]> bbs.cooldavid.org Git - net-next-2.6.git/blame - tools/perf/builtin-timechart.c
Net: rxrpc: Makefile: Remove deprecated kbuild goal definitions
[net-next-2.6.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include <linux/rbtree.h>
23#include "util/symbol.h"
10274989
AV
24#include "util/callchain.h"
25#include "util/strlist.h"
26
27#include "perf.h"
28#include "util/header.h"
29#include "util/parse-options.h"
30#include "util/parse-events.h"
5cbd0805 31#include "util/event.h"
301a0b02 32#include "util/session.h"
10274989
AV
33#include "util/svghelper.h"
34
35static char const *input_name = "perf.data";
36static char const *output_name = "output.svg";
37
10274989
AV
38static unsigned int numcpus;
39static u64 min_freq; /* Lowest CPU frequency seen */
40static u64 max_freq; /* Highest CPU frequency seen */
41static u64 turbo_frequency;
42
43static u64 first_time, last_time;
44
c0555642 45static bool power_only;
39a90a8e 46
10274989 47
10274989
AV
48struct per_pid;
49struct per_pidcomm;
50
51struct cpu_sample;
52struct power_event;
53struct wake_event;
54
55struct sample_wrapper;
56
57/*
58 * Datastructure layout:
59 * We keep an list of "pid"s, matching the kernels notion of a task struct.
60 * Each "pid" entry, has a list of "comm"s.
61 * this is because we want to track different programs different, while
62 * exec will reuse the original pid (by design).
63 * Each comm has a list of samples that will be used to draw
64 * final graph.
65 */
66
67struct per_pid {
68 struct per_pid *next;
69
70 int pid;
71 int ppid;
72
73 u64 start_time;
74 u64 end_time;
75 u64 total_time;
76 int display;
77
78 struct per_pidcomm *all;
79 struct per_pidcomm *current;
10274989
AV
80};
81
82
83struct per_pidcomm {
84 struct per_pidcomm *next;
85
86 u64 start_time;
87 u64 end_time;
88 u64 total_time;
89
90 int Y;
91 int display;
92
93 long state;
94 u64 state_since;
95
96 char *comm;
97
98 struct cpu_sample *samples;
99};
100
101struct sample_wrapper {
102 struct sample_wrapper *next;
103
104 u64 timestamp;
105 unsigned char data[0];
106};
107
108#define TYPE_NONE 0
109#define TYPE_RUNNING 1
110#define TYPE_WAITING 2
111#define TYPE_BLOCKED 3
112
113struct cpu_sample {
114 struct cpu_sample *next;
115
116 u64 start_time;
117 u64 end_time;
118 int type;
119 int cpu;
120};
121
122static struct per_pid *all_data;
123
124#define CSTATE 1
125#define PSTATE 2
126
127struct power_event {
128 struct power_event *next;
129 int type;
130 int state;
131 u64 start_time;
132 u64 end_time;
133 int cpu;
134};
135
136struct wake_event {
137 struct wake_event *next;
138 int waker;
139 int wakee;
140 u64 time;
141};
142
143static struct power_event *power_events;
144static struct wake_event *wake_events;
145
bbe2987b
AV
146struct process_filter;
147struct process_filter {
5cbd0805
LZ
148 char *name;
149 int pid;
150 struct process_filter *next;
bbe2987b
AV
151};
152
153static struct process_filter *process_filter;
154
155
10274989
AV
156static struct per_pid *find_create_pid(int pid)
157{
158 struct per_pid *cursor = all_data;
159
160 while (cursor) {
161 if (cursor->pid == pid)
162 return cursor;
163 cursor = cursor->next;
164 }
165 cursor = malloc(sizeof(struct per_pid));
166 assert(cursor != NULL);
167 memset(cursor, 0, sizeof(struct per_pid));
168 cursor->pid = pid;
169 cursor->next = all_data;
170 all_data = cursor;
171 return cursor;
172}
173
174static void pid_set_comm(int pid, char *comm)
175{
176 struct per_pid *p;
177 struct per_pidcomm *c;
178 p = find_create_pid(pid);
179 c = p->all;
180 while (c) {
181 if (c->comm && strcmp(c->comm, comm) == 0) {
182 p->current = c;
183 return;
184 }
185 if (!c->comm) {
186 c->comm = strdup(comm);
187 p->current = c;
188 return;
189 }
190 c = c->next;
191 }
192 c = malloc(sizeof(struct per_pidcomm));
193 assert(c != NULL);
194 memset(c, 0, sizeof(struct per_pidcomm));
195 c->comm = strdup(comm);
196 p->current = c;
197 c->next = p->all;
198 p->all = c;
199}
200
201static void pid_fork(int pid, int ppid, u64 timestamp)
202{
203 struct per_pid *p, *pp;
204 p = find_create_pid(pid);
205 pp = find_create_pid(ppid);
206 p->ppid = ppid;
207 if (pp->current && pp->current->comm && !p->current)
208 pid_set_comm(pid, pp->current->comm);
209
210 p->start_time = timestamp;
211 if (p->current) {
212 p->current->start_time = timestamp;
213 p->current->state_since = timestamp;
214 }
215}
216
217static void pid_exit(int pid, u64 timestamp)
218{
219 struct per_pid *p;
220 p = find_create_pid(pid);
221 p->end_time = timestamp;
222 if (p->current)
223 p->current->end_time = timestamp;
224}
225
226static void
227pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
228{
229 struct per_pid *p;
230 struct per_pidcomm *c;
231 struct cpu_sample *sample;
232
233 p = find_create_pid(pid);
234 c = p->current;
235 if (!c) {
236 c = malloc(sizeof(struct per_pidcomm));
237 assert(c != NULL);
238 memset(c, 0, sizeof(struct per_pidcomm));
239 p->current = c;
240 c->next = p->all;
241 p->all = c;
242 }
243
244 sample = malloc(sizeof(struct cpu_sample));
245 assert(sample != NULL);
246 memset(sample, 0, sizeof(struct cpu_sample));
247 sample->start_time = start;
248 sample->end_time = end;
249 sample->type = type;
250 sample->next = c->samples;
251 sample->cpu = cpu;
252 c->samples = sample;
253
254 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
255 c->total_time += (end-start);
256 p->total_time += (end-start);
257 }
258
259 if (c->start_time == 0 || c->start_time > start)
260 c->start_time = start;
261 if (p->start_time == 0 || p->start_time > start)
262 p->start_time = start;
263
264 if (cpu > numcpus)
265 numcpus = cpu;
266}
267
268#define MAX_CPUS 4096
269
270static u64 cpus_cstate_start_times[MAX_CPUS];
271static int cpus_cstate_state[MAX_CPUS];
272static u64 cpus_pstate_start_times[MAX_CPUS];
273static u64 cpus_pstate_state[MAX_CPUS];
274
d8f66248 275static int process_comm_event(event_t *event, struct perf_session *session __used)
10274989 276{
8f06d7e6 277 pid_set_comm(event->comm.tid, event->comm.comm);
10274989
AV
278 return 0;
279}
d8f66248
ACM
280
281static int process_fork_event(event_t *event, struct perf_session *session __used)
10274989
AV
282{
283 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
284 return 0;
285}
286
d8f66248 287static int process_exit_event(event_t *event, struct perf_session *session __used)
10274989
AV
288{
289 pid_exit(event->fork.pid, event->fork.time);
290 return 0;
291}
292
293struct trace_entry {
10274989
AV
294 unsigned short type;
295 unsigned char flags;
296 unsigned char preempt_count;
297 int pid;
028c5152 298 int lock_depth;
10274989
AV
299};
300
301struct power_entry {
302 struct trace_entry te;
4c21adf2
TR
303 u64 type;
304 u64 value;
305 u64 cpu_id;
10274989
AV
306};
307
308#define TASK_COMM_LEN 16
309struct wakeup_entry {
310 struct trace_entry te;
311 char comm[TASK_COMM_LEN];
312 int pid;
313 int prio;
314 int success;
315};
316
317/*
318 * trace_flag_type is an enumeration that holds different
319 * states when a trace occurs. These are:
320 * IRQS_OFF - interrupts were disabled
321 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
322 * NEED_RESCED - reschedule is requested
323 * HARDIRQ - inside an interrupt handler
324 * SOFTIRQ - inside a softirq handler
325 */
326enum trace_flag_type {
327 TRACE_FLAG_IRQS_OFF = 0x01,
328 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
329 TRACE_FLAG_NEED_RESCHED = 0x04,
330 TRACE_FLAG_HARDIRQ = 0x08,
331 TRACE_FLAG_SOFTIRQ = 0x10,
332};
333
334
335
336struct sched_switch {
337 struct trace_entry te;
338 char prev_comm[TASK_COMM_LEN];
339 int prev_pid;
340 int prev_prio;
341 long prev_state; /* Arjan weeps. */
342 char next_comm[TASK_COMM_LEN];
343 int next_pid;
344 int next_prio;
345};
346
347static void c_state_start(int cpu, u64 timestamp, int state)
348{
349 cpus_cstate_start_times[cpu] = timestamp;
350 cpus_cstate_state[cpu] = state;
351}
352
353static void c_state_end(int cpu, u64 timestamp)
354{
355 struct power_event *pwr;
356 pwr = malloc(sizeof(struct power_event));
357 if (!pwr)
358 return;
359 memset(pwr, 0, sizeof(struct power_event));
360
361 pwr->state = cpus_cstate_state[cpu];
362 pwr->start_time = cpus_cstate_start_times[cpu];
363 pwr->end_time = timestamp;
364 pwr->cpu = cpu;
365 pwr->type = CSTATE;
366 pwr->next = power_events;
367
368 power_events = pwr;
369}
370
371static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
372{
373 struct power_event *pwr;
374 pwr = malloc(sizeof(struct power_event));
375
376 if (new_freq > 8000000) /* detect invalid data */
377 return;
378
379 if (!pwr)
380 return;
381 memset(pwr, 0, sizeof(struct power_event));
382
383 pwr->state = cpus_pstate_state[cpu];
384 pwr->start_time = cpus_pstate_start_times[cpu];
385 pwr->end_time = timestamp;
386 pwr->cpu = cpu;
387 pwr->type = PSTATE;
388 pwr->next = power_events;
389
390 if (!pwr->start_time)
391 pwr->start_time = first_time;
392
393 power_events = pwr;
394
395 cpus_pstate_state[cpu] = new_freq;
396 cpus_pstate_start_times[cpu] = timestamp;
397
398 if ((u64)new_freq > max_freq)
399 max_freq = new_freq;
400
401 if (new_freq < min_freq || min_freq == 0)
402 min_freq = new_freq;
403
404 if (new_freq == max_freq - 1000)
405 turbo_frequency = max_freq;
406}
407
408static void
409sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
410{
411 struct wake_event *we;
412 struct per_pid *p;
413 struct wakeup_entry *wake = (void *)te;
414
415 we = malloc(sizeof(struct wake_event));
416 if (!we)
417 return;
418
419 memset(we, 0, sizeof(struct wake_event));
420 we->time = timestamp;
421 we->waker = pid;
422
423 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
424 we->waker = -1;
425
426 we->wakee = wake->pid;
427 we->next = wake_events;
428 wake_events = we;
429 p = find_create_pid(we->wakee);
430
431 if (p && p->current && p->current->state == TYPE_NONE) {
432 p->current->state_since = timestamp;
433 p->current->state = TYPE_WAITING;
434 }
435 if (p && p->current && p->current->state == TYPE_BLOCKED) {
436 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
437 p->current->state_since = timestamp;
438 p->current->state = TYPE_WAITING;
439 }
440}
441
442static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
443{
444 struct per_pid *p = NULL, *prev_p;
445 struct sched_switch *sw = (void *)te;
446
447
448 prev_p = find_create_pid(sw->prev_pid);
449
450 p = find_create_pid(sw->next_pid);
451
452 if (prev_p->current && prev_p->current->state != TYPE_NONE)
453 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
454 if (p && p->current) {
455 if (p->current->state != TYPE_NONE)
456 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
457
33e26a1b
JL
458 p->current->state_since = timestamp;
459 p->current->state = TYPE_RUNNING;
10274989
AV
460 }
461
462 if (prev_p->current) {
463 prev_p->current->state = TYPE_NONE;
464 prev_p->current->state_since = timestamp;
465 if (sw->prev_state & 2)
466 prev_p->current->state = TYPE_BLOCKED;
467 if (sw->prev_state == 0)
468 prev_p->current->state = TYPE_WAITING;
469 }
470}
471
472
c019879b 473static int process_sample_event(event_t *event, struct perf_session *session)
10274989 474{
180f95e2 475 struct sample_data data;
10274989
AV
476 struct trace_entry *te;
477
180f95e2 478 memset(&data, 0, sizeof(data));
10274989 479
c019879b 480 event__parse_sample(event, session->sample_type, &data);
10274989 481
c019879b 482 if (session->sample_type & PERF_SAMPLE_TIME) {
180f95e2
OH
483 if (!first_time || first_time > data.time)
484 first_time = data.time;
485 if (last_time < data.time)
486 last_time = data.time;
10274989 487 }
180f95e2
OH
488
489 te = (void *)data.raw_data;
c019879b 490 if (session->sample_type & PERF_SAMPLE_RAW && data.raw_size > 0) {
10274989
AV
491 char *event_str;
492 struct power_entry *pe;
493
494 pe = (void *)te;
495
496 event_str = perf_header__find_event(te->type);
497
498 if (!event_str)
499 return 0;
500
501 if (strcmp(event_str, "power:power_start") == 0)
4c21adf2 502 c_state_start(pe->cpu_id, data.time, pe->value);
10274989
AV
503
504 if (strcmp(event_str, "power:power_end") == 0)
4c21adf2 505 c_state_end(pe->cpu_id, data.time);
10274989
AV
506
507 if (strcmp(event_str, "power:power_frequency") == 0)
4c21adf2 508 p_state_change(pe->cpu_id, data.time, pe->value);
10274989
AV
509
510 if (strcmp(event_str, "sched:sched_wakeup") == 0)
180f95e2 511 sched_wakeup(data.cpu, data.time, data.pid, te);
10274989
AV
512
513 if (strcmp(event_str, "sched:sched_switch") == 0)
180f95e2 514 sched_switch(data.cpu, data.time, te);
10274989
AV
515 }
516 return 0;
517}
518
519/*
520 * After the last sample we need to wrap up the current C/P state
521 * and close out each CPU for these.
522 */
523static void end_sample_processing(void)
524{
525 u64 cpu;
526 struct power_event *pwr;
527
39a90a8e 528 for (cpu = 0; cpu <= numcpus; cpu++) {
10274989
AV
529 pwr = malloc(sizeof(struct power_event));
530 if (!pwr)
531 return;
532 memset(pwr, 0, sizeof(struct power_event));
533
534 /* C state */
535#if 0
536 pwr->state = cpus_cstate_state[cpu];
537 pwr->start_time = cpus_cstate_start_times[cpu];
538 pwr->end_time = last_time;
539 pwr->cpu = cpu;
540 pwr->type = CSTATE;
541 pwr->next = power_events;
542
543 power_events = pwr;
544#endif
545 /* P state */
546
547 pwr = malloc(sizeof(struct power_event));
548 if (!pwr)
549 return;
550 memset(pwr, 0, sizeof(struct power_event));
551
552 pwr->state = cpus_pstate_state[cpu];
553 pwr->start_time = cpus_pstate_start_times[cpu];
554 pwr->end_time = last_time;
555 pwr->cpu = cpu;
556 pwr->type = PSTATE;
557 pwr->next = power_events;
558
559 if (!pwr->start_time)
560 pwr->start_time = first_time;
561 if (!pwr->state)
562 pwr->state = min_freq;
563 power_events = pwr;
564 }
565}
566
10274989
AV
567/*
568 * Sort the pid datastructure
569 */
570static void sort_pids(void)
571{
572 struct per_pid *new_list, *p, *cursor, *prev;
573 /* sort by ppid first, then by pid, lowest to highest */
574
575 new_list = NULL;
576
577 while (all_data) {
578 p = all_data;
579 all_data = p->next;
580 p->next = NULL;
581
582 if (new_list == NULL) {
583 new_list = p;
584 p->next = NULL;
585 continue;
586 }
587 prev = NULL;
588 cursor = new_list;
589 while (cursor) {
590 if (cursor->ppid > p->ppid ||
591 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
592 /* must insert before */
593 if (prev) {
594 p->next = prev->next;
595 prev->next = p;
596 cursor = NULL;
597 continue;
598 } else {
599 p->next = new_list;
600 new_list = p;
601 cursor = NULL;
602 continue;
603 }
604 }
605
606 prev = cursor;
607 cursor = cursor->next;
608 if (!cursor)
609 prev->next = p;
610 }
611 }
612 all_data = new_list;
613}
614
615
616static void draw_c_p_states(void)
617{
618 struct power_event *pwr;
619 pwr = power_events;
620
621 /*
622 * two pass drawing so that the P state bars are on top of the C state blocks
623 */
624 while (pwr) {
625 if (pwr->type == CSTATE)
626 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
627 pwr = pwr->next;
628 }
629
630 pwr = power_events;
631 while (pwr) {
632 if (pwr->type == PSTATE) {
633 if (!pwr->state)
634 pwr->state = min_freq;
635 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
636 }
637 pwr = pwr->next;
638 }
639}
640
641static void draw_wakeups(void)
642{
643 struct wake_event *we;
644 struct per_pid *p;
645 struct per_pidcomm *c;
646
647 we = wake_events;
648 while (we) {
649 int from = 0, to = 0;
4f1202c8 650 char *task_from = NULL, *task_to = NULL;
10274989
AV
651
652 /* locate the column of the waker and wakee */
653 p = all_data;
654 while (p) {
655 if (p->pid == we->waker || p->pid == we->wakee) {
656 c = p->all;
657 while (c) {
658 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 659 if (p->pid == we->waker && !from) {
10274989 660 from = c->Y;
3bc2a39c 661 task_from = strdup(c->comm);
4f1202c8 662 }
bbe2987b 663 if (p->pid == we->wakee && !to) {
10274989 664 to = c->Y;
3bc2a39c 665 task_to = strdup(c->comm);
4f1202c8 666 }
10274989
AV
667 }
668 c = c->next;
669 }
3bc2a39c
AV
670 c = p->all;
671 while (c) {
672 if (p->pid == we->waker && !from) {
673 from = c->Y;
674 task_from = strdup(c->comm);
675 }
676 if (p->pid == we->wakee && !to) {
677 to = c->Y;
678 task_to = strdup(c->comm);
679 }
680 c = c->next;
681 }
10274989
AV
682 }
683 p = p->next;
684 }
685
3bc2a39c
AV
686 if (!task_from) {
687 task_from = malloc(40);
688 sprintf(task_from, "[%i]", we->waker);
689 }
690 if (!task_to) {
691 task_to = malloc(40);
692 sprintf(task_to, "[%i]", we->wakee);
693 }
694
10274989
AV
695 if (we->waker == -1)
696 svg_interrupt(we->time, to);
697 else if (from && to && abs(from - to) == 1)
698 svg_wakeline(we->time, from, to);
699 else
4f1202c8 700 svg_partial_wakeline(we->time, from, task_from, to, task_to);
10274989 701 we = we->next;
3bc2a39c
AV
702
703 free(task_from);
704 free(task_to);
10274989
AV
705 }
706}
707
708static void draw_cpu_usage(void)
709{
710 struct per_pid *p;
711 struct per_pidcomm *c;
712 struct cpu_sample *sample;
713 p = all_data;
714 while (p) {
715 c = p->all;
716 while (c) {
717 sample = c->samples;
718 while (sample) {
719 if (sample->type == TYPE_RUNNING)
720 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
721
722 sample = sample->next;
723 }
724 c = c->next;
725 }
726 p = p->next;
727 }
728}
729
730static void draw_process_bars(void)
731{
732 struct per_pid *p;
733 struct per_pidcomm *c;
734 struct cpu_sample *sample;
735 int Y = 0;
736
737 Y = 2 * numcpus + 2;
738
739 p = all_data;
740 while (p) {
741 c = p->all;
742 while (c) {
743 if (!c->display) {
744 c->Y = 0;
745 c = c->next;
746 continue;
747 }
748
a92fe7b3 749 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
750 sample = c->samples;
751 while (sample) {
752 if (sample->type == TYPE_RUNNING)
a92fe7b3 753 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
10274989
AV
754 if (sample->type == TYPE_BLOCKED)
755 svg_box(Y, sample->start_time, sample->end_time, "blocked");
756 if (sample->type == TYPE_WAITING)
a92fe7b3 757 svg_waiting(Y, sample->start_time, sample->end_time);
10274989
AV
758 sample = sample->next;
759 }
760
761 if (c->comm) {
762 char comm[256];
763 if (c->total_time > 5000000000) /* 5 seconds */
764 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
765 else
766 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
767
768 svg_text(Y, c->start_time, comm);
769 }
770 c->Y = Y;
771 Y++;
772 c = c->next;
773 }
774 p = p->next;
775 }
776}
777
bbe2987b
AV
778static void add_process_filter(const char *string)
779{
780 struct process_filter *filt;
781 int pid;
782
783 pid = strtoull(string, NULL, 10);
784 filt = malloc(sizeof(struct process_filter));
785 if (!filt)
786 return;
787
788 filt->name = strdup(string);
789 filt->pid = pid;
790 filt->next = process_filter;
791
792 process_filter = filt;
793}
794
795static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
796{
797 struct process_filter *filt;
798 if (!process_filter)
799 return 1;
800
801 filt = process_filter;
802 while (filt) {
803 if (filt->pid && p->pid == filt->pid)
804 return 1;
805 if (strcmp(filt->name, c->comm) == 0)
806 return 1;
807 filt = filt->next;
808 }
809 return 0;
810}
811
812static int determine_display_tasks_filtered(void)
813{
814 struct per_pid *p;
815 struct per_pidcomm *c;
816 int count = 0;
817
818 p = all_data;
819 while (p) {
820 p->display = 0;
821 if (p->start_time == 1)
822 p->start_time = first_time;
823
824 /* no exit marker, task kept running to the end */
825 if (p->end_time == 0)
826 p->end_time = last_time;
827
828 c = p->all;
829
830 while (c) {
831 c->display = 0;
832
833 if (c->start_time == 1)
834 c->start_time = first_time;
835
836 if (passes_filter(p, c)) {
837 c->display = 1;
838 p->display = 1;
839 count++;
840 }
841
842 if (c->end_time == 0)
843 c->end_time = last_time;
844
845 c = c->next;
846 }
847 p = p->next;
848 }
849 return count;
850}
851
10274989
AV
852static int determine_display_tasks(u64 threshold)
853{
854 struct per_pid *p;
855 struct per_pidcomm *c;
856 int count = 0;
857
bbe2987b
AV
858 if (process_filter)
859 return determine_display_tasks_filtered();
860
10274989
AV
861 p = all_data;
862 while (p) {
863 p->display = 0;
864 if (p->start_time == 1)
865 p->start_time = first_time;
866
867 /* no exit marker, task kept running to the end */
868 if (p->end_time == 0)
869 p->end_time = last_time;
39a90a8e 870 if (p->total_time >= threshold && !power_only)
10274989
AV
871 p->display = 1;
872
873 c = p->all;
874
875 while (c) {
876 c->display = 0;
877
878 if (c->start_time == 1)
879 c->start_time = first_time;
880
39a90a8e 881 if (c->total_time >= threshold && !power_only) {
10274989
AV
882 c->display = 1;
883 count++;
884 }
885
886 if (c->end_time == 0)
887 c->end_time = last_time;
888
889 c = c->next;
890 }
891 p = p->next;
892 }
893 return count;
894}
895
896
897
898#define TIME_THRESH 10000000
899
900static void write_svg_file(const char *filename)
901{
902 u64 i;
903 int count;
904
905 numcpus++;
906
907
908 count = determine_display_tasks(TIME_THRESH);
909
910 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
911 if (count < 15)
912 count = determine_display_tasks(TIME_THRESH / 10);
913
5094b655 914 open_svg(filename, numcpus, count, first_time, last_time);
10274989 915
5094b655 916 svg_time_grid();
10274989
AV
917 svg_legenda();
918
919 for (i = 0; i < numcpus; i++)
920 svg_cpu_box(i, max_freq, turbo_frequency);
921
922 draw_cpu_usage();
923 draw_process_bars();
924 draw_c_p_states();
925 draw_wakeups();
926
927 svg_close();
928}
929
301a0b02 930static struct perf_event_ops event_ops = {
9df9bbba
FW
931 .comm = process_comm_event,
932 .fork = process_fork_event,
933 .exit = process_exit_event,
934 .sample = process_sample_event,
935 .ordered_samples = true,
5cbd0805 936};
10274989 937
5cbd0805
LZ
938static int __cmd_timechart(void)
939{
454c407e 940 struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0, false);
d549c769 941 int ret = -EINVAL;
10274989 942
94c744b6
ACM
943 if (session == NULL)
944 return -ENOMEM;
945
d549c769
ACM
946 if (!perf_session__has_traces(session, "timechart record"))
947 goto out_delete;
948
ec913369 949 ret = perf_session__process_events(session, &event_ops);
5cbd0805 950 if (ret)
94c744b6 951 goto out_delete;
10274989 952
10274989
AV
953 end_sample_processing();
954
955 sort_pids();
956
957 write_svg_file(output_name);
958
6beba7ad
ACM
959 pr_info("Written %2.1f seconds of trace to %s.\n",
960 (last_time - first_time) / 1000000000.0, output_name);
94c744b6
ACM
961out_delete:
962 perf_session__delete(session);
963 return ret;
10274989
AV
964}
965
3c09eebd
AV
966static const char * const timechart_usage[] = {
967 "perf timechart [<options>] {record}",
10274989
AV
968 NULL
969};
970
3c09eebd
AV
971static const char *record_args[] = {
972 "record",
973 "-a",
974 "-R",
3c09eebd
AV
975 "-f",
976 "-c", "1",
977 "-e", "power:power_start",
978 "-e", "power:power_end",
979 "-e", "power:power_frequency",
980 "-e", "sched:sched_wakeup",
981 "-e", "sched:sched_switch",
982};
983
984static int __cmd_record(int argc, const char **argv)
985{
986 unsigned int rec_argc, i, j;
987 const char **rec_argv;
988
989 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
990 rec_argv = calloc(rec_argc + 1, sizeof(char *));
991
992 for (i = 0; i < ARRAY_SIZE(record_args); i++)
993 rec_argv[i] = strdup(record_args[i]);
994
995 for (j = 1; j < (unsigned int)argc; j++, i++)
996 rec_argv[i] = argv[j];
997
998 return cmd_record(i, rec_argv, NULL);
999}
1000
bbe2987b
AV
1001static int
1002parse_process(const struct option *opt __used, const char *arg, int __used unset)
1003{
1004 if (arg)
1005 add_process_filter(arg);
1006 return 0;
1007}
1008
10274989
AV
1009static const struct option options[] = {
1010 OPT_STRING('i', "input", &input_name, "file",
1011 "input file name"),
1012 OPT_STRING('o', "output", &output_name, "file",
1013 "output file name"),
5094b655
AV
1014 OPT_INTEGER('w', "width", &svg_page_width,
1015 "page width"),
bbe2987b 1016 OPT_BOOLEAN('P', "power-only", &power_only,
39a90a8e 1017 "output power data only"),
bbe2987b
AV
1018 OPT_CALLBACK('p', "process", NULL, "process",
1019 "process selector. Pass a pid or process name.",
1020 parse_process),
10274989
AV
1021 OPT_END()
1022};
1023
1024
1025int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1026{
3c09eebd
AV
1027 argc = parse_options(argc, argv, options, timechart_usage,
1028 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1029
655000e7
ACM
1030 symbol__init();
1031
3c09eebd
AV
1032 if (argc && !strncmp(argv[0], "rec", 3))
1033 return __cmd_record(argc, argv);
1034 else if (argc)
1035 usage_with_options(timechart_usage, options);
10274989
AV
1036
1037 setup_pager();
1038
1039 return __cmd_timechart();
1040}