]> bbs.cooldavid.org Git - net-next-2.6.git/blame - sound/core/oss/mulaw.c
[ALSA] Changed Jaroslav Kysela's e-mail from perex@suse.cz to perex@perex.cz
[net-next-2.6.git] / sound / core / oss / mulaw.c
CommitLineData
1da177e4
LT
1/*
2 * Mu-Law conversion Plug-In Interface
c1017a4c 3 * Copyright (c) 1999 by Jaroslav Kysela <perex@perex.cz>
1da177e4
LT
4 * Uros Bizjak <uros@kss-loka.si>
5 *
6 * Based on reference implementation by Sun Microsystems, Inc.
7 *
8 * This library is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU Library General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU Library General Public License for more details.
17 *
18 * You should have received a copy of the GNU Library General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24#include <sound/driver.h>
25#include <linux/time.h>
26#include <sound/core.h>
27#include <sound/pcm.h>
28#include "pcm_plugin.h"
29
30#define SIGN_BIT (0x80) /* Sign bit for a u-law byte. */
31#define QUANT_MASK (0xf) /* Quantization field mask. */
32#define NSEGS (8) /* Number of u-law segments. */
33#define SEG_SHIFT (4) /* Left shift for segment number. */
34#define SEG_MASK (0x70) /* Segment field mask. */
35
36static inline int val_seg(int val)
37{
38 int r = 0;
39 val >>= 7;
40 if (val & 0xf0) {
41 val >>= 4;
42 r += 4;
43 }
44 if (val & 0x0c) {
45 val >>= 2;
46 r += 2;
47 }
48 if (val & 0x02)
49 r += 1;
50 return r;
51}
52
53#define BIAS (0x84) /* Bias for linear code. */
54
55/*
56 * linear2ulaw() - Convert a linear PCM value to u-law
57 *
58 * In order to simplify the encoding process, the original linear magnitude
59 * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
60 * (33 - 8191). The result can be seen in the following encoding table:
61 *
62 * Biased Linear Input Code Compressed Code
63 * ------------------------ ---------------
64 * 00000001wxyza 000wxyz
65 * 0000001wxyzab 001wxyz
66 * 000001wxyzabc 010wxyz
67 * 00001wxyzabcd 011wxyz
68 * 0001wxyzabcde 100wxyz
69 * 001wxyzabcdef 101wxyz
70 * 01wxyzabcdefg 110wxyz
71 * 1wxyzabcdefgh 111wxyz
72 *
73 * Each biased linear code has a leading 1 which identifies the segment
74 * number. The value of the segment number is equal to 7 minus the number
75 * of leading 0's. The quantization interval is directly available as the
76 * four bits wxyz. * The trailing bits (a - h) are ignored.
77 *
78 * Ordinarily the complement of the resulting code word is used for
79 * transmission, and so the code word is complemented before it is returned.
80 *
81 * For further information see John C. Bellamy's Digital Telephony, 1982,
82 * John Wiley & Sons, pps 98-111 and 472-476.
83 */
84static unsigned char linear2ulaw(int pcm_val) /* 2's complement (16-bit range) */
85{
86 int mask;
87 int seg;
88 unsigned char uval;
89
90 /* Get the sign and the magnitude of the value. */
91 if (pcm_val < 0) {
92 pcm_val = BIAS - pcm_val;
93 mask = 0x7F;
94 } else {
95 pcm_val += BIAS;
96 mask = 0xFF;
97 }
98 if (pcm_val > 0x7FFF)
99 pcm_val = 0x7FFF;
100
101 /* Convert the scaled magnitude to segment number. */
102 seg = val_seg(pcm_val);
103
104 /*
105 * Combine the sign, segment, quantization bits;
106 * and complement the code word.
107 */
108 uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF);
109 return uval ^ mask;
110}
111
112/*
113 * ulaw2linear() - Convert a u-law value to 16-bit linear PCM
114 *
115 * First, a biased linear code is derived from the code word. An unbiased
116 * output can then be obtained by subtracting 33 from the biased code.
117 *
118 * Note that this function expects to be passed the complement of the
119 * original code word. This is in keeping with ISDN conventions.
120 */
121static int ulaw2linear(unsigned char u_val)
122{
123 int t;
124
125 /* Complement to obtain normal u-law value. */
126 u_val = ~u_val;
127
128 /*
129 * Extract and bias the quantization bits. Then
130 * shift up by the segment number and subtract out the bias.
131 */
132 t = ((u_val & QUANT_MASK) << 3) + BIAS;
133 t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT;
134
135 return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));
136}
137
138/*
139 * Basic Mu-Law plugin
140 */
141
6ac77bc1
TI
142typedef void (*mulaw_f)(struct snd_pcm_plugin *plugin,
143 const struct snd_pcm_plugin_channel *src_channels,
144 struct snd_pcm_plugin_channel *dst_channels,
1da177e4
LT
145 snd_pcm_uframes_t frames);
146
6ac77bc1 147struct mulaw_priv {
1da177e4 148 mulaw_f func;
9390ec85
TI
149 int cvt_endian; /* need endian conversion? */
150 unsigned int native_ofs; /* byte offset in native format */
151 unsigned int copy_ofs; /* byte offset in s16 format */
152 unsigned int native_bytes; /* byte size of the native format */
153 unsigned int copy_bytes; /* bytes to copy per conversion */
154 u16 flip; /* MSB flip for signedness, done after endian conversion */
6ac77bc1 155};
1da177e4 156
9390ec85
TI
157static inline void cvt_s16_to_native(struct mulaw_priv *data,
158 unsigned char *dst, u16 sample)
159{
160 sample ^= data->flip;
161 if (data->cvt_endian)
162 sample = swab16(sample);
163 if (data->native_bytes > data->copy_bytes)
164 memset(dst, 0, data->native_bytes);
165 memcpy(dst + data->native_ofs, (char *)&sample + data->copy_ofs,
166 data->copy_bytes);
167}
168
6ac77bc1
TI
169static void mulaw_decode(struct snd_pcm_plugin *plugin,
170 const struct snd_pcm_plugin_channel *src_channels,
171 struct snd_pcm_plugin_channel *dst_channels,
1da177e4
LT
172 snd_pcm_uframes_t frames)
173{
6ac77bc1 174 struct mulaw_priv *data = (struct mulaw_priv *)plugin->extra_data;
1da177e4
LT
175 int channel;
176 int nchannels = plugin->src_format.channels;
177 for (channel = 0; channel < nchannels; ++channel) {
178 char *src;
179 char *dst;
180 int src_step, dst_step;
181 snd_pcm_uframes_t frames1;
182 if (!src_channels[channel].enabled) {
183 if (dst_channels[channel].wanted)
184 snd_pcm_area_silence(&dst_channels[channel].area, 0, frames, plugin->dst_format.format);
185 dst_channels[channel].enabled = 0;
186 continue;
187 }
188 dst_channels[channel].enabled = 1;
189 src = src_channels[channel].area.addr + src_channels[channel].area.first / 8;
190 dst = dst_channels[channel].area.addr + dst_channels[channel].area.first / 8;
191 src_step = src_channels[channel].area.step / 8;
192 dst_step = dst_channels[channel].area.step / 8;
193 frames1 = frames;
194 while (frames1-- > 0) {
195 signed short sample = ulaw2linear(*src);
9390ec85 196 cvt_s16_to_native(data, dst, sample);
1da177e4
LT
197 src += src_step;
198 dst += dst_step;
199 }
200 }
201}
202
9390ec85
TI
203static inline signed short cvt_native_to_s16(struct mulaw_priv *data,
204 unsigned char *src)
205{
206 u16 sample = 0;
207 memcpy((char *)&sample + data->copy_ofs, src + data->native_ofs,
208 data->copy_bytes);
209 if (data->cvt_endian)
210 sample = swab16(sample);
211 sample ^= data->flip;
212 return (signed short)sample;
213}
214
6ac77bc1
TI
215static void mulaw_encode(struct snd_pcm_plugin *plugin,
216 const struct snd_pcm_plugin_channel *src_channels,
217 struct snd_pcm_plugin_channel *dst_channels,
1da177e4
LT
218 snd_pcm_uframes_t frames)
219{
6ac77bc1 220 struct mulaw_priv *data = (struct mulaw_priv *)plugin->extra_data;
1da177e4
LT
221 int channel;
222 int nchannels = plugin->src_format.channels;
1da177e4
LT
223 for (channel = 0; channel < nchannels; ++channel) {
224 char *src;
225 char *dst;
226 int src_step, dst_step;
227 snd_pcm_uframes_t frames1;
228 if (!src_channels[channel].enabled) {
229 if (dst_channels[channel].wanted)
230 snd_pcm_area_silence(&dst_channels[channel].area, 0, frames, plugin->dst_format.format);
231 dst_channels[channel].enabled = 0;
232 continue;
233 }
234 dst_channels[channel].enabled = 1;
235 src = src_channels[channel].area.addr + src_channels[channel].area.first / 8;
236 dst = dst_channels[channel].area.addr + dst_channels[channel].area.first / 8;
237 src_step = src_channels[channel].area.step / 8;
238 dst_step = dst_channels[channel].area.step / 8;
239 frames1 = frames;
240 while (frames1-- > 0) {
9390ec85 241 signed short sample = cvt_native_to_s16(data, src);
1da177e4
LT
242 *dst = linear2ulaw(sample);
243 src += src_step;
244 dst += dst_step;
245 }
246 }
247}
248
6ac77bc1
TI
249static snd_pcm_sframes_t mulaw_transfer(struct snd_pcm_plugin *plugin,
250 const struct snd_pcm_plugin_channel *src_channels,
251 struct snd_pcm_plugin_channel *dst_channels,
1da177e4
LT
252 snd_pcm_uframes_t frames)
253{
6ac77bc1 254 struct mulaw_priv *data;
1da177e4
LT
255
256 snd_assert(plugin != NULL && src_channels != NULL && dst_channels != NULL, return -ENXIO);
257 if (frames == 0)
258 return 0;
259#ifdef CONFIG_SND_DEBUG
260 {
261 unsigned int channel;
262 for (channel = 0; channel < plugin->src_format.channels; channel++) {
263 snd_assert(src_channels[channel].area.first % 8 == 0 &&
264 src_channels[channel].area.step % 8 == 0,
265 return -ENXIO);
266 snd_assert(dst_channels[channel].area.first % 8 == 0 &&
267 dst_channels[channel].area.step % 8 == 0,
268 return -ENXIO);
269 }
270 }
271#endif
6ac77bc1 272 data = (struct mulaw_priv *)plugin->extra_data;
1da177e4
LT
273 data->func(plugin, src_channels, dst_channels, frames);
274 return frames;
275}
276
9390ec85 277static void init_data(struct mulaw_priv *data, int format)
0534ab42 278{
0534ab42 279#ifdef SNDRV_LITTLE_ENDIAN
9390ec85 280 data->cvt_endian = snd_pcm_format_big_endian(format) > 0;
0534ab42 281#else
9390ec85 282 data->cvt_endian = snd_pcm_format_little_endian(format) > 0;
0534ab42 283#endif
9390ec85
TI
284 if (!snd_pcm_format_signed(format))
285 data->flip = 0x8000;
286 data->native_bytes = snd_pcm_format_physical_width(format) / 8;
287 data->copy_bytes = data->native_bytes < 2 ? 1 : 2;
288 if (snd_pcm_format_little_endian(format)) {
289 data->native_ofs = data->native_bytes - data->copy_bytes;
290 data->copy_ofs = 2 - data->copy_bytes;
291 } else {
292 /* S24 in 4bytes need an 1 byte offset */
293 data->native_ofs = data->native_bytes -
294 snd_pcm_format_width(format) / 8;
295 }
0534ab42
TI
296}
297
6ac77bc1
TI
298int snd_pcm_plugin_build_mulaw(struct snd_pcm_substream *plug,
299 struct snd_pcm_plugin_format *src_format,
300 struct snd_pcm_plugin_format *dst_format,
301 struct snd_pcm_plugin **r_plugin)
1da177e4
LT
302{
303 int err;
6ac77bc1
TI
304 struct mulaw_priv *data;
305 struct snd_pcm_plugin *plugin;
306 struct snd_pcm_plugin_format *format;
1da177e4
LT
307 mulaw_f func;
308
309 snd_assert(r_plugin != NULL, return -ENXIO);
310 *r_plugin = NULL;
311
312 snd_assert(src_format->rate == dst_format->rate, return -ENXIO);
313 snd_assert(src_format->channels == dst_format->channels, return -ENXIO);
314
315 if (dst_format->format == SNDRV_PCM_FORMAT_MU_LAW) {
316 format = src_format;
317 func = mulaw_encode;
318 }
319 else if (src_format->format == SNDRV_PCM_FORMAT_MU_LAW) {
320 format = dst_format;
321 func = mulaw_decode;
322 }
323 else {
324 snd_BUG();
325 return -EINVAL;
326 }
327 snd_assert(snd_pcm_format_linear(format->format) != 0, return -ENXIO);
328
329 err = snd_pcm_plugin_build(plug, "Mu-Law<->linear conversion",
330 src_format, dst_format,
6ac77bc1 331 sizeof(struct mulaw_priv), &plugin);
1da177e4
LT
332 if (err < 0)
333 return err;
6ac77bc1 334 data = (struct mulaw_priv *)plugin->extra_data;
1da177e4 335 data->func = func;
9390ec85 336 init_data(data, format->format);
1da177e4
LT
337 plugin->transfer = mulaw_transfer;
338 *r_plugin = plugin;
339 return 0;
340}