]> bbs.cooldavid.org Git - net-next-2.6.git/blame - sound/core/memalloc.c
[ALSA] Changed Jaroslav Kysela's e-mail from perex@suse.cz to perex@perex.cz
[net-next-2.6.git] / sound / core / memalloc.c
CommitLineData
1da177e4 1/*
c1017a4c 2 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
1da177e4
LT
3 * Takashi Iwai <tiwai@suse.de>
4 *
5 * Generic memory allocators
6 *
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/proc_fs.h>
26#include <linux/init.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
ccec6e2c 30#include <linux/seq_file.h>
b6a96915 31#include <asm/uaccess.h>
1da177e4
LT
32#include <linux/dma-mapping.h>
33#include <linux/moduleparam.h>
1a60d4c5 34#include <linux/mutex.h>
1da177e4
LT
35#include <sound/memalloc.h>
36#ifdef CONFIG_SBUS
37#include <asm/sbus.h>
38#endif
39
40
c1017a4c 41MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@perex.cz>");
1da177e4
LT
42MODULE_DESCRIPTION("Memory allocator for ALSA system.");
43MODULE_LICENSE("GPL");
44
45
1da177e4
LT
46/*
47 */
48
49void *snd_malloc_sgbuf_pages(struct device *device,
50 size_t size, struct snd_dma_buffer *dmab,
51 size_t *res_size);
52int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
53
54/*
55 */
56
1a60d4c5 57static DEFINE_MUTEX(list_mutex);
1da177e4
LT
58static LIST_HEAD(mem_list_head);
59
60/* buffer preservation list */
61struct snd_mem_list {
62 struct snd_dma_buffer buffer;
63 unsigned int id;
64 struct list_head list;
65};
66
67/* id for pre-allocated buffers */
68#define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
69
70#ifdef CONFIG_SND_DEBUG
71#define __ASTRING__(x) #x
72#define snd_assert(expr, args...) do {\
73 if (!(expr)) {\
74 printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
75 args;\
76 }\
77} while (0)
78#else
79#define snd_assert(expr, args...) /**/
80#endif
81
82/*
83 * Hacks
84 */
85
ea50888d 86#if defined(__i386__)
1da177e4
LT
87/*
88 * A hack to allocate large buffers via dma_alloc_coherent()
89 *
90 * since dma_alloc_coherent always tries GFP_DMA when the requested
91 * pci memory region is below 32bit, it happens quite often that even
92 * 2 order of pages cannot be allocated.
93 *
94 * so in the following, we allocate at first without dma_mask, so that
95 * allocation will be done without GFP_DMA. if the area doesn't match
96 * with the requested region, then realloate with the original dma_mask
97 * again.
98 *
99 * Really, we want to move this type of thing into dma_alloc_coherent()
100 * so dma_mask doesn't have to be messed with.
101 */
102
103static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
5a0f217d 104 dma_addr_t *dma_handle,
dd0fc66f 105 gfp_t flags)
1da177e4
LT
106{
107 void *ret;
108 u64 dma_mask, coherent_dma_mask;
109
110 if (dev == NULL || !dev->dma_mask)
111 return dma_alloc_coherent(dev, size, dma_handle, flags);
112 dma_mask = *dev->dma_mask;
113 coherent_dma_mask = dev->coherent_dma_mask;
114 *dev->dma_mask = 0xffffffff; /* do without masking */
115 dev->coherent_dma_mask = 0xffffffff; /* do without masking */
116 ret = dma_alloc_coherent(dev, size, dma_handle, flags);
117 *dev->dma_mask = dma_mask; /* restore */
118 dev->coherent_dma_mask = coherent_dma_mask; /* restore */
119 if (ret) {
120 /* obtained address is out of range? */
121 if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
122 /* reallocate with the proper mask */
123 dma_free_coherent(dev, size, ret, *dma_handle);
124 ret = dma_alloc_coherent(dev, size, dma_handle, flags);
125 }
126 } else {
127 /* wish to success now with the proper mask... */
128 if (dma_mask != 0xffffffffUL) {
129 /* allocation with GFP_ATOMIC to avoid the long stall */
130 flags &= ~GFP_KERNEL;
131 flags |= GFP_ATOMIC;
132 ret = dma_alloc_coherent(dev, size, dma_handle, flags);
133 }
134 }
135 return ret;
136}
137
138/* redefine dma_alloc_coherent for some architectures */
139#undef dma_alloc_coherent
140#define dma_alloc_coherent snd_dma_hack_alloc_coherent
141
142#endif /* arch */
143
1da177e4
LT
144/*
145 *
146 * Generic memory allocators
147 *
148 */
149
150static long snd_allocated_pages; /* holding the number of allocated pages */
151
152static inline void inc_snd_pages(int order)
153{
154 snd_allocated_pages += 1 << order;
155}
156
157static inline void dec_snd_pages(int order)
158{
159 snd_allocated_pages -= 1 << order;
160}
161
1da177e4
LT
162/**
163 * snd_malloc_pages - allocate pages with the given size
164 * @size: the size to allocate in bytes
165 * @gfp_flags: the allocation conditions, GFP_XXX
166 *
167 * Allocates the physically contiguous pages with the given size.
168 *
169 * Returns the pointer of the buffer, or NULL if no enoguh memory.
170 */
1ef64e67 171void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
1da177e4
LT
172{
173 int pg;
174 void *res;
175
176 snd_assert(size > 0, return NULL);
177 snd_assert(gfp_flags != 0, return NULL);
f3d48f03 178 gfp_flags |= __GFP_COMP; /* compound page lets parts be mapped */
1da177e4 179 pg = get_order(size);
2ba8c15c 180 if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL)
1da177e4 181 inc_snd_pages(pg);
1da177e4
LT
182 return res;
183}
184
185/**
186 * snd_free_pages - release the pages
187 * @ptr: the buffer pointer to release
188 * @size: the allocated buffer size
189 *
190 * Releases the buffer allocated via snd_malloc_pages().
191 */
192void snd_free_pages(void *ptr, size_t size)
193{
194 int pg;
195
196 if (ptr == NULL)
197 return;
198 pg = get_order(size);
199 dec_snd_pages(pg);
1da177e4
LT
200 free_pages((unsigned long) ptr, pg);
201}
202
203/*
204 *
205 * Bus-specific memory allocators
206 *
207 */
208
8f11551b 209#ifdef CONFIG_HAS_DMA
1da177e4
LT
210/* allocate the coherent DMA pages */
211static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
212{
213 int pg;
214 void *res;
1ef64e67 215 gfp_t gfp_flags;
1da177e4
LT
216
217 snd_assert(size > 0, return NULL);
218 snd_assert(dma != NULL, return NULL);
219 pg = get_order(size);
220 gfp_flags = GFP_KERNEL
f3d48f03 221 | __GFP_COMP /* compound page lets parts be mapped */
1da177e4
LT
222 | __GFP_NORETRY /* don't trigger OOM-killer */
223 | __GFP_NOWARN; /* no stack trace print - this call is non-critical */
224 res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
2ba8c15c 225 if (res != NULL)
1da177e4 226 inc_snd_pages(pg);
1da177e4
LT
227
228 return res;
229}
230
231/* free the coherent DMA pages */
232static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
233 dma_addr_t dma)
234{
235 int pg;
236
237 if (ptr == NULL)
238 return;
239 pg = get_order(size);
240 dec_snd_pages(pg);
1da177e4
LT
241 dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
242}
8f11551b 243#endif /* CONFIG_HAS_DMA */
1da177e4
LT
244
245#ifdef CONFIG_SBUS
246
247static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
248 dma_addr_t *dma_addr)
249{
250 struct sbus_dev *sdev = (struct sbus_dev *)dev;
251 int pg;
252 void *res;
253
254 snd_assert(size > 0, return NULL);
255 snd_assert(dma_addr != NULL, return NULL);
256 pg = get_order(size);
257 res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
258 if (res != NULL)
259 inc_snd_pages(pg);
260 return res;
261}
262
263static void snd_free_sbus_pages(struct device *dev, size_t size,
264 void *ptr, dma_addr_t dma_addr)
265{
266 struct sbus_dev *sdev = (struct sbus_dev *)dev;
267 int pg;
268
269 if (ptr == NULL)
270 return;
271 pg = get_order(size);
272 dec_snd_pages(pg);
273 sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
274}
275
276#endif /* CONFIG_SBUS */
277
278/*
279 *
280 * ALSA generic memory management
281 *
282 */
283
284
285/**
286 * snd_dma_alloc_pages - allocate the buffer area according to the given type
287 * @type: the DMA buffer type
288 * @device: the device pointer
289 * @size: the buffer size to allocate
290 * @dmab: buffer allocation record to store the allocated data
291 *
292 * Calls the memory-allocator function for the corresponding
293 * buffer type.
294 *
295 * Returns zero if the buffer with the given size is allocated successfuly,
296 * other a negative value at error.
297 */
298int snd_dma_alloc_pages(int type, struct device *device, size_t size,
299 struct snd_dma_buffer *dmab)
300{
301 snd_assert(size > 0, return -ENXIO);
302 snd_assert(dmab != NULL, return -ENXIO);
303
304 dmab->dev.type = type;
305 dmab->dev.dev = device;
306 dmab->bytes = 0;
307 switch (type) {
308 case SNDRV_DMA_TYPE_CONTINUOUS:
309 dmab->area = snd_malloc_pages(size, (unsigned long)device);
310 dmab->addr = 0;
311 break;
312#ifdef CONFIG_SBUS
313 case SNDRV_DMA_TYPE_SBUS:
314 dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr);
315 break;
316#endif
8f11551b 317#ifdef CONFIG_HAS_DMA
1da177e4
LT
318 case SNDRV_DMA_TYPE_DEV:
319 dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
320 break;
321 case SNDRV_DMA_TYPE_DEV_SG:
322 snd_malloc_sgbuf_pages(device, size, dmab, NULL);
323 break;
8f11551b 324#endif
1da177e4
LT
325 default:
326 printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
327 dmab->area = NULL;
328 dmab->addr = 0;
329 return -ENXIO;
330 }
331 if (! dmab->area)
332 return -ENOMEM;
333 dmab->bytes = size;
334 return 0;
335}
336
337/**
338 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
339 * @type: the DMA buffer type
340 * @device: the device pointer
341 * @size: the buffer size to allocate
342 * @dmab: buffer allocation record to store the allocated data
343 *
344 * Calls the memory-allocator function for the corresponding
345 * buffer type. When no space is left, this function reduces the size and
346 * tries to allocate again. The size actually allocated is stored in
347 * res_size argument.
348 *
349 * Returns zero if the buffer with the given size is allocated successfuly,
350 * other a negative value at error.
351 */
352int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
353 struct snd_dma_buffer *dmab)
354{
355 int err;
356
357 snd_assert(size > 0, return -ENXIO);
358 snd_assert(dmab != NULL, return -ENXIO);
359
360 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
361 if (err != -ENOMEM)
362 return err;
363 size >>= 1;
364 if (size <= PAGE_SIZE)
365 return -ENOMEM;
366 }
367 if (! dmab->area)
368 return -ENOMEM;
369 return 0;
370}
371
372
373/**
374 * snd_dma_free_pages - release the allocated buffer
375 * @dmab: the buffer allocation record to release
376 *
377 * Releases the allocated buffer via snd_dma_alloc_pages().
378 */
379void snd_dma_free_pages(struct snd_dma_buffer *dmab)
380{
381 switch (dmab->dev.type) {
382 case SNDRV_DMA_TYPE_CONTINUOUS:
383 snd_free_pages(dmab->area, dmab->bytes);
384 break;
385#ifdef CONFIG_SBUS
386 case SNDRV_DMA_TYPE_SBUS:
387 snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
388 break;
389#endif
8f11551b 390#ifdef CONFIG_HAS_DMA
1da177e4
LT
391 case SNDRV_DMA_TYPE_DEV:
392 snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
393 break;
394 case SNDRV_DMA_TYPE_DEV_SG:
395 snd_free_sgbuf_pages(dmab);
396 break;
8f11551b 397#endif
1da177e4
LT
398 default:
399 printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
400 }
401}
402
403
404/**
405 * snd_dma_get_reserved - get the reserved buffer for the given device
406 * @dmab: the buffer allocation record to store
407 * @id: the buffer id
408 *
409 * Looks for the reserved-buffer list and re-uses if the same buffer
410 * is found in the list. When the buffer is found, it's removed from the free list.
411 *
412 * Returns the size of buffer if the buffer is found, or zero if not found.
413 */
414size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
415{
1da177e4
LT
416 struct snd_mem_list *mem;
417
418 snd_assert(dmab, return 0);
419
1a60d4c5 420 mutex_lock(&list_mutex);
9244b2c3 421 list_for_each_entry(mem, &mem_list_head, list) {
1da177e4 422 if (mem->id == id &&
b6a96915
TI
423 (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
424 ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
425 struct device *dev = dmab->dev.dev;
9244b2c3 426 list_del(&mem->list);
1da177e4 427 *dmab = mem->buffer;
b6a96915
TI
428 if (dmab->dev.dev == NULL)
429 dmab->dev.dev = dev;
1da177e4 430 kfree(mem);
1a60d4c5 431 mutex_unlock(&list_mutex);
1da177e4
LT
432 return dmab->bytes;
433 }
434 }
1a60d4c5 435 mutex_unlock(&list_mutex);
1da177e4
LT
436 return 0;
437}
438
439/**
440 * snd_dma_reserve_buf - reserve the buffer
441 * @dmab: the buffer to reserve
442 * @id: the buffer id
443 *
444 * Reserves the given buffer as a reserved buffer.
445 *
446 * Returns zero if successful, or a negative code at error.
447 */
448int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
449{
450 struct snd_mem_list *mem;
451
452 snd_assert(dmab, return -EINVAL);
453 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
454 if (! mem)
455 return -ENOMEM;
1a60d4c5 456 mutex_lock(&list_mutex);
1da177e4
LT
457 mem->buffer = *dmab;
458 mem->id = id;
459 list_add_tail(&mem->list, &mem_list_head);
1a60d4c5 460 mutex_unlock(&list_mutex);
1da177e4
LT
461 return 0;
462}
463
464/*
465 * purge all reserved buffers
466 */
467static void free_all_reserved_pages(void)
468{
469 struct list_head *p;
470 struct snd_mem_list *mem;
471
1a60d4c5 472 mutex_lock(&list_mutex);
1da177e4
LT
473 while (! list_empty(&mem_list_head)) {
474 p = mem_list_head.next;
475 mem = list_entry(p, struct snd_mem_list, list);
476 list_del(p);
477 snd_dma_free_pages(&mem->buffer);
478 kfree(mem);
479 }
1a60d4c5 480 mutex_unlock(&list_mutex);
1da177e4
LT
481}
482
483
1da177e4
LT
484#ifdef CONFIG_PROC_FS
485/*
486 * proc file interface
487 */
b6a96915 488#define SND_MEM_PROC_FILE "driver/snd-page-alloc"
a53fc188 489static struct proc_dir_entry *snd_mem_proc;
b6a96915 490
ccec6e2c 491static int snd_mem_proc_read(struct seq_file *seq, void *offset)
1da177e4 492{
1da177e4 493 long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
1da177e4
LT
494 struct snd_mem_list *mem;
495 int devno;
496 static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" };
497
1a60d4c5 498 mutex_lock(&list_mutex);
ccec6e2c
TI
499 seq_printf(seq, "pages : %li bytes (%li pages per %likB)\n",
500 pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
1da177e4 501 devno = 0;
9244b2c3 502 list_for_each_entry(mem, &mem_list_head, list) {
1da177e4 503 devno++;
ccec6e2c
TI
504 seq_printf(seq, "buffer %d : ID %08x : type %s\n",
505 devno, mem->id, types[mem->buffer.dev.type]);
506 seq_printf(seq, " addr = 0x%lx, size = %d bytes\n",
507 (unsigned long)mem->buffer.addr,
508 (int)mem->buffer.bytes);
1da177e4 509 }
1a60d4c5 510 mutex_unlock(&list_mutex);
ccec6e2c
TI
511 return 0;
512}
513
514static int snd_mem_proc_open(struct inode *inode, struct file *file)
515{
516 return single_open(file, snd_mem_proc_read, NULL);
1da177e4 517}
b6a96915
TI
518
519/* FIXME: for pci only - other bus? */
520#ifdef CONFIG_PCI
521#define gettoken(bufp) strsep(bufp, " \t\n")
522
ccec6e2c
TI
523static ssize_t snd_mem_proc_write(struct file *file, const char __user * buffer,
524 size_t count, loff_t * ppos)
b6a96915
TI
525{
526 char buf[128];
527 char *token, *p;
528
ccec6e2c
TI
529 if (count > sizeof(buf) - 1)
530 return -EINVAL;
b6a96915
TI
531 if (copy_from_user(buf, buffer, count))
532 return -EFAULT;
ccec6e2c 533 buf[count] = '\0';
b6a96915
TI
534
535 p = buf;
536 token = gettoken(&p);
537 if (! token || *token == '#')
ccec6e2c 538 return count;
b6a96915
TI
539 if (strcmp(token, "add") == 0) {
540 char *endp;
541 int vendor, device, size, buffers;
542 long mask;
543 int i, alloced;
544 struct pci_dev *pci;
545
546 if ((token = gettoken(&p)) == NULL ||
547 (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
548 (token = gettoken(&p)) == NULL ||
549 (device = simple_strtol(token, NULL, 0)) <= 0 ||
550 (token = gettoken(&p)) == NULL ||
551 (mask = simple_strtol(token, NULL, 0)) < 0 ||
552 (token = gettoken(&p)) == NULL ||
553 (size = memparse(token, &endp)) < 64*1024 ||
554 size > 16*1024*1024 /* too big */ ||
555 (token = gettoken(&p)) == NULL ||
556 (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
557 buffers > 4) {
558 printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
ccec6e2c 559 return count;
b6a96915
TI
560 }
561 vendor &= 0xffff;
562 device &= 0xffff;
563
564 alloced = 0;
565 pci = NULL;
0dd119f7 566 while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
b6a96915
TI
567 if (mask > 0 && mask < 0xffffffff) {
568 if (pci_set_dma_mask(pci, mask) < 0 ||
569 pci_set_consistent_dma_mask(pci, mask) < 0) {
570 printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
ccec6e2c 571 return count;
b6a96915
TI
572 }
573 }
574 for (i = 0; i < buffers; i++) {
575 struct snd_dma_buffer dmab;
576 memset(&dmab, 0, sizeof(dmab));
577 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
578 size, &dmab) < 0) {
579 printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
0dd119f7 580 pci_dev_put(pci);
ccec6e2c 581 return count;
b6a96915
TI
582 }
583 snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
584 }
585 alloced++;
586 }
587 if (! alloced) {
588 for (i = 0; i < buffers; i++) {
589 struct snd_dma_buffer dmab;
590 memset(&dmab, 0, sizeof(dmab));
591 /* FIXME: We can allocate only in ZONE_DMA
592 * without a device pointer!
593 */
594 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
595 size, &dmab) < 0) {
596 printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
597 break;
598 }
599 snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
600 }
601 }
602 } else if (strcmp(token, "erase") == 0)
603 /* FIXME: need for releasing each buffer chunk? */
604 free_all_reserved_pages();
605 else
606 printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
ccec6e2c 607 return count;
b6a96915
TI
608}
609#endif /* CONFIG_PCI */
ccec6e2c
TI
610
611static const struct file_operations snd_mem_proc_fops = {
612 .owner = THIS_MODULE,
613 .open = snd_mem_proc_open,
614 .read = seq_read,
615#ifdef CONFIG_PCI
616 .write = snd_mem_proc_write,
617#endif
618 .llseek = seq_lseek,
619 .release = single_release,
620};
621
1da177e4
LT
622#endif /* CONFIG_PROC_FS */
623
624/*
625 * module entry
626 */
627
628static int __init snd_mem_init(void)
629{
630#ifdef CONFIG_PROC_FS
b6a96915 631 snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL);
ccec6e2c
TI
632 if (snd_mem_proc)
633 snd_mem_proc->proc_fops = &snd_mem_proc_fops;
1da177e4 634#endif
1da177e4
LT
635 return 0;
636}
637
638static void __exit snd_mem_exit(void)
639{
e0be4d32 640 remove_proc_entry(SND_MEM_PROC_FILE, NULL);
1da177e4
LT
641 free_all_reserved_pages();
642 if (snd_allocated_pages > 0)
643 printk(KERN_ERR "snd-malloc: Memory leak? pages not freed = %li\n", snd_allocated_pages);
644}
645
646
647module_init(snd_mem_init)
648module_exit(snd_mem_exit)
649
650
651/*
652 * exports
653 */
654EXPORT_SYMBOL(snd_dma_alloc_pages);
655EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
656EXPORT_SYMBOL(snd_dma_free_pages);
657
658EXPORT_SYMBOL(snd_dma_get_reserved_buf);
659EXPORT_SYMBOL(snd_dma_reserve_buf);
660
661EXPORT_SYMBOL(snd_malloc_pages);
662EXPORT_SYMBOL(snd_free_pages);