unless compiled in, so
144 * the average user (w/out VLANs) will not be adversely affected.
145 * --BLG
146 *
147 * 0800 IP
148 * 8100 802.1Q VLAN
149 * 0001 802.3
150 * 0002 AX.25
151 * 0004 802.2
152 * 8035 RARP
153 * 0005 SNAP
154 * 0805 X.25
155 * 0806 ARP
156 * 8137 IPX
157 * 0009 Localtalk
158 * 86DD IPv6
159 */
160
161#define PTYPE_HASH_SIZE (16)
162#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
163
164static DEFINE_SPINLOCK(ptype_lock);
165static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
166static struct list_head ptype_all __read_mostly; /* Taps */
167
168#ifdef CONFIG_NET_DMA
169struct net_dma {
170 struct dma_client client;
171 spinlock_t lock;
172 cpumask_t channel_mask;
173 struct dma_chan **channels;
174};
175
176static enum dma_state_client
177netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
178 enum dma_state state);
179
180static struct net_dma net_dma = {
181 .client = {
182 .event_callback = netdev_dma_event,
183 },
184};
185#endif
186
187/*
188 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
189 * semaphore.
190 *
191 * Pure readers hold dev_base_lock for reading.
192 *
193 * Writers must hold the rtnl semaphore while they loop through the
194 * dev_base_head list, and hold dev_base_lock for writing when they do the
195 * actual updates. This allows pure readers to access the list even
196 * while a writer is preparing to update it.
197 *
198 * To put it another way, dev_base_lock is held for writing only to
199 * protect against pure readers; the rtnl semaphore provides the
200 * protection against other writers.
201 *
202 * See, for example usages, register_netdevice() and
203 * unregister_netdevice(), which must be called with the rtnl
204 * semaphore held.
205 */
206DEFINE_RWLOCK(dev_base_lock);
207
208EXPORT_SYMBOL(dev_base_lock);
209
210#define NETDEV_HASHBITS 8
211#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
212
213static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214{
215 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
216 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
217}
218
219static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220{
221 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
222}
223
224/* Device list insertion */
225static int list_netdevice(struct net_device *dev)
226{
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236 return 0;
237}
238
239/* Device list removal */
240static void unlist_netdevice(struct net_device *dev)
241{
242 ASSERT_RTNL();
243
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
246 list_del(&dev->dev_list);
247 hlist_del(&dev->name_hlist);
248 hlist_del(&dev->index_hlist);
249 write_unlock_bh(&dev_base_lock);
250}
251
252/*
253 * Our notifier list
254 */
255
256static RAW_NOTIFIER_HEAD(netdev_chain);
257
258/*
259 * Device drivers call our routines to queue packets here. We empty the
260 * queue in the local softnet handler.
261 */
262
263DEFINE_PER_CPU(struct softnet_data, softnet_data);
264
265#ifdef CONFIG_LOCKDEP
266/*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
284 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
285 ARPHRD_NONE};
286
287static const char *netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
301 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
302 "_xmit_NONE"};
303
304static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308{
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316}
317
318static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320{
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326}
327
328static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329{
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336}
337#else
338static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340{
341}
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344}
345#endif
346
347/*******************************************************************************
348
349 Protocol management and registration routines
350
351*******************************************************************************/
352
353/*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369/**
370 * dev_add_pack - add packet handler
371 * @pt: packet type declaration
372 *
373 * Add a protocol handler to the networking stack. The passed &packet_type
374 * is linked into kernel lists and may not be freed until it has been
375 * removed from the kernel lists.
376 *
377 * This call does not sleep therefore it can not
378 * guarantee all CPU's that are in middle of receiving packets
379 * will see the new packet type (until the next received packet).
380 */
381
382void dev_add_pack(struct packet_type *pt)
383{
384 int hash;
385
386 spin_lock_bh(&ptype_lock);
387 if (pt->type == htons(ETH_P_ALL))
388 list_add_rcu(&pt->list, &ptype_all);
389 else {
390 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
391 list_add_rcu(&pt->list, &ptype_base[hash]);
392 }
393 spin_unlock_bh(&ptype_lock);
394}
395
396/**
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
399 *
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
404 *
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
408 */
409void __dev_remove_pack(struct packet_type *pt)
410{
411 struct list_head *head;
412 struct packet_type *pt1;
413
414 spin_lock_bh(&ptype_lock);
415
416 if (pt->type == htons(ETH_P_ALL))
417 head = &ptype_all;
418 else
419 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
420
421 list_for_each_entry(pt1, head, list) {
422 if (pt == pt1) {
423 list_del_rcu(&pt->list);
424 goto out;
425 }
426 }
427
428 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
429out:
430 spin_unlock_bh(&ptype_lock);
431}
432/**
433 * dev_remove_pack - remove packet handler
434 * @pt: packet type declaration
435 *
436 * Remove a protocol handler that was previously added to the kernel
437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
438 * from the kernel lists and can be freed or reused once this function
439 * returns.
440 *
441 * This call sleeps to guarantee that no CPU is looking at the packet
442 * type after return.
443 */
444void dev_remove_pack(struct packet_type *pt)
445{
446 __dev_remove_pack(pt);
447
448 synchronize_net();
449}
450
451/******************************************************************************
452
453 Device Boot-time Settings Routines
454
455*******************************************************************************/
456
457/* Boot time configuration table */
458static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
459
460/**
461 * netdev_boot_setup_add - add new setup entry
462 * @name: name of the device
463 * @map: configured settings for the device
464 *
465 * Adds new setup entry to the dev_boot_setup list. The function
466 * returns 0 on error and 1 on success. This is a generic routine to
467 * all netdevices.
468 */
469static int netdev_boot_setup_add(char *name, struct ifmap *map)
470{
471 struct netdev_boot_setup *s;
472 int i;
473
474 s = dev_boot_setup;
475 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
476 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
477 memset(s[i].name, 0, sizeof(s[i].name));
478 strlcpy(s[i].name, name, IFNAMSIZ);
479 memcpy(&s[i].map, map, sizeof(s[i].map));
480 break;
481 }
482 }
483
484 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
485}
486
487/**
488 * netdev_boot_setup_check - check boot time settings
489 * @dev: the netdevice
490 *
491 * Check boot time settings for the device.
492 * The found settings are set for the device to be used
493 * later in the device probing.
494 * Returns 0 if no settings found, 1 if they are.
495 */
496int netdev_boot_setup_check(struct net_device *dev)
497{
498 struct netdev_boot_setup *s = dev_boot_setup;
499 int i;
500
501 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
502 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
503 !strcmp(dev->name, s[i].name)) {
504 dev->irq = s[i].map.irq;
505 dev->base_addr = s[i].map.base_addr;
506 dev->mem_start = s[i].map.mem_start;
507 dev->mem_end = s[i].map.mem_end;
508 return 1;
509 }
510 }
511 return 0;
512}
513
514
515/**
516 * netdev_boot_base - get address from boot time settings
517 * @prefix: prefix for network device
518 * @unit: id for network device
519 *
520 * Check boot time settings for the base address of device.
521 * The found settings are set for the device to be used
522 * later in the device probing.
523 * Returns 0 if no settings found.
524 */
525unsigned long netdev_boot_base(const char *prefix, int unit)
526{
527 const struct netdev_boot_setup *s = dev_boot_setup;
528 char name[IFNAMSIZ];
529 int i;
530
531 sprintf(name, "%s%d", prefix, unit);
532
533 /*
534 * If device already registered then return base of 1
535 * to indicate not to probe for this interface
536 */
537 if (__dev_get_by_name(&init_net, name))
538 return 1;
539
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
541 if (!strcmp(name, s[i].name))
542 return s[i].map.base_addr;
543 return 0;
544}
545
546/*
547 * Saves at boot time configured settings for any netdevice.
548 */
549int __init netdev_boot_setup(char *str)
550{
551 int ints[5];
552 struct ifmap map;
553
554 str = get_options(str, ARRAY_SIZE(ints), ints);
555 if (!str || !*str)
556 return 0;
557
558 /* Save settings */
559 memset(&map, 0, sizeof(map));
560 if (ints[0] > 0)
561 map.irq = ints[1];
562 if (ints[0] > 1)
563 map.base_addr = ints[2];
564 if (ints[0] > 2)
565 map.mem_start = ints[3];
566 if (ints[0] > 3)
567 map.mem_end = ints[4];
568
569 /* Add new entry to the list */
570 return netdev_boot_setup_add(str, &map);
571}
572
573__setup("netdev=", netdev_boot_setup);
574
575/*******************************************************************************
576
577 Device Interface Subroutines
578
579*******************************************************************************/
580
581/**
582 * __dev_get_by_name - find a device by its name
583 * @net: the applicable net namespace
584 * @name: name to find
585 *
586 * Find an interface by name. Must be called under RTNL semaphore
587 * or @dev_base_lock. If the name is found a pointer to the device
588 * is returned. If the name is not found then %NULL is returned. The
589 * reference counters are not incremented so the caller must be
590 * careful with locks.
591 */
592
593struct net_device *__dev_get_by_name(struct net *net, const char *name)
594{
595 struct hlist_node *p;
596
597 hlist_for_each(p, dev_name_hash(net, name)) {
598 struct net_device *dev
599 = hlist_entry(p, struct net_device, name_hlist);
600 if (!strncmp(dev->name, name, IFNAMSIZ))
601 return dev;
602 }
603 return NULL;
604}
605
606/**
607 * dev_get_by_name - find a device by its name
608 * @net: the applicable net namespace
609 * @name: name to find
610 *
611 * Find an interface by name. This can be called from any
612 * context and does its own locking. The returned handle has
613 * the usage count incremented and the caller must use dev_put() to
614 * release it when it is no longer needed. %NULL is returned if no
615 * matching device is found.
616 */
617
618struct net_device *dev_get_by_name(struct net *net, const char *name)
619{
620 struct net_device *dev;
621
622 read_lock(&dev_base_lock);
623 dev = __dev_get_by_name(net, name);
624 if (dev)
625 dev_hold(dev);
626 read_unlock(&dev_base_lock);
627 return dev;
628}
629
630/**
631 * __dev_get_by_index - find a device by its ifindex
632 * @net: the applicable net namespace
633 * @ifindex: index of device
634 *
635 * Search for an interface by index. Returns %NULL if the device
636 * is not found or a pointer to the device. The device has not
637 * had its reference counter increased so the caller must be careful
638 * about locking. The caller must hold either the RTNL semaphore
639 * or @dev_base_lock.
640 */
641
642struct net_device *__dev_get_by_index(struct net *net, int ifindex)
643{
644 struct hlist_node *p;
645
646 hlist_for_each(p, dev_index_hash(net, ifindex)) {
647 struct net_device *dev
648 = hlist_entry(p, struct net_device, index_hlist);
649 if (dev->ifindex == ifindex)
650 return dev;
651 }
652 return NULL;
653}
654
655
656/**
657 * dev_get_by_index - find a device by its ifindex
658 * @net: the applicable net namespace
659 * @ifindex: index of device
660 *
661 * Search for an interface by index. Returns NULL if the device
662 * is not found or a pointer to the device. The device returned has
663 * had a reference added and the pointer is safe until the user calls
664 * dev_put to indicate they have finished with it.
665 */
666
667struct net_device *dev_get_by_index(struct net *net, int ifindex)
668{
669 struct net_device *dev;
670
671 read_lock(&dev_base_lock);
672 dev = __dev_get_by_index(net, ifindex);
673 if (dev)
674 dev_hold(dev);
675 read_unlock(&dev_base_lock);
676 return dev;
677}
678
679/**
680 * dev_getbyhwaddr - find a device by its hardware address
681 * @net: the applicable net namespace
682 * @type: media type of device
683 * @ha: hardware address
684 *
685 * Search for an interface by MAC address. Returns NULL if the device
686 * is not found or a pointer to the device. The caller must hold the
687 * rtnl semaphore. The returned device has not had its ref count increased
688 * and the caller must therefore be careful about locking
689 *
690 * BUGS:
691 * If the API was consistent this would be __dev_get_by_hwaddr
692 */
693
694struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
695{
696 struct net_device *dev;
697
698 ASSERT_RTNL();
699
700 for_each_netdev(net, dev)
701 if (dev->type == type &&
702 !memcmp(dev->dev_addr, ha, dev->addr_len))
703 return dev;
704
705 return NULL;
706}
707
708EXPORT_SYMBOL(dev_getbyhwaddr);
709
710struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
711{
712 struct net_device *dev;
713
714 ASSERT_RTNL();
715 for_each_netdev(net, dev)
716 if (dev->type == type)
717 return dev;
718
719 return NULL;
720}
721
722EXPORT_SYMBOL(__dev_getfirstbyhwtype);
723
724struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
725{
726 struct net_device *dev;
727
728 rtnl_lock();
729 dev = __dev_getfirstbyhwtype(net, type);
730 if (dev)
731 dev_hold(dev);
732 rtnl_unlock();
733 return dev;
734}
735
736EXPORT_SYMBOL(dev_getfirstbyhwtype);
737
738/**
739 * dev_get_by_flags - find any device with given flags
740 * @net: the applicable net namespace
741 * @if_flags: IFF_* values
742 * @mask: bitmask of bits in if_flags to check
743 *
744 * Search for any interface with the given flags. Returns NULL if a device
745 * is not found or a pointer to the device. The device returned has
746 * had a reference added and the pointer is safe until the user calls
747 * dev_put to indicate they have finished with it.
748 */
749
750struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
751{
752 struct net_device *dev, *ret;
753
754 ret = NULL;
755 read_lock(&dev_base_lock);
756 for_each_netdev(net, dev) {
757 if (((dev->flags ^ if_flags) & mask) == 0) {
758 dev_hold(dev);
759 ret = dev;
760 break;
761 }
762 }
763 read_unlock(&dev_base_lock);
764 return ret;
765}
766
767/**
768 * dev_valid_name - check if name is okay for network device
769 * @name: name string
770 *
771 * Network device names need to be valid file names to
772 * to allow sysfs to work. We also disallow any kind of
773 * whitespace.
774 */
775int dev_valid_name(const char *name)
776{
777 if (*name == '\0')
778 return 0;
779 if (strlen(name) >= IFNAMSIZ)
780 return 0;
781 if (!strcmp(name, ".") || !strcmp(name, ".."))
782 return 0;
783
784 while (*name) {
785 if (*name == '/' || isspace(*name))
786 return 0;
787 name++;
788 }
789 return 1;
790}
791
792/**
793 * __dev_alloc_name - allocate a name for a device
794 * @net: network namespace to allocate the device name in
795 * @name: name format string
796 * @buf: scratch buffer and result name string
797 *
798 * Passed a format string - eg "lt%d" it will try and find a suitable
799 * id. It scans list of devices to build up a free map, then chooses
800 * the first empty slot. The caller must hold the dev_base or rtnl lock
801 * while allocating the name and adding the device in order to avoid
802 * duplicates.
803 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
804 * Returns the number of the unit assigned or a negative errno code.
805 */
806
807static int __dev_alloc_name(struct net *net, const char *name, char *buf)
808{
809 int i = 0;
810 const char *p;
811 const int max_netdevices = 8*PAGE_SIZE;
812 unsigned long *inuse;
813 struct net_device *d;
814
815 p = strnchr(name, IFNAMSIZ-1, '%');
816 if (p) {
817 /*
818 * Verify the string as this thing may have come from
819 * the user. There must be either one "%d" and no other "%"
820 * characters.
821 */
822 if (p[1] != 'd' || strchr(p + 2, '%'))
823 return -EINVAL;
824
825 /* Use one page as a bit array of possible slots */
826 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
827 if (!inuse)
828 return -ENOMEM;
829
830 for_each_netdev(net, d) {
831 if (!sscanf(d->name, name, &i))
832 continue;
833 if (i < 0 || i >= max_netdevices)
834 continue;
835
836 /* avoid cases where sscanf is not exact inverse of printf */
837 snprintf(buf, IFNAMSIZ, name, i);
838 if (!strncmp(buf, d->name, IFNAMSIZ))
839 set_bit(i, inuse);
840 }
841
842 i = find_first_zero_bit(inuse, max_netdevices);
843 free_page((unsigned long) inuse);
844 }
845
846 snprintf(buf, IFNAMSIZ, name, i);
847 if (!__dev_get_by_name(net, buf))
848 return i;
849
850 /* It is possible to run out of possible slots
851 * when the name is long and there isn't enough space left
852 * for the digits, or if all bits are used.
853 */
854 return -ENFILE;
855}
856
857/**
858 * dev_alloc_name - allocate a name for a device
859 * @dev: device
860 * @name: name format string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871int dev_alloc_name(struct net_device *dev, const char *name)
872{
873 char buf[IFNAMSIZ];
874 struct net *net;
875 int ret;
876
877 BUG_ON(!dev_net(dev));
878 net = dev_net(dev);
879 ret = __dev_alloc_name(net, name, buf);
880 if (ret >= 0)
881 strlcpy(dev->name, buf, IFNAMSIZ);
882 return ret;
883}
884
885
886/**
887 * dev_change_name - change name of a device
888 * @dev: device
889 * @newname: name (or format string) must be at least IFNAMSIZ
890 *
891 * Change name of a device, can pass format strings "eth%d".
892 * for wildcarding.
893 */
894int dev_change_name(struct net_device *dev, const char *newname)
895{
896 char oldname[IFNAMSIZ];
897 int err = 0;
898 int ret;
899 struct net *net;
900
901 ASSERT_RTNL();
902 BUG_ON(!dev_net(dev));
903
904 net = dev_net(dev);
905 if (dev->flags & IFF_UP)
906 return -EBUSY;
907
908 if (!dev_valid_name(newname))
909 return -EINVAL;
910
911 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
912 return 0;
913
914 memcpy(oldname, dev->name, IFNAMSIZ);
915
916 if (strchr(newname, '%')) {
917 err = dev_alloc_name(dev, newname);
918 if (err < 0)
919 return err;
920 }
921 else if (__dev_get_by_name(net, newname))
922 return -EEXIST;
923 else
924 strlcpy(dev->name, newname, IFNAMSIZ);
925
926rollback:
927 /* For now only devices in the initial network namespace
928 * are in sysfs.
929 */
930 if (net == &init_net) {
931 ret = device_rename(&dev->dev, dev->name);
932 if (ret) {
933 memcpy(dev->name, oldname, IFNAMSIZ);
934 return ret;
935 }
936 }
937
938 write_lock_bh(&dev_base_lock);
939 hlist_del(&dev->name_hlist);
940 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
941 write_unlock_bh(&dev_base_lock);
942
943 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
944 ret = notifier_to_errno(ret);
945
946 if (ret) {
947 if (err) {
948 printk(KERN_ERR
949 "%s: name change rollback failed: %d.\n",
950 dev->name, ret);
951 } else {
952 err = ret;
953 memcpy(dev->name, oldname, IFNAMSIZ);
954 goto rollback;
955 }
956 }
957
958 return err;
959}
960
961/**
962 * dev_set_alias - change ifalias of a device
963 * @dev: device
964 * @alias: name up to IFALIASZ
965 * @len: limit of bytes to copy from info
966 *
967 * Set ifalias for a device,
968 */
969int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
970{
971 ASSERT_RTNL();
972
973 if (len >= IFALIASZ)
974 return -EINVAL;
975
976 if (!len) {
977 if (dev->ifalias) {
978 kfree(dev->ifalias);
979 dev->ifalias = NULL;
980 }
981 return 0;
982 }
983
984 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
985 if (!dev->ifalias)
986 return -ENOMEM;
987
988 strlcpy(dev->ifalias, alias, len+1);
989 return len;
990}
991
992
993/**
994 * netdev_features_change - device changes features
995 * @dev: device to cause notification
996 *
997 * Called to indicate a device has changed features.
998 */
999void netdev_features_change(struct net_device *dev)
1000{
1001 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1002}
1003EXPORT_SYMBOL(netdev_features_change);
1004
1005/**
1006 * netdev_state_change - device changes state
1007 * @dev: device to cause notification
1008 *
1009 * Called to indicate a device has changed state. This function calls
1010 * the notifier chains for netdev_chain and sends a NEWLINK message
1011 * to the routing socket.
1012 */
1013void netdev_state_change(struct net_device *dev)
1014{
1015 if (dev->flags & IFF_UP) {
1016 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1017 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1018 }
1019}
1020
1021void netdev_bonding_change(struct net_device *dev)
1022{
1023 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1024}
1025EXPORT_SYMBOL(netdev_bonding_change);
1026
1027/**
1028 * dev_load - load a network module
1029 * @net: the applicable net namespace
1030 * @name: name of interface
1031 *
1032 * If a network interface is not present and the process has suitable
1033 * privileges this function loads the module. If module loading is not
1034 * available in this kernel then it becomes a nop.
1035 */
1036
1037void dev_load(struct net *net, const char *name)
1038{
1039 struct net_device *dev;
1040
1041 read_lock(&dev_base_lock);
1042 dev = __dev_get_by_name(net, name);
1043 read_unlock(&dev_base_lock);
1044
1045 if (!dev && capable(CAP_SYS_MODULE))
1046 request_module("%s", name);
1047}
1048
1049/**
1050 * dev_open - prepare an interface for use.
1051 * @dev: device to open
1052 *
1053 * Takes a device from down to up state. The device's private open
1054 * function is invoked and then the multicast lists are loaded. Finally
1055 * the device is moved into the up state and a %NETDEV_UP message is
1056 * sent to the netdev notifier chain.
1057 *
1058 * Calling this function on an active interface is a nop. On a failure
1059 * a negative errno code is returned.
1060 */
1061int dev_open(struct net_device *dev)
1062{
1063 int ret = 0;
1064
1065 ASSERT_RTNL();
1066
1067 /*
1068 * Is it already up?
1069 */
1070
1071 if (dev->flags & IFF_UP)
1072 return 0;
1073
1074 /*
1075 * Is it even present?
1076 */
1077 if (!netif_device_present(dev))
1078 return -ENODEV;
1079
1080 /*
1081 * Call device private open method
1082 */
1083 set_bit(__LINK_STATE_START, &dev->state);
1084
1085 if (dev->validate_addr)
1086 ret = dev->validate_addr(dev);
1087
1088 if (!ret && dev->open)
1089 ret = dev->open(dev);
1090
1091 /*
1092 * If it went open OK then:
1093 */
1094
1095 if (ret)
1096 clear_bit(__LINK_STATE_START, &dev->state);
1097 else {
1098 /*
1099 * Set the flags.
1100 */
1101 dev->flags |= IFF_UP;
1102
1103 /*
1104 * Initialize multicasting status
1105 */
1106 dev_set_rx_mode(dev);
1107
1108 /*
1109 * Wakeup transmit queue engine
1110 */
1111 dev_activate(dev);
1112
1113 /*
1114 * ... and announce new interface.
1115 */
1116 call_netdevice_notifiers(NETDEV_UP, dev);
1117 }
1118
1119 return ret;
1120}
1121
1122/**
1123 * dev_close - shutdown an interface.
1124 * @dev: device to shutdown
1125 *
1126 * This function moves an active device into down state. A
1127 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1128 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1129 * chain.
1130 */
1131int dev_close(struct net_device *dev)
1132{
1133 ASSERT_RTNL();
1134
1135 might_sleep();
1136
1137 if (!(dev->flags & IFF_UP))
1138 return 0;
1139
1140 /*
1141 * Tell people we are going down, so that they can
1142 * prepare to death, when device is still operating.
1143 */
1144 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1145
1146 clear_bit(__LINK_STATE_START, &dev->state);
1147
1148 /* Synchronize to scheduled poll. We cannot touch poll list,
1149 * it can be even on different cpu. So just clear netif_running().
1150 *
1151 * dev->stop() will invoke napi_disable() on all of it's
1152 * napi_struct instances on this device.
1153 */
1154 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1155
1156 dev_deactivate(dev);
1157
1158 /*
1159 * Call the device specific close. This cannot fail.
1160 * Only if device is UP
1161 *
1162 * We allow it to be called even after a DETACH hot-plug
1163 * event.
1164 */
1165 if (dev->stop)
1166 dev->stop(dev);
1167
1168 /*
1169 * Device is now down.
1170 */
1171
1172 dev->flags &= ~IFF_UP;
1173
1174 /*
1175 * Tell people we are down
1176 */
1177 call_netdevice_notifiers(NETDEV_DOWN, dev);
1178
1179 return 0;
1180}
1181
1182
1183/**
1184 * dev_disable_lro - disable Large Receive Offload on a device
1185 * @dev: device
1186 *
1187 * Disable Large Receive Offload (LRO) on a net device. Must be
1188 * called under RTNL. This is needed if received packets may be
1189 * forwarded to another interface.
1190 */
1191void dev_disable_lro(struct net_device *dev)
1192{
1193 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1194 dev->ethtool_ops->set_flags) {
1195 u32 flags = dev->ethtool_ops->get_flags(dev);
1196 if (flags & ETH_FLAG_LRO) {
1197 flags &= ~ETH_FLAG_LRO;
1198 dev->ethtool_ops->set_flags(dev, flags);
1199 }
1200 }
1201 WARN_ON(dev->features & NETIF_F_LRO);
1202}
1203EXPORT_SYMBOL(dev_disable_lro);
1204
1205
1206static int dev_boot_phase = 1;
1207
1208/*
1209 * Device change register/unregister. These are not inline or static
1210 * as we export them to the world.
1211 */
1212
1213/**
1214 * register_netdevice_notifier - register a network notifier block
1215 * @nb: notifier
1216 *
1217 * Register a notifier to be called when network device events occur.
1218 * The notifier passed is linked into the kernel structures and must
1219 * not be reused until it has been unregistered. A negative errno code
1220 * is returned on a failure.
1221 *
1222 * When registered all registration and up events are replayed
1223 * to the new notifier to allow device to have a race free
1224 * view of the network device list.
1225 */
1226
1227int register_netdevice_notifier(struct notifier_block *nb)
1228{
1229 struct net_device *dev;
1230 struct net_device *last;
1231 struct net *net;
1232 int err;
1233
1234 rtnl_lock();
1235 err = raw_notifier_chain_register(&netdev_chain, nb);
1236 if (err)
1237 goto unlock;
1238 if (dev_boot_phase)
1239 goto unlock;
1240 for_each_net(net) {
1241 for_each_netdev(net, dev) {
1242 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1243 err = notifier_to_errno(err);
1244 if (err)
1245 goto rollback;
1246
1247 if (!(dev->flags & IFF_UP))
1248 continue;
1249
1250 nb->notifier_call(nb, NETDEV_UP, dev);
1251 }
1252 }
1253
1254unlock:
1255 rtnl_unlock();
1256 return err;
1257
1258rollback:
1259 last = dev;
1260 for_each_net(net) {
1261 for_each_netdev(net, dev) {
1262 if (dev == last)
1263 break;
1264
1265 if (dev->flags & IFF_UP) {
1266 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1267 nb->notifier_call(nb, NETDEV_DOWN, dev);
1268 }
1269 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1270 }
1271 }
1272
1273 raw_notifier_chain_unregister(&netdev_chain, nb);
1274 goto unlock;
1275}
1276
1277/**
1278 * unregister_netdevice_notifier - unregister a network notifier block
1279 * @nb: notifier
1280 *
1281 * Unregister a notifier previously registered by
1282 * register_netdevice_notifier(). The notifier is unlinked into the
1283 * kernel structures and may then be reused. A negative errno code
1284 * is returned on a failure.
1285 */
1286
1287int unregister_netdevice_notifier(struct notifier_block *nb)
1288{
1289 int err;
1290
1291 rtnl_lock();
1292 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1293 rtnl_unlock();
1294 return err;
1295}
1296
1297/**
1298 * call_netdevice_notifiers - call all network notifier blocks
1299 * @val: value passed unmodified to notifier function
1300 * @dev: net_device pointer passed unmodified to notifier function
1301 *
1302 * Call all network notifier blocks. Parameters and return value
1303 * are as for raw_notifier_call_chain().
1304 */
1305
1306int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1307{
1308 return raw_notifier_call_chain(&netdev_chain, val, dev);
1309}
1310
1311/* When > 0 there are consumers of rx skb time stamps */
1312static atomic_t netstamp_needed = ATOMIC_INIT(0);
1313
1314void net_enable_timestamp(void)
1315{
1316 atomic_inc(&netstamp_needed);
1317}
1318
1319void net_disable_timestamp(void)
1320{
1321 atomic_dec(&netstamp_needed);
1322}
1323
1324static inline void net_timestamp(struct sk_buff *skb)
1325{
1326 if (atomic_read(&netstamp_needed))
1327 __net_timestamp(skb);
1328 else
1329 skb->tstamp.tv64 = 0;
1330}
1331
1332/*
1333 * Support routine. Sends outgoing frames to any network
1334 * taps currently in use.
1335 */
1336
1337static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1338{
1339 struct packet_type *ptype;
1340
1341 net_timestamp(skb);
1342
1343 rcu_read_lock();
1344 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1345 /* Never send packets back to the socket
1346 * they originated from - MvS (miquels@drinkel.ow.org)
1347 */
1348 if ((ptype->dev == dev || !ptype->dev) &&
1349 (ptype->af_packet_priv == NULL ||
1350 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1351 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1352 if (!skb2)
1353 break;
1354
1355 /* skb->nh should be correctly
1356 set by sender, so that the second statement is
1357 just protection against buggy protocols.
1358 */
1359 skb_reset_mac_header(skb2);
1360
1361 if (skb_network_header(skb2) < skb2->data ||
1362 skb2->network_header > skb2->tail) {
1363 if (net_ratelimit())
1364 printk(KERN_CRIT "protocol %04x is "
1365 "buggy, dev %s\n",
1366 skb2->protocol, dev->name);
1367 skb_reset_network_header(skb2);
1368 }
1369
1370 skb2->transport_header = skb2->network_header;
1371 skb2->pkt_type = PACKET_OUTGOING;
1372 ptype->func(skb2, skb->dev, ptype, skb->dev);
1373 }
1374 }
1375 rcu_read_unlock();
1376}
1377
1378
1379static inline void __netif_reschedule(struct Qdisc *q)
1380{
1381 struct softnet_data *sd;
1382 unsigned long flags;
1383
1384 local_irq_save(flags);
1385 sd = &__get_cpu_var(softnet_data);
1386 q->next_sched = sd->output_queue;
1387 sd->output_queue = q;
1388 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1389 local_irq_restore(flags);
1390}
1391
1392void __netif_schedule(struct Qdisc *q)
1393{
1394 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1395 __netif_reschedule(q);
1396}
1397EXPORT_SYMBOL(__netif_schedule);
1398
1399void dev_kfree_skb_irq(struct sk_buff *skb)
1400{
1401 if (atomic_dec_and_test(&skb->users)) {
1402 struct softnet_data *sd;
1403 unsigned long flags;
1404
1405 local_irq_save(flags);
1406 sd = &__get_cpu_var(softnet_data);
1407 skb->next = sd->completion_queue;
1408 sd->completion_queue = skb;
1409 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1410 local_irq_restore(flags);
1411 }
1412}
1413EXPORT_SYMBOL(dev_kfree_skb_irq);
1414
1415void dev_kfree_skb_any(struct sk_buff *skb)
1416{
1417 if (in_irq() || irqs_disabled())
1418 dev_kfree_skb_irq(skb);
1419 else
1420 dev_kfree_skb(skb);
1421}
1422EXPORT_SYMBOL(dev_kfree_skb_any);
1423
1424
1425/**
1426 * netif_device_detach - mark device as removed
1427 * @dev: network device
1428 *
1429 * Mark device as removed from system and therefore no longer available.
1430 */
1431void netif_device_detach(struct net_device *dev)
1432{
1433 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1434 netif_running(dev)) {
1435 netif_stop_queue(dev);
1436 }
1437}
1438EXPORT_SYMBOL(netif_device_detach);
1439
1440/**
1441 * netif_device_attach - mark device as attached
1442 * @dev: network device
1443 *
1444 * Mark device as attached from system and restart if needed.
1445 */
1446void netif_device_attach(struct net_device *dev)
1447{
1448 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1449 netif_running(dev)) {
1450 netif_wake_queue(dev);
1451 __netdev_watchdog_up(dev);
1452 }
1453}
1454EXPORT_SYMBOL(netif_device_attach);
1455
1456static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1457{
1458 return ((features & NETIF_F_GEN_CSUM) ||
1459 ((features & NETIF_F_IP_CSUM) &&
1460 protocol == htons(ETH_P_IP)) ||
1461 ((features & NETIF_F_IPV6_CSUM) &&
1462 protocol == htons(ETH_P_IPV6)));
1463}
1464
1465static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1466{
1467 if (can_checksum_protocol(dev->features, skb->protocol))
1468 return true;
1469
1470 if (skb->protocol == htons(ETH_P_8021Q)) {
1471 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1472 if (can_checksum_protocol(dev->features & dev->vlan_features,
1473 veh->h_vlan_encapsulated_proto))
1474 return true;
1475 }
1476
1477 return false;
1478}
1479
1480/*
1481 * Invalidate hardware checksum when packet is to be mangled, and
1482 * complete checksum manually on outgoing path.
1483 */
1484int skb_checksum_help(struct sk_buff *skb)
1485{
1486 __wsum csum;
1487 int ret = 0, offset;
1488
1489 if (skb->ip_summed == CHECKSUM_COMPLETE)
1490 goto out_set_summed;
1491
1492 if (unlikely(skb_shinfo(skb)->gso_size)) {
1493 /* Let GSO fix up the checksum. */
1494 goto out_set_summed;
1495 }
1496
1497 offset = skb->csum_start - skb_headroom(skb);
1498 BUG_ON(offset >= skb_headlen(skb));
1499 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1500
1501 offset += skb->csum_offset;
1502 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1503
1504 if (skb_cloned(skb) &&
1505 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1506 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1507 if (ret)
1508 goto out;
1509 }
1510
1511 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1512out_set_summed:
1513 skb->ip_summed = CHECKSUM_NONE;
1514out:
1515 return ret;
1516}
1517
1518/**
1519 * skb_gso_segment - Perform segmentation on skb.
1520 * @skb: buffer to segment
1521 * @features: features for the output path (see dev->features)
1522 *
1523 * This function segments the given skb and returns a list of segments.
1524 *
1525 * It may return NULL if the skb requires no segmentation. This is
1526 * only possible when GSO is used for verifying header integrity.
1527 */
1528struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1529{
1530 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1531 struct packet_type *ptype;
1532 __be16 type = skb->protocol;
1533 int err;
1534
1535 BUG_ON(skb_shinfo(skb)->frag_list);
1536
1537 skb_reset_mac_header(skb);
1538 skb->mac_len = skb->network_header - skb->mac_header;
1539 __skb_pull(skb, skb->mac_len);
1540
1541 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1542 if (skb_header_cloned(skb) &&
1543 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1544 return ERR_PTR(err);
1545 }
1546
1547 rcu_read_lock();
1548 list_for_each_entry_rcu(ptype,
1549 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1550 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1551 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1552 err = ptype->gso_send_check(skb);
1553 segs = ERR_PTR(err);
1554 if (err || skb_gso_ok(skb, features))
1555 break;
1556 __skb_push(skb, (skb->data -
1557 skb_network_header(skb)));
1558 }
1559 segs = ptype->gso_segment(skb, features);
1560 break;
1561 }
1562 }
1563 rcu_read_unlock();
1564
1565 __skb_push(skb, skb->data - skb_mac_header(skb));
1566
1567 return segs;
1568}
1569
1570EXPORT_SYMBOL(skb_gso_segment);
1571
1572/* Take action when hardware reception checksum errors are detected. */
1573#ifdef CONFIG_BUG
1574void netdev_rx_csum_fault(struct net_device *dev)
1575{
1576 if (net_ratelimit()) {
1577 printk(KERN_ERR "%s: hw csum failure.\n",
1578 dev ? dev->name : "<unknown>");
1579 dump_stack();
1580 }
1581}
1582EXPORT_SYMBOL(netdev_rx_csum_fault);
1583#endif
1584
1585/* Actually, we should eliminate this check as soon as we know, that:
1586 * 1. IOMMU is present and allows to map all the memory.
1587 * 2. No high memory really exists on this machine.
1588 */
1589
1590static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1591{
1592#ifdef CONFIG_HIGHMEM
1593 int i;
1594
1595 if (dev->features & NETIF_F_HIGHDMA)
1596 return 0;
1597
1598 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1599 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1600 return 1;
1601
1602#endif
1603 return 0;
1604}
1605
1606struct dev_gso_cb {
1607 void (*destructor)(struct sk_buff *skb);
1608};
1609
1610#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1611
1612static void dev_gso_skb_destructor(struct sk_buff *skb)
1613{
1614 struct dev_gso_cb *cb;
1615
1616 do {
1617 struct sk_buff *nskb = skb->next;
1618
1619 skb->next = nskb->next;
1620 nskb->next = NULL;
1621 kfree_skb(nskb);
1622 } while (skb->next);
1623
1624 cb = DEV_GSO_CB(skb);
1625 if (cb->destructor)
1626 cb->destructor(skb);
1627}
1628
1629/**
1630 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1631 * @skb: buffer to segment
1632 *
1633 * This function segments the given skb and stores the list of segments
1634 * in skb->next.
1635 */
1636static int dev_gso_segment(struct sk_buff *skb)
1637{
1638 struct net_device *dev = skb->dev;
1639 struct sk_buff *segs;
1640 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1641 NETIF_F_SG : 0);
1642
1643 segs = skb_gso_segment(skb, features);
1644
1645 /* Verifying header integrity only. */
1646 if (!segs)
1647 return 0;
1648
1649 if (IS_ERR(segs))
1650 return PTR_ERR(segs);
1651
1652 skb->next = segs;
1653 DEV_GSO_CB(skb)->destructor = skb->destructor;
1654 skb->destructor = dev_gso_skb_destructor;
1655
1656 return 0;
1657}
1658
1659int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1660 struct netdev_queue *txq)
1661{
1662 if (likely(!skb->next)) {
1663 if (!list_empty(&ptype_all))
1664 dev_queue_xmit_nit(skb, dev);
1665
1666 if (netif_needs_gso(dev, skb)) {
1667 if (unlikely(dev_gso_segment(skb)))
1668 goto out_kfree_skb;
1669 if (skb->next)
1670 goto gso;
1671 }
1672
1673 return dev->hard_start_xmit(skb, dev);
1674 }
1675
1676gso:
1677 do {
1678 struct sk_buff *nskb = skb->next;
1679 int rc;
1680
1681 skb->next = nskb->next;
1682 nskb->next = NULL;
1683 rc = dev->hard_start_xmit(nskb, dev);
1684 if (unlikely(rc)) {
1685 nskb->next = skb->next;
1686 skb->next = nskb;
1687 return rc;
1688 }
1689 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1690 return NETDEV_TX_BUSY;
1691 } while (skb->next);
1692
1693 skb->destructor = DEV_GSO_CB(skb)->destructor;
1694
1695out_kfree_skb:
1696 kfree_skb(skb);
1697 return 0;
1698}
1699
1700static u32 simple_tx_hashrnd;
1701static int simple_tx_hashrnd_initialized = 0;
1702
1703static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1704{
1705 u32 addr1, addr2, ports;
1706 u32 hash, ihl;
1707 u8 ip_proto = 0;
1708
1709 if (unlikely(!simple_tx_hashrnd_initialized)) {
1710 get_random_bytes(&simple_tx_hashrnd, 4);
1711 simple_tx_hashrnd_initialized = 1;
1712 }
1713
1714 switch (skb->protocol) {
1715 case htons(ETH_P_IP):
1716 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1717 ip_proto = ip_hdr(skb)->protocol;
1718 addr1 = ip_hdr(skb)->saddr;
1719 addr2 = ip_hdr(skb)->daddr;
1720 ihl = ip_hdr(skb)->ihl;
1721 break;
1722 case htons(ETH_P_IPV6):
1723 ip_proto = ipv6_hdr(skb)->nexthdr;
1724 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1725 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1726 ihl = (40 >> 2);
1727 break;
1728 default:
1729 return 0;
1730 }
1731
1732
1733 switch (ip_proto) {
1734 case IPPROTO_TCP:
1735 case IPPROTO_UDP:
1736 case IPPROTO_DCCP:
1737 case IPPROTO_ESP:
1738 case IPPROTO_AH:
1739 case IPPROTO_SCTP:
1740 case IPPROTO_UDPLITE:
1741 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1742 break;
1743
1744 default:
1745 ports = 0;
1746 break;
1747 }
1748
1749 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1750
1751 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1752}
1753
1754static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1755 struct sk_buff *skb)
1756{
1757 u16 queue_index = 0;
1758
1759 if (dev->select_queue)
1760 queue_index = dev->select_queue(dev, skb);
1761 else if (dev->real_num_tx_queues > 1)
1762 queue_index = simple_tx_hash(dev, skb);
1763
1764 skb_set_queue_mapping(skb, queue_index);
1765 return netdev_get_tx_queue(dev, queue_index);
1766}
1767
1768/**
1769 * dev_queue_xmit - transmit a buffer
1770 * @skb: buffer to transmit
1771 *
1772 * Queue a buffer for transmission to a network device. The caller must
1773 * have set the device and priority and built the buffer before calling
1774 * this function. The function can be called from an interrupt.
1775 *
1776 * A negative errno code is returned on a failure. A success does not
1777 * guarantee the frame will be transmitted as it may be dropped due
1778 * to congestion or traffic shaping.
1779 *
1780 * -----------------------------------------------------------------------------------
1781 * I notice this method can also return errors from the queue disciplines,
1782 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1783 * be positive.
1784 *
1785 * Regardless of the return value, the skb is consumed, so it is currently
1786 * difficult to retry a send to this method. (You can bump the ref count
1787 * before sending to hold a reference for retry if you are careful.)
1788 *
1789 * When calling this method, interrupts MUST be enabled. This is because
1790 * the BH enable code must have IRQs enabled so that it will not deadlock.
1791 * --BLG
1792 */
1793int dev_queue_xmit(struct sk_buff *skb)
1794{
1795 struct net_device *dev = skb->dev;
1796 struct netdev_queue *txq;
1797 struct Qdisc *q;
1798 int rc = -ENOMEM;
1799
1800 /* GSO will handle the following emulations directly. */
1801 if (netif_needs_gso(dev, skb))
1802 goto gso;
1803
1804 if (skb_shinfo(skb)->frag_list &&
1805 !(dev->features & NETIF_F_FRAGLIST) &&
1806 __skb_linearize(skb))
1807 goto out_kfree_skb;
1808
1809 /* Fragmented skb is linearized if device does not support SG,
1810 * or if at least one of fragments is in highmem and device
1811 * does not support DMA from it.
1812 */
1813 if (skb_shinfo(skb)->nr_frags &&
1814 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1815 __skb_linearize(skb))
1816 goto out_kfree_skb;
1817
1818 /* If packet is not checksummed and device does not support
1819 * checksumming for this protocol, complete checksumming here.
1820 */
1821 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1822 skb_set_transport_header(skb, skb->csum_start -
1823 skb_headroom(skb));
1824 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1825 goto out_kfree_skb;
1826 }
1827
1828gso:
1829 /* Disable soft irqs for various locks below. Also
1830 * stops preemption for RCU.
1831 */
1832 rcu_read_lock_bh();
1833
1834 txq = dev_pick_tx(dev, skb);
1835 q = rcu_dereference(txq->qdisc);
1836
1837#ifdef CONFIG_NET_CLS_ACT
1838 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1839#endif
1840 if (q->enqueue) {
1841 spinlock_t *root_lock = qdisc_lock(q);
1842
1843 spin_lock(root_lock);
1844
1845 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1846 kfree_skb(skb);
1847 rc = NET_XMIT_DROP;
1848 } else {
1849 rc = qdisc_enqueue_root(skb, q);
1850 qdisc_run(q);
1851 }
1852 spin_unlock(root_lock);
1853
1854 goto out;
1855 }
1856
1857 /* The device has no queue. Common case for software devices:
1858 loopback, all the sorts of tunnels...
1859
1860 Really, it is unlikely that netif_tx_lock protection is necessary
1861 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1862 counters.)
1863 However, it is possible, that they rely on protection
1864 made by us here.
1865
1866 Check this and shot the lock. It is not prone from deadlocks.
1867 Either shot noqueue qdisc, it is even simpler 8)
1868 */
1869 if (dev->flags & IFF_UP) {
1870 int cpu = smp_processor_id(); /* ok because BHs are off */
1871
1872 if (txq->xmit_lock_owner != cpu) {
1873
1874 HARD_TX_LOCK(dev, txq, cpu);
1875
1876 if (!netif_tx_queue_stopped(txq)) {
1877 rc = 0;
1878 if (!dev_hard_start_xmit(skb, dev, txq)) {
1879 HARD_TX_UNLOCK(dev, txq);
1880 goto out;
1881 }
1882 }
1883 HARD_TX_UNLOCK(dev, txq);
1884 if (net_ratelimit())
1885 printk(KERN_CRIT "Virtual device %s asks to "
1886 "queue packet!\n", dev->name);
1887 } else {
1888 /* Recursion is detected! It is possible,
1889 * unfortunately */
1890 if (net_ratelimit())
1891 printk(KERN_CRIT "Dead loop on virtual device "
1892 "%s, fix it urgently!\n", dev->name);
1893 }
1894 }
1895
1896 rc = -ENETDOWN;
1897 rcu_read_unlock_bh();
1898
1899out_kfree_skb:
1900 kfree_skb(skb);
1901 return rc;
1902out:
1903 rcu_read_unlock_bh();
1904 return rc;
1905}
1906
1907
1908/*=======================================================================
1909 Receiver routines
1910 =======================================================================*/
1911
1912int netdev_max_backlog __read_mostly = 1000;
1913int netdev_budget __read_mostly = 300;
1914int weight_p __read_mostly = 64; /* old backlog weight */
1915
1916DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1917
1918
1919/**
1920 * netif_rx - post buffer to the network code
1921 * @skb: buffer to post
1922 *
1923 * This function receives a packet from a device driver and queues it for
1924 * the upper (protocol) levels to process. It always succeeds. The buffer
1925 * may be dropped during processing for congestion control or by the
1926 * protocol layers.
1927 *
1928 * return values:
1929 * NET_RX_SUCCESS (no congestion)
1930 * NET_RX_DROP (packet was dropped)
1931 *
1932 */
1933
1934int netif_rx(struct sk_buff *skb)
1935{
1936 struct softnet_data *queue;
1937 unsigned long flags;
1938
1939 /* if netpoll wants it, pretend we never saw it */
1940 if (netpoll_rx(skb))
1941 return NET_RX_DROP;
1942
1943 if (!skb->tstamp.tv64)
1944 net_timestamp(skb);
1945
1946 /*
1947 * The code is rearranged so that the path is the most
1948 * short when CPU is congested, but is still operating.
1949 */
1950 local_irq_save(flags);
1951 queue = &__get_cpu_var(softnet_data);
1952
1953 __get_cpu_var(netdev_rx_stat).total++;
1954 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1955 if (queue->input_pkt_queue.qlen) {
1956enqueue:
1957 __skb_queue_tail(&queue->input_pkt_queue, skb);
1958 local_irq_restore(flags);
1959 return NET_RX_SUCCESS;
1960 }
1961
1962 napi_schedule(&queue->backlog);
1963 goto enqueue;
1964 }
1965
1966 __get_cpu_var(netdev_rx_stat).dropped++;
1967 local_irq_restore(flags);
1968
1969 kfree_skb(skb);
1970 return NET_RX_DROP;
1971}
1972
1973int netif_rx_ni(struct sk_buff *skb)
1974{
1975 int err;
1976
1977 preempt_disable();
1978 err = netif_rx(skb);
1979 if (local_softirq_pending())
1980 do_softirq();
1981 preempt_enable();
1982
1983 return err;
1984}
1985
1986EXPORT_SYMBOL(netif_rx_ni);
1987
1988static void net_tx_action(struct softirq_action *h)
1989{
1990 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1991
1992 if (sd->completion_queue) {
1993 struct sk_buff *clist;
1994
1995 local_irq_disable();
1996 clist = sd->completion_queue;
1997 sd->completion_queue = NULL;
1998 local_irq_enable();
1999
2000 while (clist) {
2001 struct sk_buff *skb = clist;
2002 clist = clist->next;
2003
2004 WARN_ON(atomic_read(&skb->users));
2005 __kfree_skb(skb);
2006 }
2007 }
2008
2009 if (sd->output_queue) {
2010 struct Qdisc *head;
2011
2012 local_irq_disable();
2013 head = sd->output_queue;
2014 sd->output_queue = NULL;
2015 local_irq_enable();
2016
2017 while (head) {
2018 struct Qdisc *q = head;
2019 spinlock_t *root_lock;
2020
2021 head = head->next_sched;
2022
2023 root_lock = qdisc_lock(q);
2024 if (spin_trylock(root_lock)) {
2025 smp_mb__before_clear_bit();
2026 clear_bit(__QDISC_STATE_SCHED,
2027 &q->state);
2028 qdisc_run(q);
2029 spin_unlock(root_lock);
2030 } else {
2031 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2032 &q->state)) {
2033 __netif_reschedule(q);
2034 } else {
2035 smp_mb__before_clear_bit();
2036 clear_bit(__QDISC_STATE_SCHED,
2037 &q->state);
2038 }
2039 }
2040 }
2041 }
2042}
2043
2044static inline int deliver_skb(struct sk_buff *skb,
2045 struct packet_type *pt_prev,
2046 struct net_device *orig_dev)
2047{
2048 atomic_inc(&skb->users);
2049 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2050}
2051
2052#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2053/* These hooks defined here for ATM */
2054struct net_bridge;
2055struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2056 unsigned char *addr);
2057void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2058
2059/*
2060 * If bridge module is loaded call bridging hook.
2061 * returns NULL if packet was consumed.
2062 */
2063struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2064 struct sk_buff *skb) __read_mostly;
2065static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2066 struct packet_type **pt_prev, int *ret,
2067 struct net_device *orig_dev)
2068{
2069 struct net_bridge_port *port;
2070
2071 if (skb->pkt_type == PACKET_LOOPBACK ||
2072 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2073 return skb;
2074
2075 if (*pt_prev) {
2076 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2077 *pt_prev = NULL;
2078 }
2079
2080 return br_handle_frame_hook(port, skb);
2081}
2082#else
2083#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2084#endif
2085
2086#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2087struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2088EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2089
2090static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2091 struct packet_type **pt_prev,
2092 int *ret,
2093 struct net_device *orig_dev)
2094{
2095 if (skb->dev->macvlan_port == NULL)
2096 return skb;
2097
2098 if (*pt_prev) {
2099 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2100 *pt_prev = NULL;
2101 }
2102 return macvlan_handle_frame_hook(skb);
2103}
2104#else
2105#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2106#endif
2107
2108#ifdef CONFIG_NET_CLS_ACT
2109/* TODO: Maybe we should just force sch_ingress to be compiled in
2110 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2111 * a compare and 2 stores extra right now if we dont have it on
2112 * but have CONFIG_NET_CLS_ACT
2113 * NOTE: This doesnt stop any functionality; if you dont have
2114 * the ingress scheduler, you just cant add policies on ingress.
2115 *
2116 */
2117static int ing_filter(struct sk_buff *skb)
2118{
2119 struct net_device *dev = skb->dev;
2120 u32 ttl = G_TC_RTTL(skb->tc_verd);
2121 struct netdev_queue *rxq;
2122 int result = TC_ACT_OK;
2123 struct Qdisc *q;
2124
2125 if (MAX_RED_LOOP < ttl++) {
2126 printk(KERN_WARNING
2127 "Redir loop detected Dropping packet (%d->%d)\n",
2128 skb->iif, dev->ifindex);
2129 return TC_ACT_SHOT;
2130 }
2131
2132 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2133 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2134
2135 rxq = &dev->rx_queue;
2136
2137 q = rxq->qdisc;
2138 if (q != &noop_qdisc) {
2139 spin_lock(qdisc_lock(q));
2140 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2141 result = qdisc_enqueue_root(skb, q);
2142 spin_unlock(qdisc_lock(q));
2143 }
2144
2145 return result;
2146}
2147
2148static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2149 struct packet_type **pt_prev,
2150 int *ret, struct net_device *orig_dev)
2151{
2152 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2153 goto out;
2154
2155 if (*pt_prev) {
2156 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2157 *pt_prev = NULL;
2158 } else {
2159 /* Huh? Why does turning on AF_PACKET affect this? */
2160 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2161 }
2162
2163 switch (ing_filter(skb)) {
2164 case TC_ACT_SHOT:
2165 case TC_ACT_STOLEN:
2166 kfree_skb(skb);
2167 return NULL;
2168 }
2169
2170out:
2171 skb->tc_verd = 0;
2172 return skb;
2173}
2174#endif
2175
2176/*
2177 * netif_nit_deliver - deliver received packets to network taps
2178 * @skb: buffer
2179 *
2180 * This function is used to deliver incoming packets to network
2181 * taps. It should be used when the normal netif_receive_skb path
2182 * is bypassed, for example because of VLAN acceleration.
2183 */
2184void netif_nit_deliver(struct sk_buff *skb)
2185{
2186 struct packet_type *ptype;
2187
2188 if (list_empty(&ptype_all))
2189 return;
2190
2191 skb_reset_network_header(skb);
2192 skb_reset_transport_header(skb);
2193 skb->mac_len = skb->network_header - skb->mac_header;
2194
2195 rcu_read_lock();
2196 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2197 if (!ptype->dev || ptype->dev == skb->dev)
2198 deliver_skb(skb, ptype, skb->dev);
2199 }
2200 rcu_read_unlock();
2201}
2202
2203/**
2204 * netif_receive_skb - process receive buffer from network
2205 * @skb: buffer to process
2206 *
2207 * netif_receive_skb() is the main receive data processing function.
2208 * It always succeeds. The buffer may be dropped during processing
2209 * for congestion control or by the protocol layers.
2210 *
2211 * This function may only be called from softirq context and interrupts
2212 * should be enabled.
2213 *
2214 * Return values (usually ignored):
2215 * NET_RX_SUCCESS: no congestion
2216 * NET_RX_DROP: packet was dropped
2217 */
2218int netif_receive_skb(struct sk_buff *skb)
2219{
2220 struct packet_type *ptype, *pt_prev;
2221 struct net_device *orig_dev;
2222 struct net_device *null_or_orig;
2223 int ret = NET_RX_DROP;
2224 __be16 type;
2225
2226 /* if we've gotten here through NAPI, check netpoll */
2227 if (netpoll_receive_skb(skb))
2228 return NET_RX_DROP;
2229
2230 if (!skb->tstamp.tv64)
2231 net_timestamp(skb);
2232
2233 if (!skb->iif)
2234 skb->iif = skb->dev->ifindex;
2235
2236 null_or_orig = NULL;
2237 orig_dev = skb->dev;
2238 if (orig_dev->master) {
2239 if (skb_bond_should_drop(skb))
2240 null_or_orig = orig_dev; /* deliver only exact match */
2241 else
2242 skb->dev = orig_dev->master;
2243 }
2244
2245 __get_cpu_var(netdev_rx_stat).total++;
2246
2247 skb_reset_network_header(skb);
2248 skb_reset_transport_header(skb);
2249 skb->mac_len = skb->network_header - skb->mac_header;
2250
2251 pt_prev = NULL;
2252
2253 rcu_read_lock();
2254
2255 /* Don't receive packets in an exiting network namespace */
2256 if (!net_alive(dev_net(skb->dev)))
2257 goto out;
2258
2259#ifdef CONFIG_NET_CLS_ACT
2260 if (skb->tc_verd & TC_NCLS) {
2261 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2262 goto ncls;
2263 }
2264#endif
2265
2266 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2267 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2268 ptype->dev == orig_dev) {
2269 if (pt_prev)
2270 ret = deliver_skb(skb, pt_prev, orig_dev);
2271 pt_prev = ptype;
2272 }
2273 }
2274
2275#ifdef CONFIG_NET_CLS_ACT
2276 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2277 if (!skb)
2278 goto out;
2279ncls:
2280#endif
2281
2282 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2283 if (!skb)
2284 goto out;
2285 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2286 if (!skb)
2287 goto out;
2288
2289 type = skb->protocol;
2290 list_for_each_entry_rcu(ptype,
2291 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2292 if (ptype->type == type &&
2293 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2294 ptype->dev == orig_dev)) {
2295 if (pt_prev)
2296 ret = deliver_skb(skb, pt_prev, orig_dev);
2297 pt_prev = ptype;
2298 }
2299 }
2300
2301 if (pt_prev) {
2302 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2303 } else {
2304 kfree_skb(skb);
2305 /* Jamal, now you will not able to escape explaining
2306 * me how you were going to use this. :-)
2307 */
2308 ret = NET_RX_DROP;
2309 }
2310
2311out:
2312 rcu_read_unlock();
2313 return ret;
2314}
2315
2316/* Network device is going away, flush any packets still pending */
2317static void flush_backlog(void *arg)
2318{
2319 struct net_device *dev = arg;
2320 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2321 struct sk_buff *skb, *tmp;
2322
2323 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2324 if (skb->dev == dev) {
2325 __skb_unlink(skb, &queue->input_pkt_queue);
2326 kfree_skb(skb);
2327 }
2328}
2329
2330static int process_backlog(struct napi_struct *napi, int quota)
2331{
2332 int work = 0;
2333 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2334 unsigned long start_time = jiffies;
2335
2336 napi->weight = weight_p;
2337 do {
2338 struct sk_buff *skb;
2339
2340 local_irq_disable();
2341 skb = __skb_dequeue(&queue->input_pkt_queue);
2342 if (!skb) {
2343 __napi_complete(napi);
2344 local_irq_enable();
2345 break;
2346 }
2347 local_irq_enable();
2348
2349 netif_receive_skb(skb);
2350 } while (++work < quota && jiffies == start_time);
2351
2352 return work;
2353}
2354
2355/**
2356 * __napi_schedule - schedule for receive
2357 * @n: entry to schedule
2358 *
2359 * The entry's receive function will be scheduled to run
2360 */
2361void __napi_schedule(struct napi_struct *n)
2362{
2363 unsigned long flags;
2364
2365 local_irq_save(flags);
2366 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2367 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2368 local_irq_restore(flags);
2369}
2370EXPORT_SYMBOL(__napi_schedule);
2371
2372
2373static void net_rx_action(struct softirq_action *h)
2374{
2375 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2376 unsigned long time_limit = jiffies + 2;
2377 int budget = netdev_budget;
2378 void *have;
2379
2380 local_irq_disable();
2381
2382 while (!list_empty(list)) {
2383 struct napi_struct *n;
2384 int work, weight;
2385
2386 /* If softirq window is exhuasted then punt.
2387 * Allow this to run for 2 jiffies since which will allow
2388 * an average latency of 1.5/HZ.
2389 */
2390 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2391 goto softnet_break;
2392
2393 local_irq_enable();
2394
2395 /* Even though interrupts have been re-enabled, this
2396 * access is safe because interrupts can only add new
2397 * entries to the tail of this list, and only ->poll()
2398 * calls can remove this head entry from the list.
2399 */
2400 n = list_entry(list->next, struct napi_struct, poll_list);
2401
2402 have = netpoll_poll_lock(n);
2403
2404 weight = n->weight;
2405
2406 /* This NAPI_STATE_SCHED test is for avoiding a race
2407 * with netpoll's poll_napi(). Only the entity which
2408 * obtains the lock and sees NAPI_STATE_SCHED set will
2409 * actually make the ->poll() call. Therefore we avoid
2410 * accidently calling ->poll() when NAPI is not scheduled.
2411 */
2412 work = 0;
2413 if (test_bit(NAPI_STATE_SCHED, &n->state))
2414 work = n->poll(n, weight);
2415
2416 WARN_ON_ONCE(work > weight);
2417
2418 budget -= work;
2419
2420 local_irq_disable();
2421
2422 /* Drivers must not modify the NAPI state if they
2423 * consume the entire weight. In such cases this code
2424 * still "owns" the NAPI instance and therefore can
2425 * move the instance around on the list at-will.
2426 */
2427 if (unlikely(work == weight)) {
2428 if (unlikely(napi_disable_pending(n)))
2429 __napi_complete(n);
2430 else
2431 list_move_tail(&n->poll_list, list);
2432 }
2433
2434 netpoll_poll_unlock(have);
2435 }
2436out:
2437 local_irq_enable();
2438
2439#ifdef CONFIG_NET_DMA
2440 /*
2441 * There may not be any more sk_buffs coming right now, so push
2442 * any pending DMA copies to hardware
2443 */
2444 if (!cpus_empty(net_dma.channel_mask)) {
2445 int chan_idx;
2446 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2447 struct dma_chan *chan = net_dma.channels[chan_idx];
2448 if (chan)
2449 dma_async_memcpy_issue_pending(chan);
2450 }
2451 }
2452#endif
2453
2454 return;
2455
2456softnet_break:
2457 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2458 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2459 goto out;
2460}
2461
2462static gifconf_func_t * gifconf_list [NPROTO];
2463
2464/**
2465 * register_gifconf - register a SIOCGIF handler
2466 * @family: Address family
2467 * @gifconf: Function handler
2468 *
2469 * Register protocol dependent address dumping routines. The handler
2470 * that is passed must not be freed or reused until it has been replaced
2471 * by another handler.
2472 */
2473int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2474{
2475 if (family >= NPROTO)
2476 return -EINVAL;
2477 gifconf_list[family] = gifconf;
2478 return 0;
2479}
2480
2481
2482/*
2483 * Map an interface index to its name (SIOCGIFNAME)
2484 */
2485
2486/*
2487 * We need this ioctl for efficient implementation of the
2488 * if_indextoname() function required by the IPv6 API. Without
2489 * it, we would have to search all the interfaces to find a
2490 * match. --pb
2491 */
2492
2493static int dev_ifname(struct net *net, struct ifreq __user *arg)
2494{
2495 struct net_device *dev;
2496 struct ifreq ifr;
2497
2498 /*
2499 * Fetch the caller's info block.
2500 */
2501
2502 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2503 return -EFAULT;
2504
2505 read_lock(&dev_base_lock);
2506 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2507 if (!dev) {
2508 read_unlock(&dev_base_lock);
2509 return -ENODEV;
2510 }
2511
2512 strcpy(ifr.ifr_name, dev->name);
2513 read_unlock(&dev_base_lock);
2514
2515 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2516 return -EFAULT;
2517 return 0;
2518}
2519
2520/*
2521 * Perform a SIOCGIFCONF call. This structure will change
2522 * size eventually, and there is nothing I can do about it.
2523 * Thus we will need a 'compatibility mode'.
2524 */
2525
2526static int dev_ifconf(struct net *net, char __user *arg)
2527{
2528 struct ifconf ifc;
2529 struct net_device *dev;
2530 char __user *pos;
2531 int len;
2532 int total;
2533 int i;
2534
2535 /*
2536 * Fetch the caller's info block.
2537 */
2538
2539 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2540 return -EFAULT;
2541
2542 pos = ifc.ifc_buf;
2543 len = ifc.ifc_len;
2544
2545 /*
2546 * Loop over the interfaces, and write an info block for each.
2547 */
2548
2549 total = 0;
2550 for_each_netdev(net, dev) {
2551 for (i = 0; i < NPROTO; i++) {
2552 if (gifconf_list[i]) {
2553 int done;
2554 if (!pos)
2555 done = gifconf_list[i](dev, NULL, 0);
2556 else
2557 done = gifconf_list[i](dev, pos + total,
2558 len - total);
2559 if (done < 0)
2560 return -EFAULT;
2561 total += done;
2562 }
2563 }
2564 }
2565
2566 /*
2567 * All done. Write the updated control block back to the caller.
2568 */
2569 ifc.ifc_len = total;
2570
2571 /*
2572 * Both BSD and Solaris return 0 here, so we do too.
2573 */
2574 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2575}
2576
2577#ifdef CONFIG_PROC_FS
2578/*
2579 * This is invoked by the /proc filesystem handler to display a device
2580 * in detail.
2581 */
2582void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2583 __acquires(dev_base_lock)
2584{
2585 struct net *net = seq_file_net(seq);
2586 loff_t off;
2587 struct net_device *dev;
2588
2589 read_lock(&dev_base_lock);
2590 if (!*pos)
2591 return SEQ_START_TOKEN;
2592
2593 off = 1;
2594 for_each_netdev(net, dev)
2595 if (off++ == *pos)
2596 return dev;
2597
2598 return NULL;
2599}
2600
2601void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2602{
2603 struct net *net = seq_file_net(seq);
2604 ++*pos;
2605 return v == SEQ_START_TOKEN ?
2606 first_net_device(net) : next_net_device((struct net_device *)v);
2607}
2608
2609void dev_seq_stop(struct seq_file *seq, void *v)
2610 __releases(dev_base_lock)
2611{
2612 read_unlock(&dev_base_lock);
2613}
2614
2615static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2616{
2617 struct net_device_stats *stats = dev->get_stats(dev);
2618
2619 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2620 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2621 dev->name, stats->rx_bytes, stats->rx_packets,
2622 stats->rx_errors,
2623 stats->rx_dropped + stats->rx_missed_errors,
2624 stats->rx_fifo_errors,
2625 stats->rx_length_errors + stats->rx_over_errors +
2626 stats->rx_crc_errors + stats->rx_frame_errors,
2627 stats->rx_compressed, stats->multicast,
2628 stats->tx_bytes, stats->tx_packets,
2629 stats->tx_errors, stats->tx_dropped,
2630 stats->tx_fifo_errors, stats->collisions,
2631 stats->tx_carrier_errors +
2632 stats->tx_aborted_errors +
2633 stats->tx_window_errors +
2634 stats->tx_heartbeat_errors,
2635 stats->tx_compressed);
2636}
2637
2638/*
2639 * Called from the PROCfs module. This now uses the new arbitrary sized
2640 * /proc/net interface to create /proc/net/dev
2641 */
2642static int dev_seq_show(struct seq_file *seq, void *v)
2643{
2644 if (v == SEQ_START_TOKEN)
2645 seq_puts(seq, "Inter-| Receive "
2646 " | Transmit\n"
2647 " face |bytes packets errs drop fifo frame "
2648 "compressed multicast|bytes packets errs "
2649 "drop fifo colls carrier compressed\n");
2650 else
2651 dev_seq_printf_stats(seq, v);
2652 return 0;
2653}
2654
2655static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2656{
2657 struct netif_rx_stats *rc = NULL;
2658
2659 while (*pos < nr_cpu_ids)
2660 if (cpu_online(*pos)) {
2661 rc = &per_cpu(netdev_rx_stat, *pos);
2662 break;
2663 } else
2664 ++*pos;
2665 return rc;
2666}
2667
2668static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2669{
2670 return softnet_get_online(pos);
2671}
2672
2673static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2674{
2675 ++*pos;
2676 return softnet_get_online(pos);
2677}
2678
2679static void softnet_seq_stop(struct seq_file *seq, void *v)
2680{
2681}
2682
2683static int softnet_seq_show(struct seq_file *seq, void *v)
2684{
2685 struct netif_rx_stats *s = v;
2686
2687 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2688 s->total, s->dropped, s->time_squeeze, 0,
2689 0, 0, 0, 0, /* was fastroute */
2690 s->cpu_collision );
2691 return 0;
2692}
2693
2694static const struct seq_operations dev_seq_ops = {
2695 .start = dev_seq_start,
2696 .next = dev_seq_next,
2697 .stop = dev_seq_stop,
2698 .show = dev_seq_show,
2699};
2700
2701static int dev_seq_open(struct inode *inode, struct file *file)
2702{
2703 return seq_open_net(inode, file, &dev_seq_ops,
2704 sizeof(struct seq_net_private));
2705}
2706
2707static const struct file_operations dev_seq_fops = {
2708 .owner = THIS_MODULE,
2709 .open = dev_seq_open,
2710 .read = seq_read,
2711 .llseek = seq_lseek,
2712 .release = seq_release_net,
2713};
2714
2715static const struct seq_operations softnet_seq_ops = {
2716 .start = softnet_seq_start,
2717 .next = softnet_seq_next,
2718 .stop = softnet_seq_stop,
2719 .show = softnet_seq_show,
2720};
2721
2722static int softnet_seq_open(struct inode *inode, struct file *file)
2723{
2724 return seq_open(file, &softnet_seq_ops);
2725}
2726
2727static const struct file_operations softnet_seq_fops = {
2728 .owner = THIS_MODULE,
2729 .open = softnet_seq_open,
2730 .read = seq_read,
2731 .llseek = seq_lseek,
2732 .release = seq_release,
2733};
2734
2735static void *ptype_get_idx(loff_t pos)
2736{
2737 struct packet_type *pt = NULL;
2738 loff_t i = 0;
2739 int t;
2740
2741 list_for_each_entry_rcu(pt, &ptype_all, list) {
2742 if (i == pos)
2743 return pt;
2744 ++i;
2745 }
2746
2747 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2748 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2749 if (i == pos)
2750 return pt;
2751 ++i;
2752 }
2753 }
2754 return NULL;
2755}
2756
2757static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2758 __acquires(RCU)
2759{
2760 rcu_read_lock();
2761 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2762}
2763
2764static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2765{
2766 struct packet_type *pt;
2767 struct list_head *nxt;
2768 int hash;
2769
2770 ++*pos;
2771 if (v == SEQ_START_TOKEN)
2772 return ptype_get_idx(0);
2773
2774 pt = v;
2775 nxt = pt->list.next;
2776 if (pt->type == htons(ETH_P_ALL)) {
2777 if (nxt != &ptype_all)
2778 goto found;
2779 hash = 0;
2780 nxt = ptype_base[0].next;
2781 } else
2782 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2783
2784 while (nxt == &ptype_base[hash]) {
2785 if (++hash >= PTYPE_HASH_SIZE)
2786 return NULL;
2787 nxt = ptype_base[hash].next;
2788 }
2789found:
2790 return list_entry(nxt, struct packet_type, list);
2791}
2792
2793static void ptype_seq_stop(struct seq_file *seq, void *v)
2794 __releases(RCU)
2795{
2796 rcu_read_unlock();
2797}
2798
2799static void ptype_seq_decode(struct seq_file *seq, void *sym)
2800{
2801#ifdef CONFIG_KALLSYMS
2802 unsigned long offset = 0, symsize;
2803 const char *symname;
2804 char *modname;
2805 char namebuf[128];
2806
2807 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2808 &modname, namebuf);
2809
2810 if (symname) {
2811 char *delim = ":";
2812
2813 if (!modname)
2814 modname = delim = "";
2815 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2816 symname, offset);
2817 return;
2818 }
2819#endif
2820
2821 seq_printf(seq, "[%p]", sym);
2822}
2823
2824static int ptype_seq_show(struct seq_file *seq, void *v)
2825{
2826 struct packet_type *pt = v;
2827
2828 if (v == SEQ_START_TOKEN)
2829 seq_puts(seq, "Type Device Function\n");
2830 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2831 if (pt->type == htons(ETH_P_ALL))
2832 seq_puts(seq, "ALL ");
2833 else
2834 seq_printf(seq, "%04x", ntohs(pt->type));
2835
2836 seq_printf(seq, " %-8s ",
2837 pt->dev ? pt->dev->name : "");
2838 ptype_seq_decode(seq, pt->func);
2839 seq_putc(seq, '\n');
2840 }
2841
2842 return 0;
2843}
2844
2845static const struct seq_operations ptype_seq_ops = {
2846 .start = ptype_seq_start,
2847 .next = ptype_seq_next,
2848 .stop = ptype_seq_stop,
2849 .show = ptype_seq_show,
2850};
2851
2852static int ptype_seq_open(struct inode *inode, struct file *file)
2853{
2854 return seq_open_net(inode, file, &ptype_seq_ops,
2855 sizeof(struct seq_net_private));
2856}
2857
2858static const struct file_operations ptype_seq_fops = {
2859 .owner = THIS_MODULE,
2860 .open = ptype_seq_open,
2861 .read = seq_read,
2862 .llseek = seq_lseek,
2863 .release = seq_release_net,
2864};
2865
2866
2867static int __net_init dev_proc_net_init(struct net *net)
2868{
2869 int rc = -ENOMEM;
2870
2871 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2872 goto out;
2873 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2874 goto out_dev;
2875 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2876 goto out_softnet;
2877
2878 if (wext_proc_init(net))
2879 goto out_ptype;
2880 rc = 0;
2881out:
2882 return rc;
2883out_ptype:
2884 proc_net_remove(net, "ptype");
2885out_softnet:
2886 proc_net_remove(net, "softnet_stat");
2887out_dev:
2888 proc_net_remove(net, "dev");
2889 goto out;
2890}
2891
2892static void __net_exit dev_proc_net_exit(struct net *net)
2893{
2894 wext_proc_exit(net);
2895
2896 proc_net_remove(net, "ptype");
2897 proc_net_remove(net, "softnet_stat");
2898 proc_net_remove(net, "dev");
2899}
2900
2901static struct pernet_operations __net_initdata dev_proc_ops = {
2902 .init = dev_proc_net_init,
2903 .exit = dev_proc_net_exit,
2904};
2905
2906static int __init dev_proc_init(void)
2907{
2908 return register_pernet_subsys(&dev_proc_ops);
2909}
2910#else
2911#define dev_proc_init() 0
2912#endif /* CONFIG_PROC_FS */
2913
2914
2915/**
2916 * netdev_set_master - set up master/slave pair
2917 * @slave: slave device
2918 * @master: new master device
2919 *
2920 * Changes the master device of the slave. Pass %NULL to break the
2921 * bonding. The caller must hold the RTNL semaphore. On a failure
2922 * a negative errno code is returned. On success the reference counts
2923 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2924 * function returns zero.
2925 */
2926int netdev_set_master(struct net_device *slave, struct net_device *master)
2927{
2928 struct net_device *old = slave->master;
2929
2930 ASSERT_RTNL();
2931
2932 if (master) {
2933 if (old)
2934 return -EBUSY;
2935 dev_hold(master);
2936 }
2937
2938 slave->master = master;
2939
2940 synchronize_net();
2941
2942 if (old)
2943 dev_put(old);
2944
2945 if (master)
2946 slave->flags |= IFF_SLAVE;
2947 else
2948 slave->flags &= ~IFF_SLAVE;
2949
2950 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2951 return 0;
2952}
2953
2954static void dev_change_rx_flags(struct net_device *dev, int flags)
2955{
2956 if (dev->flags & IFF_UP && dev->change_rx_flags)
2957 dev->change_rx_flags(dev, flags);
2958}
2959
2960static int __dev_set_promiscuity(struct net_device *dev, int inc)
2961{
2962 unsigned short old_flags = dev->flags;
2963
2964 ASSERT_RTNL();
2965
2966 dev->flags |= IFF_PROMISC;
2967 dev->promiscuity += inc;
2968 if (dev->promiscuity == 0) {
2969 /*
2970 * Avoid overflow.
2971 * If inc causes overflow, untouch promisc and return error.
2972 */
2973 if (inc < 0)
2974 dev->flags &= ~IFF_PROMISC;
2975 else {
2976 dev->promiscuity -= inc;
2977 printk(KERN_WARNING "%s: promiscuity touches roof, "
2978 "set promiscuity failed, promiscuity feature "
2979 "of device might be broken.\n", dev->name);
2980 return -EOVERFLOW;
2981 }
2982 }
2983 if (dev->flags != old_flags) {
2984 printk(KERN_INFO "device %s %s promiscuous mode\n",
2985 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2986 "left");
2987 if (audit_enabled)
2988 audit_log(current->audit_context, GFP_ATOMIC,
2989 AUDIT_ANOM_PROMISCUOUS,
2990 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2991 dev->name, (dev->flags & IFF_PROMISC),
2992 (old_flags & IFF_PROMISC),
2993 audit_get_loginuid(current),
2994 current->uid, current->gid,
2995 audit_get_sessionid(current));
2996
2997 dev_change_rx_flags(dev, IFF_PROMISC);
2998 }
2999 return 0;
3000}
3001
3002/**
3003 * dev_set_promiscuity - update promiscuity count on a device
3004 * @dev: device
3005 * @inc: modifier
3006 *
3007 * Add or remove promiscuity from a device. While the count in the device
3008 * remains above zero the interface remains promiscuous. Once it hits zero
3009 * the device reverts back to normal filtering operation. A negative inc
3010 * value is used to drop promiscuity on the device.
3011 * Return 0 if successful or a negative errno code on error.
3012 */
3013int dev_set_promiscuity(struct net_device *dev, int inc)
3014{
3015 unsigned short old_flags = dev->flags;
3016 int err;
3017
3018 err = __dev_set_promiscuity(dev, inc);
3019 if (err < 0)
3020 return err;
3021 if (dev->flags != old_flags)
3022 dev_set_rx_mode(dev);
3023 return err;
3024}
3025
3026/**
3027 * dev_set_allmulti - update allmulti count on a device
3028 * @dev: device
3029 * @inc: modifier
3030 *
3031 * Add or remove reception of all multicast frames to a device. While the
3032 * count in the device remains above zero the interface remains listening
3033 * to all interfaces. Once it hits zero the device reverts back to normal
3034 * filtering operation. A negative @inc value is used to drop the counter
3035 * when releasing a resource needing all multicasts.
3036 * Return 0 if successful or a negative errno code on error.
3037 */
3038
3039int dev_set_allmulti(struct net_device *dev, int inc)
3040{
3041 unsigned short old_flags = dev->flags;
3042
3043 ASSERT_RTNL();
3044
3045 dev->flags |= IFF_ALLMULTI;
3046 dev->allmulti += inc;
3047 if (dev->allmulti == 0) {
3048 /*
3049 * Avoid overflow.
3050 * If inc causes overflow, untouch allmulti and return error.
3051 */
3052 if (inc < 0)
3053 dev->flags &= ~IFF_ALLMULTI;
3054 else {
3055 dev->allmulti -= inc;
3056 printk(KERN_WARNING "%s: allmulti touches roof, "
3057 "set allmulti failed, allmulti feature of "
3058 "device might be broken.\n", dev->name);
3059 return -EOVERFLOW;
3060 }
3061 }
3062 if (dev->flags ^ old_flags) {
3063 dev_change_rx_flags(dev, IFF_ALLMULTI);
3064 dev_set_rx_mode(dev);
3065 }
3066 return 0;
3067}
3068
3069/*
3070 * Upload unicast and multicast address lists to device and
3071 * configure RX filtering. When the device doesn't support unicast
3072 * filtering it is put in promiscuous mode while unicast addresses
3073 * are present.
3074 */
3075void __dev_set_rx_mode(struct net_device *dev)
3076{
3077 /* dev_open will call this function so the list will stay sane. */
3078 if (!(dev->flags&IFF_UP))
3079 return;
3080
3081 if (!netif_device_present(dev))
3082 return;
3083
3084 if (dev->set_rx_mode)
3085 dev->set_rx_mode(dev);
3086 else {
3087 /* Unicast addresses changes may only happen under the rtnl,
3088 * therefore calling __dev_set_promiscuity here is safe.
3089 */
3090 if (dev->uc_count > 0 && !dev->uc_promisc) {
3091 __dev_set_promiscuity(dev, 1);
3092 dev->uc_promisc = 1;
3093 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3094 __dev_set_promiscuity(dev, -1);
3095 dev->uc_promisc = 0;
3096 }
3097
3098 if (dev->set_multicast_list)
3099 dev->set_multicast_list(dev);
3100 }
3101}
3102
3103void dev_set_rx_mode(struct net_device *dev)
3104{
3105 netif_addr_lock_bh(dev);
3106 __dev_set_rx_mode(dev);
3107 netif_addr_unlock_bh(dev);
3108}
3109
3110int __dev_addr_delete(struct dev_addr_list **list, int *count,
3111 void *addr, int alen, int glbl)
3112{
3113 struct dev_addr_list *da;
3114
3115 for (; (da = *list) != NULL; list = &da->next) {
3116 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3117 alen == da->da_addrlen) {
3118 if (glbl) {
3119 int old_glbl = da->da_gusers;
3120 da->da_gusers = 0;
3121 if (old_glbl == 0)
3122 break;
3123 }
3124 if (--da->da_users)
3125 return 0;
3126
3127 *list = da->next;
3128 kfree(da);
3129 (*count)--;
3130 return 0;
3131 }
3132 }
3133 return -ENOENT;
3134}
3135
3136int __dev_addr_add(struct dev_addr_list **list, int *count,
3137 void *addr, int alen, int glbl)
3138{
3139 struct dev_addr_list *da;
3140
3141 for (da = *list; da != NULL; da = da->next) {
3142 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3143 da->da_addrlen == alen) {
3144 if (glbl) {
3145 int old_glbl = da->da_gusers;
3146 da->da_gusers = 1;
3147 if (old_glbl)
3148 return 0;
3149 }
3150 da->da_users++;
3151 return 0;
3152 }
3153 }
3154
3155 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3156 if (da == NULL)
3157 return -ENOMEM;
3158 memcpy(da->da_addr, addr, alen);
3159 da->da_addrlen = alen;
3160 da->da_users = 1;
3161 da->da_gusers = glbl ? 1 : 0;
3162 da->next = *list;
3163 *list = da;
3164 (*count)++;
3165 return 0;
3166}
3167
3168/**
3169 * dev_unicast_delete - Release secondary unicast address.
3170 * @dev: device
3171 * @addr: address to delete
3172 * @alen: length of @addr
3173 *
3174 * Release reference to a secondary unicast address and remove it
3175 * from the device if the reference count drops to zero.
3176 *
3177 * The caller must hold the rtnl_mutex.
3178 */
3179int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3180{
3181 int err;
3182
3183 ASSERT_RTNL();
3184
3185 netif_addr_lock_bh(dev);
3186 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3187 if (!err)
3188 __dev_set_rx_mode(dev);
3189 netif_addr_unlock_bh(dev);
3190 return err;
3191}
3192EXPORT_SYMBOL(dev_unicast_delete);
3193
3194/**
3195 * dev_unicast_add - add a secondary unicast address
3196 * @dev: device
3197 * @addr: address to add
3198 * @alen: length of @addr
3199 *
3200 * Add a secondary unicast address to the device or increase
3201 * the reference count if it already exists.
3202 *
3203 * The caller must hold the rtnl_mutex.
3204 */
3205int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3206{
3207 int err;
3208
3209 ASSERT_RTNL();
3210
3211 netif_addr_lock_bh(dev);
3212 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3213 if (!err)
3214 __dev_set_rx_mode(dev);
3215 netif_addr_unlock_bh(dev);
3216 return err;
3217}
3218EXPORT_SYMBOL(dev_unicast_add);
3219
3220int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3221 struct dev_addr_list **from, int *from_count)
3222{
3223 struct dev_addr_list *da, *next;
3224 int err = 0;
3225
3226 da = *from;
3227 while (da != NULL) {
3228 next = da->next;
3229 if (!da->da_synced) {
3230 err = __dev_addr_add(to, to_count,
3231 da->da_addr, da->da_addrlen, 0);
3232 if (err < 0)
3233 break;
3234 da->da_synced = 1;
3235 da->da_users++;
3236 } else if (da->da_users == 1) {
3237 __dev_addr_delete(to, to_count,
3238 da->da_addr, da->da_addrlen, 0);
3239 __dev_addr_delete(from, from_count,
3240 da->da_addr, da->da_addrlen, 0);
3241 }
3242 da = next;
3243 }
3244 return err;
3245}
3246
3247void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3248 struct dev_addr_list **from, int *from_count)
3249{
3250 struct dev_addr_list *da, *next;
3251
3252 da = *from;
3253 while (da != NULL) {
3254 next = da->next;
3255 if (da->da_synced) {
3256 __dev_addr_delete(to, to_count,
3257 da->da_addr, da->da_addrlen, 0);
3258 da->da_synced = 0;
3259 __dev_addr_delete(from, from_count,
3260 da->da_addr, da->da_addrlen, 0);
3261 }
3262 da = next;
3263 }
3264}
3265
3266/**
3267 * dev_unicast_sync - Synchronize device's unicast list to another device
3268 * @to: destination device
3269 * @from: source device
3270 *
3271 * Add newly added addresses to the destination device and release
3272 * addresses that have no users left. The source device must be
3273 * locked by netif_tx_lock_bh.
3274 *
3275 * This function is intended to be called from the dev->set_rx_mode
3276 * function of layered software devices.
3277 */
3278int dev_unicast_sync(struct net_device *to, struct net_device *from)
3279{
3280 int err = 0;
3281
3282 netif_addr_lock_bh(to);
3283 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3284 &from->uc_list, &from->uc_count);
3285 if (!err)
3286 __dev_set_rx_mode(to);
3287 netif_addr_unlock_bh(to);
3288 return err;
3289}
3290EXPORT_SYMBOL(dev_unicast_sync);
3291
3292/**
3293 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3294 * @to: destination device
3295 * @from: source device
3296 *
3297 * Remove all addresses that were added to the destination device by
3298 * dev_unicast_sync(). This function is intended to be called from the
3299 * dev->stop function of layered software devices.
3300 */
3301void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3302{
3303 netif_addr_lock_bh(from);
3304 netif_addr_lock(to);
3305
3306 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3307 &from->uc_list, &from->uc_count);
3308 __dev_set_rx_mode(to);
3309
3310 netif_addr_unlock(to);
3311 netif_addr_unlock_bh(from);
3312}
3313EXPORT_SYMBOL(dev_unicast_unsync);
3314
3315static void __dev_addr_discard(struct dev_addr_list **list)
3316{
3317 struct dev_addr_list *tmp;
3318
3319 while (*list != NULL) {
3320 tmp = *list;
3321 *list = tmp->next;
3322 if (tmp->da_users > tmp->da_gusers)
3323 printk("__dev_addr_discard: address leakage! "
3324 "da_users=%d\n", tmp->da_users);
3325 kfree(tmp);
3326 }
3327}
3328
3329static void dev_addr_discard(struct net_device *dev)
3330{
3331 netif_addr_lock_bh(dev);
3332
3333 __dev_addr_discard(&dev->uc_list);
3334 dev->uc_count = 0;
3335
3336 __dev_addr_discard(&dev->mc_list);
3337 dev->mc_count = 0;
3338
3339 netif_addr_unlock_bh(dev);
3340}
3341
3342/**
3343 * dev_get_flags - get flags reported to userspace
3344 * @dev: device
3345 *
3346 * Get the combination of flag bits exported through APIs to userspace.
3347 */
3348unsigned dev_get_flags(const struct net_device *dev)
3349{
3350 unsigned flags;
3351
3352 flags = (dev->flags & ~(IFF_PROMISC |
3353 IFF_ALLMULTI |
3354 IFF_RUNNING |
3355 IFF_LOWER_UP |
3356 IFF_DORMANT)) |
3357 (dev->gflags & (IFF_PROMISC |
3358 IFF_ALLMULTI));
3359
3360 if (netif_running(dev)) {
3361 if (netif_oper_up(dev))
3362 flags |= IFF_RUNNING;
3363 if (netif_carrier_ok(dev))
3364 flags |= IFF_LOWER_UP;
3365 if (netif_dormant(dev))
3366 flags |= IFF_DORMANT;
3367 }
3368
3369 return flags;
3370}
3371
3372/**
3373 * dev_change_flags - change device settings
3374 * @dev: device
3375 * @flags: device state flags
3376 *
3377 * Change settings on device based state flags. The flags are
3378 * in the userspace exported format.
3379 */
3380int dev_change_flags(struct net_device *dev, unsigned flags)
3381{
3382 int ret, changes;
3383 int old_flags = dev->flags;
3384
3385 ASSERT_RTNL();
3386
3387 /*
3388 * Set the flags on our device.
3389 */
3390
3391 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3392 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3393 IFF_AUTOMEDIA)) |
3394 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3395 IFF_ALLMULTI));
3396
3397 /*
3398 * Load in the correct multicast list now the flags have changed.
3399 */
3400
3401 if ((old_flags ^ flags) & IFF_MULTICAST)
3402 dev_change_rx_flags(dev, IFF_MULTICAST);
3403
3404 dev_set_rx_mode(dev);
3405
3406 /*
3407 * Have we downed the interface. We handle IFF_UP ourselves
3408 * according to user attempts to set it, rather than blindly
3409 * setting it.
3410 */
3411
3412 ret = 0;
3413 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3414 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3415
3416 if (!ret)
3417 dev_set_rx_mode(dev);
3418 }
3419
3420 if (dev->flags & IFF_UP &&
3421 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3422 IFF_VOLATILE)))
3423 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3424
3425 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3426 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3427 dev->gflags ^= IFF_PROMISC;
3428 dev_set_promiscuity(dev, inc);
3429 }
3430
3431 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3432 is important. Some (broken) drivers set IFF_PROMISC, when
3433 IFF_ALLMULTI is requested not asking us and not reporting.
3434 */
3435 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3436 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3437 dev->gflags ^= IFF_ALLMULTI;
3438 dev_set_allmulti(dev, inc);
3439 }
3440
3441 /* Exclude state transition flags, already notified */
3442 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3443 if (changes)
3444 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3445
3446 return ret;
3447}
3448
3449/**
3450 * dev_set_mtu - Change maximum transfer unit
3451 * @dev: device
3452 * @new_mtu: new transfer unit
3453 *
3454 * Change the maximum transfer size of the network device.
3455 */
3456int dev_set_mtu(struct net_device *dev, int new_mtu)
3457{
3458 int err;
3459
3460 if (new_mtu == dev->mtu)
3461 return 0;
3462
3463 /* MTU must be positive. */
3464 if (new_mtu < 0)
3465 return -EINVAL;
3466
3467 if (!netif_device_present(dev))
3468 return -ENODEV;
3469
3470 err = 0;
3471 if (dev->change_mtu)
3472 err = dev->change_mtu(dev, new_mtu);
3473 else
3474 dev->mtu = new_mtu;
3475 if (!err && dev->flags & IFF_UP)
3476 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3477 return err;
3478}
3479
3480/**
3481 * dev_set_mac_address - Change Media Access Control Address
3482 * @dev: device
3483 * @sa: new address
3484 *
3485 * Change the hardware (MAC) address of the device
3486 */
3487int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3488{
3489 int err;
3490
3491 if (!dev->set_mac_address)
3492 return -EOPNOTSUPP;
3493 if (sa->sa_family != dev->type)
3494 return -EINVAL;
3495 if (!netif_device_present(dev))
3496 return -ENODEV;
3497 err = dev->set_mac_address(dev, sa);
3498 if (!err)
3499 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3500 return err;
3501}
3502
3503/*
3504 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3505 */
3506static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3507{
3508 int err;
3509 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3510
3511 if (!dev)
3512 return -ENODEV;
3513
3514 switch (cmd) {
3515 case SIOCGIFFLAGS: /* Get interface flags */
3516 ifr->ifr_flags = dev_get_flags(dev);
3517 return 0;
3518
3519 case SIOCGIFMETRIC: /* Get the metric on the interface
3520 (currently unused) */
3521 ifr->ifr_metric = 0;
3522 return 0;
3523
3524 case SIOCGIFMTU: /* Get the MTU of a device */
3525 ifr->ifr_mtu = dev->mtu;
3526 return 0;
3527
3528 case SIOCGIFHWADDR:
3529 if (!dev->addr_len)
3530 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3531 else
3532 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3533 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3534 ifr->ifr_hwaddr.sa_family = dev->type;
3535 return 0;
3536
3537 case SIOCGIFSLAVE:
3538 err = -EINVAL;
3539 break;
3540
3541 case SIOCGIFMAP:
3542 ifr->ifr_map.mem_start = dev->mem_start;
3543 ifr->ifr_map.mem_end = dev->mem_end;
3544 ifr->ifr_map.base_addr = dev->base_addr;
3545 ifr->ifr_map.irq = dev->irq;
3546 ifr->ifr_map.dma = dev->dma;
3547 ifr->ifr_map.port = dev->if_port;
3548 return 0;
3549
3550 case SIOCGIFINDEX:
3551 ifr->ifr_ifindex = dev->ifindex;
3552 return 0;
3553
3554 case SIOCGIFTXQLEN:
3555 ifr->ifr_qlen = dev->tx_queue_len;
3556 return 0;
3557
3558 default:
3559 /* dev_ioctl() should ensure this case
3560 * is never reached
3561 */
3562 WARN_ON(1);
3563 err = -EINVAL;
3564 break;
3565
3566 }
3567 return err;
3568}
3569
3570/*
3571 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3572 */
3573static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3574{
3575 int err;
3576 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3577
3578 if (!dev)
3579 return -ENODEV;
3580
3581 switch (cmd) {
3582 case SIOCSIFFLAGS: /* Set interface flags */
3583 return dev_change_flags(dev, ifr->ifr_flags);
3584
3585 case SIOCSIFMETRIC: /* Set the metric on the interface
3586 (currently unused) */
3587 return -EOPNOTSUPP;
3588
3589 case SIOCSIFMTU: /* Set the MTU of a device */
3590 return dev_set_mtu(dev, ifr->ifr_mtu);
3591
3592 case SIOCSIFHWADDR:
3593 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3594
3595 case SIOCSIFHWBROADCAST:
3596 if (ifr->ifr_hwaddr.sa_family != dev->type)
3597 return -EINVAL;
3598 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3599 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3600 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3601 return 0;
3602
3603 case SIOCSIFMAP:
3604 if (dev->set_config) {
3605 if (!netif_device_present(dev))
3606 return -ENODEV;
3607 return dev->set_config(dev, &ifr->ifr_map);
3608 }
3609 return -EOPNOTSUPP;
3610
3611 case SIOCADDMULTI:
3612 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3613 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3614 return -EINVAL;
3615 if (!netif_device_present(dev))
3616 return -ENODEV;
3617 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3618 dev->addr_len, 1);
3619
3620 case SIOCDELMULTI:
3621 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3622 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3623 return -EINVAL;
3624 if (!netif_device_present(dev))
3625 return -ENODEV;
3626 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3627 dev->addr_len, 1);
3628
3629 case SIOCSIFTXQLEN:
3630 if (ifr->ifr_qlen < 0)
3631 return -EINVAL;
3632 dev->tx_queue_len = ifr->ifr_qlen;
3633 return 0;
3634
3635 case SIOCSIFNAME:
3636 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3637 return dev_change_name(dev, ifr->ifr_newname);
3638
3639 /*
3640 * Unknown or private ioctl
3641 */
3642
3643 default:
3644 if ((cmd >= SIOCDEVPRIVATE &&
3645 cmd <= SIOCDEVPRIVATE + 15) ||
3646 cmd == SIOCBONDENSLAVE ||
3647 cmd == SIOCBONDRELEASE ||
3648 cmd == SIOCBONDSETHWADDR ||
3649 cmd == SIOCBONDSLAVEINFOQUERY ||
3650 cmd == SIOCBONDINFOQUERY ||
3651 cmd == SIOCBONDCHANGEACTIVE ||
3652 cmd == SIOCGMIIPHY ||
3653 cmd == SIOCGMIIREG ||
3654 cmd == SIOCSMIIREG ||
3655 cmd == SIOCBRADDIF ||
3656 cmd == SIOCBRDELIF ||
3657 cmd == SIOCWANDEV) {
3658 err = -EOPNOTSUPP;
3659 if (dev->do_ioctl) {
3660 if (netif_device_present(dev))
3661 err = dev->do_ioctl(dev, ifr,
3662 cmd);
3663 else
3664 err = -ENODEV;
3665 }
3666 } else
3667 err = -EINVAL;
3668
3669 }
3670 return err;
3671}
3672
3673/*
3674 * This function handles all "interface"-type I/O control requests. The actual
3675 * 'doing' part of this is dev_ifsioc above.
3676 */
3677
3678/**
3679 * dev_ioctl - network device ioctl
3680 * @net: the applicable net namespace
3681 * @cmd: command to issue
3682 * @arg: pointer to a struct ifreq in user space
3683 *
3684 * Issue ioctl functions to devices. This is normally called by the
3685 * user space syscall interfaces but can sometimes be useful for
3686 * other purposes. The return value is the return from the syscall if
3687 * positive or a negative errno code on error.
3688 */
3689
3690int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3691{
3692 struct ifreq ifr;
3693 int ret;
3694 char *colon;
3695
3696 /* One special case: SIOCGIFCONF takes ifconf argument
3697 and requires shared lock, because it sleeps writing
3698 to user space.
3699 */
3700
3701 if (cmd == SIOCGIFCONF) {
3702 rtnl_lock();
3703 ret = dev_ifconf(net, (char __user *) arg);
3704 rtnl_unlock();
3705 return ret;
3706 }
3707 if (cmd == SIOCGIFNAME)
3708 return dev_ifname(net, (struct ifreq __user *)arg);
3709
3710 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3711 return -EFAULT;
3712
3713 ifr.ifr_name[IFNAMSIZ-1] = 0;
3714
3715 colon = strchr(ifr.ifr_name, ':');
3716 if (colon)
3717 *colon = 0;
3718
3719 /*
3720 * See which interface the caller is talking about.
3721 */
3722
3723 switch (cmd) {
3724 /*
3725 * These ioctl calls:
3726 * - can be done by all.
3727 * - atomic and do not require locking.
3728 * - return a value
3729 */
3730 case SIOCGIFFLAGS:
3731 case SIOCGIFMETRIC:
3732 case SIOCGIFMTU:
3733 case SIOCGIFHWADDR:
3734 case SIOCGIFSLAVE:
3735 case SIOCGIFMAP:
3736 case SIOCGIFINDEX:
3737 case SIOCGIFTXQLEN:
3738 dev_load(net, ifr.ifr_name);
3739 read_lock(&dev_base_lock);
3740 ret = dev_ifsioc_locked(net, &ifr, cmd);
3741 read_unlock(&dev_base_lock);
3742 if (!ret) {
3743 if (colon)
3744 *colon = ':';
3745 if (copy_to_user(arg, &ifr,
3746 sizeof(struct ifreq)))
3747 ret = -EFAULT;
3748 }
3749 return ret;
3750
3751 case SIOCETHTOOL:
3752 dev_load(net, ifr.ifr_name);
3753 rtnl_lock();
3754 ret = dev_ethtool(net, &ifr);
3755 rtnl_unlock();
3756 if (!ret) {
3757 if (colon)
3758 *colon = ':';
3759 if (copy_to_user(arg, &ifr,
3760 sizeof(struct ifreq)))
3761 ret = -EFAULT;
3762 }
3763 return ret;
3764
3765 /*
3766 * These ioctl calls:
3767 * - require superuser power.
3768 * - require strict serialization.
3769 * - return a value
3770 */
3771 case SIOCGMIIPHY:
3772 case SIOCGMIIREG:
3773 case SIOCSIFNAME:
3774 if (!capable(CAP_NET_ADMIN))
3775 return -EPERM;
3776 dev_load(net, ifr.ifr_name);
3777 rtnl_lock();
3778 ret = dev_ifsioc(net, &ifr, cmd);
3779 rtnl_unlock();
3780 if (!ret) {
3781 if (colon)
3782 *colon = ':';
3783 if (copy_to_user(arg, &ifr,
3784 sizeof(struct ifreq)))
3785 ret = -EFAULT;
3786 }
3787 return ret;
3788
3789 /*
3790 * These ioctl calls:
3791 * - require superuser power.
3792 * - require strict serialization.
3793 * - do not return a value
3794 */
3795 case SIOCSIFFLAGS:
3796 case SIOCSIFMETRIC:
3797 case SIOCSIFMTU:
3798 case SIOCSIFMAP:
3799 case SIOCSIFHWADDR:
3800 case SIOCSIFSLAVE:
3801 case SIOCADDMULTI:
3802 case SIOCDELMULTI:
3803 case SIOCSIFHWBROADCAST:
3804 case SIOCSIFTXQLEN:
3805 case SIOCSMIIREG:
3806 case SIOCBONDENSLAVE:
3807 case SIOCBONDRELEASE:
3808 case SIOCBONDSETHWADDR:
3809 case SIOCBONDCHANGEACTIVE:
3810 case SIOCBRADDIF:
3811 case SIOCBRDELIF:
3812 if (!capable(CAP_NET_ADMIN))
3813 return -EPERM;
3814 /* fall through */
3815 case SIOCBONDSLAVEINFOQUERY:
3816 case SIOCBONDINFOQUERY:
3817 dev_load(net, ifr.ifr_name);
3818 rtnl_lock();
3819 ret = dev_ifsioc(net, &ifr, cmd);
3820 rtnl_unlock();
3821 return ret;
3822
3823 case SIOCGIFMEM:
3824 /* Get the per device memory space. We can add this but
3825 * currently do not support it */
3826 case SIOCSIFMEM:
3827 /* Set the per device memory buffer space.
3828 * Not applicable in our case */
3829 case SIOCSIFLINK:
3830 return -EINVAL;
3831
3832 /*
3833 * Unknown or private ioctl.
3834 */
3835 default:
3836 if (cmd == SIOCWANDEV ||
3837 (cmd >= SIOCDEVPRIVATE &&
3838 cmd <= SIOCDEVPRIVATE + 15)) {
3839 dev_load(net, ifr.ifr_name);
3840 rtnl_lock();
3841 ret = dev_ifsioc(net, &ifr, cmd);
3842 rtnl_unlock();
3843 if (!ret && copy_to_user(arg, &ifr,
3844 sizeof(struct ifreq)))
3845 ret = -EFAULT;
3846 return ret;
3847 }
3848 /* Take care of Wireless Extensions */
3849 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3850 return wext_handle_ioctl(net, &ifr, cmd, arg);
3851 return -EINVAL;
3852 }
3853}
3854
3855
3856/**
3857 * dev_new_index - allocate an ifindex
3858 * @net: the applicable net namespace
3859 *
3860 * Returns a suitable unique value for a new device interface
3861 * number. The caller must hold the rtnl semaphore or the
3862 * dev_base_lock to be sure it remains unique.
3863 */
3864static int dev_new_index(struct net *net)
3865{
3866 static int ifindex;
3867 for (;;) {
3868 if (++ifindex <= 0)
3869 ifindex = 1;
3870 if (!__dev_get_by_index(net, ifindex))
3871 return ifindex;
3872 }
3873}
3874
3875/* Delayed registration/unregisteration */
3876static LIST_HEAD(net_todo_list);
3877
3878static void net_set_todo(struct net_device *dev)
3879{
3880 list_add_tail(&dev->todo_list, &net_todo_list);
3881}
3882
3883static void rollback_registered(struct net_device *dev)
3884{
3885 BUG_ON(dev_boot_phase);
3886 ASSERT_RTNL();
3887
3888 /* Some devices call without registering for initialization unwind. */
3889 if (dev->reg_state == NETREG_UNINITIALIZED) {
3890 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3891 "was registered\n", dev->name, dev);
3892
3893 WARN_ON(1);
3894 return;
3895 }
3896
3897 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3898
3899 /* If device is running, close it first. */
3900 dev_close(dev);
3901
3902 /* And unlink it from device chain. */
3903 unlist_netdevice(dev);
3904
3905 dev->reg_state = NETREG_UNREGISTERING;
3906
3907 synchronize_net();
3908
3909 /* Shutdown queueing discipline. */
3910 dev_shutdown(dev);
3911
3912
3913 /* Notify protocols, that we are about to destroy
3914 this device. They should clean all the things.
3915 */
3916 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3917
3918 /*
3919 * Flush the unicast and multicast chains
3920 */
3921 dev_addr_discard(dev);
3922
3923 if (dev->uninit)
3924 dev->uninit(dev);
3925
3926 /* Notifier chain MUST detach us from master device. */
3927 WARN_ON(dev->master);
3928
3929 /* Remove entries from kobject tree */
3930 netdev_unregister_kobject(dev);
3931
3932 synchronize_net();
3933
3934 dev_put(dev);
3935}
3936
3937static void __netdev_init_queue_locks_one(struct net_device *dev,
3938 struct netdev_queue *dev_queue,
3939 void *_unused)
3940{
3941 spin_lock_init(&dev_queue->_xmit_lock);
3942 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3943 dev_queue->xmit_lock_owner = -1;
3944}
3945
3946static void netdev_init_queue_locks(struct net_device *dev)
3947{
3948 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3949 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3950}
3951
3952unsigned long netdev_fix_features(unsigned long features, const char *name)
3953{
3954 /* Fix illegal SG+CSUM combinations. */
3955 if ((features & NETIF_F_SG) &&
3956 !(features & NETIF_F_ALL_CSUM)) {
3957 if (name)
3958 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
3959 "checksum feature.\n", name);
3960 features &= ~NETIF_F_SG;
3961 }
3962
3963 /* TSO requires that SG is present as well. */
3964 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
3965 if (name)
3966 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
3967 "SG feature.\n", name);
3968 features &= ~NETIF_F_TSO;
3969 }
3970
3971 if (features & NETIF_F_UFO) {
3972 if (!(features & NETIF_F_GEN_CSUM)) {
3973 if (name)
3974 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
3975 "since no NETIF_F_HW_CSUM feature.\n",
3976 name);
3977 features &= ~NETIF_F_UFO;
3978 }
3979
3980 if (!(features & NETIF_F_SG)) {
3981 if (name)
3982 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
3983 "since no NETIF_F_SG feature.\n", name);
3984 features &= ~NETIF_F_UFO;
3985 }
3986 }
3987
3988 return features;
3989}
3990EXPORT_SYMBOL(netdev_fix_features);
3991
3992/**
3993 * register_netdevice - register a network device
3994 * @dev: device to register
3995 *
3996 * Take a completed network device structure and add it to the kernel
3997 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3998 * chain. 0 is returned on success. A negative errno code is returned
3999 * on a failure to set up the device, or if the name is a duplicate.
4000 *
4001 * Callers must hold the rtnl semaphore. You may want
4002 * register_netdev() instead of this.
4003 *
4004 * BUGS:
4005 * The locking appears insufficient to guarantee two parallel registers
4006 * will not get the same name.
4007 */
4008
4009int register_netdevice(struct net_device *dev)
4010{
4011 struct hlist_head *head;
4012 struct hlist_node *p;
4013 int ret;
4014 struct net *net;
4015
4016 BUG_ON(dev_boot_phase);
4017 ASSERT_RTNL();
4018
4019 might_sleep();
4020
4021 /* When net_device's are persistent, this will be fatal. */
4022 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4023 BUG_ON(!dev_net(dev));
4024 net = dev_net(dev);
4025
4026 spin_lock_init(&dev->addr_list_lock);
4027 netdev_set_addr_lockdep_class(dev);
4028 netdev_init_queue_locks(dev);
4029
4030 dev->iflink = -1;
4031
4032 /* Init, if this function is available */
4033 if (dev->init) {
4034 ret = dev->init(dev);
4035 if (ret) {
4036 if (ret > 0)
4037 ret = -EIO;
4038 goto out;
4039 }
4040 }
4041
4042 if (!dev_valid_name(dev->name)) {
4043 ret = -EINVAL;
4044 goto err_uninit;
4045 }
4046
4047 dev->ifindex = dev_new_index(net);
4048 if (dev->iflink == -1)
4049 dev->iflink = dev->ifindex;
4050
4051 /* Check for existence of name */
4052 head = dev_name_hash(net, dev->name);
4053 hlist_for_each(p, head) {
4054 struct net_device *d
4055 = hlist_entry(p, struct net_device, name_hlist);
4056 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4057 ret = -EEXIST;
4058 goto err_uninit;
4059 }
4060 }
4061
4062 /* Fix illegal checksum combinations */
4063 if ((dev->features & NETIF_F_HW_CSUM) &&
4064 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4065 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4066 dev->name);
4067 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4068 }
4069
4070 if ((dev->features & NETIF_F_NO_CSUM) &&
4071 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4072 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4073 dev->name);
4074 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4075 }
4076
4077 dev->features = netdev_fix_features(dev->features, dev->name);
4078
4079 /* Enable software GSO if SG is supported. */
4080 if (dev->features & NETIF_F_SG)
4081 dev->features |= NETIF_F_GSO;
4082
4083 netdev_initialize_kobject(dev);
4084 ret = netdev_register_kobject(dev);
4085 if (ret)
4086 goto err_uninit;
4087 dev->reg_state = NETREG_REGISTERED;
4088
4089 /*
4090 * Default initial state at registry is that the
4091 * device is present.
4092 */
4093
4094 set_bit(__LINK_STATE_PRESENT, &dev->state);
4095
4096 dev_init_scheduler(dev);
4097 dev_hold(dev);
4098 list_netdevice(dev);
4099
4100 /* Notify protocols, that a new device appeared. */
4101 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4102 ret = notifier_to_errno(ret);
4103 if (ret) {
4104 rollback_registered(dev);
4105 dev->reg_state = NETREG_UNREGISTERED;
4106 }
4107
4108out:
4109 return ret;
4110
4111err_uninit:
4112 if (dev->uninit)
4113 dev->uninit(dev);
4114 goto out;
4115}
4116
4117/**
4118 * register_netdev - register a network device
4119 * @dev: device to register
4120 *
4121 * Take a completed network device structure and add it to the kernel
4122 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4123 * chain. 0 is returned on success. A negative errno code is returned
4124 * on a failure to set up the device, or if the name is a duplicate.
4125 *
4126 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4127 * and expands the device name if you passed a format string to
4128 * alloc_netdev.
4129 */
4130int register_netdev(struct net_device *dev)
4131{
4132 int err;
4133
4134 rtnl_lock();
4135
4136 /*
4137 * If the name is a format string the caller wants us to do a
4138 * name allocation.
4139 */
4140 if (strchr(dev->name, '%')) {
4141 err = dev_alloc_name(dev, dev->name);
4142 if (err < 0)
4143 goto out;
4144 }
4145
4146 err = register_netdevice(dev);
4147out:
4148 rtnl_unlock();
4149 return err;
4150}
4151EXPORT_SYMBOL(register_netdev);
4152
4153/*
4154 * netdev_wait_allrefs - wait until all references are gone.
4155 *
4156 * This is called when unregistering network devices.
4157 *
4158 * Any protocol or device that holds a reference should register
4159 * for netdevice notification, and cleanup and put back the
4160 * reference if they receive an UNREGISTER event.
4161 * We can get stuck here if buggy protocols don't correctly
4162 * call dev_put.
4163 */
4164static void netdev_wait_allrefs(struct net_device *dev)
4165{
4166 unsigned long rebroadcast_time, warning_time;
4167
4168 rebroadcast_time = warning_time = jiffies;
4169 while (atomic_read(&dev->refcnt) != 0) {
4170 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4171 rtnl_lock();
4172
4173 /* Rebroadcast unregister notification */
4174 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4175
4176 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4177 &dev->state)) {
4178 /* We must not have linkwatch events
4179 * pending on unregister. If this
4180 * happens, we simply run the queue
4181 * unscheduled, resulting in a noop
4182 * for this device.
4183 */
4184 linkwatch_run_queue();
4185 }
4186
4187 __rtnl_unlock();
4188
4189 rebroadcast_time = jiffies;
4190 }
4191
4192 msleep(250);
4193
4194 if (time_after(jiffies, warning_time + 10 * HZ)) {
4195 printk(KERN_EMERG "unregister_netdevice: "
4196 "waiting for %s to become free. Usage "
4197 "count = %d\n",
4198 dev->name, atomic_read(&dev->refcnt));
4199 warning_time = jiffies;
4200 }
4201 }
4202}
4203
4204/* The sequence is:
4205 *
4206 * rtnl_lock();
4207 * ...
4208 * register_netdevice(x1);
4209 * register_netdevice(x2);
4210 * ...
4211 * unregister_netdevice(y1);
4212 * unregister_netdevice(y2);
4213 * ...
4214 * rtnl_unlock();
4215 * free_netdev(y1);
4216 * free_netdev(y2);
4217 *
4218 * We are invoked by rtnl_unlock().
4219 * This allows us to deal with problems:
4220 * 1) We can delete sysfs objects which invoke hotplug
4221 * without deadlocking with linkwatch via keventd.
4222 * 2) Since we run with the RTNL semaphore not held, we can sleep
4223 * safely in order to wait for the netdev refcnt to drop to zero.
4224 *
4225 * We must not return until all unregister events added during
4226 * the interval the lock was held have been completed.
4227 */
4228void netdev_run_todo(void)
4229{
4230 struct list_head list;
4231
4232 /* Snapshot list, allow later requests */
4233 list_replace_init(&net_todo_list, &list);
4234
4235 __rtnl_unlock();
4236
4237 while (!list_empty(&list)) {
4238 struct net_device *dev
4239 = list_entry(list.next, struct net_device, todo_list);
4240 list_del(&dev->todo_list);
4241
4242 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4243 printk(KERN_ERR "network todo '%s' but state %d\n",
4244 dev->name, dev->reg_state);
4245 dump_stack();
4246 continue;
4247 }
4248
4249 dev->reg_state = NETREG_UNREGISTERED;
4250
4251 on_each_cpu(flush_backlog, dev, 1);
4252
4253 netdev_wait_allrefs(dev);
4254
4255 /* paranoia */
4256 BUG_ON(atomic_read(&dev->refcnt));
4257 WARN_ON(dev->ip_ptr);
4258 WARN_ON(dev->ip6_ptr);
4259 WARN_ON(dev->dn_ptr);
4260
4261 if (dev->destructor)
4262 dev->destructor(dev);
4263
4264 /* Free network device */
4265 kobject_put(&dev->dev.kobj);
4266 }
4267}
4268
4269static struct net_device_stats *internal_stats(struct net_device *dev)
4270{
4271 return &dev->stats;
4272}
4273
4274static void netdev_init_one_queue(struct net_device *dev,
4275 struct netdev_queue *queue,
4276 void *_unused)
4277{
4278 queue->dev = dev;
4279}
4280
4281static void netdev_init_queues(struct net_device *dev)
4282{
4283 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4284 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4285 spin_lock_init(&dev->tx_global_lock);
4286}
4287
4288/**
4289 * alloc_netdev_mq - allocate network device
4290 * @sizeof_priv: size of private data to allocate space for
4291 * @name: device name format string
4292 * @setup: callback to initialize device
4293 * @queue_count: the number of subqueues to allocate
4294 *
4295 * Allocates a struct net_device with private data area for driver use
4296 * and performs basic initialization. Also allocates subquue structs
4297 * for each queue on the device at the end of the netdevice.
4298 */
4299struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4300 void (*setup)(struct net_device *), unsigned int queue_count)
4301{
4302 struct netdev_queue *tx;
4303 struct net_device *dev;
4304 size_t alloc_size;
4305 void *p;
4306
4307 BUG_ON(strlen(name) >= sizeof(dev->name));
4308
4309 alloc_size = sizeof(struct net_device);
4310 if (sizeof_priv) {
4311 /* ensure 32-byte alignment of private area */
4312 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4313 alloc_size += sizeof_priv;
4314 }
4315 /* ensure 32-byte alignment of whole construct */
4316 alloc_size += NETDEV_ALIGN_CONST;
4317
4318 p = kzalloc(alloc_size, GFP_KERNEL);
4319 if (!p) {
4320 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4321 return NULL;
4322 }
4323
4324 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4325 if (!tx) {
4326 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4327 "tx qdiscs.\n");
4328 kfree(p);
4329 return NULL;
4330 }
4331
4332 dev = (struct net_device *)
4333 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4334 dev->padded = (char *)dev - (char *)p;
4335 dev_net_set(dev, &init_net);
4336
4337 dev->_tx = tx;
4338 dev->num_tx_queues = queue_count;
4339 dev->real_num_tx_queues = queue_count;
4340
4341 if (sizeof_priv) {
4342 dev->priv = ((char *)dev +
4343 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4344 & ~NETDEV_ALIGN_CONST));
4345 }
4346
4347 dev->gso_max_size = GSO_MAX_SIZE;
4348
4349 netdev_init_queues(dev);
4350
4351 dev->get_stats = internal_stats;
4352 netpoll_netdev_init(dev);
4353 setup(dev);
4354 strcpy(dev->name, name);
4355 return dev;
4356}
4357EXPORT_SYMBOL(alloc_netdev_mq);
4358
4359/**
4360 * free_netdev - free network device
4361 * @dev: device
4362 *
4363 * This function does the last stage of destroying an allocated device
4364 * interface. The reference to the device object is released.
4365 * If this is the last reference then it will be freed.
4366 */
4367void free_netdev(struct net_device *dev)
4368{
4369 release_net(dev_net(dev));
4370
4371 kfree(dev->_tx);
4372
4373 /* Compatibility with error handling in drivers */
4374 if (dev->reg_state == NETREG_UNINITIALIZED) {
4375 kfree((char *)dev - dev->padded);
4376 return;
4377 }
4378
4379 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4380 dev->reg_state = NETREG_RELEASED;
4381
4382 /* will free via device release */
4383 put_device(&dev->dev);
4384}
4385
4386/**
4387 * synchronize_net - Synchronize with packet receive processing
4388 *
4389 * Wait for packets currently being received to be done.
4390 * Does not block later packets from starting.
4391 */
4392void synchronize_net(void)
4393{
4394 might_sleep();
4395 synchronize_rcu();
4396}
4397
4398/**
4399 * unregister_netdevice - remove device from the kernel
4400 * @dev: device
4401 *
4402 * This function shuts down a device interface and removes it
4403 * from the kernel tables.
4404 *
4405 * Callers must hold the rtnl semaphore. You may want
4406 * unregister_netdev() instead of this.
4407 */
4408
4409void unregister_netdevice(struct net_device *dev)
4410{
4411 ASSERT_RTNL();
4412
4413 rollback_registered(dev);
4414 /* Finish processing unregister after unlock */
4415 net_set_todo(dev);
4416}
4417
4418/**
4419 * unregister_netdev - remove device from the kernel
4420 * @dev: device
4421 *
4422 * This function shuts down a device interface and removes it
4423 * from the kernel tables.
4424 *
4425 * This is just a wrapper for unregister_netdevice that takes
4426 * the rtnl semaphore. In general you want to use this and not
4427 * unregister_netdevice.
4428 */
4429void unregister_netdev(struct net_device *dev)
4430{
4431 rtnl_lock();
4432 unregister_netdevice(dev);
4433 rtnl_unlock();
4434}
4435
4436EXPORT_SYMBOL(unregister_netdev);
4437
4438/**
4439 * dev_change_net_namespace - move device to different nethost namespace
4440 * @dev: device
4441 * @net: network namespace
4442 * @pat: If not NULL name pattern to try if the current device name
4443 * is already taken in the destination network namespace.
4444 *
4445 * This function shuts down a device interface and moves it
4446 * to a new network namespace. On success 0 is returned, on
4447 * a failure a netagive errno code is returned.
4448 *
4449 * Callers must hold the rtnl semaphore.
4450 */
4451
4452int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4453{
4454 char buf[IFNAMSIZ];
4455 const char *destname;
4456 int err;
4457
4458 ASSERT_RTNL();
4459
4460 /* Don't allow namespace local devices to be moved. */
4461 err = -EINVAL;
4462 if (dev->features & NETIF_F_NETNS_LOCAL)
4463 goto out;
4464
4465#ifdef CONFIG_SYSFS
4466 /* Don't allow real devices to be moved when sysfs
4467 * is enabled.
4468 */
4469 err = -EINVAL;
4470 if (dev->dev.parent)
4471 goto out;
4472#endif
4473
4474 /* Ensure the device has been registrered */
4475 err = -EINVAL;
4476 if (dev->reg_state != NETREG_REGISTERED)
4477 goto out;
4478
4479 /* Get out if there is nothing todo */
4480 err = 0;
4481 if (net_eq(dev_net(dev), net))
4482 goto out;
4483
4484 /* Pick the destination device name, and ensure
4485 * we can use it in the destination network namespace.
4486 */
4487 err = -EEXIST;
4488 destname = dev->name;
4489 if (__dev_get_by_name(net, destname)) {
4490 /* We get here if we can't use the current device name */
4491 if (!pat)
4492 goto out;
4493 if (!dev_valid_name(pat))
4494 goto out;
4495 if (strchr(pat, '%')) {
4496 if (__dev_alloc_name(net, pat, buf) < 0)
4497 goto out;
4498 destname = buf;
4499 } else
4500 destname = pat;
4501 if (__dev_get_by_name(net, destname))
4502 goto out;
4503 }
4504
4505 /*
4506 * And now a mini version of register_netdevice unregister_netdevice.
4507 */
4508
4509 /* If device is running close it first. */
4510 dev_close(dev);
4511
4512 /* And unlink it from device chain */
4513 err = -ENODEV;
4514 unlist_netdevice(dev);
4515
4516 synchronize_net();
4517
4518 /* Shutdown queueing discipline. */
4519 dev_shutdown(dev);
4520
4521 /* Notify protocols, that we are about to destroy
4522 this device. They should clean all the things.
4523 */
4524 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4525
4526 /*
4527 * Flush the unicast and multicast chains
4528 */
4529 dev_addr_discard(dev);
4530
4531 netdev_unregister_kobject(dev);
4532
4533 /* Actually switch the network namespace */
4534 dev_net_set(dev, net);
4535
4536 /* Assign the new device name */
4537 if (destname != dev->name)
4538 strcpy(dev->name, destname);
4539
4540 /* If there is an ifindex conflict assign a new one */
4541 if (__dev_get_by_index(net, dev->ifindex)) {
4542 int iflink = (dev->iflink == dev->ifindex);
4543 dev->ifindex = dev_new_index(net);
4544 if (iflink)
4545 dev->iflink = dev->ifindex;
4546 }
4547
4548 /* Fixup kobjects */
4549 err = netdev_register_kobject(dev);
4550 WARN_ON(err);
4551
4552 /* Add the device back in the hashes */
4553 list_netdevice(dev);
4554
4555 /* Notify protocols, that a new device appeared. */
4556 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4557
4558 synchronize_net();
4559 err = 0;
4560out:
4561 return err;
4562}
4563
4564static int dev_cpu_callback(struct notifier_block *nfb,
4565 unsigned long action,
4566 void *ocpu)
4567{
4568 struct sk_buff **list_skb;
4569 struct Qdisc **list_net;
4570 struct sk_buff *skb;
4571 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4572 struct softnet_data *sd, *oldsd;
4573
4574 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4575 return NOTIFY_OK;
4576
4577 local_irq_disable();
4578 cpu = smp_processor_id();
4579 sd = &per_cpu(softnet_data, cpu);
4580 oldsd = &per_cpu(softnet_data, oldcpu);
4581
4582 /* Find end of our completion_queue. */
4583 list_skb = &sd->completion_queue;
4584 while (*list_skb)
4585 list_skb = &(*list_skb)->next;
4586 /* Append completion queue from offline CPU. */
4587 *list_skb = oldsd->completion_queue;
4588 oldsd->completion_queue = NULL;
4589
4590 /* Find end of our output_queue. */
4591 list_net = &sd->output_queue;
4592 while (*list_net)
4593 list_net = &(*list_net)->next_sched;
4594 /* Append output queue from offline CPU. */
4595 *list_net = oldsd->output_queue;
4596 oldsd->output_queue = NULL;
4597
4598 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4599 local_irq_enable();
4600
4601 /* Process offline CPU's input_pkt_queue */
4602 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4603 netif_rx(skb);
4604
4605 return NOTIFY_OK;
4606}
4607
4608#ifdef CONFIG_NET_DMA
4609/**
4610 * net_dma_rebalance - try to maintain one DMA channel per CPU
4611 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4612 *
4613 * This is called when the number of channels allocated to the net_dma client
4614 * changes. The net_dma client tries to have one DMA channel per CPU.
4615 */
4616
4617static void net_dma_rebalance(struct net_dma *net_dma)
4618{
4619 unsigned int cpu, i, n, chan_idx;
4620 struct dma_chan *chan;
4621
4622 if (cpus_empty(net_dma->channel_mask)) {
4623 for_each_online_cpu(cpu)
4624 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4625 return;
4626 }
4627
4628 i = 0;
4629 cpu = first_cpu(cpu_online_map);
4630
4631 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4632 chan = net_dma->channels[chan_idx];
4633
4634 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4635 + (i < (num_online_cpus() %
4636 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4637
4638 while(n) {
4639 per_cpu(softnet_data, cpu).net_dma = chan;
4640 cpu = next_cpu(cpu, cpu_online_map);
4641 n--;
4642 }
4643 i++;
4644 }
4645}
4646
4647/**
4648 * netdev_dma_event - event callback for the net_dma_client
4649 * @client: should always be net_dma_client
4650 * @chan: DMA channel for the event
4651 * @state: DMA state to be handled
4652 */
4653static enum dma_state_client
4654netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4655 enum dma_state state)
4656{
4657 int i, found = 0, pos = -1;
4658 struct net_dma *net_dma =
4659 container_of(client, struct net_dma, client);
4660 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4661
4662 spin_lock(&net_dma->lock);
4663 switch (state) {
4664 case DMA_RESOURCE_AVAILABLE:
4665 for (i = 0; i < nr_cpu_ids; i++)
4666 if (net_dma->channels[i] == chan) {
4667 found = 1;
4668 break;
4669 } else if (net_dma->channels[i] == NULL && pos < 0)
4670 pos = i;
4671
4672 if (!found && pos >= 0) {
4673 ack = DMA_ACK;
4674 net_dma->channels[pos] = chan;
4675 cpu_set(pos, net_dma->channel_mask);
4676 net_dma_rebalance(net_dma);
4677 }
4678 break;
4679 case DMA_RESOURCE_REMOVED:
4680 for (i = 0; i < nr_cpu_ids; i++)
4681 if (net_dma->channels[i] == chan) {
4682 found = 1;
4683 pos = i;
4684 break;
4685 }
4686
4687 if (found) {
4688 ack = DMA_ACK;
4689 cpu_clear(pos, net_dma->channel_mask);
4690 net_dma->channels[i] = NULL;
4691 net_dma_rebalance(net_dma);
4692 }
4693 break;
4694 default:
4695 break;
4696 }
4697 spin_unlock(&net_dma->lock);
4698
4699 return ack;
4700}
4701
4702/**
4703 * netdev_dma_register - register the networking subsystem as a DMA client
4704 */
4705static int __init netdev_dma_register(void)
4706{
4707 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4708 GFP_KERNEL);
4709 if (unlikely(!net_dma.channels)) {
4710 printk(KERN_NOTICE
4711 "netdev_dma: no memory for net_dma.channels\n");
4712 return -ENOMEM;
4713 }
4714 spin_lock_init(&net_dma.lock);
4715 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4716 dma_async_client_register(&net_dma.client);
4717 dma_async_client_chan_request(&net_dma.client);
4718 return 0;
4719}
4720
4721#else
4722static int __init netdev_dma_register(void) { return -ENODEV; }
4723#endif /* CONFIG_NET_DMA */
4724
4725/**
4726 * netdev_increment_features - increment feature set by one
4727 * @all: current feature set
4728 * @one: new feature set
4729 * @mask: mask feature set
4730 *
4731 * Computes a new feature set after adding a device with feature set
4732 * @one to the master device with current feature set @all. Will not
4733 * enable anything that is off in @mask. Returns the new feature set.
4734 */
4735unsigned long netdev_increment_features(unsigned long all, unsigned long one,
4736 unsigned long mask)
4737{
4738 /* If device needs checksumming, downgrade to it. */
4739 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4740 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
4741 else if (mask & NETIF_F_ALL_CSUM) {
4742 /* If one device supports v4/v6 checksumming, set for all. */
4743 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
4744 !(all & NETIF_F_GEN_CSUM)) {
4745 all &= ~NETIF_F_ALL_CSUM;
4746 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
4747 }
4748
4749 /* If one device supports hw checksumming, set for all. */
4750 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
4751 all &= ~NETIF_F_ALL_CSUM;
4752 all |= NETIF_F_HW_CSUM;
4753 }
4754 }
4755
4756 one |= NETIF_F_ALL_CSUM;
4757
4758 one |= all & NETIF_F_ONE_FOR_ALL;
4759 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
4760 all |= one & mask & NETIF_F_ONE_FOR_ALL;
4761
4762 return all;
4763}
4764EXPORT_SYMBOL(netdev_increment_features);
4765
4766static struct hlist_head *netdev_create_hash(void)
4767{
4768 int i;
4769 struct hlist_head *hash;
4770
4771 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4772 if (hash != NULL)
4773 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4774 INIT_HLIST_HEAD(&hash[i]);
4775
4776 return hash;
4777}
4778
4779/* Initialize per network namespace state */
4780static int __net_init netdev_init(struct net *net)
4781{
4782 INIT_LIST_HEAD(&net->dev_base_head);
4783
4784 net->dev_name_head = netdev_create_hash();
4785 if (net->dev_name_head == NULL)
4786 goto err_name;
4787
4788 net->dev_index_head = netdev_create_hash();
4789 if (net->dev_index_head == NULL)
4790 goto err_idx;
4791
4792 return 0;
4793
4794err_idx:
4795 kfree(net->dev_name_head);
4796err_name:
4797 return -ENOMEM;
4798}
4799
4800/**
4801 * netdev_drivername - network driver for the device
4802 * @dev: network device
4803 * @buffer: buffer for resulting name
4804 * @len: size of buffer
4805 *
4806 * Determine network driver for device.
4807 */
4808char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
4809{
4810 const struct device_driver *driver;
4811 const struct device *parent;
4812
4813 if (len <= 0 || !buffer)
4814 return buffer;
4815 buffer[0] = 0;
4816
4817 parent = dev->dev.parent;
4818
4819 if (!parent)
4820 return buffer;
4821
4822 driver = parent->driver;
4823 if (driver && driver->name)
4824 strlcpy(buffer, driver->name, len);
4825 return buffer;
4826}
4827
4828static void __net_exit netdev_exit(struct net *net)
4829{
4830 kfree(net->dev_name_head);
4831 kfree(net->dev_index_head);
4832}
4833
4834static struct pernet_operations __net_initdata netdev_net_ops = {
4835 .init = netdev_init,
4836 .exit = netdev_exit,
4837};
4838
4839static void __net_exit default_device_exit(struct net *net)
4840{
4841 struct net_device *dev, *next;
4842 /*
4843 * Push all migratable of the network devices back to the
4844 * initial network namespace
4845 */
4846 rtnl_lock();
4847 for_each_netdev_safe(net, dev, next) {
4848 int err;
4849 char fb_name[IFNAMSIZ];
4850
4851 /* Ignore unmoveable devices (i.e. loopback) */
4852 if (dev->features & NETIF_F_NETNS_LOCAL)
4853 continue;
4854
4855 /* Push remaing network devices to init_net */
4856 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4857 err = dev_change_net_namespace(dev, &init_net, fb_name);
4858 if (err) {
4859 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4860 __func__, dev->name, err);
4861 BUG();
4862 }
4863 }
4864 rtnl_unlock();
4865}
4866
4867static struct pernet_operations __net_initdata default_device_ops = {
4868 .exit = default_device_exit,
4869};
4870
4871/*
4872 * Initialize the DEV module. At boot time this walks the device list and
4873 * unhooks any devices that fail to initialise (normally hardware not
4874 * present) and leaves us with a valid list of present and active devices.
4875 *
4876 */
4877
4878/*
4879 * This is called single threaded during boot, so no need
4880 * to take the rtnl semaphore.
4881 */
4882static int __init net_dev_init(void)
4883{
4884 int i, rc = -ENOMEM;
4885
4886 BUG_ON(!dev_boot_phase);
4887
4888 if (dev_proc_init())
4889 goto out;
4890
4891 if (netdev_kobject_init())
4892 goto out;
4893
4894 INIT_LIST_HEAD(&ptype_all);
4895 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4896 INIT_LIST_HEAD(&ptype_base[i]);
4897
4898 if (register_pernet_subsys(&netdev_net_ops))
4899 goto out;
4900
4901 if (register_pernet_device(&default_device_ops))
4902 goto out;
4903
4904 /*
4905 * Initialise the packet receive queues.
4906 */
4907
4908 for_each_possible_cpu(i) {
4909 struct softnet_data *queue;
4910
4911 queue = &per_cpu(softnet_data, i);
4912 skb_queue_head_init(&queue->input_pkt_queue);
4913 queue->completion_queue = NULL;
4914 INIT_LIST_HEAD(&queue->poll_list);
4915
4916 queue->backlog.poll = process_backlog;
4917 queue->backlog.weight = weight_p;
4918 }
4919
4920 netdev_dma_register();
4921
4922 dev_boot_phase = 0;
4923
4924 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4925 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4926
4927 hotcpu_notifier(dev_cpu_callback, 0);
4928 dst_init();
4929 dev_mcast_init();
4930 rc = 0;
4931out:
4932 return rc;
4933}
4934
4935subsys_initcall(net_dev_init);
4936
4937EXPORT_SYMBOL(__dev_get_by_index);
4938EXPORT_SYMBOL(__dev_get_by_name);
4939EXPORT_SYMBOL(__dev_remove_pack);
4940EXPORT_SYMBOL(dev_valid_name);
4941EXPORT_SYMBOL(dev_add_pack);
4942EXPORT_SYMBOL(dev_alloc_name);
4943EXPORT_SYMBOL(dev_close);
4944EXPORT_SYMBOL(dev_get_by_flags);
4945EXPORT_SYMBOL(dev_get_by_index);
4946EXPORT_SYMBOL(dev_get_by_name);
4947EXPORT_SYMBOL(dev_open);
4948EXPORT_SYMBOL(dev_queue_xmit);
4949EXPORT_SYMBOL(dev_remove_pack);
4950EXPORT_SYMBOL(dev_set_allmulti);
4951EXPORT_SYMBOL(dev_set_promiscuity);
4952EXPORT_SYMBOL(dev_change_flags);
4953EXPORT_SYMBOL(dev_set_mtu);
4954EXPORT_SYMBOL(dev_set_mac_address);
4955EXPORT_SYMBOL(free_netdev);
4956EXPORT_SYMBOL(netdev_boot_setup_check);
4957EXPORT_SYMBOL(netdev_set_master);
4958EXPORT_SYMBOL(netdev_state_change);
4959EXPORT_SYMBOL(netif_receive_skb);
4960EXPORT_SYMBOL(netif_rx);
4961EXPORT_SYMBOL(register_gifconf);
4962EXPORT_SYMBOL(register_netdevice);
4963EXPORT_SYMBOL(register_netdevice_notifier);
4964EXPORT_SYMBOL(skb_checksum_help);
4965EXPORT_SYMBOL(synchronize_net);
4966EXPORT_SYMBOL(unregister_netdevice);
4967EXPORT_SYMBOL(unregister_netdevice_notifier);
4968EXPORT_SYMBOL(net_enable_timestamp);
4969EXPORT_SYMBOL(net_disable_timestamp);
4970EXPORT_SYMBOL(dev_get_flags);
4971
4972#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4973EXPORT_SYMBOL(br_handle_frame_hook);
4974EXPORT_SYMBOL(br_fdb_get_hook);
4975EXPORT_SYMBOL(br_fdb_put_hook);
4976#endif
4977
4978EXPORT_SYMBOL(dev_load);
4979
4980EXPORT_PER_CPU_SYMBOL(softnet_data);