]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - fs/eventpoll.c
epoll: remember the event if epoll_wait returns -EFAULT
[net-next-2.6.git] / fs / eventpoll.c
... / ...
CommitLineData
1/*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/file.h>
19#include <linux/signal.h>
20#include <linux/errno.h>
21#include <linux/mm.h>
22#include <linux/slab.h>
23#include <linux/poll.h>
24#include <linux/string.h>
25#include <linux/list.h>
26#include <linux/hash.h>
27#include <linux/spinlock.h>
28#include <linux/syscalls.h>
29#include <linux/rbtree.h>
30#include <linux/wait.h>
31#include <linux/eventpoll.h>
32#include <linux/mount.h>
33#include <linux/bitops.h>
34#include <linux/mutex.h>
35#include <linux/anon_inodes.h>
36#include <asm/uaccess.h>
37#include <asm/system.h>
38#include <asm/io.h>
39#include <asm/mman.h>
40#include <asm/atomic.h>
41
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (spinlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is possible to drop the "ep->mtx" and to use the global
67 * mutex "epmutex" (together with "ep->lock") to have it working,
68 * but having "ep->mtx" will make the interface more scalable.
69 * Events that require holding "epmutex" are very rare, while for
70 * normal operations the epoll private "ep->mtx" will guarantee
71 * a better scalability.
72 */
73
74/* Epoll private bits inside the event mask */
75#define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
76
77/* Maximum number of nesting allowed inside epoll sets */
78#define EP_MAX_NESTS 4
79
80/* Maximum msec timeout value storeable in a long int */
81#define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
82
83#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
84
85#define EP_UNACTIVE_PTR ((void *) -1L)
86
87#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
88
89struct epoll_filefd {
90 struct file *file;
91 int fd;
92};
93
94/*
95 * Structure used to track possible nested calls, for too deep recursions
96 * and loop cycles.
97 */
98struct nested_call_node {
99 struct list_head llink;
100 void *cookie;
101 int cpu;
102};
103
104/*
105 * This structure is used as collector for nested calls, to check for
106 * maximum recursion dept and loop cycles.
107 */
108struct nested_calls {
109 struct list_head tasks_call_list;
110 spinlock_t lock;
111};
112
113/*
114 * Each file descriptor added to the eventpoll interface will
115 * have an entry of this type linked to the "rbr" RB tree.
116 */
117struct epitem {
118 /* RB tree node used to link this structure to the eventpoll RB tree */
119 struct rb_node rbn;
120
121 /* List header used to link this structure to the eventpoll ready list */
122 struct list_head rdllink;
123
124 /*
125 * Works together "struct eventpoll"->ovflist in keeping the
126 * single linked chain of items.
127 */
128 struct epitem *next;
129
130 /* The file descriptor information this item refers to */
131 struct epoll_filefd ffd;
132
133 /* Number of active wait queue attached to poll operations */
134 int nwait;
135
136 /* List containing poll wait queues */
137 struct list_head pwqlist;
138
139 /* The "container" of this item */
140 struct eventpoll *ep;
141
142 /* List header used to link this item to the "struct file" items list */
143 struct list_head fllink;
144
145 /* The structure that describe the interested events and the source fd */
146 struct epoll_event event;
147};
148
149/*
150 * This structure is stored inside the "private_data" member of the file
151 * structure and rapresent the main data sructure for the eventpoll
152 * interface.
153 */
154struct eventpoll {
155 /* Protect the this structure access */
156 spinlock_t lock;
157
158 /*
159 * This mutex is used to ensure that files are not removed
160 * while epoll is using them. This is held during the event
161 * collection loop, the file cleanup path, the epoll file exit
162 * code and the ctl operations.
163 */
164 struct mutex mtx;
165
166 /* Wait queue used by sys_epoll_wait() */
167 wait_queue_head_t wq;
168
169 /* Wait queue used by file->poll() */
170 wait_queue_head_t poll_wait;
171
172 /* List of ready file descriptors */
173 struct list_head rdllist;
174
175 /* RB tree root used to store monitored fd structs */
176 struct rb_root rbr;
177
178 /*
179 * This is a single linked list that chains all the "struct epitem" that
180 * happened while transfering ready events to userspace w/out
181 * holding ->lock.
182 */
183 struct epitem *ovflist;
184
185 /* The user that created the eventpoll descriptor */
186 struct user_struct *user;
187};
188
189/* Wait structure used by the poll hooks */
190struct eppoll_entry {
191 /* List header used to link this structure to the "struct epitem" */
192 struct list_head llink;
193
194 /* The "base" pointer is set to the container "struct epitem" */
195 void *base;
196
197 /*
198 * Wait queue item that will be linked to the target file wait
199 * queue head.
200 */
201 wait_queue_t wait;
202
203 /* The wait queue head that linked the "wait" wait queue item */
204 wait_queue_head_t *whead;
205};
206
207/* Wrapper struct used by poll queueing */
208struct ep_pqueue {
209 poll_table pt;
210 struct epitem *epi;
211};
212
213/* Used by the ep_send_events() function as callback private data */
214struct ep_send_events_data {
215 int maxevents;
216 struct epoll_event __user *events;
217};
218
219/*
220 * Configuration options available inside /proc/sys/fs/epoll/
221 */
222/* Maximum number of epoll watched descriptors, per user */
223static int max_user_watches __read_mostly;
224
225/*
226 * This mutex is used to serialize ep_free() and eventpoll_release_file().
227 */
228static DEFINE_MUTEX(epmutex);
229
230/* Used for safe wake up implementation */
231static struct nested_calls poll_safewake_ncalls;
232
233/* Used to call file's f_op->poll() under the nested calls boundaries */
234static struct nested_calls poll_readywalk_ncalls;
235
236/* Slab cache used to allocate "struct epitem" */
237static struct kmem_cache *epi_cache __read_mostly;
238
239/* Slab cache used to allocate "struct eppoll_entry" */
240static struct kmem_cache *pwq_cache __read_mostly;
241
242#ifdef CONFIG_SYSCTL
243
244#include <linux/sysctl.h>
245
246static int zero;
247
248ctl_table epoll_table[] = {
249 {
250 .procname = "max_user_watches",
251 .data = &max_user_watches,
252 .maxlen = sizeof(int),
253 .mode = 0644,
254 .proc_handler = &proc_dointvec_minmax,
255 .extra1 = &zero,
256 },
257 { .ctl_name = 0 }
258};
259#endif /* CONFIG_SYSCTL */
260
261
262/* Setup the structure that is used as key for the RB tree */
263static inline void ep_set_ffd(struct epoll_filefd *ffd,
264 struct file *file, int fd)
265{
266 ffd->file = file;
267 ffd->fd = fd;
268}
269
270/* Compare RB tree keys */
271static inline int ep_cmp_ffd(struct epoll_filefd *p1,
272 struct epoll_filefd *p2)
273{
274 return (p1->file > p2->file ? +1:
275 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
276}
277
278/* Tells us if the item is currently linked */
279static inline int ep_is_linked(struct list_head *p)
280{
281 return !list_empty(p);
282}
283
284/* Get the "struct epitem" from a wait queue pointer */
285static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
286{
287 return container_of(p, struct eppoll_entry, wait)->base;
288}
289
290/* Get the "struct epitem" from an epoll queue wrapper */
291static inline struct epitem *ep_item_from_epqueue(poll_table *p)
292{
293 return container_of(p, struct ep_pqueue, pt)->epi;
294}
295
296/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
297static inline int ep_op_has_event(int op)
298{
299 return op != EPOLL_CTL_DEL;
300}
301
302/* Initialize the poll safe wake up structure */
303static void ep_nested_calls_init(struct nested_calls *ncalls)
304{
305 INIT_LIST_HEAD(&ncalls->tasks_call_list);
306 spin_lock_init(&ncalls->lock);
307}
308
309/**
310 * ep_call_nested - Perform a bound (possibly) nested call, by checking
311 * that the recursion limit is not exceeded, and that
312 * the same nested call (by the meaning of same cookie) is
313 * no re-entered.
314 *
315 * @ncalls: Pointer to the nested_calls structure to be used for this call.
316 * @max_nests: Maximum number of allowed nesting calls.
317 * @nproc: Nested call core function pointer.
318 * @priv: Opaque data to be passed to the @nproc callback.
319 * @cookie: Cookie to be used to identify this nested call.
320 *
321 * Returns: Returns the code returned by the @nproc callback, or -1 if
322 * the maximum recursion limit has been exceeded.
323 */
324static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
325 int (*nproc)(void *, void *, int), void *priv,
326 void *cookie)
327{
328 int error, call_nests = 0;
329 unsigned long flags;
330 int this_cpu = get_cpu();
331 struct list_head *lsthead = &ncalls->tasks_call_list;
332 struct nested_call_node *tncur;
333 struct nested_call_node tnode;
334
335 spin_lock_irqsave(&ncalls->lock, flags);
336
337 /*
338 * Try to see if the current task is already inside this wakeup call.
339 * We use a list here, since the population inside this set is always
340 * very much limited.
341 */
342 list_for_each_entry(tncur, lsthead, llink) {
343 if (tncur->cpu == this_cpu &&
344 (tncur->cookie == cookie || ++call_nests > max_nests)) {
345 /*
346 * Ops ... loop detected or maximum nest level reached.
347 * We abort this wake by breaking the cycle itself.
348 */
349 error = -1;
350 goto out_unlock;
351 }
352 }
353
354 /* Add the current task and cookie to the list */
355 tnode.cpu = this_cpu;
356 tnode.cookie = cookie;
357 list_add(&tnode.llink, lsthead);
358
359 spin_unlock_irqrestore(&ncalls->lock, flags);
360
361 /* Call the nested function */
362 error = (*nproc)(priv, cookie, call_nests);
363
364 /* Remove the current task from the list */
365 spin_lock_irqsave(&ncalls->lock, flags);
366 list_del(&tnode.llink);
367 out_unlock:
368 spin_unlock_irqrestore(&ncalls->lock, flags);
369
370 put_cpu();
371 return error;
372}
373
374static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
375{
376 wake_up_nested((wait_queue_head_t *) cookie, 1 + call_nests);
377 return 0;
378}
379
380/*
381 * Perform a safe wake up of the poll wait list. The problem is that
382 * with the new callback'd wake up system, it is possible that the
383 * poll callback is reentered from inside the call to wake_up() done
384 * on the poll wait queue head. The rule is that we cannot reenter the
385 * wake up code from the same task more than EP_MAX_NESTS times,
386 * and we cannot reenter the same wait queue head at all. This will
387 * enable to have a hierarchy of epoll file descriptor of no more than
388 * EP_MAX_NESTS deep.
389 */
390static void ep_poll_safewake(wait_queue_head_t *wq)
391{
392 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
393 ep_poll_wakeup_proc, NULL, wq);
394}
395
396/*
397 * This function unregister poll callbacks from the associated file descriptor.
398 * Since this must be called without holding "ep->lock" the atomic exchange trick
399 * will protect us from multiple unregister.
400 */
401static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
402{
403 int nwait;
404 struct list_head *lsthead = &epi->pwqlist;
405 struct eppoll_entry *pwq;
406
407 /* This is called without locks, so we need the atomic exchange */
408 nwait = xchg(&epi->nwait, 0);
409
410 if (nwait) {
411 while (!list_empty(lsthead)) {
412 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
413
414 list_del_init(&pwq->llink);
415 remove_wait_queue(pwq->whead, &pwq->wait);
416 kmem_cache_free(pwq_cache, pwq);
417 }
418 }
419}
420
421/**
422 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
423 * the scan code, to call f_op->poll(). Also allows for
424 * O(NumReady) performance.
425 *
426 * @ep: Pointer to the epoll private data structure.
427 * @sproc: Pointer to the scan callback.
428 * @priv: Private opaque data passed to the @sproc callback.
429 *
430 * Returns: The same integer error code returned by the @sproc callback.
431 */
432static int ep_scan_ready_list(struct eventpoll *ep,
433 int (*sproc)(struct eventpoll *,
434 struct list_head *, void *),
435 void *priv)
436{
437 int error, pwake = 0;
438 unsigned long flags;
439 struct epitem *epi, *nepi;
440 LIST_HEAD(txlist);
441
442 /*
443 * We need to lock this because we could be hit by
444 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
445 */
446 mutex_lock(&ep->mtx);
447
448 /*
449 * Steal the ready list, and re-init the original one to the
450 * empty list. Also, set ep->ovflist to NULL so that events
451 * happening while looping w/out locks, are not lost. We cannot
452 * have the poll callback to queue directly on ep->rdllist,
453 * because we want the "sproc" callback to be able to do it
454 * in a lockless way.
455 */
456 spin_lock_irqsave(&ep->lock, flags);
457 list_splice_init(&ep->rdllist, &txlist);
458 ep->ovflist = NULL;
459 spin_unlock_irqrestore(&ep->lock, flags);
460
461 /*
462 * Now call the callback function.
463 */
464 error = (*sproc)(ep, &txlist, priv);
465
466 spin_lock_irqsave(&ep->lock, flags);
467 /*
468 * During the time we spent inside the "sproc" callback, some
469 * other events might have been queued by the poll callback.
470 * We re-insert them inside the main ready-list here.
471 */
472 for (nepi = ep->ovflist; (epi = nepi) != NULL;
473 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
474 /*
475 * We need to check if the item is already in the list.
476 * During the "sproc" callback execution time, items are
477 * queued into ->ovflist but the "txlist" might already
478 * contain them, and the list_splice() below takes care of them.
479 */
480 if (!ep_is_linked(&epi->rdllink))
481 list_add_tail(&epi->rdllink, &ep->rdllist);
482 }
483 /*
484 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
485 * releasing the lock, events will be queued in the normal way inside
486 * ep->rdllist.
487 */
488 ep->ovflist = EP_UNACTIVE_PTR;
489
490 /*
491 * Quickly re-inject items left on "txlist".
492 */
493 list_splice(&txlist, &ep->rdllist);
494
495 if (!list_empty(&ep->rdllist)) {
496 /*
497 * Wake up (if active) both the eventpoll wait list and
498 * the ->poll() wait list (delayed after we release the lock).
499 */
500 if (waitqueue_active(&ep->wq))
501 wake_up_locked(&ep->wq);
502 if (waitqueue_active(&ep->poll_wait))
503 pwake++;
504 }
505 spin_unlock_irqrestore(&ep->lock, flags);
506
507 mutex_unlock(&ep->mtx);
508
509 /* We have to call this outside the lock */
510 if (pwake)
511 ep_poll_safewake(&ep->poll_wait);
512
513 return error;
514}
515
516/*
517 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
518 * all the associated resources. Must be called with "mtx" held.
519 */
520static int ep_remove(struct eventpoll *ep, struct epitem *epi)
521{
522 unsigned long flags;
523 struct file *file = epi->ffd.file;
524
525 /*
526 * Removes poll wait queue hooks. We _have_ to do this without holding
527 * the "ep->lock" otherwise a deadlock might occur. This because of the
528 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
529 * queue head lock when unregistering the wait queue. The wakeup callback
530 * will run by holding the wait queue head lock and will call our callback
531 * that will try to get "ep->lock".
532 */
533 ep_unregister_pollwait(ep, epi);
534
535 /* Remove the current item from the list of epoll hooks */
536 spin_lock(&file->f_lock);
537 if (ep_is_linked(&epi->fllink))
538 list_del_init(&epi->fllink);
539 spin_unlock(&file->f_lock);
540
541 rb_erase(&epi->rbn, &ep->rbr);
542
543 spin_lock_irqsave(&ep->lock, flags);
544 if (ep_is_linked(&epi->rdllink))
545 list_del_init(&epi->rdllink);
546 spin_unlock_irqrestore(&ep->lock, flags);
547
548 /* At this point it is safe to free the eventpoll item */
549 kmem_cache_free(epi_cache, epi);
550
551 atomic_dec(&ep->user->epoll_watches);
552
553 return 0;
554}
555
556static void ep_free(struct eventpoll *ep)
557{
558 struct rb_node *rbp;
559 struct epitem *epi;
560
561 /* We need to release all tasks waiting for these file */
562 if (waitqueue_active(&ep->poll_wait))
563 ep_poll_safewake(&ep->poll_wait);
564
565 /*
566 * We need to lock this because we could be hit by
567 * eventpoll_release_file() while we're freeing the "struct eventpoll".
568 * We do not need to hold "ep->mtx" here because the epoll file
569 * is on the way to be removed and no one has references to it
570 * anymore. The only hit might come from eventpoll_release_file() but
571 * holding "epmutex" is sufficent here.
572 */
573 mutex_lock(&epmutex);
574
575 /*
576 * Walks through the whole tree by unregistering poll callbacks.
577 */
578 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
579 epi = rb_entry(rbp, struct epitem, rbn);
580
581 ep_unregister_pollwait(ep, epi);
582 }
583
584 /*
585 * Walks through the whole tree by freeing each "struct epitem". At this
586 * point we are sure no poll callbacks will be lingering around, and also by
587 * holding "epmutex" we can be sure that no file cleanup code will hit
588 * us during this operation. So we can avoid the lock on "ep->lock".
589 */
590 while ((rbp = rb_first(&ep->rbr)) != NULL) {
591 epi = rb_entry(rbp, struct epitem, rbn);
592 ep_remove(ep, epi);
593 }
594
595 mutex_unlock(&epmutex);
596 mutex_destroy(&ep->mtx);
597 free_uid(ep->user);
598 kfree(ep);
599}
600
601static int ep_eventpoll_release(struct inode *inode, struct file *file)
602{
603 struct eventpoll *ep = file->private_data;
604
605 if (ep)
606 ep_free(ep);
607
608 return 0;
609}
610
611static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
612 void *priv)
613{
614 struct epitem *epi, *tmp;
615
616 list_for_each_entry_safe(epi, tmp, head, rdllink) {
617 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
618 epi->event.events)
619 return POLLIN | POLLRDNORM;
620 else {
621 /*
622 * Item has been dropped into the ready list by the poll
623 * callback, but it's not actually ready, as far as
624 * caller requested events goes. We can remove it here.
625 */
626 list_del_init(&epi->rdllink);
627 }
628 }
629
630 return 0;
631}
632
633static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
634{
635 return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
636}
637
638static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
639{
640 int pollflags;
641 struct eventpoll *ep = file->private_data;
642
643 /* Insert inside our poll wait queue */
644 poll_wait(file, &ep->poll_wait, wait);
645
646 /*
647 * Proceed to find out if wanted events are really available inside
648 * the ready list. This need to be done under ep_call_nested()
649 * supervision, since the call to f_op->poll() done on listed files
650 * could re-enter here.
651 */
652 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
653 ep_poll_readyevents_proc, ep, ep);
654
655 return pollflags != -1 ? pollflags : 0;
656}
657
658/* File callbacks that implement the eventpoll file behaviour */
659static const struct file_operations eventpoll_fops = {
660 .release = ep_eventpoll_release,
661 .poll = ep_eventpoll_poll
662};
663
664/* Fast test to see if the file is an evenpoll file */
665static inline int is_file_epoll(struct file *f)
666{
667 return f->f_op == &eventpoll_fops;
668}
669
670/*
671 * This is called from eventpoll_release() to unlink files from the eventpoll
672 * interface. We need to have this facility to cleanup correctly files that are
673 * closed without being removed from the eventpoll interface.
674 */
675void eventpoll_release_file(struct file *file)
676{
677 struct list_head *lsthead = &file->f_ep_links;
678 struct eventpoll *ep;
679 struct epitem *epi;
680
681 /*
682 * We don't want to get "file->f_lock" because it is not
683 * necessary. It is not necessary because we're in the "struct file"
684 * cleanup path, and this means that noone is using this file anymore.
685 * So, for example, epoll_ctl() cannot hit here since if we reach this
686 * point, the file counter already went to zero and fget() would fail.
687 * The only hit might come from ep_free() but by holding the mutex
688 * will correctly serialize the operation. We do need to acquire
689 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
690 * from anywhere but ep_free().
691 *
692 * Besides, ep_remove() acquires the lock, so we can't hold it here.
693 */
694 mutex_lock(&epmutex);
695
696 while (!list_empty(lsthead)) {
697 epi = list_first_entry(lsthead, struct epitem, fllink);
698
699 ep = epi->ep;
700 list_del_init(&epi->fllink);
701 mutex_lock(&ep->mtx);
702 ep_remove(ep, epi);
703 mutex_unlock(&ep->mtx);
704 }
705
706 mutex_unlock(&epmutex);
707}
708
709static int ep_alloc(struct eventpoll **pep)
710{
711 int error;
712 struct user_struct *user;
713 struct eventpoll *ep;
714
715 user = get_current_user();
716 error = -ENOMEM;
717 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
718 if (unlikely(!ep))
719 goto free_uid;
720
721 spin_lock_init(&ep->lock);
722 mutex_init(&ep->mtx);
723 init_waitqueue_head(&ep->wq);
724 init_waitqueue_head(&ep->poll_wait);
725 INIT_LIST_HEAD(&ep->rdllist);
726 ep->rbr = RB_ROOT;
727 ep->ovflist = EP_UNACTIVE_PTR;
728 ep->user = user;
729
730 *pep = ep;
731
732 return 0;
733
734free_uid:
735 free_uid(user);
736 return error;
737}
738
739/*
740 * Search the file inside the eventpoll tree. The RB tree operations
741 * are protected by the "mtx" mutex, and ep_find() must be called with
742 * "mtx" held.
743 */
744static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
745{
746 int kcmp;
747 struct rb_node *rbp;
748 struct epitem *epi, *epir = NULL;
749 struct epoll_filefd ffd;
750
751 ep_set_ffd(&ffd, file, fd);
752 for (rbp = ep->rbr.rb_node; rbp; ) {
753 epi = rb_entry(rbp, struct epitem, rbn);
754 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
755 if (kcmp > 0)
756 rbp = rbp->rb_right;
757 else if (kcmp < 0)
758 rbp = rbp->rb_left;
759 else {
760 epir = epi;
761 break;
762 }
763 }
764
765 return epir;
766}
767
768/*
769 * This is the callback that is passed to the wait queue wakeup
770 * machanism. It is called by the stored file descriptors when they
771 * have events to report.
772 */
773static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
774{
775 int pwake = 0;
776 unsigned long flags;
777 struct epitem *epi = ep_item_from_wait(wait);
778 struct eventpoll *ep = epi->ep;
779
780 spin_lock_irqsave(&ep->lock, flags);
781
782 /*
783 * If the event mask does not contain any poll(2) event, we consider the
784 * descriptor to be disabled. This condition is likely the effect of the
785 * EPOLLONESHOT bit that disables the descriptor when an event is received,
786 * until the next EPOLL_CTL_MOD will be issued.
787 */
788 if (!(epi->event.events & ~EP_PRIVATE_BITS))
789 goto out_unlock;
790
791 /*
792 * If we are trasfering events to userspace, we can hold no locks
793 * (because we're accessing user memory, and because of linux f_op->poll()
794 * semantics). All the events that happens during that period of time are
795 * chained in ep->ovflist and requeued later on.
796 */
797 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
798 if (epi->next == EP_UNACTIVE_PTR) {
799 epi->next = ep->ovflist;
800 ep->ovflist = epi;
801 }
802 goto out_unlock;
803 }
804
805 /* If this file is already in the ready list we exit soon */
806 if (!ep_is_linked(&epi->rdllink))
807 list_add_tail(&epi->rdllink, &ep->rdllist);
808
809 /*
810 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
811 * wait list.
812 */
813 if (waitqueue_active(&ep->wq))
814 wake_up_locked(&ep->wq);
815 if (waitqueue_active(&ep->poll_wait))
816 pwake++;
817
818out_unlock:
819 spin_unlock_irqrestore(&ep->lock, flags);
820
821 /* We have to call this outside the lock */
822 if (pwake)
823 ep_poll_safewake(&ep->poll_wait);
824
825 return 1;
826}
827
828/*
829 * This is the callback that is used to add our wait queue to the
830 * target file wakeup lists.
831 */
832static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
833 poll_table *pt)
834{
835 struct epitem *epi = ep_item_from_epqueue(pt);
836 struct eppoll_entry *pwq;
837
838 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
839 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
840 pwq->whead = whead;
841 pwq->base = epi;
842 add_wait_queue(whead, &pwq->wait);
843 list_add_tail(&pwq->llink, &epi->pwqlist);
844 epi->nwait++;
845 } else {
846 /* We have to signal that an error occurred */
847 epi->nwait = -1;
848 }
849}
850
851static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
852{
853 int kcmp;
854 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
855 struct epitem *epic;
856
857 while (*p) {
858 parent = *p;
859 epic = rb_entry(parent, struct epitem, rbn);
860 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
861 if (kcmp > 0)
862 p = &parent->rb_right;
863 else
864 p = &parent->rb_left;
865 }
866 rb_link_node(&epi->rbn, parent, p);
867 rb_insert_color(&epi->rbn, &ep->rbr);
868}
869
870/*
871 * Must be called with "mtx" held.
872 */
873static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
874 struct file *tfile, int fd)
875{
876 int error, revents, pwake = 0;
877 unsigned long flags;
878 struct epitem *epi;
879 struct ep_pqueue epq;
880
881 if (unlikely(atomic_read(&ep->user->epoll_watches) >=
882 max_user_watches))
883 return -ENOSPC;
884 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
885 return -ENOMEM;
886
887 /* Item initialization follow here ... */
888 INIT_LIST_HEAD(&epi->rdllink);
889 INIT_LIST_HEAD(&epi->fllink);
890 INIT_LIST_HEAD(&epi->pwqlist);
891 epi->ep = ep;
892 ep_set_ffd(&epi->ffd, tfile, fd);
893 epi->event = *event;
894 epi->nwait = 0;
895 epi->next = EP_UNACTIVE_PTR;
896
897 /* Initialize the poll table using the queue callback */
898 epq.epi = epi;
899 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
900
901 /*
902 * Attach the item to the poll hooks and get current event bits.
903 * We can safely use the file* here because its usage count has
904 * been increased by the caller of this function. Note that after
905 * this operation completes, the poll callback can start hitting
906 * the new item.
907 */
908 revents = tfile->f_op->poll(tfile, &epq.pt);
909
910 /*
911 * We have to check if something went wrong during the poll wait queue
912 * install process. Namely an allocation for a wait queue failed due
913 * high memory pressure.
914 */
915 error = -ENOMEM;
916 if (epi->nwait < 0)
917 goto error_unregister;
918
919 /* Add the current item to the list of active epoll hook for this file */
920 spin_lock(&tfile->f_lock);
921 list_add_tail(&epi->fllink, &tfile->f_ep_links);
922 spin_unlock(&tfile->f_lock);
923
924 /*
925 * Add the current item to the RB tree. All RB tree operations are
926 * protected by "mtx", and ep_insert() is called with "mtx" held.
927 */
928 ep_rbtree_insert(ep, epi);
929
930 /* We have to drop the new item inside our item list to keep track of it */
931 spin_lock_irqsave(&ep->lock, flags);
932
933 /* If the file is already "ready" we drop it inside the ready list */
934 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
935 list_add_tail(&epi->rdllink, &ep->rdllist);
936
937 /* Notify waiting tasks that events are available */
938 if (waitqueue_active(&ep->wq))
939 wake_up_locked(&ep->wq);
940 if (waitqueue_active(&ep->poll_wait))
941 pwake++;
942 }
943
944 spin_unlock_irqrestore(&ep->lock, flags);
945
946 atomic_inc(&ep->user->epoll_watches);
947
948 /* We have to call this outside the lock */
949 if (pwake)
950 ep_poll_safewake(&ep->poll_wait);
951
952 return 0;
953
954error_unregister:
955 ep_unregister_pollwait(ep, epi);
956
957 /*
958 * We need to do this because an event could have been arrived on some
959 * allocated wait queue. Note that we don't care about the ep->ovflist
960 * list, since that is used/cleaned only inside a section bound by "mtx".
961 * And ep_insert() is called with "mtx" held.
962 */
963 spin_lock_irqsave(&ep->lock, flags);
964 if (ep_is_linked(&epi->rdllink))
965 list_del_init(&epi->rdllink);
966 spin_unlock_irqrestore(&ep->lock, flags);
967
968 kmem_cache_free(epi_cache, epi);
969
970 return error;
971}
972
973/*
974 * Modify the interest event mask by dropping an event if the new mask
975 * has a match in the current file status. Must be called with "mtx" held.
976 */
977static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
978{
979 int pwake = 0;
980 unsigned int revents;
981 unsigned long flags;
982
983 /*
984 * Set the new event interest mask before calling f_op->poll(), otherwise
985 * a potential race might occur. In fact if we do this operation inside
986 * the lock, an event might happen between the f_op->poll() call and the
987 * new event set registering.
988 */
989 epi->event.events = event->events;
990
991 /*
992 * Get current event bits. We can safely use the file* here because
993 * its usage count has been increased by the caller of this function.
994 */
995 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
996
997 spin_lock_irqsave(&ep->lock, flags);
998
999 /* Copy the data member from inside the lock */
1000 epi->event.data = event->data;
1001
1002 /*
1003 * If the item is "hot" and it is not registered inside the ready
1004 * list, push it inside.
1005 */
1006 if (revents & event->events) {
1007 if (!ep_is_linked(&epi->rdllink)) {
1008 list_add_tail(&epi->rdllink, &ep->rdllist);
1009
1010 /* Notify waiting tasks that events are available */
1011 if (waitqueue_active(&ep->wq))
1012 wake_up_locked(&ep->wq);
1013 if (waitqueue_active(&ep->poll_wait))
1014 pwake++;
1015 }
1016 }
1017 spin_unlock_irqrestore(&ep->lock, flags);
1018
1019 /* We have to call this outside the lock */
1020 if (pwake)
1021 ep_poll_safewake(&ep->poll_wait);
1022
1023 return 0;
1024}
1025
1026static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1027 void *priv)
1028{
1029 struct ep_send_events_data *esed = priv;
1030 int eventcnt;
1031 unsigned int revents;
1032 struct epitem *epi;
1033 struct epoll_event __user *uevent;
1034
1035 /*
1036 * We can loop without lock because we are passed a task private list.
1037 * Items cannot vanish during the loop because ep_scan_ready_list() is
1038 * holding "mtx" during this call.
1039 */
1040 for (eventcnt = 0, uevent = esed->events;
1041 !list_empty(head) && eventcnt < esed->maxevents;) {
1042 epi = list_first_entry(head, struct epitem, rdllink);
1043
1044 list_del_init(&epi->rdllink);
1045
1046 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1047 epi->event.events;
1048
1049 /*
1050 * If the event mask intersect the caller-requested one,
1051 * deliver the event to userspace. Again, ep_scan_ready_list()
1052 * is holding "mtx", so no operations coming from userspace
1053 * can change the item.
1054 */
1055 if (revents) {
1056 if (__put_user(revents, &uevent->events) ||
1057 __put_user(epi->event.data, &uevent->data)) {
1058 list_add(&epi->rdllink, head);
1059 return eventcnt ? eventcnt : -EFAULT;
1060 }
1061 eventcnt++;
1062 uevent++;
1063 if (epi->event.events & EPOLLONESHOT)
1064 epi->event.events &= EP_PRIVATE_BITS;
1065 else if (!(epi->event.events & EPOLLET)) {
1066 /*
1067 * If this file has been added with Level
1068 * Trigger mode, we need to insert back inside
1069 * the ready list, so that the next call to
1070 * epoll_wait() will check again the events
1071 * availability. At this point, noone can insert
1072 * into ep->rdllist besides us. The epoll_ctl()
1073 * callers are locked out by
1074 * ep_scan_ready_list() holding "mtx" and the
1075 * poll callback will queue them in ep->ovflist.
1076 */
1077 list_add_tail(&epi->rdllink, &ep->rdllist);
1078 }
1079 }
1080 }
1081
1082 return eventcnt;
1083}
1084
1085static int ep_send_events(struct eventpoll *ep,
1086 struct epoll_event __user *events, int maxevents)
1087{
1088 struct ep_send_events_data esed;
1089
1090 esed.maxevents = maxevents;
1091 esed.events = events;
1092
1093 return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1094}
1095
1096static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1097 int maxevents, long timeout)
1098{
1099 int res, eavail;
1100 unsigned long flags;
1101 long jtimeout;
1102 wait_queue_t wait;
1103
1104 /*
1105 * Calculate the timeout by checking for the "infinite" value (-1)
1106 * and the overflow condition. The passed timeout is in milliseconds,
1107 * that why (t * HZ) / 1000.
1108 */
1109 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1110 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1111
1112retry:
1113 spin_lock_irqsave(&ep->lock, flags);
1114
1115 res = 0;
1116 if (list_empty(&ep->rdllist)) {
1117 /*
1118 * We don't have any available event to return to the caller.
1119 * We need to sleep here, and we will be wake up by
1120 * ep_poll_callback() when events will become available.
1121 */
1122 init_waitqueue_entry(&wait, current);
1123 wait.flags |= WQ_FLAG_EXCLUSIVE;
1124 __add_wait_queue(&ep->wq, &wait);
1125
1126 for (;;) {
1127 /*
1128 * We don't want to sleep if the ep_poll_callback() sends us
1129 * a wakeup in between. That's why we set the task state
1130 * to TASK_INTERRUPTIBLE before doing the checks.
1131 */
1132 set_current_state(TASK_INTERRUPTIBLE);
1133 if (!list_empty(&ep->rdllist) || !jtimeout)
1134 break;
1135 if (signal_pending(current)) {
1136 res = -EINTR;
1137 break;
1138 }
1139
1140 spin_unlock_irqrestore(&ep->lock, flags);
1141 jtimeout = schedule_timeout(jtimeout);
1142 spin_lock_irqsave(&ep->lock, flags);
1143 }
1144 __remove_wait_queue(&ep->wq, &wait);
1145
1146 set_current_state(TASK_RUNNING);
1147 }
1148 /* Is it worth to try to dig for events ? */
1149 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1150
1151 spin_unlock_irqrestore(&ep->lock, flags);
1152
1153 /*
1154 * Try to transfer events to user space. In case we get 0 events and
1155 * there's still timeout left over, we go trying again in search of
1156 * more luck.
1157 */
1158 if (!res && eavail &&
1159 !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1160 goto retry;
1161
1162 return res;
1163}
1164
1165/*
1166 * Open an eventpoll file descriptor.
1167 */
1168SYSCALL_DEFINE1(epoll_create1, int, flags)
1169{
1170 int error;
1171 struct eventpoll *ep = NULL;
1172
1173 /* Check the EPOLL_* constant for consistency. */
1174 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1175
1176 if (flags & ~EPOLL_CLOEXEC)
1177 return -EINVAL;
1178 /*
1179 * Create the internal data structure ("struct eventpoll").
1180 */
1181 error = ep_alloc(&ep);
1182 if (error < 0)
1183 return error;
1184 /*
1185 * Creates all the items needed to setup an eventpoll file. That is,
1186 * a file structure and a free file descriptor.
1187 */
1188 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1189 flags & O_CLOEXEC);
1190 if (error < 0)
1191 ep_free(ep);
1192
1193 return error;
1194}
1195
1196SYSCALL_DEFINE1(epoll_create, int, size)
1197{
1198 if (size < 0)
1199 return -EINVAL;
1200
1201 return sys_epoll_create1(0);
1202}
1203
1204/*
1205 * The following function implements the controller interface for
1206 * the eventpoll file that enables the insertion/removal/change of
1207 * file descriptors inside the interest set.
1208 */
1209SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1210 struct epoll_event __user *, event)
1211{
1212 int error;
1213 struct file *file, *tfile;
1214 struct eventpoll *ep;
1215 struct epitem *epi;
1216 struct epoll_event epds;
1217
1218 error = -EFAULT;
1219 if (ep_op_has_event(op) &&
1220 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1221 goto error_return;
1222
1223 /* Get the "struct file *" for the eventpoll file */
1224 error = -EBADF;
1225 file = fget(epfd);
1226 if (!file)
1227 goto error_return;
1228
1229 /* Get the "struct file *" for the target file */
1230 tfile = fget(fd);
1231 if (!tfile)
1232 goto error_fput;
1233
1234 /* The target file descriptor must support poll */
1235 error = -EPERM;
1236 if (!tfile->f_op || !tfile->f_op->poll)
1237 goto error_tgt_fput;
1238
1239 /*
1240 * We have to check that the file structure underneath the file descriptor
1241 * the user passed to us _is_ an eventpoll file. And also we do not permit
1242 * adding an epoll file descriptor inside itself.
1243 */
1244 error = -EINVAL;
1245 if (file == tfile || !is_file_epoll(file))
1246 goto error_tgt_fput;
1247
1248 /*
1249 * At this point it is safe to assume that the "private_data" contains
1250 * our own data structure.
1251 */
1252 ep = file->private_data;
1253
1254 mutex_lock(&ep->mtx);
1255
1256 /*
1257 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1258 * above, we can be sure to be able to use the item looked up by
1259 * ep_find() till we release the mutex.
1260 */
1261 epi = ep_find(ep, tfile, fd);
1262
1263 error = -EINVAL;
1264 switch (op) {
1265 case EPOLL_CTL_ADD:
1266 if (!epi) {
1267 epds.events |= POLLERR | POLLHUP;
1268
1269 error = ep_insert(ep, &epds, tfile, fd);
1270 } else
1271 error = -EEXIST;
1272 break;
1273 case EPOLL_CTL_DEL:
1274 if (epi)
1275 error = ep_remove(ep, epi);
1276 else
1277 error = -ENOENT;
1278 break;
1279 case EPOLL_CTL_MOD:
1280 if (epi) {
1281 epds.events |= POLLERR | POLLHUP;
1282 error = ep_modify(ep, epi, &epds);
1283 } else
1284 error = -ENOENT;
1285 break;
1286 }
1287 mutex_unlock(&ep->mtx);
1288
1289error_tgt_fput:
1290 fput(tfile);
1291error_fput:
1292 fput(file);
1293error_return:
1294
1295 return error;
1296}
1297
1298/*
1299 * Implement the event wait interface for the eventpoll file. It is the kernel
1300 * part of the user space epoll_wait(2).
1301 */
1302SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1303 int, maxevents, int, timeout)
1304{
1305 int error;
1306 struct file *file;
1307 struct eventpoll *ep;
1308
1309 /* The maximum number of event must be greater than zero */
1310 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1311 return -EINVAL;
1312
1313 /* Verify that the area passed by the user is writeable */
1314 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1315 error = -EFAULT;
1316 goto error_return;
1317 }
1318
1319 /* Get the "struct file *" for the eventpoll file */
1320 error = -EBADF;
1321 file = fget(epfd);
1322 if (!file)
1323 goto error_return;
1324
1325 /*
1326 * We have to check that the file structure underneath the fd
1327 * the user passed to us _is_ an eventpoll file.
1328 */
1329 error = -EINVAL;
1330 if (!is_file_epoll(file))
1331 goto error_fput;
1332
1333 /*
1334 * At this point it is safe to assume that the "private_data" contains
1335 * our own data structure.
1336 */
1337 ep = file->private_data;
1338
1339 /* Time to fish for events ... */
1340 error = ep_poll(ep, events, maxevents, timeout);
1341
1342error_fput:
1343 fput(file);
1344error_return:
1345
1346 return error;
1347}
1348
1349#ifdef HAVE_SET_RESTORE_SIGMASK
1350
1351/*
1352 * Implement the event wait interface for the eventpoll file. It is the kernel
1353 * part of the user space epoll_pwait(2).
1354 */
1355SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1356 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1357 size_t, sigsetsize)
1358{
1359 int error;
1360 sigset_t ksigmask, sigsaved;
1361
1362 /*
1363 * If the caller wants a certain signal mask to be set during the wait,
1364 * we apply it here.
1365 */
1366 if (sigmask) {
1367 if (sigsetsize != sizeof(sigset_t))
1368 return -EINVAL;
1369 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1370 return -EFAULT;
1371 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1372 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1373 }
1374
1375 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1376
1377 /*
1378 * If we changed the signal mask, we need to restore the original one.
1379 * In case we've got a signal while waiting, we do not restore the
1380 * signal mask yet, and we allow do_signal() to deliver the signal on
1381 * the way back to userspace, before the signal mask is restored.
1382 */
1383 if (sigmask) {
1384 if (error == -EINTR) {
1385 memcpy(&current->saved_sigmask, &sigsaved,
1386 sizeof(sigsaved));
1387 set_restore_sigmask();
1388 } else
1389 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1390 }
1391
1392 return error;
1393}
1394
1395#endif /* HAVE_SET_RESTORE_SIGMASK */
1396
1397static int __init eventpoll_init(void)
1398{
1399 struct sysinfo si;
1400
1401 si_meminfo(&si);
1402 /*
1403 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1404 */
1405 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1406 EP_ITEM_COST;
1407
1408 /* Initialize the structure used to perform safe poll wait head wake ups */
1409 ep_nested_calls_init(&poll_safewake_ncalls);
1410
1411 /* Initialize the structure used to perform file's f_op->poll() calls */
1412 ep_nested_calls_init(&poll_readywalk_ncalls);
1413
1414 /* Allocates slab cache used to allocate "struct epitem" items */
1415 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1416 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1417
1418 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1419 pwq_cache = kmem_cache_create("eventpoll_pwq",
1420 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1421
1422 return 0;
1423}
1424fs_initcall(eventpoll_init);