]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - fs/buffer.c
xps: Transmit Packet Steering
[net-next-2.6.git] / fs / buffer.c
... / ...
CommitLineData
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
27#include <linux/capability.h>
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
37#include <linux/task_io_accounting_ops.h>
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
43#include <linux/bit_spinlock.h>
44
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
55EXPORT_SYMBOL(init_buffer);
56
57static int sync_buffer(void *word)
58{
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
62
63 smp_mb();
64 bd = bh->b_bdev;
65 if (bd)
66 blk_run_address_space(bd->bd_inode->i_mapping);
67 io_schedule();
68 return 0;
69}
70
71void __lock_buffer(struct buffer_head *bh)
72{
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
75}
76EXPORT_SYMBOL(__lock_buffer);
77
78void unlock_buffer(struct buffer_head *bh)
79{
80 clear_bit_unlock(BH_Lock, &bh->b_state);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83}
84EXPORT_SYMBOL(unlock_buffer);
85
86/*
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
90 */
91void __wait_on_buffer(struct buffer_head * bh)
92{
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94}
95EXPORT_SYMBOL(__wait_on_buffer);
96
97static void
98__clear_page_buffers(struct page *page)
99{
100 ClearPagePrivate(page);
101 set_page_private(page, 0);
102 page_cache_release(page);
103}
104
105
106static int quiet_error(struct buffer_head *bh)
107{
108 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 return 0;
110 return 1;
111}
112
113
114static void buffer_io_error(struct buffer_head *bh)
115{
116 char b[BDEVNAME_SIZE];
117 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 bdevname(bh->b_bdev, b),
119 (unsigned long long)bh->b_blocknr);
120}
121
122/*
123 * End-of-IO handler helper function which does not touch the bh after
124 * unlocking it.
125 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126 * a race there is benign: unlock_buffer() only use the bh's address for
127 * hashing after unlocking the buffer, so it doesn't actually touch the bh
128 * itself.
129 */
130static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131{
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 /* This happens, due to failed READA attempts. */
136 clear_buffer_uptodate(bh);
137 }
138 unlock_buffer(bh);
139}
140
141/*
142 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
143 * unlock the buffer. This is what ll_rw_block uses too.
144 */
145void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146{
147 __end_buffer_read_notouch(bh, uptodate);
148 put_bh(bh);
149}
150EXPORT_SYMBOL(end_buffer_read_sync);
151
152void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153{
154 char b[BDEVNAME_SIZE];
155
156 if (uptodate) {
157 set_buffer_uptodate(bh);
158 } else {
159 if (!quiet_error(bh)) {
160 buffer_io_error(bh);
161 printk(KERN_WARNING "lost page write due to "
162 "I/O error on %s\n",
163 bdevname(bh->b_bdev, b));
164 }
165 set_buffer_write_io_error(bh);
166 clear_buffer_uptodate(bh);
167 }
168 unlock_buffer(bh);
169 put_bh(bh);
170}
171EXPORT_SYMBOL(end_buffer_write_sync);
172
173/*
174 * Various filesystems appear to want __find_get_block to be non-blocking.
175 * But it's the page lock which protects the buffers. To get around this,
176 * we get exclusion from try_to_free_buffers with the blockdev mapping's
177 * private_lock.
178 *
179 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180 * may be quite high. This code could TryLock the page, and if that
181 * succeeds, there is no need to take private_lock. (But if
182 * private_lock is contended then so is mapping->tree_lock).
183 */
184static struct buffer_head *
185__find_get_block_slow(struct block_device *bdev, sector_t block)
186{
187 struct inode *bd_inode = bdev->bd_inode;
188 struct address_space *bd_mapping = bd_inode->i_mapping;
189 struct buffer_head *ret = NULL;
190 pgoff_t index;
191 struct buffer_head *bh;
192 struct buffer_head *head;
193 struct page *page;
194 int all_mapped = 1;
195
196 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 page = find_get_page(bd_mapping, index);
198 if (!page)
199 goto out;
200
201 spin_lock(&bd_mapping->private_lock);
202 if (!page_has_buffers(page))
203 goto out_unlock;
204 head = page_buffers(page);
205 bh = head;
206 do {
207 if (!buffer_mapped(bh))
208 all_mapped = 0;
209 else if (bh->b_blocknr == block) {
210 ret = bh;
211 get_bh(bh);
212 goto out_unlock;
213 }
214 bh = bh->b_this_page;
215 } while (bh != head);
216
217 /* we might be here because some of the buffers on this page are
218 * not mapped. This is due to various races between
219 * file io on the block device and getblk. It gets dealt with
220 * elsewhere, don't buffer_error if we had some unmapped buffers
221 */
222 if (all_mapped) {
223 printk("__find_get_block_slow() failed. "
224 "block=%llu, b_blocknr=%llu\n",
225 (unsigned long long)block,
226 (unsigned long long)bh->b_blocknr);
227 printk("b_state=0x%08lx, b_size=%zu\n",
228 bh->b_state, bh->b_size);
229 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230 }
231out_unlock:
232 spin_unlock(&bd_mapping->private_lock);
233 page_cache_release(page);
234out:
235 return ret;
236}
237
238/* If invalidate_buffers() will trash dirty buffers, it means some kind
239 of fs corruption is going on. Trashing dirty data always imply losing
240 information that was supposed to be just stored on the physical layer
241 by the user.
242
243 Thus invalidate_buffers in general usage is not allwowed to trash
244 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245 be preserved. These buffers are simply skipped.
246
247 We also skip buffers which are still in use. For example this can
248 happen if a userspace program is reading the block device.
249
250 NOTE: In the case where the user removed a removable-media-disk even if
251 there's still dirty data not synced on disk (due a bug in the device driver
252 or due an error of the user), by not destroying the dirty buffers we could
253 generate corruption also on the next media inserted, thus a parameter is
254 necessary to handle this case in the most safe way possible (trying
255 to not corrupt also the new disk inserted with the data belonging to
256 the old now corrupted disk). Also for the ramdisk the natural thing
257 to do in order to release the ramdisk memory is to destroy dirty buffers.
258
259 These are two special cases. Normal usage imply the device driver
260 to issue a sync on the device (without waiting I/O completion) and
261 then an invalidate_buffers call that doesn't trash dirty buffers.
262
263 For handling cache coherency with the blkdev pagecache the 'update' case
264 is been introduced. It is needed to re-read from disk any pinned
265 buffer. NOTE: re-reading from disk is destructive so we can do it only
266 when we assume nobody is changing the buffercache under our I/O and when
267 we think the disk contains more recent information than the buffercache.
268 The update == 1 pass marks the buffers we need to update, the update == 2
269 pass does the actual I/O. */
270void invalidate_bdev(struct block_device *bdev)
271{
272 struct address_space *mapping = bdev->bd_inode->i_mapping;
273
274 if (mapping->nrpages == 0)
275 return;
276
277 invalidate_bh_lrus();
278 lru_add_drain_all(); /* make sure all lru add caches are flushed */
279 invalidate_mapping_pages(mapping, 0, -1);
280}
281EXPORT_SYMBOL(invalidate_bdev);
282
283/*
284 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285 */
286static void free_more_memory(void)
287{
288 struct zone *zone;
289 int nid;
290
291 wakeup_flusher_threads(1024);
292 yield();
293
294 for_each_online_node(nid) {
295 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 gfp_zone(GFP_NOFS), NULL,
297 &zone);
298 if (zone)
299 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300 GFP_NOFS, NULL);
301 }
302}
303
304/*
305 * I/O completion handler for block_read_full_page() - pages
306 * which come unlocked at the end of I/O.
307 */
308static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309{
310 unsigned long flags;
311 struct buffer_head *first;
312 struct buffer_head *tmp;
313 struct page *page;
314 int page_uptodate = 1;
315
316 BUG_ON(!buffer_async_read(bh));
317
318 page = bh->b_page;
319 if (uptodate) {
320 set_buffer_uptodate(bh);
321 } else {
322 clear_buffer_uptodate(bh);
323 if (!quiet_error(bh))
324 buffer_io_error(bh);
325 SetPageError(page);
326 }
327
328 /*
329 * Be _very_ careful from here on. Bad things can happen if
330 * two buffer heads end IO at almost the same time and both
331 * decide that the page is now completely done.
332 */
333 first = page_buffers(page);
334 local_irq_save(flags);
335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336 clear_buffer_async_read(bh);
337 unlock_buffer(bh);
338 tmp = bh;
339 do {
340 if (!buffer_uptodate(tmp))
341 page_uptodate = 0;
342 if (buffer_async_read(tmp)) {
343 BUG_ON(!buffer_locked(tmp));
344 goto still_busy;
345 }
346 tmp = tmp->b_this_page;
347 } while (tmp != bh);
348 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 local_irq_restore(flags);
350
351 /*
352 * If none of the buffers had errors and they are all
353 * uptodate then we can set the page uptodate.
354 */
355 if (page_uptodate && !PageError(page))
356 SetPageUptodate(page);
357 unlock_page(page);
358 return;
359
360still_busy:
361 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 local_irq_restore(flags);
363 return;
364}
365
366/*
367 * Completion handler for block_write_full_page() - pages which are unlocked
368 * during I/O, and which have PageWriteback cleared upon I/O completion.
369 */
370void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371{
372 char b[BDEVNAME_SIZE];
373 unsigned long flags;
374 struct buffer_head *first;
375 struct buffer_head *tmp;
376 struct page *page;
377
378 BUG_ON(!buffer_async_write(bh));
379
380 page = bh->b_page;
381 if (uptodate) {
382 set_buffer_uptodate(bh);
383 } else {
384 if (!quiet_error(bh)) {
385 buffer_io_error(bh);
386 printk(KERN_WARNING "lost page write due to "
387 "I/O error on %s\n",
388 bdevname(bh->b_bdev, b));
389 }
390 set_bit(AS_EIO, &page->mapping->flags);
391 set_buffer_write_io_error(bh);
392 clear_buffer_uptodate(bh);
393 SetPageError(page);
394 }
395
396 first = page_buffers(page);
397 local_irq_save(flags);
398 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399
400 clear_buffer_async_write(bh);
401 unlock_buffer(bh);
402 tmp = bh->b_this_page;
403 while (tmp != bh) {
404 if (buffer_async_write(tmp)) {
405 BUG_ON(!buffer_locked(tmp));
406 goto still_busy;
407 }
408 tmp = tmp->b_this_page;
409 }
410 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 local_irq_restore(flags);
412 end_page_writeback(page);
413 return;
414
415still_busy:
416 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 local_irq_restore(flags);
418 return;
419}
420EXPORT_SYMBOL(end_buffer_async_write);
421
422/*
423 * If a page's buffers are under async readin (end_buffer_async_read
424 * completion) then there is a possibility that another thread of
425 * control could lock one of the buffers after it has completed
426 * but while some of the other buffers have not completed. This
427 * locked buffer would confuse end_buffer_async_read() into not unlocking
428 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
429 * that this buffer is not under async I/O.
430 *
431 * The page comes unlocked when it has no locked buffer_async buffers
432 * left.
433 *
434 * PageLocked prevents anyone starting new async I/O reads any of
435 * the buffers.
436 *
437 * PageWriteback is used to prevent simultaneous writeout of the same
438 * page.
439 *
440 * PageLocked prevents anyone from starting writeback of a page which is
441 * under read I/O (PageWriteback is only ever set against a locked page).
442 */
443static void mark_buffer_async_read(struct buffer_head *bh)
444{
445 bh->b_end_io = end_buffer_async_read;
446 set_buffer_async_read(bh);
447}
448
449static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 bh_end_io_t *handler)
451{
452 bh->b_end_io = handler;
453 set_buffer_async_write(bh);
454}
455
456void mark_buffer_async_write(struct buffer_head *bh)
457{
458 mark_buffer_async_write_endio(bh, end_buffer_async_write);
459}
460EXPORT_SYMBOL(mark_buffer_async_write);
461
462
463/*
464 * fs/buffer.c contains helper functions for buffer-backed address space's
465 * fsync functions. A common requirement for buffer-based filesystems is
466 * that certain data from the backing blockdev needs to be written out for
467 * a successful fsync(). For example, ext2 indirect blocks need to be
468 * written back and waited upon before fsync() returns.
469 *
470 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472 * management of a list of dependent buffers at ->i_mapping->private_list.
473 *
474 * Locking is a little subtle: try_to_free_buffers() will remove buffers
475 * from their controlling inode's queue when they are being freed. But
476 * try_to_free_buffers() will be operating against the *blockdev* mapping
477 * at the time, not against the S_ISREG file which depends on those buffers.
478 * So the locking for private_list is via the private_lock in the address_space
479 * which backs the buffers. Which is different from the address_space
480 * against which the buffers are listed. So for a particular address_space,
481 * mapping->private_lock does *not* protect mapping->private_list! In fact,
482 * mapping->private_list will always be protected by the backing blockdev's
483 * ->private_lock.
484 *
485 * Which introduces a requirement: all buffers on an address_space's
486 * ->private_list must be from the same address_space: the blockdev's.
487 *
488 * address_spaces which do not place buffers at ->private_list via these
489 * utility functions are free to use private_lock and private_list for
490 * whatever they want. The only requirement is that list_empty(private_list)
491 * be true at clear_inode() time.
492 *
493 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
494 * filesystems should do that. invalidate_inode_buffers() should just go
495 * BUG_ON(!list_empty).
496 *
497 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
498 * take an address_space, not an inode. And it should be called
499 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500 * queued up.
501 *
502 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503 * list if it is already on a list. Because if the buffer is on a list,
504 * it *must* already be on the right one. If not, the filesystem is being
505 * silly. This will save a ton of locking. But first we have to ensure
506 * that buffers are taken *off* the old inode's list when they are freed
507 * (presumably in truncate). That requires careful auditing of all
508 * filesystems (do it inside bforget()). It could also be done by bringing
509 * b_inode back.
510 */
511
512/*
513 * The buffer's backing address_space's private_lock must be held
514 */
515static void __remove_assoc_queue(struct buffer_head *bh)
516{
517 list_del_init(&bh->b_assoc_buffers);
518 WARN_ON(!bh->b_assoc_map);
519 if (buffer_write_io_error(bh))
520 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 bh->b_assoc_map = NULL;
522}
523
524int inode_has_buffers(struct inode *inode)
525{
526 return !list_empty(&inode->i_data.private_list);
527}
528
529/*
530 * osync is designed to support O_SYNC io. It waits synchronously for
531 * all already-submitted IO to complete, but does not queue any new
532 * writes to the disk.
533 *
534 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535 * you dirty the buffers, and then use osync_inode_buffers to wait for
536 * completion. Any other dirty buffers which are not yet queued for
537 * write will not be flushed to disk by the osync.
538 */
539static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540{
541 struct buffer_head *bh;
542 struct list_head *p;
543 int err = 0;
544
545 spin_lock(lock);
546repeat:
547 list_for_each_prev(p, list) {
548 bh = BH_ENTRY(p);
549 if (buffer_locked(bh)) {
550 get_bh(bh);
551 spin_unlock(lock);
552 wait_on_buffer(bh);
553 if (!buffer_uptodate(bh))
554 err = -EIO;
555 brelse(bh);
556 spin_lock(lock);
557 goto repeat;
558 }
559 }
560 spin_unlock(lock);
561 return err;
562}
563
564static void do_thaw_one(struct super_block *sb, void *unused)
565{
566 char b[BDEVNAME_SIZE];
567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 printk(KERN_WARNING "Emergency Thaw on %s\n",
569 bdevname(sb->s_bdev, b));
570}
571
572static void do_thaw_all(struct work_struct *work)
573{
574 iterate_supers(do_thaw_one, NULL);
575 kfree(work);
576 printk(KERN_WARNING "Emergency Thaw complete\n");
577}
578
579/**
580 * emergency_thaw_all -- forcibly thaw every frozen filesystem
581 *
582 * Used for emergency unfreeze of all filesystems via SysRq
583 */
584void emergency_thaw_all(void)
585{
586 struct work_struct *work;
587
588 work = kmalloc(sizeof(*work), GFP_ATOMIC);
589 if (work) {
590 INIT_WORK(work, do_thaw_all);
591 schedule_work(work);
592 }
593}
594
595/**
596 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597 * @mapping: the mapping which wants those buffers written
598 *
599 * Starts I/O against the buffers at mapping->private_list, and waits upon
600 * that I/O.
601 *
602 * Basically, this is a convenience function for fsync().
603 * @mapping is a file or directory which needs those buffers to be written for
604 * a successful fsync().
605 */
606int sync_mapping_buffers(struct address_space *mapping)
607{
608 struct address_space *buffer_mapping = mapping->assoc_mapping;
609
610 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611 return 0;
612
613 return fsync_buffers_list(&buffer_mapping->private_lock,
614 &mapping->private_list);
615}
616EXPORT_SYMBOL(sync_mapping_buffers);
617
618/*
619 * Called when we've recently written block `bblock', and it is known that
620 * `bblock' was for a buffer_boundary() buffer. This means that the block at
621 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
622 * dirty, schedule it for IO. So that indirects merge nicely with their data.
623 */
624void write_boundary_block(struct block_device *bdev,
625 sector_t bblock, unsigned blocksize)
626{
627 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628 if (bh) {
629 if (buffer_dirty(bh))
630 ll_rw_block(WRITE, 1, &bh);
631 put_bh(bh);
632 }
633}
634
635void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636{
637 struct address_space *mapping = inode->i_mapping;
638 struct address_space *buffer_mapping = bh->b_page->mapping;
639
640 mark_buffer_dirty(bh);
641 if (!mapping->assoc_mapping) {
642 mapping->assoc_mapping = buffer_mapping;
643 } else {
644 BUG_ON(mapping->assoc_mapping != buffer_mapping);
645 }
646 if (!bh->b_assoc_map) {
647 spin_lock(&buffer_mapping->private_lock);
648 list_move_tail(&bh->b_assoc_buffers,
649 &mapping->private_list);
650 bh->b_assoc_map = mapping;
651 spin_unlock(&buffer_mapping->private_lock);
652 }
653}
654EXPORT_SYMBOL(mark_buffer_dirty_inode);
655
656/*
657 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658 * dirty.
659 *
660 * If warn is true, then emit a warning if the page is not uptodate and has
661 * not been truncated.
662 */
663static void __set_page_dirty(struct page *page,
664 struct address_space *mapping, int warn)
665{
666 spin_lock_irq(&mapping->tree_lock);
667 if (page->mapping) { /* Race with truncate? */
668 WARN_ON_ONCE(warn && !PageUptodate(page));
669 account_page_dirtied(page, mapping);
670 radix_tree_tag_set(&mapping->page_tree,
671 page_index(page), PAGECACHE_TAG_DIRTY);
672 }
673 spin_unlock_irq(&mapping->tree_lock);
674 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675}
676
677/*
678 * Add a page to the dirty page list.
679 *
680 * It is a sad fact of life that this function is called from several places
681 * deeply under spinlocking. It may not sleep.
682 *
683 * If the page has buffers, the uptodate buffers are set dirty, to preserve
684 * dirty-state coherency between the page and the buffers. It the page does
685 * not have buffers then when they are later attached they will all be set
686 * dirty.
687 *
688 * The buffers are dirtied before the page is dirtied. There's a small race
689 * window in which a writepage caller may see the page cleanness but not the
690 * buffer dirtiness. That's fine. If this code were to set the page dirty
691 * before the buffers, a concurrent writepage caller could clear the page dirty
692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693 * page on the dirty page list.
694 *
695 * We use private_lock to lock against try_to_free_buffers while using the
696 * page's buffer list. Also use this to protect against clean buffers being
697 * added to the page after it was set dirty.
698 *
699 * FIXME: may need to call ->reservepage here as well. That's rather up to the
700 * address_space though.
701 */
702int __set_page_dirty_buffers(struct page *page)
703{
704 int newly_dirty;
705 struct address_space *mapping = page_mapping(page);
706
707 if (unlikely(!mapping))
708 return !TestSetPageDirty(page);
709
710 spin_lock(&mapping->private_lock);
711 if (page_has_buffers(page)) {
712 struct buffer_head *head = page_buffers(page);
713 struct buffer_head *bh = head;
714
715 do {
716 set_buffer_dirty(bh);
717 bh = bh->b_this_page;
718 } while (bh != head);
719 }
720 newly_dirty = !TestSetPageDirty(page);
721 spin_unlock(&mapping->private_lock);
722
723 if (newly_dirty)
724 __set_page_dirty(page, mapping, 1);
725 return newly_dirty;
726}
727EXPORT_SYMBOL(__set_page_dirty_buffers);
728
729/*
730 * Write out and wait upon a list of buffers.
731 *
732 * We have conflicting pressures: we want to make sure that all
733 * initially dirty buffers get waited on, but that any subsequently
734 * dirtied buffers don't. After all, we don't want fsync to last
735 * forever if somebody is actively writing to the file.
736 *
737 * Do this in two main stages: first we copy dirty buffers to a
738 * temporary inode list, queueing the writes as we go. Then we clean
739 * up, waiting for those writes to complete.
740 *
741 * During this second stage, any subsequent updates to the file may end
742 * up refiling the buffer on the original inode's dirty list again, so
743 * there is a chance we will end up with a buffer queued for write but
744 * not yet completed on that list. So, as a final cleanup we go through
745 * the osync code to catch these locked, dirty buffers without requeuing
746 * any newly dirty buffers for write.
747 */
748static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749{
750 struct buffer_head *bh;
751 struct list_head tmp;
752 struct address_space *mapping, *prev_mapping = NULL;
753 int err = 0, err2;
754
755 INIT_LIST_HEAD(&tmp);
756
757 spin_lock(lock);
758 while (!list_empty(list)) {
759 bh = BH_ENTRY(list->next);
760 mapping = bh->b_assoc_map;
761 __remove_assoc_queue(bh);
762 /* Avoid race with mark_buffer_dirty_inode() which does
763 * a lockless check and we rely on seeing the dirty bit */
764 smp_mb();
765 if (buffer_dirty(bh) || buffer_locked(bh)) {
766 list_add(&bh->b_assoc_buffers, &tmp);
767 bh->b_assoc_map = mapping;
768 if (buffer_dirty(bh)) {
769 get_bh(bh);
770 spin_unlock(lock);
771 /*
772 * Ensure any pending I/O completes so that
773 * write_dirty_buffer() actually writes the
774 * current contents - it is a noop if I/O is
775 * still in flight on potentially older
776 * contents.
777 */
778 write_dirty_buffer(bh, WRITE_SYNC_PLUG);
779
780 /*
781 * Kick off IO for the previous mapping. Note
782 * that we will not run the very last mapping,
783 * wait_on_buffer() will do that for us
784 * through sync_buffer().
785 */
786 if (prev_mapping && prev_mapping != mapping)
787 blk_run_address_space(prev_mapping);
788 prev_mapping = mapping;
789
790 brelse(bh);
791 spin_lock(lock);
792 }
793 }
794 }
795
796 while (!list_empty(&tmp)) {
797 bh = BH_ENTRY(tmp.prev);
798 get_bh(bh);
799 mapping = bh->b_assoc_map;
800 __remove_assoc_queue(bh);
801 /* Avoid race with mark_buffer_dirty_inode() which does
802 * a lockless check and we rely on seeing the dirty bit */
803 smp_mb();
804 if (buffer_dirty(bh)) {
805 list_add(&bh->b_assoc_buffers,
806 &mapping->private_list);
807 bh->b_assoc_map = mapping;
808 }
809 spin_unlock(lock);
810 wait_on_buffer(bh);
811 if (!buffer_uptodate(bh))
812 err = -EIO;
813 brelse(bh);
814 spin_lock(lock);
815 }
816
817 spin_unlock(lock);
818 err2 = osync_buffers_list(lock, list);
819 if (err)
820 return err;
821 else
822 return err2;
823}
824
825/*
826 * Invalidate any and all dirty buffers on a given inode. We are
827 * probably unmounting the fs, but that doesn't mean we have already
828 * done a sync(). Just drop the buffers from the inode list.
829 *
830 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
831 * assumes that all the buffers are against the blockdev. Not true
832 * for reiserfs.
833 */
834void invalidate_inode_buffers(struct inode *inode)
835{
836 if (inode_has_buffers(inode)) {
837 struct address_space *mapping = &inode->i_data;
838 struct list_head *list = &mapping->private_list;
839 struct address_space *buffer_mapping = mapping->assoc_mapping;
840
841 spin_lock(&buffer_mapping->private_lock);
842 while (!list_empty(list))
843 __remove_assoc_queue(BH_ENTRY(list->next));
844 spin_unlock(&buffer_mapping->private_lock);
845 }
846}
847EXPORT_SYMBOL(invalidate_inode_buffers);
848
849/*
850 * Remove any clean buffers from the inode's buffer list. This is called
851 * when we're trying to free the inode itself. Those buffers can pin it.
852 *
853 * Returns true if all buffers were removed.
854 */
855int remove_inode_buffers(struct inode *inode)
856{
857 int ret = 1;
858
859 if (inode_has_buffers(inode)) {
860 struct address_space *mapping = &inode->i_data;
861 struct list_head *list = &mapping->private_list;
862 struct address_space *buffer_mapping = mapping->assoc_mapping;
863
864 spin_lock(&buffer_mapping->private_lock);
865 while (!list_empty(list)) {
866 struct buffer_head *bh = BH_ENTRY(list->next);
867 if (buffer_dirty(bh)) {
868 ret = 0;
869 break;
870 }
871 __remove_assoc_queue(bh);
872 }
873 spin_unlock(&buffer_mapping->private_lock);
874 }
875 return ret;
876}
877
878/*
879 * Create the appropriate buffers when given a page for data area and
880 * the size of each buffer.. Use the bh->b_this_page linked list to
881 * follow the buffers created. Return NULL if unable to create more
882 * buffers.
883 *
884 * The retry flag is used to differentiate async IO (paging, swapping)
885 * which may not fail from ordinary buffer allocations.
886 */
887struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
888 int retry)
889{
890 struct buffer_head *bh, *head;
891 long offset;
892
893try_again:
894 head = NULL;
895 offset = PAGE_SIZE;
896 while ((offset -= size) >= 0) {
897 bh = alloc_buffer_head(GFP_NOFS);
898 if (!bh)
899 goto no_grow;
900
901 bh->b_bdev = NULL;
902 bh->b_this_page = head;
903 bh->b_blocknr = -1;
904 head = bh;
905
906 bh->b_state = 0;
907 atomic_set(&bh->b_count, 0);
908 bh->b_size = size;
909
910 /* Link the buffer to its page */
911 set_bh_page(bh, page, offset);
912
913 init_buffer(bh, NULL, NULL);
914 }
915 return head;
916/*
917 * In case anything failed, we just free everything we got.
918 */
919no_grow:
920 if (head) {
921 do {
922 bh = head;
923 head = head->b_this_page;
924 free_buffer_head(bh);
925 } while (head);
926 }
927
928 /*
929 * Return failure for non-async IO requests. Async IO requests
930 * are not allowed to fail, so we have to wait until buffer heads
931 * become available. But we don't want tasks sleeping with
932 * partially complete buffers, so all were released above.
933 */
934 if (!retry)
935 return NULL;
936
937 /* We're _really_ low on memory. Now we just
938 * wait for old buffer heads to become free due to
939 * finishing IO. Since this is an async request and
940 * the reserve list is empty, we're sure there are
941 * async buffer heads in use.
942 */
943 free_more_memory();
944 goto try_again;
945}
946EXPORT_SYMBOL_GPL(alloc_page_buffers);
947
948static inline void
949link_dev_buffers(struct page *page, struct buffer_head *head)
950{
951 struct buffer_head *bh, *tail;
952
953 bh = head;
954 do {
955 tail = bh;
956 bh = bh->b_this_page;
957 } while (bh);
958 tail->b_this_page = head;
959 attach_page_buffers(page, head);
960}
961
962/*
963 * Initialise the state of a blockdev page's buffers.
964 */
965static void
966init_page_buffers(struct page *page, struct block_device *bdev,
967 sector_t block, int size)
968{
969 struct buffer_head *head = page_buffers(page);
970 struct buffer_head *bh = head;
971 int uptodate = PageUptodate(page);
972
973 do {
974 if (!buffer_mapped(bh)) {
975 init_buffer(bh, NULL, NULL);
976 bh->b_bdev = bdev;
977 bh->b_blocknr = block;
978 if (uptodate)
979 set_buffer_uptodate(bh);
980 set_buffer_mapped(bh);
981 }
982 block++;
983 bh = bh->b_this_page;
984 } while (bh != head);
985}
986
987/*
988 * Create the page-cache page that contains the requested block.
989 *
990 * This is user purely for blockdev mappings.
991 */
992static struct page *
993grow_dev_page(struct block_device *bdev, sector_t block,
994 pgoff_t index, int size)
995{
996 struct inode *inode = bdev->bd_inode;
997 struct page *page;
998 struct buffer_head *bh;
999
1000 page = find_or_create_page(inode->i_mapping, index,
1001 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1002 if (!page)
1003 return NULL;
1004
1005 BUG_ON(!PageLocked(page));
1006
1007 if (page_has_buffers(page)) {
1008 bh = page_buffers(page);
1009 if (bh->b_size == size) {
1010 init_page_buffers(page, bdev, block, size);
1011 return page;
1012 }
1013 if (!try_to_free_buffers(page))
1014 goto failed;
1015 }
1016
1017 /*
1018 * Allocate some buffers for this page
1019 */
1020 bh = alloc_page_buffers(page, size, 0);
1021 if (!bh)
1022 goto failed;
1023
1024 /*
1025 * Link the page to the buffers and initialise them. Take the
1026 * lock to be atomic wrt __find_get_block(), which does not
1027 * run under the page lock.
1028 */
1029 spin_lock(&inode->i_mapping->private_lock);
1030 link_dev_buffers(page, bh);
1031 init_page_buffers(page, bdev, block, size);
1032 spin_unlock(&inode->i_mapping->private_lock);
1033 return page;
1034
1035failed:
1036 BUG();
1037 unlock_page(page);
1038 page_cache_release(page);
1039 return NULL;
1040}
1041
1042/*
1043 * Create buffers for the specified block device block's page. If
1044 * that page was dirty, the buffers are set dirty also.
1045 */
1046static int
1047grow_buffers(struct block_device *bdev, sector_t block, int size)
1048{
1049 struct page *page;
1050 pgoff_t index;
1051 int sizebits;
1052
1053 sizebits = -1;
1054 do {
1055 sizebits++;
1056 } while ((size << sizebits) < PAGE_SIZE);
1057
1058 index = block >> sizebits;
1059
1060 /*
1061 * Check for a block which wants to lie outside our maximum possible
1062 * pagecache index. (this comparison is done using sector_t types).
1063 */
1064 if (unlikely(index != block >> sizebits)) {
1065 char b[BDEVNAME_SIZE];
1066
1067 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1068 "device %s\n",
1069 __func__, (unsigned long long)block,
1070 bdevname(bdev, b));
1071 return -EIO;
1072 }
1073 block = index << sizebits;
1074 /* Create a page with the proper size buffers.. */
1075 page = grow_dev_page(bdev, block, index, size);
1076 if (!page)
1077 return 0;
1078 unlock_page(page);
1079 page_cache_release(page);
1080 return 1;
1081}
1082
1083static struct buffer_head *
1084__getblk_slow(struct block_device *bdev, sector_t block, int size)
1085{
1086 /* Size must be multiple of hard sectorsize */
1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088 (size < 512 || size > PAGE_SIZE))) {
1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 size);
1091 printk(KERN_ERR "logical block size: %d\n",
1092 bdev_logical_block_size(bdev));
1093
1094 dump_stack();
1095 return NULL;
1096 }
1097
1098 for (;;) {
1099 struct buffer_head * bh;
1100 int ret;
1101
1102 bh = __find_get_block(bdev, block, size);
1103 if (bh)
1104 return bh;
1105
1106 ret = grow_buffers(bdev, block, size);
1107 if (ret < 0)
1108 return NULL;
1109 if (ret == 0)
1110 free_more_memory();
1111 }
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and the global inode_lock.
1148 */
1149void mark_buffer_dirty(struct buffer_head *bh)
1150{
1151 WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153 /*
1154 * Very *carefully* optimize the it-is-already-dirty case.
1155 *
1156 * Don't let the final "is it dirty" escape to before we
1157 * perhaps modified the buffer.
1158 */
1159 if (buffer_dirty(bh)) {
1160 smp_mb();
1161 if (buffer_dirty(bh))
1162 return;
1163 }
1164
1165 if (!test_set_buffer_dirty(bh)) {
1166 struct page *page = bh->b_page;
1167 if (!TestSetPageDirty(page)) {
1168 struct address_space *mapping = page_mapping(page);
1169 if (mapping)
1170 __set_page_dirty(page, mapping, 0);
1171 }
1172 }
1173}
1174EXPORT_SYMBOL(mark_buffer_dirty);
1175
1176/*
1177 * Decrement a buffer_head's reference count. If all buffers against a page
1178 * have zero reference count, are clean and unlocked, and if the page is clean
1179 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1180 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1181 * a page but it ends up not being freed, and buffers may later be reattached).
1182 */
1183void __brelse(struct buffer_head * buf)
1184{
1185 if (atomic_read(&buf->b_count)) {
1186 put_bh(buf);
1187 return;
1188 }
1189 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1190}
1191EXPORT_SYMBOL(__brelse);
1192
1193/*
1194 * bforget() is like brelse(), except it discards any
1195 * potentially dirty data.
1196 */
1197void __bforget(struct buffer_head *bh)
1198{
1199 clear_buffer_dirty(bh);
1200 if (bh->b_assoc_map) {
1201 struct address_space *buffer_mapping = bh->b_page->mapping;
1202
1203 spin_lock(&buffer_mapping->private_lock);
1204 list_del_init(&bh->b_assoc_buffers);
1205 bh->b_assoc_map = NULL;
1206 spin_unlock(&buffer_mapping->private_lock);
1207 }
1208 __brelse(bh);
1209}
1210EXPORT_SYMBOL(__bforget);
1211
1212static struct buffer_head *__bread_slow(struct buffer_head *bh)
1213{
1214 lock_buffer(bh);
1215 if (buffer_uptodate(bh)) {
1216 unlock_buffer(bh);
1217 return bh;
1218 } else {
1219 get_bh(bh);
1220 bh->b_end_io = end_buffer_read_sync;
1221 submit_bh(READ, bh);
1222 wait_on_buffer(bh);
1223 if (buffer_uptodate(bh))
1224 return bh;
1225 }
1226 brelse(bh);
1227 return NULL;
1228}
1229
1230/*
1231 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1232 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1233 * refcount elevated by one when they're in an LRU. A buffer can only appear
1234 * once in a particular CPU's LRU. A single buffer can be present in multiple
1235 * CPU's LRUs at the same time.
1236 *
1237 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1238 * sb_find_get_block().
1239 *
1240 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1241 * a local interrupt disable for that.
1242 */
1243
1244#define BH_LRU_SIZE 8
1245
1246struct bh_lru {
1247 struct buffer_head *bhs[BH_LRU_SIZE];
1248};
1249
1250static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1251
1252#ifdef CONFIG_SMP
1253#define bh_lru_lock() local_irq_disable()
1254#define bh_lru_unlock() local_irq_enable()
1255#else
1256#define bh_lru_lock() preempt_disable()
1257#define bh_lru_unlock() preempt_enable()
1258#endif
1259
1260static inline void check_irqs_on(void)
1261{
1262#ifdef irqs_disabled
1263 BUG_ON(irqs_disabled());
1264#endif
1265}
1266
1267/*
1268 * The LRU management algorithm is dopey-but-simple. Sorry.
1269 */
1270static void bh_lru_install(struct buffer_head *bh)
1271{
1272 struct buffer_head *evictee = NULL;
1273 struct bh_lru *lru;
1274
1275 check_irqs_on();
1276 bh_lru_lock();
1277 lru = &__get_cpu_var(bh_lrus);
1278 if (lru->bhs[0] != bh) {
1279 struct buffer_head *bhs[BH_LRU_SIZE];
1280 int in;
1281 int out = 0;
1282
1283 get_bh(bh);
1284 bhs[out++] = bh;
1285 for (in = 0; in < BH_LRU_SIZE; in++) {
1286 struct buffer_head *bh2 = lru->bhs[in];
1287
1288 if (bh2 == bh) {
1289 __brelse(bh2);
1290 } else {
1291 if (out >= BH_LRU_SIZE) {
1292 BUG_ON(evictee != NULL);
1293 evictee = bh2;
1294 } else {
1295 bhs[out++] = bh2;
1296 }
1297 }
1298 }
1299 while (out < BH_LRU_SIZE)
1300 bhs[out++] = NULL;
1301 memcpy(lru->bhs, bhs, sizeof(bhs));
1302 }
1303 bh_lru_unlock();
1304
1305 if (evictee)
1306 __brelse(evictee);
1307}
1308
1309/*
1310 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1311 */
1312static struct buffer_head *
1313lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1314{
1315 struct buffer_head *ret = NULL;
1316 struct bh_lru *lru;
1317 unsigned int i;
1318
1319 check_irqs_on();
1320 bh_lru_lock();
1321 lru = &__get_cpu_var(bh_lrus);
1322 for (i = 0; i < BH_LRU_SIZE; i++) {
1323 struct buffer_head *bh = lru->bhs[i];
1324
1325 if (bh && bh->b_bdev == bdev &&
1326 bh->b_blocknr == block && bh->b_size == size) {
1327 if (i) {
1328 while (i) {
1329 lru->bhs[i] = lru->bhs[i - 1];
1330 i--;
1331 }
1332 lru->bhs[0] = bh;
1333 }
1334 get_bh(bh);
1335 ret = bh;
1336 break;
1337 }
1338 }
1339 bh_lru_unlock();
1340 return ret;
1341}
1342
1343/*
1344 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1345 * it in the LRU and mark it as accessed. If it is not present then return
1346 * NULL
1347 */
1348struct buffer_head *
1349__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1350{
1351 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1352
1353 if (bh == NULL) {
1354 bh = __find_get_block_slow(bdev, block);
1355 if (bh)
1356 bh_lru_install(bh);
1357 }
1358 if (bh)
1359 touch_buffer(bh);
1360 return bh;
1361}
1362EXPORT_SYMBOL(__find_get_block);
1363
1364/*
1365 * __getblk will locate (and, if necessary, create) the buffer_head
1366 * which corresponds to the passed block_device, block and size. The
1367 * returned buffer has its reference count incremented.
1368 *
1369 * __getblk() cannot fail - it just keeps trying. If you pass it an
1370 * illegal block number, __getblk() will happily return a buffer_head
1371 * which represents the non-existent block. Very weird.
1372 *
1373 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1374 * attempt is failing. FIXME, perhaps?
1375 */
1376struct buffer_head *
1377__getblk(struct block_device *bdev, sector_t block, unsigned size)
1378{
1379 struct buffer_head *bh = __find_get_block(bdev, block, size);
1380
1381 might_sleep();
1382 if (bh == NULL)
1383 bh = __getblk_slow(bdev, block, size);
1384 return bh;
1385}
1386EXPORT_SYMBOL(__getblk);
1387
1388/*
1389 * Do async read-ahead on a buffer..
1390 */
1391void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392{
1393 struct buffer_head *bh = __getblk(bdev, block, size);
1394 if (likely(bh)) {
1395 ll_rw_block(READA, 1, &bh);
1396 brelse(bh);
1397 }
1398}
1399EXPORT_SYMBOL(__breadahead);
1400
1401/**
1402 * __bread() - reads a specified block and returns the bh
1403 * @bdev: the block_device to read from
1404 * @block: number of block
1405 * @size: size (in bytes) to read
1406 *
1407 * Reads a specified block, and returns buffer head that contains it.
1408 * It returns NULL if the block was unreadable.
1409 */
1410struct buffer_head *
1411__bread(struct block_device *bdev, sector_t block, unsigned size)
1412{
1413 struct buffer_head *bh = __getblk(bdev, block, size);
1414
1415 if (likely(bh) && !buffer_uptodate(bh))
1416 bh = __bread_slow(bh);
1417 return bh;
1418}
1419EXPORT_SYMBOL(__bread);
1420
1421/*
1422 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1423 * This doesn't race because it runs in each cpu either in irq
1424 * or with preempt disabled.
1425 */
1426static void invalidate_bh_lru(void *arg)
1427{
1428 struct bh_lru *b = &get_cpu_var(bh_lrus);
1429 int i;
1430
1431 for (i = 0; i < BH_LRU_SIZE; i++) {
1432 brelse(b->bhs[i]);
1433 b->bhs[i] = NULL;
1434 }
1435 put_cpu_var(bh_lrus);
1436}
1437
1438void invalidate_bh_lrus(void)
1439{
1440 on_each_cpu(invalidate_bh_lru, NULL, 1);
1441}
1442EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1443
1444void set_bh_page(struct buffer_head *bh,
1445 struct page *page, unsigned long offset)
1446{
1447 bh->b_page = page;
1448 BUG_ON(offset >= PAGE_SIZE);
1449 if (PageHighMem(page))
1450 /*
1451 * This catches illegal uses and preserves the offset:
1452 */
1453 bh->b_data = (char *)(0 + offset);
1454 else
1455 bh->b_data = page_address(page) + offset;
1456}
1457EXPORT_SYMBOL(set_bh_page);
1458
1459/*
1460 * Called when truncating a buffer on a page completely.
1461 */
1462static void discard_buffer(struct buffer_head * bh)
1463{
1464 lock_buffer(bh);
1465 clear_buffer_dirty(bh);
1466 bh->b_bdev = NULL;
1467 clear_buffer_mapped(bh);
1468 clear_buffer_req(bh);
1469 clear_buffer_new(bh);
1470 clear_buffer_delay(bh);
1471 clear_buffer_unwritten(bh);
1472 unlock_buffer(bh);
1473}
1474
1475/**
1476 * block_invalidatepage - invalidate part of all of a buffer-backed page
1477 *
1478 * @page: the page which is affected
1479 * @offset: the index of the truncation point
1480 *
1481 * block_invalidatepage() is called when all or part of the page has become
1482 * invalidatedby a truncate operation.
1483 *
1484 * block_invalidatepage() does not have to release all buffers, but it must
1485 * ensure that no dirty buffer is left outside @offset and that no I/O
1486 * is underway against any of the blocks which are outside the truncation
1487 * point. Because the caller is about to free (and possibly reuse) those
1488 * blocks on-disk.
1489 */
1490void block_invalidatepage(struct page *page, unsigned long offset)
1491{
1492 struct buffer_head *head, *bh, *next;
1493 unsigned int curr_off = 0;
1494
1495 BUG_ON(!PageLocked(page));
1496 if (!page_has_buffers(page))
1497 goto out;
1498
1499 head = page_buffers(page);
1500 bh = head;
1501 do {
1502 unsigned int next_off = curr_off + bh->b_size;
1503 next = bh->b_this_page;
1504
1505 /*
1506 * is this block fully invalidated?
1507 */
1508 if (offset <= curr_off)
1509 discard_buffer(bh);
1510 curr_off = next_off;
1511 bh = next;
1512 } while (bh != head);
1513
1514 /*
1515 * We release buffers only if the entire page is being invalidated.
1516 * The get_block cached value has been unconditionally invalidated,
1517 * so real IO is not possible anymore.
1518 */
1519 if (offset == 0)
1520 try_to_release_page(page, 0);
1521out:
1522 return;
1523}
1524EXPORT_SYMBOL(block_invalidatepage);
1525
1526/*
1527 * We attach and possibly dirty the buffers atomically wrt
1528 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1529 * is already excluded via the page lock.
1530 */
1531void create_empty_buffers(struct page *page,
1532 unsigned long blocksize, unsigned long b_state)
1533{
1534 struct buffer_head *bh, *head, *tail;
1535
1536 head = alloc_page_buffers(page, blocksize, 1);
1537 bh = head;
1538 do {
1539 bh->b_state |= b_state;
1540 tail = bh;
1541 bh = bh->b_this_page;
1542 } while (bh);
1543 tail->b_this_page = head;
1544
1545 spin_lock(&page->mapping->private_lock);
1546 if (PageUptodate(page) || PageDirty(page)) {
1547 bh = head;
1548 do {
1549 if (PageDirty(page))
1550 set_buffer_dirty(bh);
1551 if (PageUptodate(page))
1552 set_buffer_uptodate(bh);
1553 bh = bh->b_this_page;
1554 } while (bh != head);
1555 }
1556 attach_page_buffers(page, head);
1557 spin_unlock(&page->mapping->private_lock);
1558}
1559EXPORT_SYMBOL(create_empty_buffers);
1560
1561/*
1562 * We are taking a block for data and we don't want any output from any
1563 * buffer-cache aliases starting from return from that function and
1564 * until the moment when something will explicitly mark the buffer
1565 * dirty (hopefully that will not happen until we will free that block ;-)
1566 * We don't even need to mark it not-uptodate - nobody can expect
1567 * anything from a newly allocated buffer anyway. We used to used
1568 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1569 * don't want to mark the alias unmapped, for example - it would confuse
1570 * anyone who might pick it with bread() afterwards...
1571 *
1572 * Also.. Note that bforget() doesn't lock the buffer. So there can
1573 * be writeout I/O going on against recently-freed buffers. We don't
1574 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1575 * only if we really need to. That happens here.
1576 */
1577void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1578{
1579 struct buffer_head *old_bh;
1580
1581 might_sleep();
1582
1583 old_bh = __find_get_block_slow(bdev, block);
1584 if (old_bh) {
1585 clear_buffer_dirty(old_bh);
1586 wait_on_buffer(old_bh);
1587 clear_buffer_req(old_bh);
1588 __brelse(old_bh);
1589 }
1590}
1591EXPORT_SYMBOL(unmap_underlying_metadata);
1592
1593/*
1594 * NOTE! All mapped/uptodate combinations are valid:
1595 *
1596 * Mapped Uptodate Meaning
1597 *
1598 * No No "unknown" - must do get_block()
1599 * No Yes "hole" - zero-filled
1600 * Yes No "allocated" - allocated on disk, not read in
1601 * Yes Yes "valid" - allocated and up-to-date in memory.
1602 *
1603 * "Dirty" is valid only with the last case (mapped+uptodate).
1604 */
1605
1606/*
1607 * While block_write_full_page is writing back the dirty buffers under
1608 * the page lock, whoever dirtied the buffers may decide to clean them
1609 * again at any time. We handle that by only looking at the buffer
1610 * state inside lock_buffer().
1611 *
1612 * If block_write_full_page() is called for regular writeback
1613 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614 * locked buffer. This only can happen if someone has written the buffer
1615 * directly, with submit_bh(). At the address_space level PageWriteback
1616 * prevents this contention from occurring.
1617 *
1618 * If block_write_full_page() is called with wbc->sync_mode ==
1619 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1620 * causes the writes to be flagged as synchronous writes, but the
1621 * block device queue will NOT be unplugged, since usually many pages
1622 * will be pushed to the out before the higher-level caller actually
1623 * waits for the writes to be completed. The various wait functions,
1624 * such as wait_on_writeback_range() will ultimately call sync_page()
1625 * which will ultimately call blk_run_backing_dev(), which will end up
1626 * unplugging the device queue.
1627 */
1628static int __block_write_full_page(struct inode *inode, struct page *page,
1629 get_block_t *get_block, struct writeback_control *wbc,
1630 bh_end_io_t *handler)
1631{
1632 int err;
1633 sector_t block;
1634 sector_t last_block;
1635 struct buffer_head *bh, *head;
1636 const unsigned blocksize = 1 << inode->i_blkbits;
1637 int nr_underway = 0;
1638 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1639 WRITE_SYNC_PLUG : WRITE);
1640
1641 BUG_ON(!PageLocked(page));
1642
1643 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1644
1645 if (!page_has_buffers(page)) {
1646 create_empty_buffers(page, blocksize,
1647 (1 << BH_Dirty)|(1 << BH_Uptodate));
1648 }
1649
1650 /*
1651 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1652 * here, and the (potentially unmapped) buffers may become dirty at
1653 * any time. If a buffer becomes dirty here after we've inspected it
1654 * then we just miss that fact, and the page stays dirty.
1655 *
1656 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1657 * handle that here by just cleaning them.
1658 */
1659
1660 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1661 head = page_buffers(page);
1662 bh = head;
1663
1664 /*
1665 * Get all the dirty buffers mapped to disk addresses and
1666 * handle any aliases from the underlying blockdev's mapping.
1667 */
1668 do {
1669 if (block > last_block) {
1670 /*
1671 * mapped buffers outside i_size will occur, because
1672 * this page can be outside i_size when there is a
1673 * truncate in progress.
1674 */
1675 /*
1676 * The buffer was zeroed by block_write_full_page()
1677 */
1678 clear_buffer_dirty(bh);
1679 set_buffer_uptodate(bh);
1680 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1681 buffer_dirty(bh)) {
1682 WARN_ON(bh->b_size != blocksize);
1683 err = get_block(inode, block, bh, 1);
1684 if (err)
1685 goto recover;
1686 clear_buffer_delay(bh);
1687 if (buffer_new(bh)) {
1688 /* blockdev mappings never come here */
1689 clear_buffer_new(bh);
1690 unmap_underlying_metadata(bh->b_bdev,
1691 bh->b_blocknr);
1692 }
1693 }
1694 bh = bh->b_this_page;
1695 block++;
1696 } while (bh != head);
1697
1698 do {
1699 if (!buffer_mapped(bh))
1700 continue;
1701 /*
1702 * If it's a fully non-blocking write attempt and we cannot
1703 * lock the buffer then redirty the page. Note that this can
1704 * potentially cause a busy-wait loop from writeback threads
1705 * and kswapd activity, but those code paths have their own
1706 * higher-level throttling.
1707 */
1708 if (wbc->sync_mode != WB_SYNC_NONE) {
1709 lock_buffer(bh);
1710 } else if (!trylock_buffer(bh)) {
1711 redirty_page_for_writepage(wbc, page);
1712 continue;
1713 }
1714 if (test_clear_buffer_dirty(bh)) {
1715 mark_buffer_async_write_endio(bh, handler);
1716 } else {
1717 unlock_buffer(bh);
1718 }
1719 } while ((bh = bh->b_this_page) != head);
1720
1721 /*
1722 * The page and its buffers are protected by PageWriteback(), so we can
1723 * drop the bh refcounts early.
1724 */
1725 BUG_ON(PageWriteback(page));
1726 set_page_writeback(page);
1727
1728 do {
1729 struct buffer_head *next = bh->b_this_page;
1730 if (buffer_async_write(bh)) {
1731 submit_bh(write_op, bh);
1732 nr_underway++;
1733 }
1734 bh = next;
1735 } while (bh != head);
1736 unlock_page(page);
1737
1738 err = 0;
1739done:
1740 if (nr_underway == 0) {
1741 /*
1742 * The page was marked dirty, but the buffers were
1743 * clean. Someone wrote them back by hand with
1744 * ll_rw_block/submit_bh. A rare case.
1745 */
1746 end_page_writeback(page);
1747
1748 /*
1749 * The page and buffer_heads can be released at any time from
1750 * here on.
1751 */
1752 }
1753 return err;
1754
1755recover:
1756 /*
1757 * ENOSPC, or some other error. We may already have added some
1758 * blocks to the file, so we need to write these out to avoid
1759 * exposing stale data.
1760 * The page is currently locked and not marked for writeback
1761 */
1762 bh = head;
1763 /* Recovery: lock and submit the mapped buffers */
1764 do {
1765 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1766 !buffer_delay(bh)) {
1767 lock_buffer(bh);
1768 mark_buffer_async_write_endio(bh, handler);
1769 } else {
1770 /*
1771 * The buffer may have been set dirty during
1772 * attachment to a dirty page.
1773 */
1774 clear_buffer_dirty(bh);
1775 }
1776 } while ((bh = bh->b_this_page) != head);
1777 SetPageError(page);
1778 BUG_ON(PageWriteback(page));
1779 mapping_set_error(page->mapping, err);
1780 set_page_writeback(page);
1781 do {
1782 struct buffer_head *next = bh->b_this_page;
1783 if (buffer_async_write(bh)) {
1784 clear_buffer_dirty(bh);
1785 submit_bh(write_op, bh);
1786 nr_underway++;
1787 }
1788 bh = next;
1789 } while (bh != head);
1790 unlock_page(page);
1791 goto done;
1792}
1793
1794/*
1795 * If a page has any new buffers, zero them out here, and mark them uptodate
1796 * and dirty so they'll be written out (in order to prevent uninitialised
1797 * block data from leaking). And clear the new bit.
1798 */
1799void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1800{
1801 unsigned int block_start, block_end;
1802 struct buffer_head *head, *bh;
1803
1804 BUG_ON(!PageLocked(page));
1805 if (!page_has_buffers(page))
1806 return;
1807
1808 bh = head = page_buffers(page);
1809 block_start = 0;
1810 do {
1811 block_end = block_start + bh->b_size;
1812
1813 if (buffer_new(bh)) {
1814 if (block_end > from && block_start < to) {
1815 if (!PageUptodate(page)) {
1816 unsigned start, size;
1817
1818 start = max(from, block_start);
1819 size = min(to, block_end) - start;
1820
1821 zero_user(page, start, size);
1822 set_buffer_uptodate(bh);
1823 }
1824
1825 clear_buffer_new(bh);
1826 mark_buffer_dirty(bh);
1827 }
1828 }
1829
1830 block_start = block_end;
1831 bh = bh->b_this_page;
1832 } while (bh != head);
1833}
1834EXPORT_SYMBOL(page_zero_new_buffers);
1835
1836int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1837 get_block_t *get_block)
1838{
1839 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1840 unsigned to = from + len;
1841 struct inode *inode = page->mapping->host;
1842 unsigned block_start, block_end;
1843 sector_t block;
1844 int err = 0;
1845 unsigned blocksize, bbits;
1846 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1847
1848 BUG_ON(!PageLocked(page));
1849 BUG_ON(from > PAGE_CACHE_SIZE);
1850 BUG_ON(to > PAGE_CACHE_SIZE);
1851 BUG_ON(from > to);
1852
1853 blocksize = 1 << inode->i_blkbits;
1854 if (!page_has_buffers(page))
1855 create_empty_buffers(page, blocksize, 0);
1856 head = page_buffers(page);
1857
1858 bbits = inode->i_blkbits;
1859 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1860
1861 for(bh = head, block_start = 0; bh != head || !block_start;
1862 block++, block_start=block_end, bh = bh->b_this_page) {
1863 block_end = block_start + blocksize;
1864 if (block_end <= from || block_start >= to) {
1865 if (PageUptodate(page)) {
1866 if (!buffer_uptodate(bh))
1867 set_buffer_uptodate(bh);
1868 }
1869 continue;
1870 }
1871 if (buffer_new(bh))
1872 clear_buffer_new(bh);
1873 if (!buffer_mapped(bh)) {
1874 WARN_ON(bh->b_size != blocksize);
1875 err = get_block(inode, block, bh, 1);
1876 if (err)
1877 break;
1878 if (buffer_new(bh)) {
1879 unmap_underlying_metadata(bh->b_bdev,
1880 bh->b_blocknr);
1881 if (PageUptodate(page)) {
1882 clear_buffer_new(bh);
1883 set_buffer_uptodate(bh);
1884 mark_buffer_dirty(bh);
1885 continue;
1886 }
1887 if (block_end > to || block_start < from)
1888 zero_user_segments(page,
1889 to, block_end,
1890 block_start, from);
1891 continue;
1892 }
1893 }
1894 if (PageUptodate(page)) {
1895 if (!buffer_uptodate(bh))
1896 set_buffer_uptodate(bh);
1897 continue;
1898 }
1899 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1900 !buffer_unwritten(bh) &&
1901 (block_start < from || block_end > to)) {
1902 ll_rw_block(READ, 1, &bh);
1903 *wait_bh++=bh;
1904 }
1905 }
1906 /*
1907 * If we issued read requests - let them complete.
1908 */
1909 while(wait_bh > wait) {
1910 wait_on_buffer(*--wait_bh);
1911 if (!buffer_uptodate(*wait_bh))
1912 err = -EIO;
1913 }
1914 if (unlikely(err)) {
1915 page_zero_new_buffers(page, from, to);
1916 ClearPageUptodate(page);
1917 }
1918 return err;
1919}
1920EXPORT_SYMBOL(__block_write_begin);
1921
1922static int __block_commit_write(struct inode *inode, struct page *page,
1923 unsigned from, unsigned to)
1924{
1925 unsigned block_start, block_end;
1926 int partial = 0;
1927 unsigned blocksize;
1928 struct buffer_head *bh, *head;
1929
1930 blocksize = 1 << inode->i_blkbits;
1931
1932 for(bh = head = page_buffers(page), block_start = 0;
1933 bh != head || !block_start;
1934 block_start=block_end, bh = bh->b_this_page) {
1935 block_end = block_start + blocksize;
1936 if (block_end <= from || block_start >= to) {
1937 if (!buffer_uptodate(bh))
1938 partial = 1;
1939 } else {
1940 set_buffer_uptodate(bh);
1941 mark_buffer_dirty(bh);
1942 }
1943 clear_buffer_new(bh);
1944 }
1945
1946 /*
1947 * If this is a partial write which happened to make all buffers
1948 * uptodate then we can optimize away a bogus readpage() for
1949 * the next read(). Here we 'discover' whether the page went
1950 * uptodate as a result of this (potentially partial) write.
1951 */
1952 if (!partial)
1953 SetPageUptodate(page);
1954 return 0;
1955}
1956
1957/*
1958 * block_write_begin takes care of the basic task of block allocation and
1959 * bringing partial write blocks uptodate first.
1960 *
1961 * The filesystem needs to handle block truncation upon failure.
1962 */
1963int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1964 unsigned flags, struct page **pagep, get_block_t *get_block)
1965{
1966 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1967 struct page *page;
1968 int status;
1969
1970 page = grab_cache_page_write_begin(mapping, index, flags);
1971 if (!page)
1972 return -ENOMEM;
1973
1974 status = __block_write_begin(page, pos, len, get_block);
1975 if (unlikely(status)) {
1976 unlock_page(page);
1977 page_cache_release(page);
1978 page = NULL;
1979 }
1980
1981 *pagep = page;
1982 return status;
1983}
1984EXPORT_SYMBOL(block_write_begin);
1985
1986int block_write_end(struct file *file, struct address_space *mapping,
1987 loff_t pos, unsigned len, unsigned copied,
1988 struct page *page, void *fsdata)
1989{
1990 struct inode *inode = mapping->host;
1991 unsigned start;
1992
1993 start = pos & (PAGE_CACHE_SIZE - 1);
1994
1995 if (unlikely(copied < len)) {
1996 /*
1997 * The buffers that were written will now be uptodate, so we
1998 * don't have to worry about a readpage reading them and
1999 * overwriting a partial write. However if we have encountered
2000 * a short write and only partially written into a buffer, it
2001 * will not be marked uptodate, so a readpage might come in and
2002 * destroy our partial write.
2003 *
2004 * Do the simplest thing, and just treat any short write to a
2005 * non uptodate page as a zero-length write, and force the
2006 * caller to redo the whole thing.
2007 */
2008 if (!PageUptodate(page))
2009 copied = 0;
2010
2011 page_zero_new_buffers(page, start+copied, start+len);
2012 }
2013 flush_dcache_page(page);
2014
2015 /* This could be a short (even 0-length) commit */
2016 __block_commit_write(inode, page, start, start+copied);
2017
2018 return copied;
2019}
2020EXPORT_SYMBOL(block_write_end);
2021
2022int generic_write_end(struct file *file, struct address_space *mapping,
2023 loff_t pos, unsigned len, unsigned copied,
2024 struct page *page, void *fsdata)
2025{
2026 struct inode *inode = mapping->host;
2027 int i_size_changed = 0;
2028
2029 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2030
2031 /*
2032 * No need to use i_size_read() here, the i_size
2033 * cannot change under us because we hold i_mutex.
2034 *
2035 * But it's important to update i_size while still holding page lock:
2036 * page writeout could otherwise come in and zero beyond i_size.
2037 */
2038 if (pos+copied > inode->i_size) {
2039 i_size_write(inode, pos+copied);
2040 i_size_changed = 1;
2041 }
2042
2043 unlock_page(page);
2044 page_cache_release(page);
2045
2046 /*
2047 * Don't mark the inode dirty under page lock. First, it unnecessarily
2048 * makes the holding time of page lock longer. Second, it forces lock
2049 * ordering of page lock and transaction start for journaling
2050 * filesystems.
2051 */
2052 if (i_size_changed)
2053 mark_inode_dirty(inode);
2054
2055 return copied;
2056}
2057EXPORT_SYMBOL(generic_write_end);
2058
2059/*
2060 * block_is_partially_uptodate checks whether buffers within a page are
2061 * uptodate or not.
2062 *
2063 * Returns true if all buffers which correspond to a file portion
2064 * we want to read are uptodate.
2065 */
2066int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2067 unsigned long from)
2068{
2069 struct inode *inode = page->mapping->host;
2070 unsigned block_start, block_end, blocksize;
2071 unsigned to;
2072 struct buffer_head *bh, *head;
2073 int ret = 1;
2074
2075 if (!page_has_buffers(page))
2076 return 0;
2077
2078 blocksize = 1 << inode->i_blkbits;
2079 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2080 to = from + to;
2081 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2082 return 0;
2083
2084 head = page_buffers(page);
2085 bh = head;
2086 block_start = 0;
2087 do {
2088 block_end = block_start + blocksize;
2089 if (block_end > from && block_start < to) {
2090 if (!buffer_uptodate(bh)) {
2091 ret = 0;
2092 break;
2093 }
2094 if (block_end >= to)
2095 break;
2096 }
2097 block_start = block_end;
2098 bh = bh->b_this_page;
2099 } while (bh != head);
2100
2101 return ret;
2102}
2103EXPORT_SYMBOL(block_is_partially_uptodate);
2104
2105/*
2106 * Generic "read page" function for block devices that have the normal
2107 * get_block functionality. This is most of the block device filesystems.
2108 * Reads the page asynchronously --- the unlock_buffer() and
2109 * set/clear_buffer_uptodate() functions propagate buffer state into the
2110 * page struct once IO has completed.
2111 */
2112int block_read_full_page(struct page *page, get_block_t *get_block)
2113{
2114 struct inode *inode = page->mapping->host;
2115 sector_t iblock, lblock;
2116 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2117 unsigned int blocksize;
2118 int nr, i;
2119 int fully_mapped = 1;
2120
2121 BUG_ON(!PageLocked(page));
2122 blocksize = 1 << inode->i_blkbits;
2123 if (!page_has_buffers(page))
2124 create_empty_buffers(page, blocksize, 0);
2125 head = page_buffers(page);
2126
2127 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2128 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2129 bh = head;
2130 nr = 0;
2131 i = 0;
2132
2133 do {
2134 if (buffer_uptodate(bh))
2135 continue;
2136
2137 if (!buffer_mapped(bh)) {
2138 int err = 0;
2139
2140 fully_mapped = 0;
2141 if (iblock < lblock) {
2142 WARN_ON(bh->b_size != blocksize);
2143 err = get_block(inode, iblock, bh, 0);
2144 if (err)
2145 SetPageError(page);
2146 }
2147 if (!buffer_mapped(bh)) {
2148 zero_user(page, i * blocksize, blocksize);
2149 if (!err)
2150 set_buffer_uptodate(bh);
2151 continue;
2152 }
2153 /*
2154 * get_block() might have updated the buffer
2155 * synchronously
2156 */
2157 if (buffer_uptodate(bh))
2158 continue;
2159 }
2160 arr[nr++] = bh;
2161 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2162
2163 if (fully_mapped)
2164 SetPageMappedToDisk(page);
2165
2166 if (!nr) {
2167 /*
2168 * All buffers are uptodate - we can set the page uptodate
2169 * as well. But not if get_block() returned an error.
2170 */
2171 if (!PageError(page))
2172 SetPageUptodate(page);
2173 unlock_page(page);
2174 return 0;
2175 }
2176
2177 /* Stage two: lock the buffers */
2178 for (i = 0; i < nr; i++) {
2179 bh = arr[i];
2180 lock_buffer(bh);
2181 mark_buffer_async_read(bh);
2182 }
2183
2184 /*
2185 * Stage 3: start the IO. Check for uptodateness
2186 * inside the buffer lock in case another process reading
2187 * the underlying blockdev brought it uptodate (the sct fix).
2188 */
2189 for (i = 0; i < nr; i++) {
2190 bh = arr[i];
2191 if (buffer_uptodate(bh))
2192 end_buffer_async_read(bh, 1);
2193 else
2194 submit_bh(READ, bh);
2195 }
2196 return 0;
2197}
2198EXPORT_SYMBOL(block_read_full_page);
2199
2200/* utility function for filesystems that need to do work on expanding
2201 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2202 * deal with the hole.
2203 */
2204int generic_cont_expand_simple(struct inode *inode, loff_t size)
2205{
2206 struct address_space *mapping = inode->i_mapping;
2207 struct page *page;
2208 void *fsdata;
2209 int err;
2210
2211 err = inode_newsize_ok(inode, size);
2212 if (err)
2213 goto out;
2214
2215 err = pagecache_write_begin(NULL, mapping, size, 0,
2216 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2217 &page, &fsdata);
2218 if (err)
2219 goto out;
2220
2221 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2222 BUG_ON(err > 0);
2223
2224out:
2225 return err;
2226}
2227EXPORT_SYMBOL(generic_cont_expand_simple);
2228
2229static int cont_expand_zero(struct file *file, struct address_space *mapping,
2230 loff_t pos, loff_t *bytes)
2231{
2232 struct inode *inode = mapping->host;
2233 unsigned blocksize = 1 << inode->i_blkbits;
2234 struct page *page;
2235 void *fsdata;
2236 pgoff_t index, curidx;
2237 loff_t curpos;
2238 unsigned zerofrom, offset, len;
2239 int err = 0;
2240
2241 index = pos >> PAGE_CACHE_SHIFT;
2242 offset = pos & ~PAGE_CACHE_MASK;
2243
2244 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2245 zerofrom = curpos & ~PAGE_CACHE_MASK;
2246 if (zerofrom & (blocksize-1)) {
2247 *bytes |= (blocksize-1);
2248 (*bytes)++;
2249 }
2250 len = PAGE_CACHE_SIZE - zerofrom;
2251
2252 err = pagecache_write_begin(file, mapping, curpos, len,
2253 AOP_FLAG_UNINTERRUPTIBLE,
2254 &page, &fsdata);
2255 if (err)
2256 goto out;
2257 zero_user(page, zerofrom, len);
2258 err = pagecache_write_end(file, mapping, curpos, len, len,
2259 page, fsdata);
2260 if (err < 0)
2261 goto out;
2262 BUG_ON(err != len);
2263 err = 0;
2264
2265 balance_dirty_pages_ratelimited(mapping);
2266 }
2267
2268 /* page covers the boundary, find the boundary offset */
2269 if (index == curidx) {
2270 zerofrom = curpos & ~PAGE_CACHE_MASK;
2271 /* if we will expand the thing last block will be filled */
2272 if (offset <= zerofrom) {
2273 goto out;
2274 }
2275 if (zerofrom & (blocksize-1)) {
2276 *bytes |= (blocksize-1);
2277 (*bytes)++;
2278 }
2279 len = offset - zerofrom;
2280
2281 err = pagecache_write_begin(file, mapping, curpos, len,
2282 AOP_FLAG_UNINTERRUPTIBLE,
2283 &page, &fsdata);
2284 if (err)
2285 goto out;
2286 zero_user(page, zerofrom, len);
2287 err = pagecache_write_end(file, mapping, curpos, len, len,
2288 page, fsdata);
2289 if (err < 0)
2290 goto out;
2291 BUG_ON(err != len);
2292 err = 0;
2293 }
2294out:
2295 return err;
2296}
2297
2298/*
2299 * For moronic filesystems that do not allow holes in file.
2300 * We may have to extend the file.
2301 */
2302int cont_write_begin(struct file *file, struct address_space *mapping,
2303 loff_t pos, unsigned len, unsigned flags,
2304 struct page **pagep, void **fsdata,
2305 get_block_t *get_block, loff_t *bytes)
2306{
2307 struct inode *inode = mapping->host;
2308 unsigned blocksize = 1 << inode->i_blkbits;
2309 unsigned zerofrom;
2310 int err;
2311
2312 err = cont_expand_zero(file, mapping, pos, bytes);
2313 if (err)
2314 return err;
2315
2316 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2317 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2318 *bytes |= (blocksize-1);
2319 (*bytes)++;
2320 }
2321
2322 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2323}
2324EXPORT_SYMBOL(cont_write_begin);
2325
2326int block_commit_write(struct page *page, unsigned from, unsigned to)
2327{
2328 struct inode *inode = page->mapping->host;
2329 __block_commit_write(inode,page,from,to);
2330 return 0;
2331}
2332EXPORT_SYMBOL(block_commit_write);
2333
2334/*
2335 * block_page_mkwrite() is not allowed to change the file size as it gets
2336 * called from a page fault handler when a page is first dirtied. Hence we must
2337 * be careful to check for EOF conditions here. We set the page up correctly
2338 * for a written page which means we get ENOSPC checking when writing into
2339 * holes and correct delalloc and unwritten extent mapping on filesystems that
2340 * support these features.
2341 *
2342 * We are not allowed to take the i_mutex here so we have to play games to
2343 * protect against truncate races as the page could now be beyond EOF. Because
2344 * truncate writes the inode size before removing pages, once we have the
2345 * page lock we can determine safely if the page is beyond EOF. If it is not
2346 * beyond EOF, then the page is guaranteed safe against truncation until we
2347 * unlock the page.
2348 */
2349int
2350block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2351 get_block_t get_block)
2352{
2353 struct page *page = vmf->page;
2354 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2355 unsigned long end;
2356 loff_t size;
2357 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2358
2359 lock_page(page);
2360 size = i_size_read(inode);
2361 if ((page->mapping != inode->i_mapping) ||
2362 (page_offset(page) > size)) {
2363 /* page got truncated out from underneath us */
2364 unlock_page(page);
2365 goto out;
2366 }
2367
2368 /* page is wholly or partially inside EOF */
2369 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2370 end = size & ~PAGE_CACHE_MASK;
2371 else
2372 end = PAGE_CACHE_SIZE;
2373
2374 ret = __block_write_begin(page, 0, end, get_block);
2375 if (!ret)
2376 ret = block_commit_write(page, 0, end);
2377
2378 if (unlikely(ret)) {
2379 unlock_page(page);
2380 if (ret == -ENOMEM)
2381 ret = VM_FAULT_OOM;
2382 else /* -ENOSPC, -EIO, etc */
2383 ret = VM_FAULT_SIGBUS;
2384 } else
2385 ret = VM_FAULT_LOCKED;
2386
2387out:
2388 return ret;
2389}
2390EXPORT_SYMBOL(block_page_mkwrite);
2391
2392/*
2393 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2394 * immediately, while under the page lock. So it needs a special end_io
2395 * handler which does not touch the bh after unlocking it.
2396 */
2397static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2398{
2399 __end_buffer_read_notouch(bh, uptodate);
2400}
2401
2402/*
2403 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2404 * the page (converting it to circular linked list and taking care of page
2405 * dirty races).
2406 */
2407static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2408{
2409 struct buffer_head *bh;
2410
2411 BUG_ON(!PageLocked(page));
2412
2413 spin_lock(&page->mapping->private_lock);
2414 bh = head;
2415 do {
2416 if (PageDirty(page))
2417 set_buffer_dirty(bh);
2418 if (!bh->b_this_page)
2419 bh->b_this_page = head;
2420 bh = bh->b_this_page;
2421 } while (bh != head);
2422 attach_page_buffers(page, head);
2423 spin_unlock(&page->mapping->private_lock);
2424}
2425
2426/*
2427 * On entry, the page is fully not uptodate.
2428 * On exit the page is fully uptodate in the areas outside (from,to)
2429 * The filesystem needs to handle block truncation upon failure.
2430 */
2431int nobh_write_begin(struct address_space *mapping,
2432 loff_t pos, unsigned len, unsigned flags,
2433 struct page **pagep, void **fsdata,
2434 get_block_t *get_block)
2435{
2436 struct inode *inode = mapping->host;
2437 const unsigned blkbits = inode->i_blkbits;
2438 const unsigned blocksize = 1 << blkbits;
2439 struct buffer_head *head, *bh;
2440 struct page *page;
2441 pgoff_t index;
2442 unsigned from, to;
2443 unsigned block_in_page;
2444 unsigned block_start, block_end;
2445 sector_t block_in_file;
2446 int nr_reads = 0;
2447 int ret = 0;
2448 int is_mapped_to_disk = 1;
2449
2450 index = pos >> PAGE_CACHE_SHIFT;
2451 from = pos & (PAGE_CACHE_SIZE - 1);
2452 to = from + len;
2453
2454 page = grab_cache_page_write_begin(mapping, index, flags);
2455 if (!page)
2456 return -ENOMEM;
2457 *pagep = page;
2458 *fsdata = NULL;
2459
2460 if (page_has_buffers(page)) {
2461 ret = __block_write_begin(page, pos, len, get_block);
2462 if (unlikely(ret))
2463 goto out_release;
2464 return ret;
2465 }
2466
2467 if (PageMappedToDisk(page))
2468 return 0;
2469
2470 /*
2471 * Allocate buffers so that we can keep track of state, and potentially
2472 * attach them to the page if an error occurs. In the common case of
2473 * no error, they will just be freed again without ever being attached
2474 * to the page (which is all OK, because we're under the page lock).
2475 *
2476 * Be careful: the buffer linked list is a NULL terminated one, rather
2477 * than the circular one we're used to.
2478 */
2479 head = alloc_page_buffers(page, blocksize, 0);
2480 if (!head) {
2481 ret = -ENOMEM;
2482 goto out_release;
2483 }
2484
2485 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2486
2487 /*
2488 * We loop across all blocks in the page, whether or not they are
2489 * part of the affected region. This is so we can discover if the
2490 * page is fully mapped-to-disk.
2491 */
2492 for (block_start = 0, block_in_page = 0, bh = head;
2493 block_start < PAGE_CACHE_SIZE;
2494 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2495 int create;
2496
2497 block_end = block_start + blocksize;
2498 bh->b_state = 0;
2499 create = 1;
2500 if (block_start >= to)
2501 create = 0;
2502 ret = get_block(inode, block_in_file + block_in_page,
2503 bh, create);
2504 if (ret)
2505 goto failed;
2506 if (!buffer_mapped(bh))
2507 is_mapped_to_disk = 0;
2508 if (buffer_new(bh))
2509 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2510 if (PageUptodate(page)) {
2511 set_buffer_uptodate(bh);
2512 continue;
2513 }
2514 if (buffer_new(bh) || !buffer_mapped(bh)) {
2515 zero_user_segments(page, block_start, from,
2516 to, block_end);
2517 continue;
2518 }
2519 if (buffer_uptodate(bh))
2520 continue; /* reiserfs does this */
2521 if (block_start < from || block_end > to) {
2522 lock_buffer(bh);
2523 bh->b_end_io = end_buffer_read_nobh;
2524 submit_bh(READ, bh);
2525 nr_reads++;
2526 }
2527 }
2528
2529 if (nr_reads) {
2530 /*
2531 * The page is locked, so these buffers are protected from
2532 * any VM or truncate activity. Hence we don't need to care
2533 * for the buffer_head refcounts.
2534 */
2535 for (bh = head; bh; bh = bh->b_this_page) {
2536 wait_on_buffer(bh);
2537 if (!buffer_uptodate(bh))
2538 ret = -EIO;
2539 }
2540 if (ret)
2541 goto failed;
2542 }
2543
2544 if (is_mapped_to_disk)
2545 SetPageMappedToDisk(page);
2546
2547 *fsdata = head; /* to be released by nobh_write_end */
2548
2549 return 0;
2550
2551failed:
2552 BUG_ON(!ret);
2553 /*
2554 * Error recovery is a bit difficult. We need to zero out blocks that
2555 * were newly allocated, and dirty them to ensure they get written out.
2556 * Buffers need to be attached to the page at this point, otherwise
2557 * the handling of potential IO errors during writeout would be hard
2558 * (could try doing synchronous writeout, but what if that fails too?)
2559 */
2560 attach_nobh_buffers(page, head);
2561 page_zero_new_buffers(page, from, to);
2562
2563out_release:
2564 unlock_page(page);
2565 page_cache_release(page);
2566 *pagep = NULL;
2567
2568 return ret;
2569}
2570EXPORT_SYMBOL(nobh_write_begin);
2571
2572int nobh_write_end(struct file *file, struct address_space *mapping,
2573 loff_t pos, unsigned len, unsigned copied,
2574 struct page *page, void *fsdata)
2575{
2576 struct inode *inode = page->mapping->host;
2577 struct buffer_head *head = fsdata;
2578 struct buffer_head *bh;
2579 BUG_ON(fsdata != NULL && page_has_buffers(page));
2580
2581 if (unlikely(copied < len) && head)
2582 attach_nobh_buffers(page, head);
2583 if (page_has_buffers(page))
2584 return generic_write_end(file, mapping, pos, len,
2585 copied, page, fsdata);
2586
2587 SetPageUptodate(page);
2588 set_page_dirty(page);
2589 if (pos+copied > inode->i_size) {
2590 i_size_write(inode, pos+copied);
2591 mark_inode_dirty(inode);
2592 }
2593
2594 unlock_page(page);
2595 page_cache_release(page);
2596
2597 while (head) {
2598 bh = head;
2599 head = head->b_this_page;
2600 free_buffer_head(bh);
2601 }
2602
2603 return copied;
2604}
2605EXPORT_SYMBOL(nobh_write_end);
2606
2607/*
2608 * nobh_writepage() - based on block_full_write_page() except
2609 * that it tries to operate without attaching bufferheads to
2610 * the page.
2611 */
2612int nobh_writepage(struct page *page, get_block_t *get_block,
2613 struct writeback_control *wbc)
2614{
2615 struct inode * const inode = page->mapping->host;
2616 loff_t i_size = i_size_read(inode);
2617 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2618 unsigned offset;
2619 int ret;
2620
2621 /* Is the page fully inside i_size? */
2622 if (page->index < end_index)
2623 goto out;
2624
2625 /* Is the page fully outside i_size? (truncate in progress) */
2626 offset = i_size & (PAGE_CACHE_SIZE-1);
2627 if (page->index >= end_index+1 || !offset) {
2628 /*
2629 * The page may have dirty, unmapped buffers. For example,
2630 * they may have been added in ext3_writepage(). Make them
2631 * freeable here, so the page does not leak.
2632 */
2633#if 0
2634 /* Not really sure about this - do we need this ? */
2635 if (page->mapping->a_ops->invalidatepage)
2636 page->mapping->a_ops->invalidatepage(page, offset);
2637#endif
2638 unlock_page(page);
2639 return 0; /* don't care */
2640 }
2641
2642 /*
2643 * The page straddles i_size. It must be zeroed out on each and every
2644 * writepage invocation because it may be mmapped. "A file is mapped
2645 * in multiples of the page size. For a file that is not a multiple of
2646 * the page size, the remaining memory is zeroed when mapped, and
2647 * writes to that region are not written out to the file."
2648 */
2649 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2650out:
2651 ret = mpage_writepage(page, get_block, wbc);
2652 if (ret == -EAGAIN)
2653 ret = __block_write_full_page(inode, page, get_block, wbc,
2654 end_buffer_async_write);
2655 return ret;
2656}
2657EXPORT_SYMBOL(nobh_writepage);
2658
2659int nobh_truncate_page(struct address_space *mapping,
2660 loff_t from, get_block_t *get_block)
2661{
2662 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2663 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2664 unsigned blocksize;
2665 sector_t iblock;
2666 unsigned length, pos;
2667 struct inode *inode = mapping->host;
2668 struct page *page;
2669 struct buffer_head map_bh;
2670 int err;
2671
2672 blocksize = 1 << inode->i_blkbits;
2673 length = offset & (blocksize - 1);
2674
2675 /* Block boundary? Nothing to do */
2676 if (!length)
2677 return 0;
2678
2679 length = blocksize - length;
2680 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2681
2682 page = grab_cache_page(mapping, index);
2683 err = -ENOMEM;
2684 if (!page)
2685 goto out;
2686
2687 if (page_has_buffers(page)) {
2688has_buffers:
2689 unlock_page(page);
2690 page_cache_release(page);
2691 return block_truncate_page(mapping, from, get_block);
2692 }
2693
2694 /* Find the buffer that contains "offset" */
2695 pos = blocksize;
2696 while (offset >= pos) {
2697 iblock++;
2698 pos += blocksize;
2699 }
2700
2701 map_bh.b_size = blocksize;
2702 map_bh.b_state = 0;
2703 err = get_block(inode, iblock, &map_bh, 0);
2704 if (err)
2705 goto unlock;
2706 /* unmapped? It's a hole - nothing to do */
2707 if (!buffer_mapped(&map_bh))
2708 goto unlock;
2709
2710 /* Ok, it's mapped. Make sure it's up-to-date */
2711 if (!PageUptodate(page)) {
2712 err = mapping->a_ops->readpage(NULL, page);
2713 if (err) {
2714 page_cache_release(page);
2715 goto out;
2716 }
2717 lock_page(page);
2718 if (!PageUptodate(page)) {
2719 err = -EIO;
2720 goto unlock;
2721 }
2722 if (page_has_buffers(page))
2723 goto has_buffers;
2724 }
2725 zero_user(page, offset, length);
2726 set_page_dirty(page);
2727 err = 0;
2728
2729unlock:
2730 unlock_page(page);
2731 page_cache_release(page);
2732out:
2733 return err;
2734}
2735EXPORT_SYMBOL(nobh_truncate_page);
2736
2737int block_truncate_page(struct address_space *mapping,
2738 loff_t from, get_block_t *get_block)
2739{
2740 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2741 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2742 unsigned blocksize;
2743 sector_t iblock;
2744 unsigned length, pos;
2745 struct inode *inode = mapping->host;
2746 struct page *page;
2747 struct buffer_head *bh;
2748 int err;
2749
2750 blocksize = 1 << inode->i_blkbits;
2751 length = offset & (blocksize - 1);
2752
2753 /* Block boundary? Nothing to do */
2754 if (!length)
2755 return 0;
2756
2757 length = blocksize - length;
2758 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2759
2760 page = grab_cache_page(mapping, index);
2761 err = -ENOMEM;
2762 if (!page)
2763 goto out;
2764
2765 if (!page_has_buffers(page))
2766 create_empty_buffers(page, blocksize, 0);
2767
2768 /* Find the buffer that contains "offset" */
2769 bh = page_buffers(page);
2770 pos = blocksize;
2771 while (offset >= pos) {
2772 bh = bh->b_this_page;
2773 iblock++;
2774 pos += blocksize;
2775 }
2776
2777 err = 0;
2778 if (!buffer_mapped(bh)) {
2779 WARN_ON(bh->b_size != blocksize);
2780 err = get_block(inode, iblock, bh, 0);
2781 if (err)
2782 goto unlock;
2783 /* unmapped? It's a hole - nothing to do */
2784 if (!buffer_mapped(bh))
2785 goto unlock;
2786 }
2787
2788 /* Ok, it's mapped. Make sure it's up-to-date */
2789 if (PageUptodate(page))
2790 set_buffer_uptodate(bh);
2791
2792 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2793 err = -EIO;
2794 ll_rw_block(READ, 1, &bh);
2795 wait_on_buffer(bh);
2796 /* Uhhuh. Read error. Complain and punt. */
2797 if (!buffer_uptodate(bh))
2798 goto unlock;
2799 }
2800
2801 zero_user(page, offset, length);
2802 mark_buffer_dirty(bh);
2803 err = 0;
2804
2805unlock:
2806 unlock_page(page);
2807 page_cache_release(page);
2808out:
2809 return err;
2810}
2811EXPORT_SYMBOL(block_truncate_page);
2812
2813/*
2814 * The generic ->writepage function for buffer-backed address_spaces
2815 * this form passes in the end_io handler used to finish the IO.
2816 */
2817int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2818 struct writeback_control *wbc, bh_end_io_t *handler)
2819{
2820 struct inode * const inode = page->mapping->host;
2821 loff_t i_size = i_size_read(inode);
2822 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2823 unsigned offset;
2824
2825 /* Is the page fully inside i_size? */
2826 if (page->index < end_index)
2827 return __block_write_full_page(inode, page, get_block, wbc,
2828 handler);
2829
2830 /* Is the page fully outside i_size? (truncate in progress) */
2831 offset = i_size & (PAGE_CACHE_SIZE-1);
2832 if (page->index >= end_index+1 || !offset) {
2833 /*
2834 * The page may have dirty, unmapped buffers. For example,
2835 * they may have been added in ext3_writepage(). Make them
2836 * freeable here, so the page does not leak.
2837 */
2838 do_invalidatepage(page, 0);
2839 unlock_page(page);
2840 return 0; /* don't care */
2841 }
2842
2843 /*
2844 * The page straddles i_size. It must be zeroed out on each and every
2845 * writepage invocation because it may be mmapped. "A file is mapped
2846 * in multiples of the page size. For a file that is not a multiple of
2847 * the page size, the remaining memory is zeroed when mapped, and
2848 * writes to that region are not written out to the file."
2849 */
2850 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2851 return __block_write_full_page(inode, page, get_block, wbc, handler);
2852}
2853EXPORT_SYMBOL(block_write_full_page_endio);
2854
2855/*
2856 * The generic ->writepage function for buffer-backed address_spaces
2857 */
2858int block_write_full_page(struct page *page, get_block_t *get_block,
2859 struct writeback_control *wbc)
2860{
2861 return block_write_full_page_endio(page, get_block, wbc,
2862 end_buffer_async_write);
2863}
2864EXPORT_SYMBOL(block_write_full_page);
2865
2866sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2867 get_block_t *get_block)
2868{
2869 struct buffer_head tmp;
2870 struct inode *inode = mapping->host;
2871 tmp.b_state = 0;
2872 tmp.b_blocknr = 0;
2873 tmp.b_size = 1 << inode->i_blkbits;
2874 get_block(inode, block, &tmp, 0);
2875 return tmp.b_blocknr;
2876}
2877EXPORT_SYMBOL(generic_block_bmap);
2878
2879static void end_bio_bh_io_sync(struct bio *bio, int err)
2880{
2881 struct buffer_head *bh = bio->bi_private;
2882
2883 if (err == -EOPNOTSUPP) {
2884 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2885 }
2886
2887 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2888 set_bit(BH_Quiet, &bh->b_state);
2889
2890 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2891 bio_put(bio);
2892}
2893
2894int submit_bh(int rw, struct buffer_head * bh)
2895{
2896 struct bio *bio;
2897 int ret = 0;
2898
2899 BUG_ON(!buffer_locked(bh));
2900 BUG_ON(!buffer_mapped(bh));
2901 BUG_ON(!bh->b_end_io);
2902 BUG_ON(buffer_delay(bh));
2903 BUG_ON(buffer_unwritten(bh));
2904
2905 /*
2906 * Only clear out a write error when rewriting
2907 */
2908 if (test_set_buffer_req(bh) && (rw & WRITE))
2909 clear_buffer_write_io_error(bh);
2910
2911 /*
2912 * from here on down, it's all bio -- do the initial mapping,
2913 * submit_bio -> generic_make_request may further map this bio around
2914 */
2915 bio = bio_alloc(GFP_NOIO, 1);
2916
2917 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2918 bio->bi_bdev = bh->b_bdev;
2919 bio->bi_io_vec[0].bv_page = bh->b_page;
2920 bio->bi_io_vec[0].bv_len = bh->b_size;
2921 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2922
2923 bio->bi_vcnt = 1;
2924 bio->bi_idx = 0;
2925 bio->bi_size = bh->b_size;
2926
2927 bio->bi_end_io = end_bio_bh_io_sync;
2928 bio->bi_private = bh;
2929
2930 bio_get(bio);
2931 submit_bio(rw, bio);
2932
2933 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2934 ret = -EOPNOTSUPP;
2935
2936 bio_put(bio);
2937 return ret;
2938}
2939EXPORT_SYMBOL(submit_bh);
2940
2941/**
2942 * ll_rw_block: low-level access to block devices (DEPRECATED)
2943 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2944 * @nr: number of &struct buffer_heads in the array
2945 * @bhs: array of pointers to &struct buffer_head
2946 *
2947 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2948 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2949 * %READA option is described in the documentation for generic_make_request()
2950 * which ll_rw_block() calls.
2951 *
2952 * This function drops any buffer that it cannot get a lock on (with the
2953 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2954 * request, and any buffer that appears to be up-to-date when doing read
2955 * request. Further it marks as clean buffers that are processed for
2956 * writing (the buffer cache won't assume that they are actually clean
2957 * until the buffer gets unlocked).
2958 *
2959 * ll_rw_block sets b_end_io to simple completion handler that marks
2960 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2961 * any waiters.
2962 *
2963 * All of the buffers must be for the same device, and must also be a
2964 * multiple of the current approved size for the device.
2965 */
2966void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2967{
2968 int i;
2969
2970 for (i = 0; i < nr; i++) {
2971 struct buffer_head *bh = bhs[i];
2972
2973 if (!trylock_buffer(bh))
2974 continue;
2975 if (rw == WRITE) {
2976 if (test_clear_buffer_dirty(bh)) {
2977 bh->b_end_io = end_buffer_write_sync;
2978 get_bh(bh);
2979 submit_bh(WRITE, bh);
2980 continue;
2981 }
2982 } else {
2983 if (!buffer_uptodate(bh)) {
2984 bh->b_end_io = end_buffer_read_sync;
2985 get_bh(bh);
2986 submit_bh(rw, bh);
2987 continue;
2988 }
2989 }
2990 unlock_buffer(bh);
2991 }
2992}
2993EXPORT_SYMBOL(ll_rw_block);
2994
2995void write_dirty_buffer(struct buffer_head *bh, int rw)
2996{
2997 lock_buffer(bh);
2998 if (!test_clear_buffer_dirty(bh)) {
2999 unlock_buffer(bh);
3000 return;
3001 }
3002 bh->b_end_io = end_buffer_write_sync;
3003 get_bh(bh);
3004 submit_bh(rw, bh);
3005}
3006EXPORT_SYMBOL(write_dirty_buffer);
3007
3008/*
3009 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3010 * and then start new I/O and then wait upon it. The caller must have a ref on
3011 * the buffer_head.
3012 */
3013int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3014{
3015 int ret = 0;
3016
3017 WARN_ON(atomic_read(&bh->b_count) < 1);
3018 lock_buffer(bh);
3019 if (test_clear_buffer_dirty(bh)) {
3020 get_bh(bh);
3021 bh->b_end_io = end_buffer_write_sync;
3022 ret = submit_bh(rw, bh);
3023 wait_on_buffer(bh);
3024 if (!ret && !buffer_uptodate(bh))
3025 ret = -EIO;
3026 } else {
3027 unlock_buffer(bh);
3028 }
3029 return ret;
3030}
3031EXPORT_SYMBOL(__sync_dirty_buffer);
3032
3033int sync_dirty_buffer(struct buffer_head *bh)
3034{
3035 return __sync_dirty_buffer(bh, WRITE_SYNC);
3036}
3037EXPORT_SYMBOL(sync_dirty_buffer);
3038
3039/*
3040 * try_to_free_buffers() checks if all the buffers on this particular page
3041 * are unused, and releases them if so.
3042 *
3043 * Exclusion against try_to_free_buffers may be obtained by either
3044 * locking the page or by holding its mapping's private_lock.
3045 *
3046 * If the page is dirty but all the buffers are clean then we need to
3047 * be sure to mark the page clean as well. This is because the page
3048 * may be against a block device, and a later reattachment of buffers
3049 * to a dirty page will set *all* buffers dirty. Which would corrupt
3050 * filesystem data on the same device.
3051 *
3052 * The same applies to regular filesystem pages: if all the buffers are
3053 * clean then we set the page clean and proceed. To do that, we require
3054 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3055 * private_lock.
3056 *
3057 * try_to_free_buffers() is non-blocking.
3058 */
3059static inline int buffer_busy(struct buffer_head *bh)
3060{
3061 return atomic_read(&bh->b_count) |
3062 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3063}
3064
3065static int
3066drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3067{
3068 struct buffer_head *head = page_buffers(page);
3069 struct buffer_head *bh;
3070
3071 bh = head;
3072 do {
3073 if (buffer_write_io_error(bh) && page->mapping)
3074 set_bit(AS_EIO, &page->mapping->flags);
3075 if (buffer_busy(bh))
3076 goto failed;
3077 bh = bh->b_this_page;
3078 } while (bh != head);
3079
3080 do {
3081 struct buffer_head *next = bh->b_this_page;
3082
3083 if (bh->b_assoc_map)
3084 __remove_assoc_queue(bh);
3085 bh = next;
3086 } while (bh != head);
3087 *buffers_to_free = head;
3088 __clear_page_buffers(page);
3089 return 1;
3090failed:
3091 return 0;
3092}
3093
3094int try_to_free_buffers(struct page *page)
3095{
3096 struct address_space * const mapping = page->mapping;
3097 struct buffer_head *buffers_to_free = NULL;
3098 int ret = 0;
3099
3100 BUG_ON(!PageLocked(page));
3101 if (PageWriteback(page))
3102 return 0;
3103
3104 if (mapping == NULL) { /* can this still happen? */
3105 ret = drop_buffers(page, &buffers_to_free);
3106 goto out;
3107 }
3108
3109 spin_lock(&mapping->private_lock);
3110 ret = drop_buffers(page, &buffers_to_free);
3111
3112 /*
3113 * If the filesystem writes its buffers by hand (eg ext3)
3114 * then we can have clean buffers against a dirty page. We
3115 * clean the page here; otherwise the VM will never notice
3116 * that the filesystem did any IO at all.
3117 *
3118 * Also, during truncate, discard_buffer will have marked all
3119 * the page's buffers clean. We discover that here and clean
3120 * the page also.
3121 *
3122 * private_lock must be held over this entire operation in order
3123 * to synchronise against __set_page_dirty_buffers and prevent the
3124 * dirty bit from being lost.
3125 */
3126 if (ret)
3127 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3128 spin_unlock(&mapping->private_lock);
3129out:
3130 if (buffers_to_free) {
3131 struct buffer_head *bh = buffers_to_free;
3132
3133 do {
3134 struct buffer_head *next = bh->b_this_page;
3135 free_buffer_head(bh);
3136 bh = next;
3137 } while (bh != buffers_to_free);
3138 }
3139 return ret;
3140}
3141EXPORT_SYMBOL(try_to_free_buffers);
3142
3143void block_sync_page(struct page *page)
3144{
3145 struct address_space *mapping;
3146
3147 smp_mb();
3148 mapping = page_mapping(page);
3149 if (mapping)
3150 blk_run_backing_dev(mapping->backing_dev_info, page);
3151}
3152EXPORT_SYMBOL(block_sync_page);
3153
3154/*
3155 * There are no bdflush tunables left. But distributions are
3156 * still running obsolete flush daemons, so we terminate them here.
3157 *
3158 * Use of bdflush() is deprecated and will be removed in a future kernel.
3159 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3160 */
3161SYSCALL_DEFINE2(bdflush, int, func, long, data)
3162{
3163 static int msg_count;
3164
3165 if (!capable(CAP_SYS_ADMIN))
3166 return -EPERM;
3167
3168 if (msg_count < 5) {
3169 msg_count++;
3170 printk(KERN_INFO
3171 "warning: process `%s' used the obsolete bdflush"
3172 " system call\n", current->comm);
3173 printk(KERN_INFO "Fix your initscripts?\n");
3174 }
3175
3176 if (func == 1)
3177 do_exit(0);
3178 return 0;
3179}
3180
3181/*
3182 * Buffer-head allocation
3183 */
3184static struct kmem_cache *bh_cachep;
3185
3186/*
3187 * Once the number of bh's in the machine exceeds this level, we start
3188 * stripping them in writeback.
3189 */
3190static int max_buffer_heads;
3191
3192int buffer_heads_over_limit;
3193
3194struct bh_accounting {
3195 int nr; /* Number of live bh's */
3196 int ratelimit; /* Limit cacheline bouncing */
3197};
3198
3199static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3200
3201static void recalc_bh_state(void)
3202{
3203 int i;
3204 int tot = 0;
3205
3206 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3207 return;
3208 __get_cpu_var(bh_accounting).ratelimit = 0;
3209 for_each_online_cpu(i)
3210 tot += per_cpu(bh_accounting, i).nr;
3211 buffer_heads_over_limit = (tot > max_buffer_heads);
3212}
3213
3214struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3215{
3216 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3217 if (ret) {
3218 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3219 get_cpu_var(bh_accounting).nr++;
3220 recalc_bh_state();
3221 put_cpu_var(bh_accounting);
3222 }
3223 return ret;
3224}
3225EXPORT_SYMBOL(alloc_buffer_head);
3226
3227void free_buffer_head(struct buffer_head *bh)
3228{
3229 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3230 kmem_cache_free(bh_cachep, bh);
3231 get_cpu_var(bh_accounting).nr--;
3232 recalc_bh_state();
3233 put_cpu_var(bh_accounting);
3234}
3235EXPORT_SYMBOL(free_buffer_head);
3236
3237static void buffer_exit_cpu(int cpu)
3238{
3239 int i;
3240 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3241
3242 for (i = 0; i < BH_LRU_SIZE; i++) {
3243 brelse(b->bhs[i]);
3244 b->bhs[i] = NULL;
3245 }
3246 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3247 per_cpu(bh_accounting, cpu).nr = 0;
3248 put_cpu_var(bh_accounting);
3249}
3250
3251static int buffer_cpu_notify(struct notifier_block *self,
3252 unsigned long action, void *hcpu)
3253{
3254 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3255 buffer_exit_cpu((unsigned long)hcpu);
3256 return NOTIFY_OK;
3257}
3258
3259/**
3260 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3261 * @bh: struct buffer_head
3262 *
3263 * Return true if the buffer is up-to-date and false,
3264 * with the buffer locked, if not.
3265 */
3266int bh_uptodate_or_lock(struct buffer_head *bh)
3267{
3268 if (!buffer_uptodate(bh)) {
3269 lock_buffer(bh);
3270 if (!buffer_uptodate(bh))
3271 return 0;
3272 unlock_buffer(bh);
3273 }
3274 return 1;
3275}
3276EXPORT_SYMBOL(bh_uptodate_or_lock);
3277
3278/**
3279 * bh_submit_read - Submit a locked buffer for reading
3280 * @bh: struct buffer_head
3281 *
3282 * Returns zero on success and -EIO on error.
3283 */
3284int bh_submit_read(struct buffer_head *bh)
3285{
3286 BUG_ON(!buffer_locked(bh));
3287
3288 if (buffer_uptodate(bh)) {
3289 unlock_buffer(bh);
3290 return 0;
3291 }
3292
3293 get_bh(bh);
3294 bh->b_end_io = end_buffer_read_sync;
3295 submit_bh(READ, bh);
3296 wait_on_buffer(bh);
3297 if (buffer_uptodate(bh))
3298 return 0;
3299 return -EIO;
3300}
3301EXPORT_SYMBOL(bh_submit_read);
3302
3303void __init buffer_init(void)
3304{
3305 int nrpages;
3306
3307 bh_cachep = kmem_cache_create("buffer_head",
3308 sizeof(struct buffer_head), 0,
3309 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3310 SLAB_MEM_SPREAD),
3311 NULL);
3312
3313 /*
3314 * Limit the bh occupancy to 10% of ZONE_NORMAL
3315 */
3316 nrpages = (nr_free_buffer_pages() * 10) / 100;
3317 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3318 hotcpu_notifier(buffer_cpu_notify, 0);
3319}