]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - fs/namei.c
fix mismerge with Trond's stuff (create_mnt_ns() export is gone now)
[net-next-2.6.git] / fs / namei.c
... / ...
CommitLineData
1/*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/namei.h>
22#include <linux/quotaops.h>
23#include <linux/pagemap.h>
24#include <linux/fsnotify.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/ima.h>
28#include <linux/syscalls.h>
29#include <linux/mount.h>
30#include <linux/audit.h>
31#include <linux/capability.h>
32#include <linux/file.h>
33#include <linux/fcntl.h>
34#include <linux/device_cgroup.h>
35#include <linux/fs_struct.h>
36#include <asm/uaccess.h>
37
38#define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39
40/* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105/*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111/* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118static int do_getname(const char __user *filename, char *page)
119{
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138}
139
140char * getname(const char __user * filename)
141{
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157}
158
159#ifdef CONFIG_AUDITSYSCALL
160void putname(const char *name)
161{
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166}
167EXPORT_SYMBOL(putname);
168#endif
169
170/*
171 * This does basic POSIX ACL permission checking
172 */
173static int acl_permission_check(struct inode *inode, int mask,
174 int (*check_acl)(struct inode *inode, int mask))
175{
176 umode_t mode = inode->i_mode;
177
178 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179
180 if (current_fsuid() == inode->i_uid)
181 mode >>= 6;
182 else {
183 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
184 int error = check_acl(inode, mask);
185 if (error != -EAGAIN)
186 return error;
187 }
188
189 if (in_group_p(inode->i_gid))
190 mode >>= 3;
191 }
192
193 /*
194 * If the DACs are ok we don't need any capability check.
195 */
196 if ((mask & ~mode) == 0)
197 return 0;
198 return -EACCES;
199}
200
201/**
202 * generic_permission - check for access rights on a Posix-like filesystem
203 * @inode: inode to check access rights for
204 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
205 * @check_acl: optional callback to check for Posix ACLs
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things..
211 */
212int generic_permission(struct inode *inode, int mask,
213 int (*check_acl)(struct inode *inode, int mask))
214{
215 int ret;
216
217 /*
218 * Do the basic POSIX ACL permission checks.
219 */
220 ret = acl_permission_check(inode, mask, check_acl);
221 if (ret != -EACCES)
222 return ret;
223
224 /*
225 * Read/write DACs are always overridable.
226 * Executable DACs are overridable if at least one exec bit is set.
227 */
228 if (!(mask & MAY_EXEC) || execute_ok(inode))
229 if (capable(CAP_DAC_OVERRIDE))
230 return 0;
231
232 /*
233 * Searching includes executable on directories, else just read.
234 */
235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 if (capable(CAP_DAC_READ_SEARCH))
237 return 0;
238
239 return -EACCES;
240}
241
242/**
243 * inode_permission - check for access rights to a given inode
244 * @inode: inode to check permission on
245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246 *
247 * Used to check for read/write/execute permissions on an inode.
248 * We use "fsuid" for this, letting us set arbitrary permissions
249 * for filesystem access without changing the "normal" uids which
250 * are used for other things.
251 */
252int inode_permission(struct inode *inode, int mask)
253{
254 int retval;
255
256 if (mask & MAY_WRITE) {
257 umode_t mode = inode->i_mode;
258
259 /*
260 * Nobody gets write access to a read-only fs.
261 */
262 if (IS_RDONLY(inode) &&
263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 return -EROFS;
265
266 /*
267 * Nobody gets write access to an immutable file.
268 */
269 if (IS_IMMUTABLE(inode))
270 return -EACCES;
271 }
272
273 if (inode->i_op->permission)
274 retval = inode->i_op->permission(inode, mask);
275 else
276 retval = generic_permission(inode, mask, inode->i_op->check_acl);
277
278 if (retval)
279 return retval;
280
281 retval = devcgroup_inode_permission(inode, mask);
282 if (retval)
283 return retval;
284
285 return security_inode_permission(inode,
286 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
287}
288
289/**
290 * file_permission - check for additional access rights to a given file
291 * @file: file to check access rights for
292 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
293 *
294 * Used to check for read/write/execute permissions on an already opened
295 * file.
296 *
297 * Note:
298 * Do not use this function in new code. All access checks should
299 * be done using inode_permission().
300 */
301int file_permission(struct file *file, int mask)
302{
303 return inode_permission(file->f_path.dentry->d_inode, mask);
304}
305
306/*
307 * get_write_access() gets write permission for a file.
308 * put_write_access() releases this write permission.
309 * This is used for regular files.
310 * We cannot support write (and maybe mmap read-write shared) accesses and
311 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
312 * can have the following values:
313 * 0: no writers, no VM_DENYWRITE mappings
314 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
315 * > 0: (i_writecount) users are writing to the file.
316 *
317 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
318 * except for the cases where we don't hold i_writecount yet. Then we need to
319 * use {get,deny}_write_access() - these functions check the sign and refuse
320 * to do the change if sign is wrong. Exclusion between them is provided by
321 * the inode->i_lock spinlock.
322 */
323
324int get_write_access(struct inode * inode)
325{
326 spin_lock(&inode->i_lock);
327 if (atomic_read(&inode->i_writecount) < 0) {
328 spin_unlock(&inode->i_lock);
329 return -ETXTBSY;
330 }
331 atomic_inc(&inode->i_writecount);
332 spin_unlock(&inode->i_lock);
333
334 return 0;
335}
336
337int deny_write_access(struct file * file)
338{
339 struct inode *inode = file->f_path.dentry->d_inode;
340
341 spin_lock(&inode->i_lock);
342 if (atomic_read(&inode->i_writecount) > 0) {
343 spin_unlock(&inode->i_lock);
344 return -ETXTBSY;
345 }
346 atomic_dec(&inode->i_writecount);
347 spin_unlock(&inode->i_lock);
348
349 return 0;
350}
351
352/**
353 * path_get - get a reference to a path
354 * @path: path to get the reference to
355 *
356 * Given a path increment the reference count to the dentry and the vfsmount.
357 */
358void path_get(struct path *path)
359{
360 mntget(path->mnt);
361 dget(path->dentry);
362}
363EXPORT_SYMBOL(path_get);
364
365/**
366 * path_put - put a reference to a path
367 * @path: path to put the reference to
368 *
369 * Given a path decrement the reference count to the dentry and the vfsmount.
370 */
371void path_put(struct path *path)
372{
373 dput(path->dentry);
374 mntput(path->mnt);
375}
376EXPORT_SYMBOL(path_put);
377
378/**
379 * release_open_intent - free up open intent resources
380 * @nd: pointer to nameidata
381 */
382void release_open_intent(struct nameidata *nd)
383{
384 if (nd->intent.open.file->f_path.dentry == NULL)
385 put_filp(nd->intent.open.file);
386 else
387 fput(nd->intent.open.file);
388}
389
390static inline struct dentry *
391do_revalidate(struct dentry *dentry, struct nameidata *nd)
392{
393 int status = dentry->d_op->d_revalidate(dentry, nd);
394 if (unlikely(status <= 0)) {
395 /*
396 * The dentry failed validation.
397 * If d_revalidate returned 0 attempt to invalidate
398 * the dentry otherwise d_revalidate is asking us
399 * to return a fail status.
400 */
401 if (!status) {
402 if (!d_invalidate(dentry)) {
403 dput(dentry);
404 dentry = NULL;
405 }
406 } else {
407 dput(dentry);
408 dentry = ERR_PTR(status);
409 }
410 }
411 return dentry;
412}
413
414/*
415 * Internal lookup() using the new generic dcache.
416 * SMP-safe
417 */
418static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
419{
420 struct dentry * dentry = __d_lookup(parent, name);
421
422 /* lockess __d_lookup may fail due to concurrent d_move()
423 * in some unrelated directory, so try with d_lookup
424 */
425 if (!dentry)
426 dentry = d_lookup(parent, name);
427
428 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
429 dentry = do_revalidate(dentry, nd);
430
431 return dentry;
432}
433
434/*
435 * Short-cut version of permission(), for calling by
436 * path_walk(), when dcache lock is held. Combines parts
437 * of permission() and generic_permission(), and tests ONLY for
438 * MAY_EXEC permission.
439 *
440 * If appropriate, check DAC only. If not appropriate, or
441 * short-cut DAC fails, then call permission() to do more
442 * complete permission check.
443 */
444static int exec_permission_lite(struct inode *inode)
445{
446 int ret;
447
448 if (inode->i_op->permission) {
449 ret = inode->i_op->permission(inode, MAY_EXEC);
450 if (!ret)
451 goto ok;
452 return ret;
453 }
454 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
455 if (!ret)
456 goto ok;
457
458 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
459 goto ok;
460
461 return ret;
462ok:
463 return security_inode_permission(inode, MAY_EXEC);
464}
465
466/*
467 * This is called when everything else fails, and we actually have
468 * to go to the low-level filesystem to find out what we should do..
469 *
470 * We get the directory semaphore, and after getting that we also
471 * make sure that nobody added the entry to the dcache in the meantime..
472 * SMP-safe
473 */
474static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
475{
476 struct dentry * result;
477 struct inode *dir = parent->d_inode;
478
479 mutex_lock(&dir->i_mutex);
480 /*
481 * First re-do the cached lookup just in case it was created
482 * while we waited for the directory semaphore..
483 *
484 * FIXME! This could use version numbering or similar to
485 * avoid unnecessary cache lookups.
486 *
487 * The "dcache_lock" is purely to protect the RCU list walker
488 * from concurrent renames at this point (we mustn't get false
489 * negatives from the RCU list walk here, unlike the optimistic
490 * fast walk).
491 *
492 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
493 */
494 result = d_lookup(parent, name);
495 if (!result) {
496 struct dentry *dentry;
497
498 /* Don't create child dentry for a dead directory. */
499 result = ERR_PTR(-ENOENT);
500 if (IS_DEADDIR(dir))
501 goto out_unlock;
502
503 dentry = d_alloc(parent, name);
504 result = ERR_PTR(-ENOMEM);
505 if (dentry) {
506 result = dir->i_op->lookup(dir, dentry, nd);
507 if (result)
508 dput(dentry);
509 else
510 result = dentry;
511 }
512out_unlock:
513 mutex_unlock(&dir->i_mutex);
514 return result;
515 }
516
517 /*
518 * Uhhuh! Nasty case: the cache was re-populated while
519 * we waited on the semaphore. Need to revalidate.
520 */
521 mutex_unlock(&dir->i_mutex);
522 if (result->d_op && result->d_op->d_revalidate) {
523 result = do_revalidate(result, nd);
524 if (!result)
525 result = ERR_PTR(-ENOENT);
526 }
527 return result;
528}
529
530static __always_inline void set_root(struct nameidata *nd)
531{
532 if (!nd->root.mnt) {
533 struct fs_struct *fs = current->fs;
534 read_lock(&fs->lock);
535 nd->root = fs->root;
536 path_get(&nd->root);
537 read_unlock(&fs->lock);
538 }
539}
540
541static int link_path_walk(const char *, struct nameidata *);
542
543static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
544{
545 int res = 0;
546 char *name;
547 if (IS_ERR(link))
548 goto fail;
549
550 if (*link == '/') {
551 set_root(nd);
552 path_put(&nd->path);
553 nd->path = nd->root;
554 path_get(&nd->root);
555 }
556
557 res = link_path_walk(link, nd);
558 if (nd->depth || res || nd->last_type!=LAST_NORM)
559 return res;
560 /*
561 * If it is an iterative symlinks resolution in open_namei() we
562 * have to copy the last component. And all that crap because of
563 * bloody create() on broken symlinks. Furrfu...
564 */
565 name = __getname();
566 if (unlikely(!name)) {
567 path_put(&nd->path);
568 return -ENOMEM;
569 }
570 strcpy(name, nd->last.name);
571 nd->last.name = name;
572 return 0;
573fail:
574 path_put(&nd->path);
575 return PTR_ERR(link);
576}
577
578static void path_put_conditional(struct path *path, struct nameidata *nd)
579{
580 dput(path->dentry);
581 if (path->mnt != nd->path.mnt)
582 mntput(path->mnt);
583}
584
585static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
586{
587 dput(nd->path.dentry);
588 if (nd->path.mnt != path->mnt)
589 mntput(nd->path.mnt);
590 nd->path.mnt = path->mnt;
591 nd->path.dentry = path->dentry;
592}
593
594static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
595{
596 int error;
597 void *cookie;
598 struct dentry *dentry = path->dentry;
599
600 touch_atime(path->mnt, dentry);
601 nd_set_link(nd, NULL);
602
603 if (path->mnt != nd->path.mnt) {
604 path_to_nameidata(path, nd);
605 dget(dentry);
606 }
607 mntget(path->mnt);
608 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
609 error = PTR_ERR(cookie);
610 if (!IS_ERR(cookie)) {
611 char *s = nd_get_link(nd);
612 error = 0;
613 if (s)
614 error = __vfs_follow_link(nd, s);
615 if (dentry->d_inode->i_op->put_link)
616 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
617 }
618 return error;
619}
620
621/*
622 * This limits recursive symlink follows to 8, while
623 * limiting consecutive symlinks to 40.
624 *
625 * Without that kind of total limit, nasty chains of consecutive
626 * symlinks can cause almost arbitrarily long lookups.
627 */
628static inline int do_follow_link(struct path *path, struct nameidata *nd)
629{
630 int err = -ELOOP;
631 if (current->link_count >= MAX_NESTED_LINKS)
632 goto loop;
633 if (current->total_link_count >= 40)
634 goto loop;
635 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
636 cond_resched();
637 err = security_inode_follow_link(path->dentry, nd);
638 if (err)
639 goto loop;
640 current->link_count++;
641 current->total_link_count++;
642 nd->depth++;
643 err = __do_follow_link(path, nd);
644 path_put(path);
645 current->link_count--;
646 nd->depth--;
647 return err;
648loop:
649 path_put_conditional(path, nd);
650 path_put(&nd->path);
651 return err;
652}
653
654int follow_up(struct path *path)
655{
656 struct vfsmount *parent;
657 struct dentry *mountpoint;
658 spin_lock(&vfsmount_lock);
659 parent = path->mnt->mnt_parent;
660 if (parent == path->mnt) {
661 spin_unlock(&vfsmount_lock);
662 return 0;
663 }
664 mntget(parent);
665 mountpoint = dget(path->mnt->mnt_mountpoint);
666 spin_unlock(&vfsmount_lock);
667 dput(path->dentry);
668 path->dentry = mountpoint;
669 mntput(path->mnt);
670 path->mnt = parent;
671 return 1;
672}
673
674/* no need for dcache_lock, as serialization is taken care in
675 * namespace.c
676 */
677static int __follow_mount(struct path *path)
678{
679 int res = 0;
680 while (d_mountpoint(path->dentry)) {
681 struct vfsmount *mounted = lookup_mnt(path);
682 if (!mounted)
683 break;
684 dput(path->dentry);
685 if (res)
686 mntput(path->mnt);
687 path->mnt = mounted;
688 path->dentry = dget(mounted->mnt_root);
689 res = 1;
690 }
691 return res;
692}
693
694static void follow_mount(struct path *path)
695{
696 while (d_mountpoint(path->dentry)) {
697 struct vfsmount *mounted = lookup_mnt(path);
698 if (!mounted)
699 break;
700 dput(path->dentry);
701 mntput(path->mnt);
702 path->mnt = mounted;
703 path->dentry = dget(mounted->mnt_root);
704 }
705}
706
707/* no need for dcache_lock, as serialization is taken care in
708 * namespace.c
709 */
710int follow_down(struct path *path)
711{
712 struct vfsmount *mounted;
713
714 mounted = lookup_mnt(path);
715 if (mounted) {
716 dput(path->dentry);
717 mntput(path->mnt);
718 path->mnt = mounted;
719 path->dentry = dget(mounted->mnt_root);
720 return 1;
721 }
722 return 0;
723}
724
725static __always_inline void follow_dotdot(struct nameidata *nd)
726{
727 set_root(nd);
728
729 while(1) {
730 struct vfsmount *parent;
731 struct dentry *old = nd->path.dentry;
732
733 if (nd->path.dentry == nd->root.dentry &&
734 nd->path.mnt == nd->root.mnt) {
735 break;
736 }
737 spin_lock(&dcache_lock);
738 if (nd->path.dentry != nd->path.mnt->mnt_root) {
739 nd->path.dentry = dget(nd->path.dentry->d_parent);
740 spin_unlock(&dcache_lock);
741 dput(old);
742 break;
743 }
744 spin_unlock(&dcache_lock);
745 spin_lock(&vfsmount_lock);
746 parent = nd->path.mnt->mnt_parent;
747 if (parent == nd->path.mnt) {
748 spin_unlock(&vfsmount_lock);
749 break;
750 }
751 mntget(parent);
752 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
753 spin_unlock(&vfsmount_lock);
754 dput(old);
755 mntput(nd->path.mnt);
756 nd->path.mnt = parent;
757 }
758 follow_mount(&nd->path);
759}
760
761/*
762 * It's more convoluted than I'd like it to be, but... it's still fairly
763 * small and for now I'd prefer to have fast path as straight as possible.
764 * It _is_ time-critical.
765 */
766static int do_lookup(struct nameidata *nd, struct qstr *name,
767 struct path *path)
768{
769 struct vfsmount *mnt = nd->path.mnt;
770 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
771
772 if (!dentry)
773 goto need_lookup;
774 if (dentry->d_op && dentry->d_op->d_revalidate)
775 goto need_revalidate;
776done:
777 path->mnt = mnt;
778 path->dentry = dentry;
779 __follow_mount(path);
780 return 0;
781
782need_lookup:
783 dentry = real_lookup(nd->path.dentry, name, nd);
784 if (IS_ERR(dentry))
785 goto fail;
786 goto done;
787
788need_revalidate:
789 dentry = do_revalidate(dentry, nd);
790 if (!dentry)
791 goto need_lookup;
792 if (IS_ERR(dentry))
793 goto fail;
794 goto done;
795
796fail:
797 return PTR_ERR(dentry);
798}
799
800/*
801 * Name resolution.
802 * This is the basic name resolution function, turning a pathname into
803 * the final dentry. We expect 'base' to be positive and a directory.
804 *
805 * Returns 0 and nd will have valid dentry and mnt on success.
806 * Returns error and drops reference to input namei data on failure.
807 */
808static int link_path_walk(const char *name, struct nameidata *nd)
809{
810 struct path next;
811 struct inode *inode;
812 int err;
813 unsigned int lookup_flags = nd->flags;
814
815 while (*name=='/')
816 name++;
817 if (!*name)
818 goto return_reval;
819
820 inode = nd->path.dentry->d_inode;
821 if (nd->depth)
822 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
823
824 /* At this point we know we have a real path component. */
825 for(;;) {
826 unsigned long hash;
827 struct qstr this;
828 unsigned int c;
829
830 nd->flags |= LOOKUP_CONTINUE;
831 err = exec_permission_lite(inode);
832 if (err)
833 break;
834
835 this.name = name;
836 c = *(const unsigned char *)name;
837
838 hash = init_name_hash();
839 do {
840 name++;
841 hash = partial_name_hash(c, hash);
842 c = *(const unsigned char *)name;
843 } while (c && (c != '/'));
844 this.len = name - (const char *) this.name;
845 this.hash = end_name_hash(hash);
846
847 /* remove trailing slashes? */
848 if (!c)
849 goto last_component;
850 while (*++name == '/');
851 if (!*name)
852 goto last_with_slashes;
853
854 /*
855 * "." and ".." are special - ".." especially so because it has
856 * to be able to know about the current root directory and
857 * parent relationships.
858 */
859 if (this.name[0] == '.') switch (this.len) {
860 default:
861 break;
862 case 2:
863 if (this.name[1] != '.')
864 break;
865 follow_dotdot(nd);
866 inode = nd->path.dentry->d_inode;
867 /* fallthrough */
868 case 1:
869 continue;
870 }
871 /*
872 * See if the low-level filesystem might want
873 * to use its own hash..
874 */
875 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
876 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
877 &this);
878 if (err < 0)
879 break;
880 }
881 /* This does the actual lookups.. */
882 err = do_lookup(nd, &this, &next);
883 if (err)
884 break;
885
886 err = -ENOENT;
887 inode = next.dentry->d_inode;
888 if (!inode)
889 goto out_dput;
890
891 if (inode->i_op->follow_link) {
892 err = do_follow_link(&next, nd);
893 if (err)
894 goto return_err;
895 err = -ENOENT;
896 inode = nd->path.dentry->d_inode;
897 if (!inode)
898 break;
899 } else
900 path_to_nameidata(&next, nd);
901 err = -ENOTDIR;
902 if (!inode->i_op->lookup)
903 break;
904 continue;
905 /* here ends the main loop */
906
907last_with_slashes:
908 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
909last_component:
910 /* Clear LOOKUP_CONTINUE iff it was previously unset */
911 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
912 if (lookup_flags & LOOKUP_PARENT)
913 goto lookup_parent;
914 if (this.name[0] == '.') switch (this.len) {
915 default:
916 break;
917 case 2:
918 if (this.name[1] != '.')
919 break;
920 follow_dotdot(nd);
921 inode = nd->path.dentry->d_inode;
922 /* fallthrough */
923 case 1:
924 goto return_reval;
925 }
926 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
927 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
928 &this);
929 if (err < 0)
930 break;
931 }
932 err = do_lookup(nd, &this, &next);
933 if (err)
934 break;
935 inode = next.dentry->d_inode;
936 if ((lookup_flags & LOOKUP_FOLLOW)
937 && inode && inode->i_op->follow_link) {
938 err = do_follow_link(&next, nd);
939 if (err)
940 goto return_err;
941 inode = nd->path.dentry->d_inode;
942 } else
943 path_to_nameidata(&next, nd);
944 err = -ENOENT;
945 if (!inode)
946 break;
947 if (lookup_flags & LOOKUP_DIRECTORY) {
948 err = -ENOTDIR;
949 if (!inode->i_op->lookup)
950 break;
951 }
952 goto return_base;
953lookup_parent:
954 nd->last = this;
955 nd->last_type = LAST_NORM;
956 if (this.name[0] != '.')
957 goto return_base;
958 if (this.len == 1)
959 nd->last_type = LAST_DOT;
960 else if (this.len == 2 && this.name[1] == '.')
961 nd->last_type = LAST_DOTDOT;
962 else
963 goto return_base;
964return_reval:
965 /*
966 * We bypassed the ordinary revalidation routines.
967 * We may need to check the cached dentry for staleness.
968 */
969 if (nd->path.dentry && nd->path.dentry->d_sb &&
970 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
971 err = -ESTALE;
972 /* Note: we do not d_invalidate() */
973 if (!nd->path.dentry->d_op->d_revalidate(
974 nd->path.dentry, nd))
975 break;
976 }
977return_base:
978 return 0;
979out_dput:
980 path_put_conditional(&next, nd);
981 break;
982 }
983 path_put(&nd->path);
984return_err:
985 return err;
986}
987
988static int path_walk(const char *name, struct nameidata *nd)
989{
990 struct path save = nd->path;
991 int result;
992
993 current->total_link_count = 0;
994
995 /* make sure the stuff we saved doesn't go away */
996 path_get(&save);
997
998 result = link_path_walk(name, nd);
999 if (result == -ESTALE) {
1000 /* nd->path had been dropped */
1001 current->total_link_count = 0;
1002 nd->path = save;
1003 path_get(&nd->path);
1004 nd->flags |= LOOKUP_REVAL;
1005 result = link_path_walk(name, nd);
1006 }
1007
1008 path_put(&save);
1009
1010 return result;
1011}
1012
1013static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1014{
1015 int retval = 0;
1016 int fput_needed;
1017 struct file *file;
1018
1019 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1020 nd->flags = flags;
1021 nd->depth = 0;
1022 nd->root.mnt = NULL;
1023
1024 if (*name=='/') {
1025 set_root(nd);
1026 nd->path = nd->root;
1027 path_get(&nd->root);
1028 } else if (dfd == AT_FDCWD) {
1029 struct fs_struct *fs = current->fs;
1030 read_lock(&fs->lock);
1031 nd->path = fs->pwd;
1032 path_get(&fs->pwd);
1033 read_unlock(&fs->lock);
1034 } else {
1035 struct dentry *dentry;
1036
1037 file = fget_light(dfd, &fput_needed);
1038 retval = -EBADF;
1039 if (!file)
1040 goto out_fail;
1041
1042 dentry = file->f_path.dentry;
1043
1044 retval = -ENOTDIR;
1045 if (!S_ISDIR(dentry->d_inode->i_mode))
1046 goto fput_fail;
1047
1048 retval = file_permission(file, MAY_EXEC);
1049 if (retval)
1050 goto fput_fail;
1051
1052 nd->path = file->f_path;
1053 path_get(&file->f_path);
1054
1055 fput_light(file, fput_needed);
1056 }
1057 return 0;
1058
1059fput_fail:
1060 fput_light(file, fput_needed);
1061out_fail:
1062 return retval;
1063}
1064
1065/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1066static int do_path_lookup(int dfd, const char *name,
1067 unsigned int flags, struct nameidata *nd)
1068{
1069 int retval = path_init(dfd, name, flags, nd);
1070 if (!retval)
1071 retval = path_walk(name, nd);
1072 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1073 nd->path.dentry->d_inode))
1074 audit_inode(name, nd->path.dentry);
1075 if (nd->root.mnt) {
1076 path_put(&nd->root);
1077 nd->root.mnt = NULL;
1078 }
1079 return retval;
1080}
1081
1082int path_lookup(const char *name, unsigned int flags,
1083 struct nameidata *nd)
1084{
1085 return do_path_lookup(AT_FDCWD, name, flags, nd);
1086}
1087
1088int kern_path(const char *name, unsigned int flags, struct path *path)
1089{
1090 struct nameidata nd;
1091 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1092 if (!res)
1093 *path = nd.path;
1094 return res;
1095}
1096
1097/**
1098 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1099 * @dentry: pointer to dentry of the base directory
1100 * @mnt: pointer to vfs mount of the base directory
1101 * @name: pointer to file name
1102 * @flags: lookup flags
1103 * @nd: pointer to nameidata
1104 */
1105int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1106 const char *name, unsigned int flags,
1107 struct nameidata *nd)
1108{
1109 int retval;
1110
1111 /* same as do_path_lookup */
1112 nd->last_type = LAST_ROOT;
1113 nd->flags = flags;
1114 nd->depth = 0;
1115
1116 nd->path.dentry = dentry;
1117 nd->path.mnt = mnt;
1118 path_get(&nd->path);
1119 nd->root = nd->path;
1120 path_get(&nd->root);
1121
1122 retval = path_walk(name, nd);
1123 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1124 nd->path.dentry->d_inode))
1125 audit_inode(name, nd->path.dentry);
1126
1127 path_put(&nd->root);
1128 nd->root.mnt = NULL;
1129
1130 return retval;
1131}
1132
1133/**
1134 * path_lookup_open - lookup a file path with open intent
1135 * @dfd: the directory to use as base, or AT_FDCWD
1136 * @name: pointer to file name
1137 * @lookup_flags: lookup intent flags
1138 * @nd: pointer to nameidata
1139 * @open_flags: open intent flags
1140 */
1141static int path_lookup_open(int dfd, const char *name,
1142 unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1143{
1144 struct file *filp = get_empty_filp();
1145 int err;
1146
1147 if (filp == NULL)
1148 return -ENFILE;
1149 nd->intent.open.file = filp;
1150 nd->intent.open.flags = open_flags;
1151 nd->intent.open.create_mode = 0;
1152 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1153 if (IS_ERR(nd->intent.open.file)) {
1154 if (err == 0) {
1155 err = PTR_ERR(nd->intent.open.file);
1156 path_put(&nd->path);
1157 }
1158 } else if (err != 0)
1159 release_open_intent(nd);
1160 return err;
1161}
1162
1163static struct dentry *__lookup_hash(struct qstr *name,
1164 struct dentry *base, struct nameidata *nd)
1165{
1166 struct dentry *dentry;
1167 struct inode *inode;
1168 int err;
1169
1170 inode = base->d_inode;
1171
1172 /*
1173 * See if the low-level filesystem might want
1174 * to use its own hash..
1175 */
1176 if (base->d_op && base->d_op->d_hash) {
1177 err = base->d_op->d_hash(base, name);
1178 dentry = ERR_PTR(err);
1179 if (err < 0)
1180 goto out;
1181 }
1182
1183 dentry = cached_lookup(base, name, nd);
1184 if (!dentry) {
1185 struct dentry *new;
1186
1187 /* Don't create child dentry for a dead directory. */
1188 dentry = ERR_PTR(-ENOENT);
1189 if (IS_DEADDIR(inode))
1190 goto out;
1191
1192 new = d_alloc(base, name);
1193 dentry = ERR_PTR(-ENOMEM);
1194 if (!new)
1195 goto out;
1196 dentry = inode->i_op->lookup(inode, new, nd);
1197 if (!dentry)
1198 dentry = new;
1199 else
1200 dput(new);
1201 }
1202out:
1203 return dentry;
1204}
1205
1206/*
1207 * Restricted form of lookup. Doesn't follow links, single-component only,
1208 * needs parent already locked. Doesn't follow mounts.
1209 * SMP-safe.
1210 */
1211static struct dentry *lookup_hash(struct nameidata *nd)
1212{
1213 int err;
1214
1215 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1216 if (err)
1217 return ERR_PTR(err);
1218 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1219}
1220
1221static int __lookup_one_len(const char *name, struct qstr *this,
1222 struct dentry *base, int len)
1223{
1224 unsigned long hash;
1225 unsigned int c;
1226
1227 this->name = name;
1228 this->len = len;
1229 if (!len)
1230 return -EACCES;
1231
1232 hash = init_name_hash();
1233 while (len--) {
1234 c = *(const unsigned char *)name++;
1235 if (c == '/' || c == '\0')
1236 return -EACCES;
1237 hash = partial_name_hash(c, hash);
1238 }
1239 this->hash = end_name_hash(hash);
1240 return 0;
1241}
1242
1243/**
1244 * lookup_one_len - filesystem helper to lookup single pathname component
1245 * @name: pathname component to lookup
1246 * @base: base directory to lookup from
1247 * @len: maximum length @len should be interpreted to
1248 *
1249 * Note that this routine is purely a helper for filesystem usage and should
1250 * not be called by generic code. Also note that by using this function the
1251 * nameidata argument is passed to the filesystem methods and a filesystem
1252 * using this helper needs to be prepared for that.
1253 */
1254struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1255{
1256 int err;
1257 struct qstr this;
1258
1259 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1260
1261 err = __lookup_one_len(name, &this, base, len);
1262 if (err)
1263 return ERR_PTR(err);
1264
1265 err = inode_permission(base->d_inode, MAY_EXEC);
1266 if (err)
1267 return ERR_PTR(err);
1268 return __lookup_hash(&this, base, NULL);
1269}
1270
1271int user_path_at(int dfd, const char __user *name, unsigned flags,
1272 struct path *path)
1273{
1274 struct nameidata nd;
1275 char *tmp = getname(name);
1276 int err = PTR_ERR(tmp);
1277 if (!IS_ERR(tmp)) {
1278
1279 BUG_ON(flags & LOOKUP_PARENT);
1280
1281 err = do_path_lookup(dfd, tmp, flags, &nd);
1282 putname(tmp);
1283 if (!err)
1284 *path = nd.path;
1285 }
1286 return err;
1287}
1288
1289static int user_path_parent(int dfd, const char __user *path,
1290 struct nameidata *nd, char **name)
1291{
1292 char *s = getname(path);
1293 int error;
1294
1295 if (IS_ERR(s))
1296 return PTR_ERR(s);
1297
1298 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1299 if (error)
1300 putname(s);
1301 else
1302 *name = s;
1303
1304 return error;
1305}
1306
1307/*
1308 * It's inline, so penalty for filesystems that don't use sticky bit is
1309 * minimal.
1310 */
1311static inline int check_sticky(struct inode *dir, struct inode *inode)
1312{
1313 uid_t fsuid = current_fsuid();
1314
1315 if (!(dir->i_mode & S_ISVTX))
1316 return 0;
1317 if (inode->i_uid == fsuid)
1318 return 0;
1319 if (dir->i_uid == fsuid)
1320 return 0;
1321 return !capable(CAP_FOWNER);
1322}
1323
1324/*
1325 * Check whether we can remove a link victim from directory dir, check
1326 * whether the type of victim is right.
1327 * 1. We can't do it if dir is read-only (done in permission())
1328 * 2. We should have write and exec permissions on dir
1329 * 3. We can't remove anything from append-only dir
1330 * 4. We can't do anything with immutable dir (done in permission())
1331 * 5. If the sticky bit on dir is set we should either
1332 * a. be owner of dir, or
1333 * b. be owner of victim, or
1334 * c. have CAP_FOWNER capability
1335 * 6. If the victim is append-only or immutable we can't do antyhing with
1336 * links pointing to it.
1337 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1338 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1339 * 9. We can't remove a root or mountpoint.
1340 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1341 * nfs_async_unlink().
1342 */
1343static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1344{
1345 int error;
1346
1347 if (!victim->d_inode)
1348 return -ENOENT;
1349
1350 BUG_ON(victim->d_parent->d_inode != dir);
1351 audit_inode_child(victim->d_name.name, victim, dir);
1352
1353 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1354 if (error)
1355 return error;
1356 if (IS_APPEND(dir))
1357 return -EPERM;
1358 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1359 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1360 return -EPERM;
1361 if (isdir) {
1362 if (!S_ISDIR(victim->d_inode->i_mode))
1363 return -ENOTDIR;
1364 if (IS_ROOT(victim))
1365 return -EBUSY;
1366 } else if (S_ISDIR(victim->d_inode->i_mode))
1367 return -EISDIR;
1368 if (IS_DEADDIR(dir))
1369 return -ENOENT;
1370 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1371 return -EBUSY;
1372 return 0;
1373}
1374
1375/* Check whether we can create an object with dentry child in directory
1376 * dir.
1377 * 1. We can't do it if child already exists (open has special treatment for
1378 * this case, but since we are inlined it's OK)
1379 * 2. We can't do it if dir is read-only (done in permission())
1380 * 3. We should have write and exec permissions on dir
1381 * 4. We can't do it if dir is immutable (done in permission())
1382 */
1383static inline int may_create(struct inode *dir, struct dentry *child)
1384{
1385 if (child->d_inode)
1386 return -EEXIST;
1387 if (IS_DEADDIR(dir))
1388 return -ENOENT;
1389 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1390}
1391
1392/*
1393 * O_DIRECTORY translates into forcing a directory lookup.
1394 */
1395static inline int lookup_flags(unsigned int f)
1396{
1397 unsigned long retval = LOOKUP_FOLLOW;
1398
1399 if (f & O_NOFOLLOW)
1400 retval &= ~LOOKUP_FOLLOW;
1401
1402 if (f & O_DIRECTORY)
1403 retval |= LOOKUP_DIRECTORY;
1404
1405 return retval;
1406}
1407
1408/*
1409 * p1 and p2 should be directories on the same fs.
1410 */
1411struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1412{
1413 struct dentry *p;
1414
1415 if (p1 == p2) {
1416 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1417 return NULL;
1418 }
1419
1420 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1421
1422 p = d_ancestor(p2, p1);
1423 if (p) {
1424 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1425 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1426 return p;
1427 }
1428
1429 p = d_ancestor(p1, p2);
1430 if (p) {
1431 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1432 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1433 return p;
1434 }
1435
1436 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1437 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1438 return NULL;
1439}
1440
1441void unlock_rename(struct dentry *p1, struct dentry *p2)
1442{
1443 mutex_unlock(&p1->d_inode->i_mutex);
1444 if (p1 != p2) {
1445 mutex_unlock(&p2->d_inode->i_mutex);
1446 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1447 }
1448}
1449
1450int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1451 struct nameidata *nd)
1452{
1453 int error = may_create(dir, dentry);
1454
1455 if (error)
1456 return error;
1457
1458 if (!dir->i_op->create)
1459 return -EACCES; /* shouldn't it be ENOSYS? */
1460 mode &= S_IALLUGO;
1461 mode |= S_IFREG;
1462 error = security_inode_create(dir, dentry, mode);
1463 if (error)
1464 return error;
1465 vfs_dq_init(dir);
1466 error = dir->i_op->create(dir, dentry, mode, nd);
1467 if (!error)
1468 fsnotify_create(dir, dentry);
1469 return error;
1470}
1471
1472int may_open(struct path *path, int acc_mode, int flag)
1473{
1474 struct dentry *dentry = path->dentry;
1475 struct inode *inode = dentry->d_inode;
1476 int error;
1477
1478 if (!inode)
1479 return -ENOENT;
1480
1481 switch (inode->i_mode & S_IFMT) {
1482 case S_IFLNK:
1483 return -ELOOP;
1484 case S_IFDIR:
1485 if (acc_mode & MAY_WRITE)
1486 return -EISDIR;
1487 break;
1488 case S_IFBLK:
1489 case S_IFCHR:
1490 if (path->mnt->mnt_flags & MNT_NODEV)
1491 return -EACCES;
1492 /*FALLTHRU*/
1493 case S_IFIFO:
1494 case S_IFSOCK:
1495 flag &= ~O_TRUNC;
1496 break;
1497 }
1498
1499 error = inode_permission(inode, acc_mode);
1500 if (error)
1501 return error;
1502
1503 error = ima_path_check(path, acc_mode ?
1504 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1505 ACC_MODE(flag) & (MAY_READ | MAY_WRITE),
1506 IMA_COUNT_UPDATE);
1507
1508 if (error)
1509 return error;
1510 /*
1511 * An append-only file must be opened in append mode for writing.
1512 */
1513 if (IS_APPEND(inode)) {
1514 error = -EPERM;
1515 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1516 goto err_out;
1517 if (flag & O_TRUNC)
1518 goto err_out;
1519 }
1520
1521 /* O_NOATIME can only be set by the owner or superuser */
1522 if (flag & O_NOATIME)
1523 if (!is_owner_or_cap(inode)) {
1524 error = -EPERM;
1525 goto err_out;
1526 }
1527
1528 /*
1529 * Ensure there are no outstanding leases on the file.
1530 */
1531 error = break_lease(inode, flag);
1532 if (error)
1533 goto err_out;
1534
1535 if (flag & O_TRUNC) {
1536 error = get_write_access(inode);
1537 if (error)
1538 goto err_out;
1539
1540 /*
1541 * Refuse to truncate files with mandatory locks held on them.
1542 */
1543 error = locks_verify_locked(inode);
1544 if (!error)
1545 error = security_path_truncate(path, 0,
1546 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1547 if (!error) {
1548 vfs_dq_init(inode);
1549
1550 error = do_truncate(dentry, 0,
1551 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1552 NULL);
1553 }
1554 put_write_access(inode);
1555 if (error)
1556 goto err_out;
1557 } else
1558 if (flag & FMODE_WRITE)
1559 vfs_dq_init(inode);
1560
1561 return 0;
1562err_out:
1563 ima_counts_put(path, acc_mode ?
1564 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1565 ACC_MODE(flag) & (MAY_READ | MAY_WRITE));
1566 return error;
1567}
1568
1569/*
1570 * Be careful about ever adding any more callers of this
1571 * function. Its flags must be in the namei format, not
1572 * what get passed to sys_open().
1573 */
1574static int __open_namei_create(struct nameidata *nd, struct path *path,
1575 int flag, int mode)
1576{
1577 int error;
1578 struct dentry *dir = nd->path.dentry;
1579
1580 if (!IS_POSIXACL(dir->d_inode))
1581 mode &= ~current_umask();
1582 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1583 if (error)
1584 goto out_unlock;
1585 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1586out_unlock:
1587 mutex_unlock(&dir->d_inode->i_mutex);
1588 dput(nd->path.dentry);
1589 nd->path.dentry = path->dentry;
1590 if (error)
1591 return error;
1592 /* Don't check for write permission, don't truncate */
1593 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1594}
1595
1596/*
1597 * Note that while the flag value (low two bits) for sys_open means:
1598 * 00 - read-only
1599 * 01 - write-only
1600 * 10 - read-write
1601 * 11 - special
1602 * it is changed into
1603 * 00 - no permissions needed
1604 * 01 - read-permission
1605 * 10 - write-permission
1606 * 11 - read-write
1607 * for the internal routines (ie open_namei()/follow_link() etc)
1608 * This is more logical, and also allows the 00 "no perm needed"
1609 * to be used for symlinks (where the permissions are checked
1610 * later).
1611 *
1612*/
1613static inline int open_to_namei_flags(int flag)
1614{
1615 if ((flag+1) & O_ACCMODE)
1616 flag++;
1617 return flag;
1618}
1619
1620static int open_will_write_to_fs(int flag, struct inode *inode)
1621{
1622 /*
1623 * We'll never write to the fs underlying
1624 * a device file.
1625 */
1626 if (special_file(inode->i_mode))
1627 return 0;
1628 return (flag & O_TRUNC);
1629}
1630
1631/*
1632 * Note that the low bits of the passed in "open_flag"
1633 * are not the same as in the local variable "flag". See
1634 * open_to_namei_flags() for more details.
1635 */
1636struct file *do_filp_open(int dfd, const char *pathname,
1637 int open_flag, int mode, int acc_mode)
1638{
1639 struct file *filp;
1640 struct nameidata nd;
1641 int error;
1642 struct path path, save;
1643 struct dentry *dir;
1644 int count = 0;
1645 int will_write;
1646 int flag = open_to_namei_flags(open_flag);
1647
1648 /*
1649 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1650 * check for O_DSYNC if the need any syncing at all we enforce it's
1651 * always set instead of having to deal with possibly weird behaviour
1652 * for malicious applications setting only __O_SYNC.
1653 */
1654 if (open_flag & __O_SYNC)
1655 open_flag |= O_DSYNC;
1656
1657 if (!acc_mode)
1658 acc_mode = MAY_OPEN | ACC_MODE(flag);
1659
1660 /* O_TRUNC implies we need access checks for write permissions */
1661 if (flag & O_TRUNC)
1662 acc_mode |= MAY_WRITE;
1663
1664 /* Allow the LSM permission hook to distinguish append
1665 access from general write access. */
1666 if (flag & O_APPEND)
1667 acc_mode |= MAY_APPEND;
1668
1669 /*
1670 * The simplest case - just a plain lookup.
1671 */
1672 if (!(flag & O_CREAT)) {
1673 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1674 &nd, flag);
1675 if (error)
1676 return ERR_PTR(error);
1677 goto ok;
1678 }
1679
1680 /*
1681 * Create - we need to know the parent.
1682 */
1683 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1684 if (error)
1685 return ERR_PTR(error);
1686 error = path_walk(pathname, &nd);
1687 if (error) {
1688 if (nd.root.mnt)
1689 path_put(&nd.root);
1690 return ERR_PTR(error);
1691 }
1692 if (unlikely(!audit_dummy_context()))
1693 audit_inode(pathname, nd.path.dentry);
1694
1695 /*
1696 * We have the parent and last component. First of all, check
1697 * that we are not asked to creat(2) an obvious directory - that
1698 * will not do.
1699 */
1700 error = -EISDIR;
1701 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1702 goto exit_parent;
1703
1704 error = -ENFILE;
1705 filp = get_empty_filp();
1706 if (filp == NULL)
1707 goto exit_parent;
1708 nd.intent.open.file = filp;
1709 nd.intent.open.flags = flag;
1710 nd.intent.open.create_mode = mode;
1711 dir = nd.path.dentry;
1712 nd.flags &= ~LOOKUP_PARENT;
1713 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1714 if (flag & O_EXCL)
1715 nd.flags |= LOOKUP_EXCL;
1716 mutex_lock(&dir->d_inode->i_mutex);
1717 path.dentry = lookup_hash(&nd);
1718 path.mnt = nd.path.mnt;
1719
1720do_last:
1721 error = PTR_ERR(path.dentry);
1722 if (IS_ERR(path.dentry)) {
1723 mutex_unlock(&dir->d_inode->i_mutex);
1724 goto exit;
1725 }
1726
1727 if (IS_ERR(nd.intent.open.file)) {
1728 error = PTR_ERR(nd.intent.open.file);
1729 goto exit_mutex_unlock;
1730 }
1731
1732 /* Negative dentry, just create the file */
1733 if (!path.dentry->d_inode) {
1734 /*
1735 * This write is needed to ensure that a
1736 * ro->rw transition does not occur between
1737 * the time when the file is created and when
1738 * a permanent write count is taken through
1739 * the 'struct file' in nameidata_to_filp().
1740 */
1741 error = mnt_want_write(nd.path.mnt);
1742 if (error)
1743 goto exit_mutex_unlock;
1744 error = __open_namei_create(&nd, &path, flag, mode);
1745 if (error) {
1746 mnt_drop_write(nd.path.mnt);
1747 goto exit;
1748 }
1749 filp = nameidata_to_filp(&nd, open_flag);
1750 if (IS_ERR(filp))
1751 ima_counts_put(&nd.path,
1752 acc_mode & (MAY_READ | MAY_WRITE |
1753 MAY_EXEC));
1754 mnt_drop_write(nd.path.mnt);
1755 if (nd.root.mnt)
1756 path_put(&nd.root);
1757 return filp;
1758 }
1759
1760 /*
1761 * It already exists.
1762 */
1763 mutex_unlock(&dir->d_inode->i_mutex);
1764 audit_inode(pathname, path.dentry);
1765
1766 error = -EEXIST;
1767 if (flag & O_EXCL)
1768 goto exit_dput;
1769
1770 if (__follow_mount(&path)) {
1771 error = -ELOOP;
1772 if (flag & O_NOFOLLOW)
1773 goto exit_dput;
1774 }
1775
1776 error = -ENOENT;
1777 if (!path.dentry->d_inode)
1778 goto exit_dput;
1779 if (path.dentry->d_inode->i_op->follow_link)
1780 goto do_link;
1781
1782 path_to_nameidata(&path, &nd);
1783 error = -EISDIR;
1784 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1785 goto exit;
1786ok:
1787 /*
1788 * Consider:
1789 * 1. may_open() truncates a file
1790 * 2. a rw->ro mount transition occurs
1791 * 3. nameidata_to_filp() fails due to
1792 * the ro mount.
1793 * That would be inconsistent, and should
1794 * be avoided. Taking this mnt write here
1795 * ensures that (2) can not occur.
1796 */
1797 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1798 if (will_write) {
1799 error = mnt_want_write(nd.path.mnt);
1800 if (error)
1801 goto exit;
1802 }
1803 error = may_open(&nd.path, acc_mode, flag);
1804 if (error) {
1805 if (will_write)
1806 mnt_drop_write(nd.path.mnt);
1807 goto exit;
1808 }
1809 filp = nameidata_to_filp(&nd, open_flag);
1810 if (IS_ERR(filp))
1811 ima_counts_put(&nd.path,
1812 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1813 /*
1814 * It is now safe to drop the mnt write
1815 * because the filp has had a write taken
1816 * on its behalf.
1817 */
1818 if (will_write)
1819 mnt_drop_write(nd.path.mnt);
1820 if (nd.root.mnt)
1821 path_put(&nd.root);
1822 return filp;
1823
1824exit_mutex_unlock:
1825 mutex_unlock(&dir->d_inode->i_mutex);
1826exit_dput:
1827 path_put_conditional(&path, &nd);
1828exit:
1829 if (!IS_ERR(nd.intent.open.file))
1830 release_open_intent(&nd);
1831exit_parent:
1832 if (nd.root.mnt)
1833 path_put(&nd.root);
1834 path_put(&nd.path);
1835 return ERR_PTR(error);
1836
1837do_link:
1838 error = -ELOOP;
1839 if (flag & O_NOFOLLOW)
1840 goto exit_dput;
1841 /*
1842 * This is subtle. Instead of calling do_follow_link() we do the
1843 * thing by hands. The reason is that this way we have zero link_count
1844 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1845 * After that we have the parent and last component, i.e.
1846 * we are in the same situation as after the first path_walk().
1847 * Well, almost - if the last component is normal we get its copy
1848 * stored in nd->last.name and we will have to putname() it when we
1849 * are done. Procfs-like symlinks just set LAST_BIND.
1850 */
1851 nd.flags |= LOOKUP_PARENT;
1852 error = security_inode_follow_link(path.dentry, &nd);
1853 if (error)
1854 goto exit_dput;
1855 save = nd.path;
1856 path_get(&save);
1857 error = __do_follow_link(&path, &nd);
1858 if (error == -ESTALE) {
1859 /* nd.path had been dropped */
1860 nd.path = save;
1861 path_get(&nd.path);
1862 nd.flags |= LOOKUP_REVAL;
1863 error = __do_follow_link(&path, &nd);
1864 }
1865 path_put(&save);
1866 path_put(&path);
1867 if (error) {
1868 /* Does someone understand code flow here? Or it is only
1869 * me so stupid? Anathema to whoever designed this non-sense
1870 * with "intent.open".
1871 */
1872 release_open_intent(&nd);
1873 if (nd.root.mnt)
1874 path_put(&nd.root);
1875 return ERR_PTR(error);
1876 }
1877 nd.flags &= ~LOOKUP_PARENT;
1878 if (nd.last_type == LAST_BIND)
1879 goto ok;
1880 error = -EISDIR;
1881 if (nd.last_type != LAST_NORM)
1882 goto exit;
1883 if (nd.last.name[nd.last.len]) {
1884 __putname(nd.last.name);
1885 goto exit;
1886 }
1887 error = -ELOOP;
1888 if (count++==32) {
1889 __putname(nd.last.name);
1890 goto exit;
1891 }
1892 dir = nd.path.dentry;
1893 mutex_lock(&dir->d_inode->i_mutex);
1894 path.dentry = lookup_hash(&nd);
1895 path.mnt = nd.path.mnt;
1896 __putname(nd.last.name);
1897 goto do_last;
1898}
1899
1900/**
1901 * filp_open - open file and return file pointer
1902 *
1903 * @filename: path to open
1904 * @flags: open flags as per the open(2) second argument
1905 * @mode: mode for the new file if O_CREAT is set, else ignored
1906 *
1907 * This is the helper to open a file from kernelspace if you really
1908 * have to. But in generally you should not do this, so please move
1909 * along, nothing to see here..
1910 */
1911struct file *filp_open(const char *filename, int flags, int mode)
1912{
1913 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1914}
1915EXPORT_SYMBOL(filp_open);
1916
1917/**
1918 * lookup_create - lookup a dentry, creating it if it doesn't exist
1919 * @nd: nameidata info
1920 * @is_dir: directory flag
1921 *
1922 * Simple function to lookup and return a dentry and create it
1923 * if it doesn't exist. Is SMP-safe.
1924 *
1925 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1926 */
1927struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1928{
1929 struct dentry *dentry = ERR_PTR(-EEXIST);
1930
1931 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1932 /*
1933 * Yucky last component or no last component at all?
1934 * (foo/., foo/.., /////)
1935 */
1936 if (nd->last_type != LAST_NORM)
1937 goto fail;
1938 nd->flags &= ~LOOKUP_PARENT;
1939 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1940 nd->intent.open.flags = O_EXCL;
1941
1942 /*
1943 * Do the final lookup.
1944 */
1945 dentry = lookup_hash(nd);
1946 if (IS_ERR(dentry))
1947 goto fail;
1948
1949 if (dentry->d_inode)
1950 goto eexist;
1951 /*
1952 * Special case - lookup gave negative, but... we had foo/bar/
1953 * From the vfs_mknod() POV we just have a negative dentry -
1954 * all is fine. Let's be bastards - you had / on the end, you've
1955 * been asking for (non-existent) directory. -ENOENT for you.
1956 */
1957 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1958 dput(dentry);
1959 dentry = ERR_PTR(-ENOENT);
1960 }
1961 return dentry;
1962eexist:
1963 dput(dentry);
1964 dentry = ERR_PTR(-EEXIST);
1965fail:
1966 return dentry;
1967}
1968EXPORT_SYMBOL_GPL(lookup_create);
1969
1970int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1971{
1972 int error = may_create(dir, dentry);
1973
1974 if (error)
1975 return error;
1976
1977 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1978 return -EPERM;
1979
1980 if (!dir->i_op->mknod)
1981 return -EPERM;
1982
1983 error = devcgroup_inode_mknod(mode, dev);
1984 if (error)
1985 return error;
1986
1987 error = security_inode_mknod(dir, dentry, mode, dev);
1988 if (error)
1989 return error;
1990
1991 vfs_dq_init(dir);
1992 error = dir->i_op->mknod(dir, dentry, mode, dev);
1993 if (!error)
1994 fsnotify_create(dir, dentry);
1995 return error;
1996}
1997
1998static int may_mknod(mode_t mode)
1999{
2000 switch (mode & S_IFMT) {
2001 case S_IFREG:
2002 case S_IFCHR:
2003 case S_IFBLK:
2004 case S_IFIFO:
2005 case S_IFSOCK:
2006 case 0: /* zero mode translates to S_IFREG */
2007 return 0;
2008 case S_IFDIR:
2009 return -EPERM;
2010 default:
2011 return -EINVAL;
2012 }
2013}
2014
2015SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2016 unsigned, dev)
2017{
2018 int error;
2019 char *tmp;
2020 struct dentry *dentry;
2021 struct nameidata nd;
2022
2023 if (S_ISDIR(mode))
2024 return -EPERM;
2025
2026 error = user_path_parent(dfd, filename, &nd, &tmp);
2027 if (error)
2028 return error;
2029
2030 dentry = lookup_create(&nd, 0);
2031 if (IS_ERR(dentry)) {
2032 error = PTR_ERR(dentry);
2033 goto out_unlock;
2034 }
2035 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2036 mode &= ~current_umask();
2037 error = may_mknod(mode);
2038 if (error)
2039 goto out_dput;
2040 error = mnt_want_write(nd.path.mnt);
2041 if (error)
2042 goto out_dput;
2043 error = security_path_mknod(&nd.path, dentry, mode, dev);
2044 if (error)
2045 goto out_drop_write;
2046 switch (mode & S_IFMT) {
2047 case 0: case S_IFREG:
2048 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2049 break;
2050 case S_IFCHR: case S_IFBLK:
2051 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2052 new_decode_dev(dev));
2053 break;
2054 case S_IFIFO: case S_IFSOCK:
2055 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2056 break;
2057 }
2058out_drop_write:
2059 mnt_drop_write(nd.path.mnt);
2060out_dput:
2061 dput(dentry);
2062out_unlock:
2063 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2064 path_put(&nd.path);
2065 putname(tmp);
2066
2067 return error;
2068}
2069
2070SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2071{
2072 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2073}
2074
2075int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2076{
2077 int error = may_create(dir, dentry);
2078
2079 if (error)
2080 return error;
2081
2082 if (!dir->i_op->mkdir)
2083 return -EPERM;
2084
2085 mode &= (S_IRWXUGO|S_ISVTX);
2086 error = security_inode_mkdir(dir, dentry, mode);
2087 if (error)
2088 return error;
2089
2090 vfs_dq_init(dir);
2091 error = dir->i_op->mkdir(dir, dentry, mode);
2092 if (!error)
2093 fsnotify_mkdir(dir, dentry);
2094 return error;
2095}
2096
2097SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2098{
2099 int error = 0;
2100 char * tmp;
2101 struct dentry *dentry;
2102 struct nameidata nd;
2103
2104 error = user_path_parent(dfd, pathname, &nd, &tmp);
2105 if (error)
2106 goto out_err;
2107
2108 dentry = lookup_create(&nd, 1);
2109 error = PTR_ERR(dentry);
2110 if (IS_ERR(dentry))
2111 goto out_unlock;
2112
2113 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2114 mode &= ~current_umask();
2115 error = mnt_want_write(nd.path.mnt);
2116 if (error)
2117 goto out_dput;
2118 error = security_path_mkdir(&nd.path, dentry, mode);
2119 if (error)
2120 goto out_drop_write;
2121 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2122out_drop_write:
2123 mnt_drop_write(nd.path.mnt);
2124out_dput:
2125 dput(dentry);
2126out_unlock:
2127 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2128 path_put(&nd.path);
2129 putname(tmp);
2130out_err:
2131 return error;
2132}
2133
2134SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2135{
2136 return sys_mkdirat(AT_FDCWD, pathname, mode);
2137}
2138
2139/*
2140 * We try to drop the dentry early: we should have
2141 * a usage count of 2 if we're the only user of this
2142 * dentry, and if that is true (possibly after pruning
2143 * the dcache), then we drop the dentry now.
2144 *
2145 * A low-level filesystem can, if it choses, legally
2146 * do a
2147 *
2148 * if (!d_unhashed(dentry))
2149 * return -EBUSY;
2150 *
2151 * if it cannot handle the case of removing a directory
2152 * that is still in use by something else..
2153 */
2154void dentry_unhash(struct dentry *dentry)
2155{
2156 dget(dentry);
2157 shrink_dcache_parent(dentry);
2158 spin_lock(&dcache_lock);
2159 spin_lock(&dentry->d_lock);
2160 if (atomic_read(&dentry->d_count) == 2)
2161 __d_drop(dentry);
2162 spin_unlock(&dentry->d_lock);
2163 spin_unlock(&dcache_lock);
2164}
2165
2166int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2167{
2168 int error = may_delete(dir, dentry, 1);
2169
2170 if (error)
2171 return error;
2172
2173 if (!dir->i_op->rmdir)
2174 return -EPERM;
2175
2176 vfs_dq_init(dir);
2177
2178 mutex_lock(&dentry->d_inode->i_mutex);
2179 dentry_unhash(dentry);
2180 if (d_mountpoint(dentry))
2181 error = -EBUSY;
2182 else {
2183 error = security_inode_rmdir(dir, dentry);
2184 if (!error) {
2185 error = dir->i_op->rmdir(dir, dentry);
2186 if (!error)
2187 dentry->d_inode->i_flags |= S_DEAD;
2188 }
2189 }
2190 mutex_unlock(&dentry->d_inode->i_mutex);
2191 if (!error) {
2192 d_delete(dentry);
2193 }
2194 dput(dentry);
2195
2196 return error;
2197}
2198
2199static long do_rmdir(int dfd, const char __user *pathname)
2200{
2201 int error = 0;
2202 char * name;
2203 struct dentry *dentry;
2204 struct nameidata nd;
2205
2206 error = user_path_parent(dfd, pathname, &nd, &name);
2207 if (error)
2208 return error;
2209
2210 switch(nd.last_type) {
2211 case LAST_DOTDOT:
2212 error = -ENOTEMPTY;
2213 goto exit1;
2214 case LAST_DOT:
2215 error = -EINVAL;
2216 goto exit1;
2217 case LAST_ROOT:
2218 error = -EBUSY;
2219 goto exit1;
2220 }
2221
2222 nd.flags &= ~LOOKUP_PARENT;
2223
2224 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2225 dentry = lookup_hash(&nd);
2226 error = PTR_ERR(dentry);
2227 if (IS_ERR(dentry))
2228 goto exit2;
2229 error = mnt_want_write(nd.path.mnt);
2230 if (error)
2231 goto exit3;
2232 error = security_path_rmdir(&nd.path, dentry);
2233 if (error)
2234 goto exit4;
2235 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2236exit4:
2237 mnt_drop_write(nd.path.mnt);
2238exit3:
2239 dput(dentry);
2240exit2:
2241 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2242exit1:
2243 path_put(&nd.path);
2244 putname(name);
2245 return error;
2246}
2247
2248SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2249{
2250 return do_rmdir(AT_FDCWD, pathname);
2251}
2252
2253int vfs_unlink(struct inode *dir, struct dentry *dentry)
2254{
2255 int error = may_delete(dir, dentry, 0);
2256
2257 if (error)
2258 return error;
2259
2260 if (!dir->i_op->unlink)
2261 return -EPERM;
2262
2263 vfs_dq_init(dir);
2264
2265 mutex_lock(&dentry->d_inode->i_mutex);
2266 if (d_mountpoint(dentry))
2267 error = -EBUSY;
2268 else {
2269 error = security_inode_unlink(dir, dentry);
2270 if (!error)
2271 error = dir->i_op->unlink(dir, dentry);
2272 }
2273 mutex_unlock(&dentry->d_inode->i_mutex);
2274
2275 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2276 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2277 fsnotify_link_count(dentry->d_inode);
2278 d_delete(dentry);
2279 }
2280
2281 return error;
2282}
2283
2284/*
2285 * Make sure that the actual truncation of the file will occur outside its
2286 * directory's i_mutex. Truncate can take a long time if there is a lot of
2287 * writeout happening, and we don't want to prevent access to the directory
2288 * while waiting on the I/O.
2289 */
2290static long do_unlinkat(int dfd, const char __user *pathname)
2291{
2292 int error;
2293 char *name;
2294 struct dentry *dentry;
2295 struct nameidata nd;
2296 struct inode *inode = NULL;
2297
2298 error = user_path_parent(dfd, pathname, &nd, &name);
2299 if (error)
2300 return error;
2301
2302 error = -EISDIR;
2303 if (nd.last_type != LAST_NORM)
2304 goto exit1;
2305
2306 nd.flags &= ~LOOKUP_PARENT;
2307
2308 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2309 dentry = lookup_hash(&nd);
2310 error = PTR_ERR(dentry);
2311 if (!IS_ERR(dentry)) {
2312 /* Why not before? Because we want correct error value */
2313 if (nd.last.name[nd.last.len])
2314 goto slashes;
2315 inode = dentry->d_inode;
2316 if (inode)
2317 atomic_inc(&inode->i_count);
2318 error = mnt_want_write(nd.path.mnt);
2319 if (error)
2320 goto exit2;
2321 error = security_path_unlink(&nd.path, dentry);
2322 if (error)
2323 goto exit3;
2324 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2325exit3:
2326 mnt_drop_write(nd.path.mnt);
2327 exit2:
2328 dput(dentry);
2329 }
2330 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2331 if (inode)
2332 iput(inode); /* truncate the inode here */
2333exit1:
2334 path_put(&nd.path);
2335 putname(name);
2336 return error;
2337
2338slashes:
2339 error = !dentry->d_inode ? -ENOENT :
2340 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2341 goto exit2;
2342}
2343
2344SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2345{
2346 if ((flag & ~AT_REMOVEDIR) != 0)
2347 return -EINVAL;
2348
2349 if (flag & AT_REMOVEDIR)
2350 return do_rmdir(dfd, pathname);
2351
2352 return do_unlinkat(dfd, pathname);
2353}
2354
2355SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2356{
2357 return do_unlinkat(AT_FDCWD, pathname);
2358}
2359
2360int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2361{
2362 int error = may_create(dir, dentry);
2363
2364 if (error)
2365 return error;
2366
2367 if (!dir->i_op->symlink)
2368 return -EPERM;
2369
2370 error = security_inode_symlink(dir, dentry, oldname);
2371 if (error)
2372 return error;
2373
2374 vfs_dq_init(dir);
2375 error = dir->i_op->symlink(dir, dentry, oldname);
2376 if (!error)
2377 fsnotify_create(dir, dentry);
2378 return error;
2379}
2380
2381SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2382 int, newdfd, const char __user *, newname)
2383{
2384 int error;
2385 char *from;
2386 char *to;
2387 struct dentry *dentry;
2388 struct nameidata nd;
2389
2390 from = getname(oldname);
2391 if (IS_ERR(from))
2392 return PTR_ERR(from);
2393
2394 error = user_path_parent(newdfd, newname, &nd, &to);
2395 if (error)
2396 goto out_putname;
2397
2398 dentry = lookup_create(&nd, 0);
2399 error = PTR_ERR(dentry);
2400 if (IS_ERR(dentry))
2401 goto out_unlock;
2402
2403 error = mnt_want_write(nd.path.mnt);
2404 if (error)
2405 goto out_dput;
2406 error = security_path_symlink(&nd.path, dentry, from);
2407 if (error)
2408 goto out_drop_write;
2409 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2410out_drop_write:
2411 mnt_drop_write(nd.path.mnt);
2412out_dput:
2413 dput(dentry);
2414out_unlock:
2415 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2416 path_put(&nd.path);
2417 putname(to);
2418out_putname:
2419 putname(from);
2420 return error;
2421}
2422
2423SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2424{
2425 return sys_symlinkat(oldname, AT_FDCWD, newname);
2426}
2427
2428int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2429{
2430 struct inode *inode = old_dentry->d_inode;
2431 int error;
2432
2433 if (!inode)
2434 return -ENOENT;
2435
2436 error = may_create(dir, new_dentry);
2437 if (error)
2438 return error;
2439
2440 if (dir->i_sb != inode->i_sb)
2441 return -EXDEV;
2442
2443 /*
2444 * A link to an append-only or immutable file cannot be created.
2445 */
2446 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2447 return -EPERM;
2448 if (!dir->i_op->link)
2449 return -EPERM;
2450 if (S_ISDIR(inode->i_mode))
2451 return -EPERM;
2452
2453 error = security_inode_link(old_dentry, dir, new_dentry);
2454 if (error)
2455 return error;
2456
2457 mutex_lock(&inode->i_mutex);
2458 vfs_dq_init(dir);
2459 error = dir->i_op->link(old_dentry, dir, new_dentry);
2460 mutex_unlock(&inode->i_mutex);
2461 if (!error)
2462 fsnotify_link(dir, inode, new_dentry);
2463 return error;
2464}
2465
2466/*
2467 * Hardlinks are often used in delicate situations. We avoid
2468 * security-related surprises by not following symlinks on the
2469 * newname. --KAB
2470 *
2471 * We don't follow them on the oldname either to be compatible
2472 * with linux 2.0, and to avoid hard-linking to directories
2473 * and other special files. --ADM
2474 */
2475SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2476 int, newdfd, const char __user *, newname, int, flags)
2477{
2478 struct dentry *new_dentry;
2479 struct nameidata nd;
2480 struct path old_path;
2481 int error;
2482 char *to;
2483
2484 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2485 return -EINVAL;
2486
2487 error = user_path_at(olddfd, oldname,
2488 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2489 &old_path);
2490 if (error)
2491 return error;
2492
2493 error = user_path_parent(newdfd, newname, &nd, &to);
2494 if (error)
2495 goto out;
2496 error = -EXDEV;
2497 if (old_path.mnt != nd.path.mnt)
2498 goto out_release;
2499 new_dentry = lookup_create(&nd, 0);
2500 error = PTR_ERR(new_dentry);
2501 if (IS_ERR(new_dentry))
2502 goto out_unlock;
2503 error = mnt_want_write(nd.path.mnt);
2504 if (error)
2505 goto out_dput;
2506 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2507 if (error)
2508 goto out_drop_write;
2509 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2510out_drop_write:
2511 mnt_drop_write(nd.path.mnt);
2512out_dput:
2513 dput(new_dentry);
2514out_unlock:
2515 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2516out_release:
2517 path_put(&nd.path);
2518 putname(to);
2519out:
2520 path_put(&old_path);
2521
2522 return error;
2523}
2524
2525SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2526{
2527 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2528}
2529
2530/*
2531 * The worst of all namespace operations - renaming directory. "Perverted"
2532 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2533 * Problems:
2534 * a) we can get into loop creation. Check is done in is_subdir().
2535 * b) race potential - two innocent renames can create a loop together.
2536 * That's where 4.4 screws up. Current fix: serialization on
2537 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2538 * story.
2539 * c) we have to lock _three_ objects - parents and victim (if it exists).
2540 * And that - after we got ->i_mutex on parents (until then we don't know
2541 * whether the target exists). Solution: try to be smart with locking
2542 * order for inodes. We rely on the fact that tree topology may change
2543 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2544 * move will be locked. Thus we can rank directories by the tree
2545 * (ancestors first) and rank all non-directories after them.
2546 * That works since everybody except rename does "lock parent, lookup,
2547 * lock child" and rename is under ->s_vfs_rename_mutex.
2548 * HOWEVER, it relies on the assumption that any object with ->lookup()
2549 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2550 * we'd better make sure that there's no link(2) for them.
2551 * d) some filesystems don't support opened-but-unlinked directories,
2552 * either because of layout or because they are not ready to deal with
2553 * all cases correctly. The latter will be fixed (taking this sort of
2554 * stuff into VFS), but the former is not going away. Solution: the same
2555 * trick as in rmdir().
2556 * e) conversion from fhandle to dentry may come in the wrong moment - when
2557 * we are removing the target. Solution: we will have to grab ->i_mutex
2558 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2559 * ->i_mutex on parents, which works but leads to some truely excessive
2560 * locking].
2561 */
2562static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2563 struct inode *new_dir, struct dentry *new_dentry)
2564{
2565 int error = 0;
2566 struct inode *target;
2567
2568 /*
2569 * If we are going to change the parent - check write permissions,
2570 * we'll need to flip '..'.
2571 */
2572 if (new_dir != old_dir) {
2573 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2574 if (error)
2575 return error;
2576 }
2577
2578 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2579 if (error)
2580 return error;
2581
2582 target = new_dentry->d_inode;
2583 if (target) {
2584 mutex_lock(&target->i_mutex);
2585 dentry_unhash(new_dentry);
2586 }
2587 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2588 error = -EBUSY;
2589 else
2590 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2591 if (target) {
2592 if (!error)
2593 target->i_flags |= S_DEAD;
2594 mutex_unlock(&target->i_mutex);
2595 if (d_unhashed(new_dentry))
2596 d_rehash(new_dentry);
2597 dput(new_dentry);
2598 }
2599 if (!error)
2600 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2601 d_move(old_dentry,new_dentry);
2602 return error;
2603}
2604
2605static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2606 struct inode *new_dir, struct dentry *new_dentry)
2607{
2608 struct inode *target;
2609 int error;
2610
2611 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2612 if (error)
2613 return error;
2614
2615 dget(new_dentry);
2616 target = new_dentry->d_inode;
2617 if (target)
2618 mutex_lock(&target->i_mutex);
2619 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2620 error = -EBUSY;
2621 else
2622 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2623 if (!error) {
2624 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2625 d_move(old_dentry, new_dentry);
2626 }
2627 if (target)
2628 mutex_unlock(&target->i_mutex);
2629 dput(new_dentry);
2630 return error;
2631}
2632
2633int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2634 struct inode *new_dir, struct dentry *new_dentry)
2635{
2636 int error;
2637 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2638 const char *old_name;
2639
2640 if (old_dentry->d_inode == new_dentry->d_inode)
2641 return 0;
2642
2643 error = may_delete(old_dir, old_dentry, is_dir);
2644 if (error)
2645 return error;
2646
2647 if (!new_dentry->d_inode)
2648 error = may_create(new_dir, new_dentry);
2649 else
2650 error = may_delete(new_dir, new_dentry, is_dir);
2651 if (error)
2652 return error;
2653
2654 if (!old_dir->i_op->rename)
2655 return -EPERM;
2656
2657 vfs_dq_init(old_dir);
2658 vfs_dq_init(new_dir);
2659
2660 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2661
2662 if (is_dir)
2663 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2664 else
2665 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2666 if (!error) {
2667 const char *new_name = old_dentry->d_name.name;
2668 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2669 new_dentry->d_inode, old_dentry);
2670 }
2671 fsnotify_oldname_free(old_name);
2672
2673 return error;
2674}
2675
2676SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2677 int, newdfd, const char __user *, newname)
2678{
2679 struct dentry *old_dir, *new_dir;
2680 struct dentry *old_dentry, *new_dentry;
2681 struct dentry *trap;
2682 struct nameidata oldnd, newnd;
2683 char *from;
2684 char *to;
2685 int error;
2686
2687 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2688 if (error)
2689 goto exit;
2690
2691 error = user_path_parent(newdfd, newname, &newnd, &to);
2692 if (error)
2693 goto exit1;
2694
2695 error = -EXDEV;
2696 if (oldnd.path.mnt != newnd.path.mnt)
2697 goto exit2;
2698
2699 old_dir = oldnd.path.dentry;
2700 error = -EBUSY;
2701 if (oldnd.last_type != LAST_NORM)
2702 goto exit2;
2703
2704 new_dir = newnd.path.dentry;
2705 if (newnd.last_type != LAST_NORM)
2706 goto exit2;
2707
2708 oldnd.flags &= ~LOOKUP_PARENT;
2709 newnd.flags &= ~LOOKUP_PARENT;
2710 newnd.flags |= LOOKUP_RENAME_TARGET;
2711
2712 trap = lock_rename(new_dir, old_dir);
2713
2714 old_dentry = lookup_hash(&oldnd);
2715 error = PTR_ERR(old_dentry);
2716 if (IS_ERR(old_dentry))
2717 goto exit3;
2718 /* source must exist */
2719 error = -ENOENT;
2720 if (!old_dentry->d_inode)
2721 goto exit4;
2722 /* unless the source is a directory trailing slashes give -ENOTDIR */
2723 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2724 error = -ENOTDIR;
2725 if (oldnd.last.name[oldnd.last.len])
2726 goto exit4;
2727 if (newnd.last.name[newnd.last.len])
2728 goto exit4;
2729 }
2730 /* source should not be ancestor of target */
2731 error = -EINVAL;
2732 if (old_dentry == trap)
2733 goto exit4;
2734 new_dentry = lookup_hash(&newnd);
2735 error = PTR_ERR(new_dentry);
2736 if (IS_ERR(new_dentry))
2737 goto exit4;
2738 /* target should not be an ancestor of source */
2739 error = -ENOTEMPTY;
2740 if (new_dentry == trap)
2741 goto exit5;
2742
2743 error = mnt_want_write(oldnd.path.mnt);
2744 if (error)
2745 goto exit5;
2746 error = security_path_rename(&oldnd.path, old_dentry,
2747 &newnd.path, new_dentry);
2748 if (error)
2749 goto exit6;
2750 error = vfs_rename(old_dir->d_inode, old_dentry,
2751 new_dir->d_inode, new_dentry);
2752exit6:
2753 mnt_drop_write(oldnd.path.mnt);
2754exit5:
2755 dput(new_dentry);
2756exit4:
2757 dput(old_dentry);
2758exit3:
2759 unlock_rename(new_dir, old_dir);
2760exit2:
2761 path_put(&newnd.path);
2762 putname(to);
2763exit1:
2764 path_put(&oldnd.path);
2765 putname(from);
2766exit:
2767 return error;
2768}
2769
2770SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2771{
2772 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2773}
2774
2775int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2776{
2777 int len;
2778
2779 len = PTR_ERR(link);
2780 if (IS_ERR(link))
2781 goto out;
2782
2783 len = strlen(link);
2784 if (len > (unsigned) buflen)
2785 len = buflen;
2786 if (copy_to_user(buffer, link, len))
2787 len = -EFAULT;
2788out:
2789 return len;
2790}
2791
2792/*
2793 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2794 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2795 * using) it for any given inode is up to filesystem.
2796 */
2797int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2798{
2799 struct nameidata nd;
2800 void *cookie;
2801 int res;
2802
2803 nd.depth = 0;
2804 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2805 if (IS_ERR(cookie))
2806 return PTR_ERR(cookie);
2807
2808 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2809 if (dentry->d_inode->i_op->put_link)
2810 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2811 return res;
2812}
2813
2814int vfs_follow_link(struct nameidata *nd, const char *link)
2815{
2816 return __vfs_follow_link(nd, link);
2817}
2818
2819/* get the link contents into pagecache */
2820static char *page_getlink(struct dentry * dentry, struct page **ppage)
2821{
2822 char *kaddr;
2823 struct page *page;
2824 struct address_space *mapping = dentry->d_inode->i_mapping;
2825 page = read_mapping_page(mapping, 0, NULL);
2826 if (IS_ERR(page))
2827 return (char*)page;
2828 *ppage = page;
2829 kaddr = kmap(page);
2830 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2831 return kaddr;
2832}
2833
2834int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2835{
2836 struct page *page = NULL;
2837 char *s = page_getlink(dentry, &page);
2838 int res = vfs_readlink(dentry,buffer,buflen,s);
2839 if (page) {
2840 kunmap(page);
2841 page_cache_release(page);
2842 }
2843 return res;
2844}
2845
2846void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2847{
2848 struct page *page = NULL;
2849 nd_set_link(nd, page_getlink(dentry, &page));
2850 return page;
2851}
2852
2853void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2854{
2855 struct page *page = cookie;
2856
2857 if (page) {
2858 kunmap(page);
2859 page_cache_release(page);
2860 }
2861}
2862
2863/*
2864 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2865 */
2866int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2867{
2868 struct address_space *mapping = inode->i_mapping;
2869 struct page *page;
2870 void *fsdata;
2871 int err;
2872 char *kaddr;
2873 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2874 if (nofs)
2875 flags |= AOP_FLAG_NOFS;
2876
2877retry:
2878 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2879 flags, &page, &fsdata);
2880 if (err)
2881 goto fail;
2882
2883 kaddr = kmap_atomic(page, KM_USER0);
2884 memcpy(kaddr, symname, len-1);
2885 kunmap_atomic(kaddr, KM_USER0);
2886
2887 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2888 page, fsdata);
2889 if (err < 0)
2890 goto fail;
2891 if (err < len-1)
2892 goto retry;
2893
2894 mark_inode_dirty(inode);
2895 return 0;
2896fail:
2897 return err;
2898}
2899
2900int page_symlink(struct inode *inode, const char *symname, int len)
2901{
2902 return __page_symlink(inode, symname, len,
2903 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2904}
2905
2906const struct inode_operations page_symlink_inode_operations = {
2907 .readlink = generic_readlink,
2908 .follow_link = page_follow_link_light,
2909 .put_link = page_put_link,
2910};
2911
2912EXPORT_SYMBOL(user_path_at);
2913EXPORT_SYMBOL(follow_down);
2914EXPORT_SYMBOL(follow_up);
2915EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2916EXPORT_SYMBOL(getname);
2917EXPORT_SYMBOL(lock_rename);
2918EXPORT_SYMBOL(lookup_one_len);
2919EXPORT_SYMBOL(page_follow_link_light);
2920EXPORT_SYMBOL(page_put_link);
2921EXPORT_SYMBOL(page_readlink);
2922EXPORT_SYMBOL(__page_symlink);
2923EXPORT_SYMBOL(page_symlink);
2924EXPORT_SYMBOL(page_symlink_inode_operations);
2925EXPORT_SYMBOL(path_lookup);
2926EXPORT_SYMBOL(kern_path);
2927EXPORT_SYMBOL(vfs_path_lookup);
2928EXPORT_SYMBOL(inode_permission);
2929EXPORT_SYMBOL(file_permission);
2930EXPORT_SYMBOL(unlock_rename);
2931EXPORT_SYMBOL(vfs_create);
2932EXPORT_SYMBOL(vfs_follow_link);
2933EXPORT_SYMBOL(vfs_link);
2934EXPORT_SYMBOL(vfs_mkdir);
2935EXPORT_SYMBOL(vfs_mknod);
2936EXPORT_SYMBOL(generic_permission);
2937EXPORT_SYMBOL(vfs_readlink);
2938EXPORT_SYMBOL(vfs_rename);
2939EXPORT_SYMBOL(vfs_rmdir);
2940EXPORT_SYMBOL(vfs_symlink);
2941EXPORT_SYMBOL(vfs_unlink);
2942EXPORT_SYMBOL(dentry_unhash);
2943EXPORT_SYMBOL(generic_readlink);