]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - fs/namei.c
xps: Transmit Packet Steering
[net-next-2.6.git] / fs / namei.c
... / ...
CommitLineData
1/*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/namei.h>
22#include <linux/pagemap.h>
23#include <linux/fsnotify.h>
24#include <linux/personality.h>
25#include <linux/security.h>
26#include <linux/ima.h>
27#include <linux/syscalls.h>
28#include <linux/mount.h>
29#include <linux/audit.h>
30#include <linux/capability.h>
31#include <linux/file.h>
32#include <linux/fcntl.h>
33#include <linux/device_cgroup.h>
34#include <linux/fs_struct.h>
35#include <asm/uaccess.h>
36
37#include "internal.h"
38
39/* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104/*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110/* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117static int do_getname(const char __user *filename, char *page)
118{
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137}
138
139char * getname(const char __user * filename)
140{
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
152 }
153 }
154 audit_getname(result);
155 return result;
156}
157
158#ifdef CONFIG_AUDITSYSCALL
159void putname(const char *name)
160{
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165}
166EXPORT_SYMBOL(putname);
167#endif
168
169/*
170 * This does basic POSIX ACL permission checking
171 */
172static int acl_permission_check(struct inode *inode, int mask,
173 int (*check_acl)(struct inode *inode, int mask))
174{
175 umode_t mode = inode->i_mode;
176
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask);
184 if (error != -EAGAIN)
185 return error;
186 }
187
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
190 }
191
192 /*
193 * If the DACs are ok we don't need any capability check.
194 */
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
198}
199
200/**
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 *
206 * Used to check for read/write/execute permissions on a file.
207 * We use "fsuid" for this, letting us set arbitrary permissions
208 * for filesystem access without changing the "normal" uids which
209 * are used for other things..
210 */
211int generic_permission(struct inode *inode, int mask,
212 int (*check_acl)(struct inode *inode, int mask))
213{
214 int ret;
215
216 /*
217 * Do the basic POSIX ACL permission checks.
218 */
219 ret = acl_permission_check(inode, mask, check_acl);
220 if (ret != -EACCES)
221 return ret;
222
223 /*
224 * Read/write DACs are always overridable.
225 * Executable DACs are overridable if at least one exec bit is set.
226 */
227 if (!(mask & MAY_EXEC) || execute_ok(inode))
228 if (capable(CAP_DAC_OVERRIDE))
229 return 0;
230
231 /*
232 * Searching includes executable on directories, else just read.
233 */
234 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 if (capable(CAP_DAC_READ_SEARCH))
237 return 0;
238
239 return -EACCES;
240}
241
242/**
243 * inode_permission - check for access rights to a given inode
244 * @inode: inode to check permission on
245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246 *
247 * Used to check for read/write/execute permissions on an inode.
248 * We use "fsuid" for this, letting us set arbitrary permissions
249 * for filesystem access without changing the "normal" uids which
250 * are used for other things.
251 */
252int inode_permission(struct inode *inode, int mask)
253{
254 int retval;
255
256 if (mask & MAY_WRITE) {
257 umode_t mode = inode->i_mode;
258
259 /*
260 * Nobody gets write access to a read-only fs.
261 */
262 if (IS_RDONLY(inode) &&
263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 return -EROFS;
265
266 /*
267 * Nobody gets write access to an immutable file.
268 */
269 if (IS_IMMUTABLE(inode))
270 return -EACCES;
271 }
272
273 if (inode->i_op->permission)
274 retval = inode->i_op->permission(inode, mask);
275 else
276 retval = generic_permission(inode, mask, inode->i_op->check_acl);
277
278 if (retval)
279 return retval;
280
281 retval = devcgroup_inode_permission(inode, mask);
282 if (retval)
283 return retval;
284
285 return security_inode_permission(inode, mask);
286}
287
288/**
289 * file_permission - check for additional access rights to a given file
290 * @file: file to check access rights for
291 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
292 *
293 * Used to check for read/write/execute permissions on an already opened
294 * file.
295 *
296 * Note:
297 * Do not use this function in new code. All access checks should
298 * be done using inode_permission().
299 */
300int file_permission(struct file *file, int mask)
301{
302 return inode_permission(file->f_path.dentry->d_inode, mask);
303}
304
305/*
306 * get_write_access() gets write permission for a file.
307 * put_write_access() releases this write permission.
308 * This is used for regular files.
309 * We cannot support write (and maybe mmap read-write shared) accesses and
310 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
311 * can have the following values:
312 * 0: no writers, no VM_DENYWRITE mappings
313 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
314 * > 0: (i_writecount) users are writing to the file.
315 *
316 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
317 * except for the cases where we don't hold i_writecount yet. Then we need to
318 * use {get,deny}_write_access() - these functions check the sign and refuse
319 * to do the change if sign is wrong. Exclusion between them is provided by
320 * the inode->i_lock spinlock.
321 */
322
323int get_write_access(struct inode * inode)
324{
325 spin_lock(&inode->i_lock);
326 if (atomic_read(&inode->i_writecount) < 0) {
327 spin_unlock(&inode->i_lock);
328 return -ETXTBSY;
329 }
330 atomic_inc(&inode->i_writecount);
331 spin_unlock(&inode->i_lock);
332
333 return 0;
334}
335
336int deny_write_access(struct file * file)
337{
338 struct inode *inode = file->f_path.dentry->d_inode;
339
340 spin_lock(&inode->i_lock);
341 if (atomic_read(&inode->i_writecount) > 0) {
342 spin_unlock(&inode->i_lock);
343 return -ETXTBSY;
344 }
345 atomic_dec(&inode->i_writecount);
346 spin_unlock(&inode->i_lock);
347
348 return 0;
349}
350
351/**
352 * path_get - get a reference to a path
353 * @path: path to get the reference to
354 *
355 * Given a path increment the reference count to the dentry and the vfsmount.
356 */
357void path_get(struct path *path)
358{
359 mntget(path->mnt);
360 dget(path->dentry);
361}
362EXPORT_SYMBOL(path_get);
363
364/**
365 * path_put - put a reference to a path
366 * @path: path to put the reference to
367 *
368 * Given a path decrement the reference count to the dentry and the vfsmount.
369 */
370void path_put(struct path *path)
371{
372 dput(path->dentry);
373 mntput(path->mnt);
374}
375EXPORT_SYMBOL(path_put);
376
377/**
378 * release_open_intent - free up open intent resources
379 * @nd: pointer to nameidata
380 */
381void release_open_intent(struct nameidata *nd)
382{
383 if (nd->intent.open.file->f_path.dentry == NULL)
384 put_filp(nd->intent.open.file);
385 else
386 fput(nd->intent.open.file);
387}
388
389static inline struct dentry *
390do_revalidate(struct dentry *dentry, struct nameidata *nd)
391{
392 int status = dentry->d_op->d_revalidate(dentry, nd);
393 if (unlikely(status <= 0)) {
394 /*
395 * The dentry failed validation.
396 * If d_revalidate returned 0 attempt to invalidate
397 * the dentry otherwise d_revalidate is asking us
398 * to return a fail status.
399 */
400 if (!status) {
401 if (!d_invalidate(dentry)) {
402 dput(dentry);
403 dentry = NULL;
404 }
405 } else {
406 dput(dentry);
407 dentry = ERR_PTR(status);
408 }
409 }
410 return dentry;
411}
412
413/*
414 * force_reval_path - force revalidation of a dentry
415 *
416 * In some situations the path walking code will trust dentries without
417 * revalidating them. This causes problems for filesystems that depend on
418 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
419 * (which indicates that it's possible for the dentry to go stale), force
420 * a d_revalidate call before proceeding.
421 *
422 * Returns 0 if the revalidation was successful. If the revalidation fails,
423 * either return the error returned by d_revalidate or -ESTALE if the
424 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
425 * invalidate the dentry. It's up to the caller to handle putting references
426 * to the path if necessary.
427 */
428static int
429force_reval_path(struct path *path, struct nameidata *nd)
430{
431 int status;
432 struct dentry *dentry = path->dentry;
433
434 /*
435 * only check on filesystems where it's possible for the dentry to
436 * become stale. It's assumed that if this flag is set then the
437 * d_revalidate op will also be defined.
438 */
439 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
440 return 0;
441
442 status = dentry->d_op->d_revalidate(dentry, nd);
443 if (status > 0)
444 return 0;
445
446 if (!status) {
447 d_invalidate(dentry);
448 status = -ESTALE;
449 }
450 return status;
451}
452
453/*
454 * Short-cut version of permission(), for calling on directories
455 * during pathname resolution. Combines parts of permission()
456 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
457 *
458 * If appropriate, check DAC only. If not appropriate, or
459 * short-cut DAC fails, then call ->permission() to do more
460 * complete permission check.
461 */
462static int exec_permission(struct inode *inode)
463{
464 int ret;
465
466 if (inode->i_op->permission) {
467 ret = inode->i_op->permission(inode, MAY_EXEC);
468 if (!ret)
469 goto ok;
470 return ret;
471 }
472 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
473 if (!ret)
474 goto ok;
475
476 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
477 goto ok;
478
479 return ret;
480ok:
481 return security_inode_permission(inode, MAY_EXEC);
482}
483
484static __always_inline void set_root(struct nameidata *nd)
485{
486 if (!nd->root.mnt)
487 get_fs_root(current->fs, &nd->root);
488}
489
490static int link_path_walk(const char *, struct nameidata *);
491
492static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
493{
494 if (IS_ERR(link))
495 goto fail;
496
497 if (*link == '/') {
498 set_root(nd);
499 path_put(&nd->path);
500 nd->path = nd->root;
501 path_get(&nd->root);
502 }
503
504 return link_path_walk(link, nd);
505fail:
506 path_put(&nd->path);
507 return PTR_ERR(link);
508}
509
510static void path_put_conditional(struct path *path, struct nameidata *nd)
511{
512 dput(path->dentry);
513 if (path->mnt != nd->path.mnt)
514 mntput(path->mnt);
515}
516
517static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
518{
519 dput(nd->path.dentry);
520 if (nd->path.mnt != path->mnt) {
521 mntput(nd->path.mnt);
522 nd->path.mnt = path->mnt;
523 }
524 nd->path.dentry = path->dentry;
525}
526
527static __always_inline int
528__do_follow_link(struct path *path, struct nameidata *nd, void **p)
529{
530 int error;
531 struct dentry *dentry = path->dentry;
532
533 touch_atime(path->mnt, dentry);
534 nd_set_link(nd, NULL);
535
536 if (path->mnt != nd->path.mnt) {
537 path_to_nameidata(path, nd);
538 dget(dentry);
539 }
540 mntget(path->mnt);
541 nd->last_type = LAST_BIND;
542 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
543 error = PTR_ERR(*p);
544 if (!IS_ERR(*p)) {
545 char *s = nd_get_link(nd);
546 error = 0;
547 if (s)
548 error = __vfs_follow_link(nd, s);
549 else if (nd->last_type == LAST_BIND) {
550 error = force_reval_path(&nd->path, nd);
551 if (error)
552 path_put(&nd->path);
553 }
554 }
555 return error;
556}
557
558/*
559 * This limits recursive symlink follows to 8, while
560 * limiting consecutive symlinks to 40.
561 *
562 * Without that kind of total limit, nasty chains of consecutive
563 * symlinks can cause almost arbitrarily long lookups.
564 */
565static inline int do_follow_link(struct path *path, struct nameidata *nd)
566{
567 void *cookie;
568 int err = -ELOOP;
569 if (current->link_count >= MAX_NESTED_LINKS)
570 goto loop;
571 if (current->total_link_count >= 40)
572 goto loop;
573 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
574 cond_resched();
575 err = security_inode_follow_link(path->dentry, nd);
576 if (err)
577 goto loop;
578 current->link_count++;
579 current->total_link_count++;
580 nd->depth++;
581 err = __do_follow_link(path, nd, &cookie);
582 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
583 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
584 path_put(path);
585 current->link_count--;
586 nd->depth--;
587 return err;
588loop:
589 path_put_conditional(path, nd);
590 path_put(&nd->path);
591 return err;
592}
593
594int follow_up(struct path *path)
595{
596 struct vfsmount *parent;
597 struct dentry *mountpoint;
598
599 br_read_lock(vfsmount_lock);
600 parent = path->mnt->mnt_parent;
601 if (parent == path->mnt) {
602 br_read_unlock(vfsmount_lock);
603 return 0;
604 }
605 mntget(parent);
606 mountpoint = dget(path->mnt->mnt_mountpoint);
607 br_read_unlock(vfsmount_lock);
608 dput(path->dentry);
609 path->dentry = mountpoint;
610 mntput(path->mnt);
611 path->mnt = parent;
612 return 1;
613}
614
615/* no need for dcache_lock, as serialization is taken care in
616 * namespace.c
617 */
618static int __follow_mount(struct path *path)
619{
620 int res = 0;
621 while (d_mountpoint(path->dentry)) {
622 struct vfsmount *mounted = lookup_mnt(path);
623 if (!mounted)
624 break;
625 dput(path->dentry);
626 if (res)
627 mntput(path->mnt);
628 path->mnt = mounted;
629 path->dentry = dget(mounted->mnt_root);
630 res = 1;
631 }
632 return res;
633}
634
635static void follow_mount(struct path *path)
636{
637 while (d_mountpoint(path->dentry)) {
638 struct vfsmount *mounted = lookup_mnt(path);
639 if (!mounted)
640 break;
641 dput(path->dentry);
642 mntput(path->mnt);
643 path->mnt = mounted;
644 path->dentry = dget(mounted->mnt_root);
645 }
646}
647
648/* no need for dcache_lock, as serialization is taken care in
649 * namespace.c
650 */
651int follow_down(struct path *path)
652{
653 struct vfsmount *mounted;
654
655 mounted = lookup_mnt(path);
656 if (mounted) {
657 dput(path->dentry);
658 mntput(path->mnt);
659 path->mnt = mounted;
660 path->dentry = dget(mounted->mnt_root);
661 return 1;
662 }
663 return 0;
664}
665
666static __always_inline void follow_dotdot(struct nameidata *nd)
667{
668 set_root(nd);
669
670 while(1) {
671 struct dentry *old = nd->path.dentry;
672
673 if (nd->path.dentry == nd->root.dentry &&
674 nd->path.mnt == nd->root.mnt) {
675 break;
676 }
677 if (nd->path.dentry != nd->path.mnt->mnt_root) {
678 /* rare case of legitimate dget_parent()... */
679 nd->path.dentry = dget_parent(nd->path.dentry);
680 dput(old);
681 break;
682 }
683 if (!follow_up(&nd->path))
684 break;
685 }
686 follow_mount(&nd->path);
687}
688
689/*
690 * Allocate a dentry with name and parent, and perform a parent
691 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
692 * on error. parent->d_inode->i_mutex must be held. d_lookup must
693 * have verified that no child exists while under i_mutex.
694 */
695static struct dentry *d_alloc_and_lookup(struct dentry *parent,
696 struct qstr *name, struct nameidata *nd)
697{
698 struct inode *inode = parent->d_inode;
699 struct dentry *dentry;
700 struct dentry *old;
701
702 /* Don't create child dentry for a dead directory. */
703 if (unlikely(IS_DEADDIR(inode)))
704 return ERR_PTR(-ENOENT);
705
706 dentry = d_alloc(parent, name);
707 if (unlikely(!dentry))
708 return ERR_PTR(-ENOMEM);
709
710 old = inode->i_op->lookup(inode, dentry, nd);
711 if (unlikely(old)) {
712 dput(dentry);
713 dentry = old;
714 }
715 return dentry;
716}
717
718/*
719 * It's more convoluted than I'd like it to be, but... it's still fairly
720 * small and for now I'd prefer to have fast path as straight as possible.
721 * It _is_ time-critical.
722 */
723static int do_lookup(struct nameidata *nd, struct qstr *name,
724 struct path *path)
725{
726 struct vfsmount *mnt = nd->path.mnt;
727 struct dentry *dentry, *parent;
728 struct inode *dir;
729 /*
730 * See if the low-level filesystem might want
731 * to use its own hash..
732 */
733 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
734 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
735 if (err < 0)
736 return err;
737 }
738
739 /*
740 * Rename seqlock is not required here because in the off chance
741 * of a false negative due to a concurrent rename, we're going to
742 * do the non-racy lookup, below.
743 */
744 dentry = __d_lookup(nd->path.dentry, name);
745 if (!dentry)
746 goto need_lookup;
747found:
748 if (dentry->d_op && dentry->d_op->d_revalidate)
749 goto need_revalidate;
750done:
751 path->mnt = mnt;
752 path->dentry = dentry;
753 __follow_mount(path);
754 return 0;
755
756need_lookup:
757 parent = nd->path.dentry;
758 dir = parent->d_inode;
759
760 mutex_lock(&dir->i_mutex);
761 /*
762 * First re-do the cached lookup just in case it was created
763 * while we waited for the directory semaphore, or the first
764 * lookup failed due to an unrelated rename.
765 *
766 * This could use version numbering or similar to avoid unnecessary
767 * cache lookups, but then we'd have to do the first lookup in the
768 * non-racy way. However in the common case here, everything should
769 * be hot in cache, so would it be a big win?
770 */
771 dentry = d_lookup(parent, name);
772 if (likely(!dentry)) {
773 dentry = d_alloc_and_lookup(parent, name, nd);
774 mutex_unlock(&dir->i_mutex);
775 if (IS_ERR(dentry))
776 goto fail;
777 goto done;
778 }
779 /*
780 * Uhhuh! Nasty case: the cache was re-populated while
781 * we waited on the semaphore. Need to revalidate.
782 */
783 mutex_unlock(&dir->i_mutex);
784 goto found;
785
786need_revalidate:
787 dentry = do_revalidate(dentry, nd);
788 if (!dentry)
789 goto need_lookup;
790 if (IS_ERR(dentry))
791 goto fail;
792 goto done;
793
794fail:
795 return PTR_ERR(dentry);
796}
797
798/*
799 * This is a temporary kludge to deal with "automount" symlinks; proper
800 * solution is to trigger them on follow_mount(), so that do_lookup()
801 * would DTRT. To be killed before 2.6.34-final.
802 */
803static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
804{
805 return inode && unlikely(inode->i_op->follow_link) &&
806 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
807}
808
809/*
810 * Name resolution.
811 * This is the basic name resolution function, turning a pathname into
812 * the final dentry. We expect 'base' to be positive and a directory.
813 *
814 * Returns 0 and nd will have valid dentry and mnt on success.
815 * Returns error and drops reference to input namei data on failure.
816 */
817static int link_path_walk(const char *name, struct nameidata *nd)
818{
819 struct path next;
820 struct inode *inode;
821 int err;
822 unsigned int lookup_flags = nd->flags;
823
824 while (*name=='/')
825 name++;
826 if (!*name)
827 goto return_reval;
828
829 inode = nd->path.dentry->d_inode;
830 if (nd->depth)
831 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
832
833 /* At this point we know we have a real path component. */
834 for(;;) {
835 unsigned long hash;
836 struct qstr this;
837 unsigned int c;
838
839 nd->flags |= LOOKUP_CONTINUE;
840 err = exec_permission(inode);
841 if (err)
842 break;
843
844 this.name = name;
845 c = *(const unsigned char *)name;
846
847 hash = init_name_hash();
848 do {
849 name++;
850 hash = partial_name_hash(c, hash);
851 c = *(const unsigned char *)name;
852 } while (c && (c != '/'));
853 this.len = name - (const char *) this.name;
854 this.hash = end_name_hash(hash);
855
856 /* remove trailing slashes? */
857 if (!c)
858 goto last_component;
859 while (*++name == '/');
860 if (!*name)
861 goto last_with_slashes;
862
863 /*
864 * "." and ".." are special - ".." especially so because it has
865 * to be able to know about the current root directory and
866 * parent relationships.
867 */
868 if (this.name[0] == '.') switch (this.len) {
869 default:
870 break;
871 case 2:
872 if (this.name[1] != '.')
873 break;
874 follow_dotdot(nd);
875 inode = nd->path.dentry->d_inode;
876 /* fallthrough */
877 case 1:
878 continue;
879 }
880 /* This does the actual lookups.. */
881 err = do_lookup(nd, &this, &next);
882 if (err)
883 break;
884
885 err = -ENOENT;
886 inode = next.dentry->d_inode;
887 if (!inode)
888 goto out_dput;
889
890 if (inode->i_op->follow_link) {
891 err = do_follow_link(&next, nd);
892 if (err)
893 goto return_err;
894 err = -ENOENT;
895 inode = nd->path.dentry->d_inode;
896 if (!inode)
897 break;
898 } else
899 path_to_nameidata(&next, nd);
900 err = -ENOTDIR;
901 if (!inode->i_op->lookup)
902 break;
903 continue;
904 /* here ends the main loop */
905
906last_with_slashes:
907 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
908last_component:
909 /* Clear LOOKUP_CONTINUE iff it was previously unset */
910 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
911 if (lookup_flags & LOOKUP_PARENT)
912 goto lookup_parent;
913 if (this.name[0] == '.') switch (this.len) {
914 default:
915 break;
916 case 2:
917 if (this.name[1] != '.')
918 break;
919 follow_dotdot(nd);
920 inode = nd->path.dentry->d_inode;
921 /* fallthrough */
922 case 1:
923 goto return_reval;
924 }
925 err = do_lookup(nd, &this, &next);
926 if (err)
927 break;
928 inode = next.dentry->d_inode;
929 if (follow_on_final(inode, lookup_flags)) {
930 err = do_follow_link(&next, nd);
931 if (err)
932 goto return_err;
933 inode = nd->path.dentry->d_inode;
934 } else
935 path_to_nameidata(&next, nd);
936 err = -ENOENT;
937 if (!inode)
938 break;
939 if (lookup_flags & LOOKUP_DIRECTORY) {
940 err = -ENOTDIR;
941 if (!inode->i_op->lookup)
942 break;
943 }
944 goto return_base;
945lookup_parent:
946 nd->last = this;
947 nd->last_type = LAST_NORM;
948 if (this.name[0] != '.')
949 goto return_base;
950 if (this.len == 1)
951 nd->last_type = LAST_DOT;
952 else if (this.len == 2 && this.name[1] == '.')
953 nd->last_type = LAST_DOTDOT;
954 else
955 goto return_base;
956return_reval:
957 /*
958 * We bypassed the ordinary revalidation routines.
959 * We may need to check the cached dentry for staleness.
960 */
961 if (nd->path.dentry && nd->path.dentry->d_sb &&
962 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
963 err = -ESTALE;
964 /* Note: we do not d_invalidate() */
965 if (!nd->path.dentry->d_op->d_revalidate(
966 nd->path.dentry, nd))
967 break;
968 }
969return_base:
970 return 0;
971out_dput:
972 path_put_conditional(&next, nd);
973 break;
974 }
975 path_put(&nd->path);
976return_err:
977 return err;
978}
979
980static int path_walk(const char *name, struct nameidata *nd)
981{
982 struct path save = nd->path;
983 int result;
984
985 current->total_link_count = 0;
986
987 /* make sure the stuff we saved doesn't go away */
988 path_get(&save);
989
990 result = link_path_walk(name, nd);
991 if (result == -ESTALE) {
992 /* nd->path had been dropped */
993 current->total_link_count = 0;
994 nd->path = save;
995 path_get(&nd->path);
996 nd->flags |= LOOKUP_REVAL;
997 result = link_path_walk(name, nd);
998 }
999
1000 path_put(&save);
1001
1002 return result;
1003}
1004
1005static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1006{
1007 int retval = 0;
1008 int fput_needed;
1009 struct file *file;
1010
1011 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1012 nd->flags = flags;
1013 nd->depth = 0;
1014 nd->root.mnt = NULL;
1015
1016 if (*name=='/') {
1017 set_root(nd);
1018 nd->path = nd->root;
1019 path_get(&nd->root);
1020 } else if (dfd == AT_FDCWD) {
1021 get_fs_pwd(current->fs, &nd->path);
1022 } else {
1023 struct dentry *dentry;
1024
1025 file = fget_light(dfd, &fput_needed);
1026 retval = -EBADF;
1027 if (!file)
1028 goto out_fail;
1029
1030 dentry = file->f_path.dentry;
1031
1032 retval = -ENOTDIR;
1033 if (!S_ISDIR(dentry->d_inode->i_mode))
1034 goto fput_fail;
1035
1036 retval = file_permission(file, MAY_EXEC);
1037 if (retval)
1038 goto fput_fail;
1039
1040 nd->path = file->f_path;
1041 path_get(&file->f_path);
1042
1043 fput_light(file, fput_needed);
1044 }
1045 return 0;
1046
1047fput_fail:
1048 fput_light(file, fput_needed);
1049out_fail:
1050 return retval;
1051}
1052
1053/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1054static int do_path_lookup(int dfd, const char *name,
1055 unsigned int flags, struct nameidata *nd)
1056{
1057 int retval = path_init(dfd, name, flags, nd);
1058 if (!retval)
1059 retval = path_walk(name, nd);
1060 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1061 nd->path.dentry->d_inode))
1062 audit_inode(name, nd->path.dentry);
1063 if (nd->root.mnt) {
1064 path_put(&nd->root);
1065 nd->root.mnt = NULL;
1066 }
1067 return retval;
1068}
1069
1070int path_lookup(const char *name, unsigned int flags,
1071 struct nameidata *nd)
1072{
1073 return do_path_lookup(AT_FDCWD, name, flags, nd);
1074}
1075
1076int kern_path(const char *name, unsigned int flags, struct path *path)
1077{
1078 struct nameidata nd;
1079 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1080 if (!res)
1081 *path = nd.path;
1082 return res;
1083}
1084
1085/**
1086 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1087 * @dentry: pointer to dentry of the base directory
1088 * @mnt: pointer to vfs mount of the base directory
1089 * @name: pointer to file name
1090 * @flags: lookup flags
1091 * @nd: pointer to nameidata
1092 */
1093int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1094 const char *name, unsigned int flags,
1095 struct nameidata *nd)
1096{
1097 int retval;
1098
1099 /* same as do_path_lookup */
1100 nd->last_type = LAST_ROOT;
1101 nd->flags = flags;
1102 nd->depth = 0;
1103
1104 nd->path.dentry = dentry;
1105 nd->path.mnt = mnt;
1106 path_get(&nd->path);
1107 nd->root = nd->path;
1108 path_get(&nd->root);
1109
1110 retval = path_walk(name, nd);
1111 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1112 nd->path.dentry->d_inode))
1113 audit_inode(name, nd->path.dentry);
1114
1115 path_put(&nd->root);
1116 nd->root.mnt = NULL;
1117
1118 return retval;
1119}
1120
1121static struct dentry *__lookup_hash(struct qstr *name,
1122 struct dentry *base, struct nameidata *nd)
1123{
1124 struct inode *inode = base->d_inode;
1125 struct dentry *dentry;
1126 int err;
1127
1128 err = exec_permission(inode);
1129 if (err)
1130 return ERR_PTR(err);
1131
1132 /*
1133 * See if the low-level filesystem might want
1134 * to use its own hash..
1135 */
1136 if (base->d_op && base->d_op->d_hash) {
1137 err = base->d_op->d_hash(base, name);
1138 dentry = ERR_PTR(err);
1139 if (err < 0)
1140 goto out;
1141 }
1142
1143 /*
1144 * Don't bother with __d_lookup: callers are for creat as
1145 * well as unlink, so a lot of the time it would cost
1146 * a double lookup.
1147 */
1148 dentry = d_lookup(base, name);
1149
1150 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1151 dentry = do_revalidate(dentry, nd);
1152
1153 if (!dentry)
1154 dentry = d_alloc_and_lookup(base, name, nd);
1155out:
1156 return dentry;
1157}
1158
1159/*
1160 * Restricted form of lookup. Doesn't follow links, single-component only,
1161 * needs parent already locked. Doesn't follow mounts.
1162 * SMP-safe.
1163 */
1164static struct dentry *lookup_hash(struct nameidata *nd)
1165{
1166 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1167}
1168
1169static int __lookup_one_len(const char *name, struct qstr *this,
1170 struct dentry *base, int len)
1171{
1172 unsigned long hash;
1173 unsigned int c;
1174
1175 this->name = name;
1176 this->len = len;
1177 if (!len)
1178 return -EACCES;
1179
1180 hash = init_name_hash();
1181 while (len--) {
1182 c = *(const unsigned char *)name++;
1183 if (c == '/' || c == '\0')
1184 return -EACCES;
1185 hash = partial_name_hash(c, hash);
1186 }
1187 this->hash = end_name_hash(hash);
1188 return 0;
1189}
1190
1191/**
1192 * lookup_one_len - filesystem helper to lookup single pathname component
1193 * @name: pathname component to lookup
1194 * @base: base directory to lookup from
1195 * @len: maximum length @len should be interpreted to
1196 *
1197 * Note that this routine is purely a helper for filesystem usage and should
1198 * not be called by generic code. Also note that by using this function the
1199 * nameidata argument is passed to the filesystem methods and a filesystem
1200 * using this helper needs to be prepared for that.
1201 */
1202struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1203{
1204 int err;
1205 struct qstr this;
1206
1207 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1208
1209 err = __lookup_one_len(name, &this, base, len);
1210 if (err)
1211 return ERR_PTR(err);
1212
1213 return __lookup_hash(&this, base, NULL);
1214}
1215
1216int user_path_at(int dfd, const char __user *name, unsigned flags,
1217 struct path *path)
1218{
1219 struct nameidata nd;
1220 char *tmp = getname(name);
1221 int err = PTR_ERR(tmp);
1222 if (!IS_ERR(tmp)) {
1223
1224 BUG_ON(flags & LOOKUP_PARENT);
1225
1226 err = do_path_lookup(dfd, tmp, flags, &nd);
1227 putname(tmp);
1228 if (!err)
1229 *path = nd.path;
1230 }
1231 return err;
1232}
1233
1234static int user_path_parent(int dfd, const char __user *path,
1235 struct nameidata *nd, char **name)
1236{
1237 char *s = getname(path);
1238 int error;
1239
1240 if (IS_ERR(s))
1241 return PTR_ERR(s);
1242
1243 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1244 if (error)
1245 putname(s);
1246 else
1247 *name = s;
1248
1249 return error;
1250}
1251
1252/*
1253 * It's inline, so penalty for filesystems that don't use sticky bit is
1254 * minimal.
1255 */
1256static inline int check_sticky(struct inode *dir, struct inode *inode)
1257{
1258 uid_t fsuid = current_fsuid();
1259
1260 if (!(dir->i_mode & S_ISVTX))
1261 return 0;
1262 if (inode->i_uid == fsuid)
1263 return 0;
1264 if (dir->i_uid == fsuid)
1265 return 0;
1266 return !capable(CAP_FOWNER);
1267}
1268
1269/*
1270 * Check whether we can remove a link victim from directory dir, check
1271 * whether the type of victim is right.
1272 * 1. We can't do it if dir is read-only (done in permission())
1273 * 2. We should have write and exec permissions on dir
1274 * 3. We can't remove anything from append-only dir
1275 * 4. We can't do anything with immutable dir (done in permission())
1276 * 5. If the sticky bit on dir is set we should either
1277 * a. be owner of dir, or
1278 * b. be owner of victim, or
1279 * c. have CAP_FOWNER capability
1280 * 6. If the victim is append-only or immutable we can't do antyhing with
1281 * links pointing to it.
1282 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1283 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1284 * 9. We can't remove a root or mountpoint.
1285 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1286 * nfs_async_unlink().
1287 */
1288static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1289{
1290 int error;
1291
1292 if (!victim->d_inode)
1293 return -ENOENT;
1294
1295 BUG_ON(victim->d_parent->d_inode != dir);
1296 audit_inode_child(victim, dir);
1297
1298 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1299 if (error)
1300 return error;
1301 if (IS_APPEND(dir))
1302 return -EPERM;
1303 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1304 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1305 return -EPERM;
1306 if (isdir) {
1307 if (!S_ISDIR(victim->d_inode->i_mode))
1308 return -ENOTDIR;
1309 if (IS_ROOT(victim))
1310 return -EBUSY;
1311 } else if (S_ISDIR(victim->d_inode->i_mode))
1312 return -EISDIR;
1313 if (IS_DEADDIR(dir))
1314 return -ENOENT;
1315 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1316 return -EBUSY;
1317 return 0;
1318}
1319
1320/* Check whether we can create an object with dentry child in directory
1321 * dir.
1322 * 1. We can't do it if child already exists (open has special treatment for
1323 * this case, but since we are inlined it's OK)
1324 * 2. We can't do it if dir is read-only (done in permission())
1325 * 3. We should have write and exec permissions on dir
1326 * 4. We can't do it if dir is immutable (done in permission())
1327 */
1328static inline int may_create(struct inode *dir, struct dentry *child)
1329{
1330 if (child->d_inode)
1331 return -EEXIST;
1332 if (IS_DEADDIR(dir))
1333 return -ENOENT;
1334 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1335}
1336
1337/*
1338 * p1 and p2 should be directories on the same fs.
1339 */
1340struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1341{
1342 struct dentry *p;
1343
1344 if (p1 == p2) {
1345 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1346 return NULL;
1347 }
1348
1349 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1350
1351 p = d_ancestor(p2, p1);
1352 if (p) {
1353 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1354 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1355 return p;
1356 }
1357
1358 p = d_ancestor(p1, p2);
1359 if (p) {
1360 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1361 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1362 return p;
1363 }
1364
1365 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1366 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1367 return NULL;
1368}
1369
1370void unlock_rename(struct dentry *p1, struct dentry *p2)
1371{
1372 mutex_unlock(&p1->d_inode->i_mutex);
1373 if (p1 != p2) {
1374 mutex_unlock(&p2->d_inode->i_mutex);
1375 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1376 }
1377}
1378
1379int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1380 struct nameidata *nd)
1381{
1382 int error = may_create(dir, dentry);
1383
1384 if (error)
1385 return error;
1386
1387 if (!dir->i_op->create)
1388 return -EACCES; /* shouldn't it be ENOSYS? */
1389 mode &= S_IALLUGO;
1390 mode |= S_IFREG;
1391 error = security_inode_create(dir, dentry, mode);
1392 if (error)
1393 return error;
1394 error = dir->i_op->create(dir, dentry, mode, nd);
1395 if (!error)
1396 fsnotify_create(dir, dentry);
1397 return error;
1398}
1399
1400int may_open(struct path *path, int acc_mode, int flag)
1401{
1402 struct dentry *dentry = path->dentry;
1403 struct inode *inode = dentry->d_inode;
1404 int error;
1405
1406 if (!inode)
1407 return -ENOENT;
1408
1409 switch (inode->i_mode & S_IFMT) {
1410 case S_IFLNK:
1411 return -ELOOP;
1412 case S_IFDIR:
1413 if (acc_mode & MAY_WRITE)
1414 return -EISDIR;
1415 break;
1416 case S_IFBLK:
1417 case S_IFCHR:
1418 if (path->mnt->mnt_flags & MNT_NODEV)
1419 return -EACCES;
1420 /*FALLTHRU*/
1421 case S_IFIFO:
1422 case S_IFSOCK:
1423 flag &= ~O_TRUNC;
1424 break;
1425 }
1426
1427 error = inode_permission(inode, acc_mode);
1428 if (error)
1429 return error;
1430
1431 /*
1432 * An append-only file must be opened in append mode for writing.
1433 */
1434 if (IS_APPEND(inode)) {
1435 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1436 return -EPERM;
1437 if (flag & O_TRUNC)
1438 return -EPERM;
1439 }
1440
1441 /* O_NOATIME can only be set by the owner or superuser */
1442 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1443 return -EPERM;
1444
1445 /*
1446 * Ensure there are no outstanding leases on the file.
1447 */
1448 return break_lease(inode, flag);
1449}
1450
1451static int handle_truncate(struct path *path)
1452{
1453 struct inode *inode = path->dentry->d_inode;
1454 int error = get_write_access(inode);
1455 if (error)
1456 return error;
1457 /*
1458 * Refuse to truncate files with mandatory locks held on them.
1459 */
1460 error = locks_verify_locked(inode);
1461 if (!error)
1462 error = security_path_truncate(path);
1463 if (!error) {
1464 error = do_truncate(path->dentry, 0,
1465 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1466 NULL);
1467 }
1468 put_write_access(inode);
1469 return error;
1470}
1471
1472/*
1473 * Be careful about ever adding any more callers of this
1474 * function. Its flags must be in the namei format, not
1475 * what get passed to sys_open().
1476 */
1477static int __open_namei_create(struct nameidata *nd, struct path *path,
1478 int open_flag, int mode)
1479{
1480 int error;
1481 struct dentry *dir = nd->path.dentry;
1482
1483 if (!IS_POSIXACL(dir->d_inode))
1484 mode &= ~current_umask();
1485 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1486 if (error)
1487 goto out_unlock;
1488 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1489out_unlock:
1490 mutex_unlock(&dir->d_inode->i_mutex);
1491 dput(nd->path.dentry);
1492 nd->path.dentry = path->dentry;
1493 if (error)
1494 return error;
1495 /* Don't check for write permission, don't truncate */
1496 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1497}
1498
1499/*
1500 * Note that while the flag value (low two bits) for sys_open means:
1501 * 00 - read-only
1502 * 01 - write-only
1503 * 10 - read-write
1504 * 11 - special
1505 * it is changed into
1506 * 00 - no permissions needed
1507 * 01 - read-permission
1508 * 10 - write-permission
1509 * 11 - read-write
1510 * for the internal routines (ie open_namei()/follow_link() etc)
1511 * This is more logical, and also allows the 00 "no perm needed"
1512 * to be used for symlinks (where the permissions are checked
1513 * later).
1514 *
1515*/
1516static inline int open_to_namei_flags(int flag)
1517{
1518 if ((flag+1) & O_ACCMODE)
1519 flag++;
1520 return flag;
1521}
1522
1523static int open_will_truncate(int flag, struct inode *inode)
1524{
1525 /*
1526 * We'll never write to the fs underlying
1527 * a device file.
1528 */
1529 if (special_file(inode->i_mode))
1530 return 0;
1531 return (flag & O_TRUNC);
1532}
1533
1534static struct file *finish_open(struct nameidata *nd,
1535 int open_flag, int acc_mode)
1536{
1537 struct file *filp;
1538 int will_truncate;
1539 int error;
1540
1541 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1542 if (will_truncate) {
1543 error = mnt_want_write(nd->path.mnt);
1544 if (error)
1545 goto exit;
1546 }
1547 error = may_open(&nd->path, acc_mode, open_flag);
1548 if (error) {
1549 if (will_truncate)
1550 mnt_drop_write(nd->path.mnt);
1551 goto exit;
1552 }
1553 filp = nameidata_to_filp(nd);
1554 if (!IS_ERR(filp)) {
1555 error = ima_file_check(filp, acc_mode);
1556 if (error) {
1557 fput(filp);
1558 filp = ERR_PTR(error);
1559 }
1560 }
1561 if (!IS_ERR(filp)) {
1562 if (will_truncate) {
1563 error = handle_truncate(&nd->path);
1564 if (error) {
1565 fput(filp);
1566 filp = ERR_PTR(error);
1567 }
1568 }
1569 }
1570 /*
1571 * It is now safe to drop the mnt write
1572 * because the filp has had a write taken
1573 * on its behalf.
1574 */
1575 if (will_truncate)
1576 mnt_drop_write(nd->path.mnt);
1577 path_put(&nd->path);
1578 return filp;
1579
1580exit:
1581 if (!IS_ERR(nd->intent.open.file))
1582 release_open_intent(nd);
1583 path_put(&nd->path);
1584 return ERR_PTR(error);
1585}
1586
1587static struct file *do_last(struct nameidata *nd, struct path *path,
1588 int open_flag, int acc_mode,
1589 int mode, const char *pathname)
1590{
1591 struct dentry *dir = nd->path.dentry;
1592 struct file *filp;
1593 int error = -EISDIR;
1594
1595 switch (nd->last_type) {
1596 case LAST_DOTDOT:
1597 follow_dotdot(nd);
1598 dir = nd->path.dentry;
1599 case LAST_DOT:
1600 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1601 if (!dir->d_op->d_revalidate(dir, nd)) {
1602 error = -ESTALE;
1603 goto exit;
1604 }
1605 }
1606 /* fallthrough */
1607 case LAST_ROOT:
1608 if (open_flag & O_CREAT)
1609 goto exit;
1610 /* fallthrough */
1611 case LAST_BIND:
1612 audit_inode(pathname, dir);
1613 goto ok;
1614 }
1615
1616 /* trailing slashes? */
1617 if (nd->last.name[nd->last.len]) {
1618 if (open_flag & O_CREAT)
1619 goto exit;
1620 nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW;
1621 }
1622
1623 /* just plain open? */
1624 if (!(open_flag & O_CREAT)) {
1625 error = do_lookup(nd, &nd->last, path);
1626 if (error)
1627 goto exit;
1628 error = -ENOENT;
1629 if (!path->dentry->d_inode)
1630 goto exit_dput;
1631 if (path->dentry->d_inode->i_op->follow_link)
1632 return NULL;
1633 error = -ENOTDIR;
1634 if (nd->flags & LOOKUP_DIRECTORY) {
1635 if (!path->dentry->d_inode->i_op->lookup)
1636 goto exit_dput;
1637 }
1638 path_to_nameidata(path, nd);
1639 audit_inode(pathname, nd->path.dentry);
1640 goto ok;
1641 }
1642
1643 /* OK, it's O_CREAT */
1644 mutex_lock(&dir->d_inode->i_mutex);
1645
1646 path->dentry = lookup_hash(nd);
1647 path->mnt = nd->path.mnt;
1648
1649 error = PTR_ERR(path->dentry);
1650 if (IS_ERR(path->dentry)) {
1651 mutex_unlock(&dir->d_inode->i_mutex);
1652 goto exit;
1653 }
1654
1655 if (IS_ERR(nd->intent.open.file)) {
1656 error = PTR_ERR(nd->intent.open.file);
1657 goto exit_mutex_unlock;
1658 }
1659
1660 /* Negative dentry, just create the file */
1661 if (!path->dentry->d_inode) {
1662 /*
1663 * This write is needed to ensure that a
1664 * ro->rw transition does not occur between
1665 * the time when the file is created and when
1666 * a permanent write count is taken through
1667 * the 'struct file' in nameidata_to_filp().
1668 */
1669 error = mnt_want_write(nd->path.mnt);
1670 if (error)
1671 goto exit_mutex_unlock;
1672 error = __open_namei_create(nd, path, open_flag, mode);
1673 if (error) {
1674 mnt_drop_write(nd->path.mnt);
1675 goto exit;
1676 }
1677 filp = nameidata_to_filp(nd);
1678 mnt_drop_write(nd->path.mnt);
1679 path_put(&nd->path);
1680 if (!IS_ERR(filp)) {
1681 error = ima_file_check(filp, acc_mode);
1682 if (error) {
1683 fput(filp);
1684 filp = ERR_PTR(error);
1685 }
1686 }
1687 return filp;
1688 }
1689
1690 /*
1691 * It already exists.
1692 */
1693 mutex_unlock(&dir->d_inode->i_mutex);
1694 audit_inode(pathname, path->dentry);
1695
1696 error = -EEXIST;
1697 if (open_flag & O_EXCL)
1698 goto exit_dput;
1699
1700 if (__follow_mount(path)) {
1701 error = -ELOOP;
1702 if (open_flag & O_NOFOLLOW)
1703 goto exit_dput;
1704 }
1705
1706 error = -ENOENT;
1707 if (!path->dentry->d_inode)
1708 goto exit_dput;
1709
1710 if (path->dentry->d_inode->i_op->follow_link)
1711 return NULL;
1712
1713 path_to_nameidata(path, nd);
1714 error = -EISDIR;
1715 if (S_ISDIR(path->dentry->d_inode->i_mode))
1716 goto exit;
1717ok:
1718 filp = finish_open(nd, open_flag, acc_mode);
1719 return filp;
1720
1721exit_mutex_unlock:
1722 mutex_unlock(&dir->d_inode->i_mutex);
1723exit_dput:
1724 path_put_conditional(path, nd);
1725exit:
1726 if (!IS_ERR(nd->intent.open.file))
1727 release_open_intent(nd);
1728 path_put(&nd->path);
1729 return ERR_PTR(error);
1730}
1731
1732/*
1733 * Note that the low bits of the passed in "open_flag"
1734 * are not the same as in the local variable "flag". See
1735 * open_to_namei_flags() for more details.
1736 */
1737struct file *do_filp_open(int dfd, const char *pathname,
1738 int open_flag, int mode, int acc_mode)
1739{
1740 struct file *filp;
1741 struct nameidata nd;
1742 int error;
1743 struct path path;
1744 int count = 0;
1745 int flag = open_to_namei_flags(open_flag);
1746 int force_reval = 0;
1747
1748 if (!(open_flag & O_CREAT))
1749 mode = 0;
1750
1751 /*
1752 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1753 * check for O_DSYNC if the need any syncing at all we enforce it's
1754 * always set instead of having to deal with possibly weird behaviour
1755 * for malicious applications setting only __O_SYNC.
1756 */
1757 if (open_flag & __O_SYNC)
1758 open_flag |= O_DSYNC;
1759
1760 if (!acc_mode)
1761 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1762
1763 /* O_TRUNC implies we need access checks for write permissions */
1764 if (open_flag & O_TRUNC)
1765 acc_mode |= MAY_WRITE;
1766
1767 /* Allow the LSM permission hook to distinguish append
1768 access from general write access. */
1769 if (open_flag & O_APPEND)
1770 acc_mode |= MAY_APPEND;
1771
1772 /* find the parent */
1773reval:
1774 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1775 if (error)
1776 return ERR_PTR(error);
1777 if (force_reval)
1778 nd.flags |= LOOKUP_REVAL;
1779
1780 current->total_link_count = 0;
1781 error = link_path_walk(pathname, &nd);
1782 if (error) {
1783 filp = ERR_PTR(error);
1784 goto out;
1785 }
1786 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1787 audit_inode(pathname, nd.path.dentry);
1788
1789 /*
1790 * We have the parent and last component.
1791 */
1792
1793 error = -ENFILE;
1794 filp = get_empty_filp();
1795 if (filp == NULL)
1796 goto exit_parent;
1797 nd.intent.open.file = filp;
1798 filp->f_flags = open_flag;
1799 nd.intent.open.flags = flag;
1800 nd.intent.open.create_mode = mode;
1801 nd.flags &= ~LOOKUP_PARENT;
1802 nd.flags |= LOOKUP_OPEN;
1803 if (open_flag & O_CREAT) {
1804 nd.flags |= LOOKUP_CREATE;
1805 if (open_flag & O_EXCL)
1806 nd.flags |= LOOKUP_EXCL;
1807 }
1808 if (open_flag & O_DIRECTORY)
1809 nd.flags |= LOOKUP_DIRECTORY;
1810 if (!(open_flag & O_NOFOLLOW))
1811 nd.flags |= LOOKUP_FOLLOW;
1812 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1813 while (unlikely(!filp)) { /* trailing symlink */
1814 struct path holder;
1815 struct inode *inode = path.dentry->d_inode;
1816 void *cookie;
1817 error = -ELOOP;
1818 /* S_ISDIR part is a temporary automount kludge */
1819 if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode))
1820 goto exit_dput;
1821 if (count++ == 32)
1822 goto exit_dput;
1823 /*
1824 * This is subtle. Instead of calling do_follow_link() we do
1825 * the thing by hands. The reason is that this way we have zero
1826 * link_count and path_walk() (called from ->follow_link)
1827 * honoring LOOKUP_PARENT. After that we have the parent and
1828 * last component, i.e. we are in the same situation as after
1829 * the first path_walk(). Well, almost - if the last component
1830 * is normal we get its copy stored in nd->last.name and we will
1831 * have to putname() it when we are done. Procfs-like symlinks
1832 * just set LAST_BIND.
1833 */
1834 nd.flags |= LOOKUP_PARENT;
1835 error = security_inode_follow_link(path.dentry, &nd);
1836 if (error)
1837 goto exit_dput;
1838 error = __do_follow_link(&path, &nd, &cookie);
1839 if (unlikely(error)) {
1840 /* nd.path had been dropped */
1841 if (!IS_ERR(cookie) && inode->i_op->put_link)
1842 inode->i_op->put_link(path.dentry, &nd, cookie);
1843 path_put(&path);
1844 release_open_intent(&nd);
1845 filp = ERR_PTR(error);
1846 goto out;
1847 }
1848 holder = path;
1849 nd.flags &= ~LOOKUP_PARENT;
1850 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1851 if (inode->i_op->put_link)
1852 inode->i_op->put_link(holder.dentry, &nd, cookie);
1853 path_put(&holder);
1854 }
1855out:
1856 if (nd.root.mnt)
1857 path_put(&nd.root);
1858 if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1859 force_reval = 1;
1860 goto reval;
1861 }
1862 return filp;
1863
1864exit_dput:
1865 path_put_conditional(&path, &nd);
1866 if (!IS_ERR(nd.intent.open.file))
1867 release_open_intent(&nd);
1868exit_parent:
1869 path_put(&nd.path);
1870 filp = ERR_PTR(error);
1871 goto out;
1872}
1873
1874/**
1875 * filp_open - open file and return file pointer
1876 *
1877 * @filename: path to open
1878 * @flags: open flags as per the open(2) second argument
1879 * @mode: mode for the new file if O_CREAT is set, else ignored
1880 *
1881 * This is the helper to open a file from kernelspace if you really
1882 * have to. But in generally you should not do this, so please move
1883 * along, nothing to see here..
1884 */
1885struct file *filp_open(const char *filename, int flags, int mode)
1886{
1887 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1888}
1889EXPORT_SYMBOL(filp_open);
1890
1891/**
1892 * lookup_create - lookup a dentry, creating it if it doesn't exist
1893 * @nd: nameidata info
1894 * @is_dir: directory flag
1895 *
1896 * Simple function to lookup and return a dentry and create it
1897 * if it doesn't exist. Is SMP-safe.
1898 *
1899 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1900 */
1901struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1902{
1903 struct dentry *dentry = ERR_PTR(-EEXIST);
1904
1905 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1906 /*
1907 * Yucky last component or no last component at all?
1908 * (foo/., foo/.., /////)
1909 */
1910 if (nd->last_type != LAST_NORM)
1911 goto fail;
1912 nd->flags &= ~LOOKUP_PARENT;
1913 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1914 nd->intent.open.flags = O_EXCL;
1915
1916 /*
1917 * Do the final lookup.
1918 */
1919 dentry = lookup_hash(nd);
1920 if (IS_ERR(dentry))
1921 goto fail;
1922
1923 if (dentry->d_inode)
1924 goto eexist;
1925 /*
1926 * Special case - lookup gave negative, but... we had foo/bar/
1927 * From the vfs_mknod() POV we just have a negative dentry -
1928 * all is fine. Let's be bastards - you had / on the end, you've
1929 * been asking for (non-existent) directory. -ENOENT for you.
1930 */
1931 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1932 dput(dentry);
1933 dentry = ERR_PTR(-ENOENT);
1934 }
1935 return dentry;
1936eexist:
1937 dput(dentry);
1938 dentry = ERR_PTR(-EEXIST);
1939fail:
1940 return dentry;
1941}
1942EXPORT_SYMBOL_GPL(lookup_create);
1943
1944int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1945{
1946 int error = may_create(dir, dentry);
1947
1948 if (error)
1949 return error;
1950
1951 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1952 return -EPERM;
1953
1954 if (!dir->i_op->mknod)
1955 return -EPERM;
1956
1957 error = devcgroup_inode_mknod(mode, dev);
1958 if (error)
1959 return error;
1960
1961 error = security_inode_mknod(dir, dentry, mode, dev);
1962 if (error)
1963 return error;
1964
1965 error = dir->i_op->mknod(dir, dentry, mode, dev);
1966 if (!error)
1967 fsnotify_create(dir, dentry);
1968 return error;
1969}
1970
1971static int may_mknod(mode_t mode)
1972{
1973 switch (mode & S_IFMT) {
1974 case S_IFREG:
1975 case S_IFCHR:
1976 case S_IFBLK:
1977 case S_IFIFO:
1978 case S_IFSOCK:
1979 case 0: /* zero mode translates to S_IFREG */
1980 return 0;
1981 case S_IFDIR:
1982 return -EPERM;
1983 default:
1984 return -EINVAL;
1985 }
1986}
1987
1988SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1989 unsigned, dev)
1990{
1991 int error;
1992 char *tmp;
1993 struct dentry *dentry;
1994 struct nameidata nd;
1995
1996 if (S_ISDIR(mode))
1997 return -EPERM;
1998
1999 error = user_path_parent(dfd, filename, &nd, &tmp);
2000 if (error)
2001 return error;
2002
2003 dentry = lookup_create(&nd, 0);
2004 if (IS_ERR(dentry)) {
2005 error = PTR_ERR(dentry);
2006 goto out_unlock;
2007 }
2008 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2009 mode &= ~current_umask();
2010 error = may_mknod(mode);
2011 if (error)
2012 goto out_dput;
2013 error = mnt_want_write(nd.path.mnt);
2014 if (error)
2015 goto out_dput;
2016 error = security_path_mknod(&nd.path, dentry, mode, dev);
2017 if (error)
2018 goto out_drop_write;
2019 switch (mode & S_IFMT) {
2020 case 0: case S_IFREG:
2021 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2022 break;
2023 case S_IFCHR: case S_IFBLK:
2024 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2025 new_decode_dev(dev));
2026 break;
2027 case S_IFIFO: case S_IFSOCK:
2028 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2029 break;
2030 }
2031out_drop_write:
2032 mnt_drop_write(nd.path.mnt);
2033out_dput:
2034 dput(dentry);
2035out_unlock:
2036 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2037 path_put(&nd.path);
2038 putname(tmp);
2039
2040 return error;
2041}
2042
2043SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2044{
2045 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2046}
2047
2048int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2049{
2050 int error = may_create(dir, dentry);
2051
2052 if (error)
2053 return error;
2054
2055 if (!dir->i_op->mkdir)
2056 return -EPERM;
2057
2058 mode &= (S_IRWXUGO|S_ISVTX);
2059 error = security_inode_mkdir(dir, dentry, mode);
2060 if (error)
2061 return error;
2062
2063 error = dir->i_op->mkdir(dir, dentry, mode);
2064 if (!error)
2065 fsnotify_mkdir(dir, dentry);
2066 return error;
2067}
2068
2069SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2070{
2071 int error = 0;
2072 char * tmp;
2073 struct dentry *dentry;
2074 struct nameidata nd;
2075
2076 error = user_path_parent(dfd, pathname, &nd, &tmp);
2077 if (error)
2078 goto out_err;
2079
2080 dentry = lookup_create(&nd, 1);
2081 error = PTR_ERR(dentry);
2082 if (IS_ERR(dentry))
2083 goto out_unlock;
2084
2085 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2086 mode &= ~current_umask();
2087 error = mnt_want_write(nd.path.mnt);
2088 if (error)
2089 goto out_dput;
2090 error = security_path_mkdir(&nd.path, dentry, mode);
2091 if (error)
2092 goto out_drop_write;
2093 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2094out_drop_write:
2095 mnt_drop_write(nd.path.mnt);
2096out_dput:
2097 dput(dentry);
2098out_unlock:
2099 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2100 path_put(&nd.path);
2101 putname(tmp);
2102out_err:
2103 return error;
2104}
2105
2106SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2107{
2108 return sys_mkdirat(AT_FDCWD, pathname, mode);
2109}
2110
2111/*
2112 * We try to drop the dentry early: we should have
2113 * a usage count of 2 if we're the only user of this
2114 * dentry, and if that is true (possibly after pruning
2115 * the dcache), then we drop the dentry now.
2116 *
2117 * A low-level filesystem can, if it choses, legally
2118 * do a
2119 *
2120 * if (!d_unhashed(dentry))
2121 * return -EBUSY;
2122 *
2123 * if it cannot handle the case of removing a directory
2124 * that is still in use by something else..
2125 */
2126void dentry_unhash(struct dentry *dentry)
2127{
2128 dget(dentry);
2129 shrink_dcache_parent(dentry);
2130 spin_lock(&dcache_lock);
2131 spin_lock(&dentry->d_lock);
2132 if (atomic_read(&dentry->d_count) == 2)
2133 __d_drop(dentry);
2134 spin_unlock(&dentry->d_lock);
2135 spin_unlock(&dcache_lock);
2136}
2137
2138int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2139{
2140 int error = may_delete(dir, dentry, 1);
2141
2142 if (error)
2143 return error;
2144
2145 if (!dir->i_op->rmdir)
2146 return -EPERM;
2147
2148 mutex_lock(&dentry->d_inode->i_mutex);
2149 dentry_unhash(dentry);
2150 if (d_mountpoint(dentry))
2151 error = -EBUSY;
2152 else {
2153 error = security_inode_rmdir(dir, dentry);
2154 if (!error) {
2155 error = dir->i_op->rmdir(dir, dentry);
2156 if (!error) {
2157 dentry->d_inode->i_flags |= S_DEAD;
2158 dont_mount(dentry);
2159 }
2160 }
2161 }
2162 mutex_unlock(&dentry->d_inode->i_mutex);
2163 if (!error) {
2164 d_delete(dentry);
2165 }
2166 dput(dentry);
2167
2168 return error;
2169}
2170
2171static long do_rmdir(int dfd, const char __user *pathname)
2172{
2173 int error = 0;
2174 char * name;
2175 struct dentry *dentry;
2176 struct nameidata nd;
2177
2178 error = user_path_parent(dfd, pathname, &nd, &name);
2179 if (error)
2180 return error;
2181
2182 switch(nd.last_type) {
2183 case LAST_DOTDOT:
2184 error = -ENOTEMPTY;
2185 goto exit1;
2186 case LAST_DOT:
2187 error = -EINVAL;
2188 goto exit1;
2189 case LAST_ROOT:
2190 error = -EBUSY;
2191 goto exit1;
2192 }
2193
2194 nd.flags &= ~LOOKUP_PARENT;
2195
2196 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2197 dentry = lookup_hash(&nd);
2198 error = PTR_ERR(dentry);
2199 if (IS_ERR(dentry))
2200 goto exit2;
2201 error = mnt_want_write(nd.path.mnt);
2202 if (error)
2203 goto exit3;
2204 error = security_path_rmdir(&nd.path, dentry);
2205 if (error)
2206 goto exit4;
2207 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2208exit4:
2209 mnt_drop_write(nd.path.mnt);
2210exit3:
2211 dput(dentry);
2212exit2:
2213 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2214exit1:
2215 path_put(&nd.path);
2216 putname(name);
2217 return error;
2218}
2219
2220SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2221{
2222 return do_rmdir(AT_FDCWD, pathname);
2223}
2224
2225int vfs_unlink(struct inode *dir, struct dentry *dentry)
2226{
2227 int error = may_delete(dir, dentry, 0);
2228
2229 if (error)
2230 return error;
2231
2232 if (!dir->i_op->unlink)
2233 return -EPERM;
2234
2235 mutex_lock(&dentry->d_inode->i_mutex);
2236 if (d_mountpoint(dentry))
2237 error = -EBUSY;
2238 else {
2239 error = security_inode_unlink(dir, dentry);
2240 if (!error) {
2241 error = dir->i_op->unlink(dir, dentry);
2242 if (!error)
2243 dont_mount(dentry);
2244 }
2245 }
2246 mutex_unlock(&dentry->d_inode->i_mutex);
2247
2248 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2249 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2250 fsnotify_link_count(dentry->d_inode);
2251 d_delete(dentry);
2252 }
2253
2254 return error;
2255}
2256
2257/*
2258 * Make sure that the actual truncation of the file will occur outside its
2259 * directory's i_mutex. Truncate can take a long time if there is a lot of
2260 * writeout happening, and we don't want to prevent access to the directory
2261 * while waiting on the I/O.
2262 */
2263static long do_unlinkat(int dfd, const char __user *pathname)
2264{
2265 int error;
2266 char *name;
2267 struct dentry *dentry;
2268 struct nameidata nd;
2269 struct inode *inode = NULL;
2270
2271 error = user_path_parent(dfd, pathname, &nd, &name);
2272 if (error)
2273 return error;
2274
2275 error = -EISDIR;
2276 if (nd.last_type != LAST_NORM)
2277 goto exit1;
2278
2279 nd.flags &= ~LOOKUP_PARENT;
2280
2281 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2282 dentry = lookup_hash(&nd);
2283 error = PTR_ERR(dentry);
2284 if (!IS_ERR(dentry)) {
2285 /* Why not before? Because we want correct error value */
2286 if (nd.last.name[nd.last.len])
2287 goto slashes;
2288 inode = dentry->d_inode;
2289 if (inode)
2290 ihold(inode);
2291 error = mnt_want_write(nd.path.mnt);
2292 if (error)
2293 goto exit2;
2294 error = security_path_unlink(&nd.path, dentry);
2295 if (error)
2296 goto exit3;
2297 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2298exit3:
2299 mnt_drop_write(nd.path.mnt);
2300 exit2:
2301 dput(dentry);
2302 }
2303 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2304 if (inode)
2305 iput(inode); /* truncate the inode here */
2306exit1:
2307 path_put(&nd.path);
2308 putname(name);
2309 return error;
2310
2311slashes:
2312 error = !dentry->d_inode ? -ENOENT :
2313 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2314 goto exit2;
2315}
2316
2317SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2318{
2319 if ((flag & ~AT_REMOVEDIR) != 0)
2320 return -EINVAL;
2321
2322 if (flag & AT_REMOVEDIR)
2323 return do_rmdir(dfd, pathname);
2324
2325 return do_unlinkat(dfd, pathname);
2326}
2327
2328SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2329{
2330 return do_unlinkat(AT_FDCWD, pathname);
2331}
2332
2333int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2334{
2335 int error = may_create(dir, dentry);
2336
2337 if (error)
2338 return error;
2339
2340 if (!dir->i_op->symlink)
2341 return -EPERM;
2342
2343 error = security_inode_symlink(dir, dentry, oldname);
2344 if (error)
2345 return error;
2346
2347 error = dir->i_op->symlink(dir, dentry, oldname);
2348 if (!error)
2349 fsnotify_create(dir, dentry);
2350 return error;
2351}
2352
2353SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2354 int, newdfd, const char __user *, newname)
2355{
2356 int error;
2357 char *from;
2358 char *to;
2359 struct dentry *dentry;
2360 struct nameidata nd;
2361
2362 from = getname(oldname);
2363 if (IS_ERR(from))
2364 return PTR_ERR(from);
2365
2366 error = user_path_parent(newdfd, newname, &nd, &to);
2367 if (error)
2368 goto out_putname;
2369
2370 dentry = lookup_create(&nd, 0);
2371 error = PTR_ERR(dentry);
2372 if (IS_ERR(dentry))
2373 goto out_unlock;
2374
2375 error = mnt_want_write(nd.path.mnt);
2376 if (error)
2377 goto out_dput;
2378 error = security_path_symlink(&nd.path, dentry, from);
2379 if (error)
2380 goto out_drop_write;
2381 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2382out_drop_write:
2383 mnt_drop_write(nd.path.mnt);
2384out_dput:
2385 dput(dentry);
2386out_unlock:
2387 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2388 path_put(&nd.path);
2389 putname(to);
2390out_putname:
2391 putname(from);
2392 return error;
2393}
2394
2395SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2396{
2397 return sys_symlinkat(oldname, AT_FDCWD, newname);
2398}
2399
2400int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2401{
2402 struct inode *inode = old_dentry->d_inode;
2403 int error;
2404
2405 if (!inode)
2406 return -ENOENT;
2407
2408 error = may_create(dir, new_dentry);
2409 if (error)
2410 return error;
2411
2412 if (dir->i_sb != inode->i_sb)
2413 return -EXDEV;
2414
2415 /*
2416 * A link to an append-only or immutable file cannot be created.
2417 */
2418 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2419 return -EPERM;
2420 if (!dir->i_op->link)
2421 return -EPERM;
2422 if (S_ISDIR(inode->i_mode))
2423 return -EPERM;
2424
2425 error = security_inode_link(old_dentry, dir, new_dentry);
2426 if (error)
2427 return error;
2428
2429 mutex_lock(&inode->i_mutex);
2430 error = dir->i_op->link(old_dentry, dir, new_dentry);
2431 mutex_unlock(&inode->i_mutex);
2432 if (!error)
2433 fsnotify_link(dir, inode, new_dentry);
2434 return error;
2435}
2436
2437/*
2438 * Hardlinks are often used in delicate situations. We avoid
2439 * security-related surprises by not following symlinks on the
2440 * newname. --KAB
2441 *
2442 * We don't follow them on the oldname either to be compatible
2443 * with linux 2.0, and to avoid hard-linking to directories
2444 * and other special files. --ADM
2445 */
2446SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2447 int, newdfd, const char __user *, newname, int, flags)
2448{
2449 struct dentry *new_dentry;
2450 struct nameidata nd;
2451 struct path old_path;
2452 int error;
2453 char *to;
2454
2455 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2456 return -EINVAL;
2457
2458 error = user_path_at(olddfd, oldname,
2459 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2460 &old_path);
2461 if (error)
2462 return error;
2463
2464 error = user_path_parent(newdfd, newname, &nd, &to);
2465 if (error)
2466 goto out;
2467 error = -EXDEV;
2468 if (old_path.mnt != nd.path.mnt)
2469 goto out_release;
2470 new_dentry = lookup_create(&nd, 0);
2471 error = PTR_ERR(new_dentry);
2472 if (IS_ERR(new_dentry))
2473 goto out_unlock;
2474 error = mnt_want_write(nd.path.mnt);
2475 if (error)
2476 goto out_dput;
2477 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2478 if (error)
2479 goto out_drop_write;
2480 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2481out_drop_write:
2482 mnt_drop_write(nd.path.mnt);
2483out_dput:
2484 dput(new_dentry);
2485out_unlock:
2486 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2487out_release:
2488 path_put(&nd.path);
2489 putname(to);
2490out:
2491 path_put(&old_path);
2492
2493 return error;
2494}
2495
2496SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2497{
2498 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2499}
2500
2501/*
2502 * The worst of all namespace operations - renaming directory. "Perverted"
2503 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2504 * Problems:
2505 * a) we can get into loop creation. Check is done in is_subdir().
2506 * b) race potential - two innocent renames can create a loop together.
2507 * That's where 4.4 screws up. Current fix: serialization on
2508 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2509 * story.
2510 * c) we have to lock _three_ objects - parents and victim (if it exists).
2511 * And that - after we got ->i_mutex on parents (until then we don't know
2512 * whether the target exists). Solution: try to be smart with locking
2513 * order for inodes. We rely on the fact that tree topology may change
2514 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2515 * move will be locked. Thus we can rank directories by the tree
2516 * (ancestors first) and rank all non-directories after them.
2517 * That works since everybody except rename does "lock parent, lookup,
2518 * lock child" and rename is under ->s_vfs_rename_mutex.
2519 * HOWEVER, it relies on the assumption that any object with ->lookup()
2520 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2521 * we'd better make sure that there's no link(2) for them.
2522 * d) some filesystems don't support opened-but-unlinked directories,
2523 * either because of layout or because they are not ready to deal with
2524 * all cases correctly. The latter will be fixed (taking this sort of
2525 * stuff into VFS), but the former is not going away. Solution: the same
2526 * trick as in rmdir().
2527 * e) conversion from fhandle to dentry may come in the wrong moment - when
2528 * we are removing the target. Solution: we will have to grab ->i_mutex
2529 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2530 * ->i_mutex on parents, which works but leads to some truly excessive
2531 * locking].
2532 */
2533static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2534 struct inode *new_dir, struct dentry *new_dentry)
2535{
2536 int error = 0;
2537 struct inode *target;
2538
2539 /*
2540 * If we are going to change the parent - check write permissions,
2541 * we'll need to flip '..'.
2542 */
2543 if (new_dir != old_dir) {
2544 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2545 if (error)
2546 return error;
2547 }
2548
2549 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2550 if (error)
2551 return error;
2552
2553 target = new_dentry->d_inode;
2554 if (target)
2555 mutex_lock(&target->i_mutex);
2556 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2557 error = -EBUSY;
2558 else {
2559 if (target)
2560 dentry_unhash(new_dentry);
2561 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2562 }
2563 if (target) {
2564 if (!error) {
2565 target->i_flags |= S_DEAD;
2566 dont_mount(new_dentry);
2567 }
2568 mutex_unlock(&target->i_mutex);
2569 if (d_unhashed(new_dentry))
2570 d_rehash(new_dentry);
2571 dput(new_dentry);
2572 }
2573 if (!error)
2574 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2575 d_move(old_dentry,new_dentry);
2576 return error;
2577}
2578
2579static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2580 struct inode *new_dir, struct dentry *new_dentry)
2581{
2582 struct inode *target;
2583 int error;
2584
2585 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2586 if (error)
2587 return error;
2588
2589 dget(new_dentry);
2590 target = new_dentry->d_inode;
2591 if (target)
2592 mutex_lock(&target->i_mutex);
2593 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2594 error = -EBUSY;
2595 else
2596 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2597 if (!error) {
2598 if (target)
2599 dont_mount(new_dentry);
2600 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2601 d_move(old_dentry, new_dentry);
2602 }
2603 if (target)
2604 mutex_unlock(&target->i_mutex);
2605 dput(new_dentry);
2606 return error;
2607}
2608
2609int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2610 struct inode *new_dir, struct dentry *new_dentry)
2611{
2612 int error;
2613 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2614 const unsigned char *old_name;
2615
2616 if (old_dentry->d_inode == new_dentry->d_inode)
2617 return 0;
2618
2619 error = may_delete(old_dir, old_dentry, is_dir);
2620 if (error)
2621 return error;
2622
2623 if (!new_dentry->d_inode)
2624 error = may_create(new_dir, new_dentry);
2625 else
2626 error = may_delete(new_dir, new_dentry, is_dir);
2627 if (error)
2628 return error;
2629
2630 if (!old_dir->i_op->rename)
2631 return -EPERM;
2632
2633 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2634
2635 if (is_dir)
2636 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2637 else
2638 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2639 if (!error)
2640 fsnotify_move(old_dir, new_dir, old_name, is_dir,
2641 new_dentry->d_inode, old_dentry);
2642 fsnotify_oldname_free(old_name);
2643
2644 return error;
2645}
2646
2647SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2648 int, newdfd, const char __user *, newname)
2649{
2650 struct dentry *old_dir, *new_dir;
2651 struct dentry *old_dentry, *new_dentry;
2652 struct dentry *trap;
2653 struct nameidata oldnd, newnd;
2654 char *from;
2655 char *to;
2656 int error;
2657
2658 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2659 if (error)
2660 goto exit;
2661
2662 error = user_path_parent(newdfd, newname, &newnd, &to);
2663 if (error)
2664 goto exit1;
2665
2666 error = -EXDEV;
2667 if (oldnd.path.mnt != newnd.path.mnt)
2668 goto exit2;
2669
2670 old_dir = oldnd.path.dentry;
2671 error = -EBUSY;
2672 if (oldnd.last_type != LAST_NORM)
2673 goto exit2;
2674
2675 new_dir = newnd.path.dentry;
2676 if (newnd.last_type != LAST_NORM)
2677 goto exit2;
2678
2679 oldnd.flags &= ~LOOKUP_PARENT;
2680 newnd.flags &= ~LOOKUP_PARENT;
2681 newnd.flags |= LOOKUP_RENAME_TARGET;
2682
2683 trap = lock_rename(new_dir, old_dir);
2684
2685 old_dentry = lookup_hash(&oldnd);
2686 error = PTR_ERR(old_dentry);
2687 if (IS_ERR(old_dentry))
2688 goto exit3;
2689 /* source must exist */
2690 error = -ENOENT;
2691 if (!old_dentry->d_inode)
2692 goto exit4;
2693 /* unless the source is a directory trailing slashes give -ENOTDIR */
2694 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2695 error = -ENOTDIR;
2696 if (oldnd.last.name[oldnd.last.len])
2697 goto exit4;
2698 if (newnd.last.name[newnd.last.len])
2699 goto exit4;
2700 }
2701 /* source should not be ancestor of target */
2702 error = -EINVAL;
2703 if (old_dentry == trap)
2704 goto exit4;
2705 new_dentry = lookup_hash(&newnd);
2706 error = PTR_ERR(new_dentry);
2707 if (IS_ERR(new_dentry))
2708 goto exit4;
2709 /* target should not be an ancestor of source */
2710 error = -ENOTEMPTY;
2711 if (new_dentry == trap)
2712 goto exit5;
2713
2714 error = mnt_want_write(oldnd.path.mnt);
2715 if (error)
2716 goto exit5;
2717 error = security_path_rename(&oldnd.path, old_dentry,
2718 &newnd.path, new_dentry);
2719 if (error)
2720 goto exit6;
2721 error = vfs_rename(old_dir->d_inode, old_dentry,
2722 new_dir->d_inode, new_dentry);
2723exit6:
2724 mnt_drop_write(oldnd.path.mnt);
2725exit5:
2726 dput(new_dentry);
2727exit4:
2728 dput(old_dentry);
2729exit3:
2730 unlock_rename(new_dir, old_dir);
2731exit2:
2732 path_put(&newnd.path);
2733 putname(to);
2734exit1:
2735 path_put(&oldnd.path);
2736 putname(from);
2737exit:
2738 return error;
2739}
2740
2741SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2742{
2743 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2744}
2745
2746int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2747{
2748 int len;
2749
2750 len = PTR_ERR(link);
2751 if (IS_ERR(link))
2752 goto out;
2753
2754 len = strlen(link);
2755 if (len > (unsigned) buflen)
2756 len = buflen;
2757 if (copy_to_user(buffer, link, len))
2758 len = -EFAULT;
2759out:
2760 return len;
2761}
2762
2763/*
2764 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2765 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2766 * using) it for any given inode is up to filesystem.
2767 */
2768int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2769{
2770 struct nameidata nd;
2771 void *cookie;
2772 int res;
2773
2774 nd.depth = 0;
2775 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2776 if (IS_ERR(cookie))
2777 return PTR_ERR(cookie);
2778
2779 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2780 if (dentry->d_inode->i_op->put_link)
2781 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2782 return res;
2783}
2784
2785int vfs_follow_link(struct nameidata *nd, const char *link)
2786{
2787 return __vfs_follow_link(nd, link);
2788}
2789
2790/* get the link contents into pagecache */
2791static char *page_getlink(struct dentry * dentry, struct page **ppage)
2792{
2793 char *kaddr;
2794 struct page *page;
2795 struct address_space *mapping = dentry->d_inode->i_mapping;
2796 page = read_mapping_page(mapping, 0, NULL);
2797 if (IS_ERR(page))
2798 return (char*)page;
2799 *ppage = page;
2800 kaddr = kmap(page);
2801 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2802 return kaddr;
2803}
2804
2805int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2806{
2807 struct page *page = NULL;
2808 char *s = page_getlink(dentry, &page);
2809 int res = vfs_readlink(dentry,buffer,buflen,s);
2810 if (page) {
2811 kunmap(page);
2812 page_cache_release(page);
2813 }
2814 return res;
2815}
2816
2817void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2818{
2819 struct page *page = NULL;
2820 nd_set_link(nd, page_getlink(dentry, &page));
2821 return page;
2822}
2823
2824void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2825{
2826 struct page *page = cookie;
2827
2828 if (page) {
2829 kunmap(page);
2830 page_cache_release(page);
2831 }
2832}
2833
2834/*
2835 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2836 */
2837int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2838{
2839 struct address_space *mapping = inode->i_mapping;
2840 struct page *page;
2841 void *fsdata;
2842 int err;
2843 char *kaddr;
2844 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2845 if (nofs)
2846 flags |= AOP_FLAG_NOFS;
2847
2848retry:
2849 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2850 flags, &page, &fsdata);
2851 if (err)
2852 goto fail;
2853
2854 kaddr = kmap_atomic(page, KM_USER0);
2855 memcpy(kaddr, symname, len-1);
2856 kunmap_atomic(kaddr, KM_USER0);
2857
2858 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2859 page, fsdata);
2860 if (err < 0)
2861 goto fail;
2862 if (err < len-1)
2863 goto retry;
2864
2865 mark_inode_dirty(inode);
2866 return 0;
2867fail:
2868 return err;
2869}
2870
2871int page_symlink(struct inode *inode, const char *symname, int len)
2872{
2873 return __page_symlink(inode, symname, len,
2874 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2875}
2876
2877const struct inode_operations page_symlink_inode_operations = {
2878 .readlink = generic_readlink,
2879 .follow_link = page_follow_link_light,
2880 .put_link = page_put_link,
2881};
2882
2883EXPORT_SYMBOL(user_path_at);
2884EXPORT_SYMBOL(follow_down);
2885EXPORT_SYMBOL(follow_up);
2886EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2887EXPORT_SYMBOL(getname);
2888EXPORT_SYMBOL(lock_rename);
2889EXPORT_SYMBOL(lookup_one_len);
2890EXPORT_SYMBOL(page_follow_link_light);
2891EXPORT_SYMBOL(page_put_link);
2892EXPORT_SYMBOL(page_readlink);
2893EXPORT_SYMBOL(__page_symlink);
2894EXPORT_SYMBOL(page_symlink);
2895EXPORT_SYMBOL(page_symlink_inode_operations);
2896EXPORT_SYMBOL(path_lookup);
2897EXPORT_SYMBOL(kern_path);
2898EXPORT_SYMBOL(vfs_path_lookup);
2899EXPORT_SYMBOL(inode_permission);
2900EXPORT_SYMBOL(file_permission);
2901EXPORT_SYMBOL(unlock_rename);
2902EXPORT_SYMBOL(vfs_create);
2903EXPORT_SYMBOL(vfs_follow_link);
2904EXPORT_SYMBOL(vfs_link);
2905EXPORT_SYMBOL(vfs_mkdir);
2906EXPORT_SYMBOL(vfs_mknod);
2907EXPORT_SYMBOL(generic_permission);
2908EXPORT_SYMBOL(vfs_readlink);
2909EXPORT_SYMBOL(vfs_rename);
2910EXPORT_SYMBOL(vfs_rmdir);
2911EXPORT_SYMBOL(vfs_symlink);
2912EXPORT_SYMBOL(vfs_unlink);
2913EXPORT_SYMBOL(dentry_unhash);
2914EXPORT_SYMBOL(generic_readlink);