]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/tcp_output.c
[TCP]: Kill extra cwnd validate in __tcp_push_pending_frames().
[net-next-2.6.git] / net / ipv4 / tcp_output.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
27 * : AF independence
28 *
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
36 *
37 */
38
39#include <net/tcp.h>
40
41#include <linux/compiler.h>
42#include <linux/module.h>
43#include <linux/smp_lock.h>
44
45/* People can turn this off for buggy TCP's found in printers etc. */
46int sysctl_tcp_retrans_collapse = 1;
47
48/* This limits the percentage of the congestion window which we
49 * will allow a single TSO frame to consume. Building TSO frames
50 * which are too large can cause TCP streams to be bursty.
51 */
52int sysctl_tcp_tso_win_divisor = 8;
53
54static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 struct sk_buff *skb)
56{
57 sk->sk_send_head = skb->next;
58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 sk->sk_send_head = NULL;
60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 tcp_packets_out_inc(sk, tp, skb);
62}
63
64/* SND.NXT, if window was not shrunk.
65 * If window has been shrunk, what should we make? It is not clear at all.
66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68 * invalid. OK, let's make this for now:
69 */
70static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
71{
72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 return tp->snd_nxt;
74 else
75 return tp->snd_una+tp->snd_wnd;
76}
77
78/* Calculate mss to advertise in SYN segment.
79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
80 *
81 * 1. It is independent of path mtu.
82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84 * attached devices, because some buggy hosts are confused by
85 * large MSS.
86 * 4. We do not make 3, we advertise MSS, calculated from first
87 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
88 * This may be overridden via information stored in routing table.
89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90 * probably even Jumbo".
91 */
92static __u16 tcp_advertise_mss(struct sock *sk)
93{
94 struct tcp_sock *tp = tcp_sk(sk);
95 struct dst_entry *dst = __sk_dst_get(sk);
96 int mss = tp->advmss;
97
98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 mss = dst_metric(dst, RTAX_ADVMSS);
100 tp->advmss = mss;
101 }
102
103 return (__u16)mss;
104}
105
106/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107 * This is the first part of cwnd validation mechanism. */
108static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst)
109{
110 s32 delta = tcp_time_stamp - tp->lsndtime;
111 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
112 u32 cwnd = tp->snd_cwnd;
113
317a76f9 114 tcp_ca_event(tp, CA_EVENT_CWND_RESTART);
1da177e4
LT
115
116 tp->snd_ssthresh = tcp_current_ssthresh(tp);
117 restart_cwnd = min(restart_cwnd, cwnd);
118
119 while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd)
120 cwnd >>= 1;
121 tp->snd_cwnd = max(cwnd, restart_cwnd);
122 tp->snd_cwnd_stamp = tcp_time_stamp;
123 tp->snd_cwnd_used = 0;
124}
125
126static inline void tcp_event_data_sent(struct tcp_sock *tp,
127 struct sk_buff *skb, struct sock *sk)
128{
129 u32 now = tcp_time_stamp;
130
131 if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto)
132 tcp_cwnd_restart(tp, __sk_dst_get(sk));
133
134 tp->lsndtime = now;
135
136 /* If it is a reply for ato after last received
137 * packet, enter pingpong mode.
138 */
139 if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato)
140 tp->ack.pingpong = 1;
141}
142
fc6415bc 143static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
1da177e4
LT
144{
145 struct tcp_sock *tp = tcp_sk(sk);
146
fc6415bc 147 tcp_dec_quickack_mode(tp, pkts);
1da177e4
LT
148 tcp_clear_xmit_timer(sk, TCP_TIME_DACK);
149}
150
151/* Determine a window scaling and initial window to offer.
152 * Based on the assumption that the given amount of space
153 * will be offered. Store the results in the tp structure.
154 * NOTE: for smooth operation initial space offering should
155 * be a multiple of mss if possible. We assume here that mss >= 1.
156 * This MUST be enforced by all callers.
157 */
158void tcp_select_initial_window(int __space, __u32 mss,
159 __u32 *rcv_wnd, __u32 *window_clamp,
160 int wscale_ok, __u8 *rcv_wscale)
161{
162 unsigned int space = (__space < 0 ? 0 : __space);
163
164 /* If no clamp set the clamp to the max possible scaled window */
165 if (*window_clamp == 0)
166 (*window_clamp) = (65535 << 14);
167 space = min(*window_clamp, space);
168
169 /* Quantize space offering to a multiple of mss if possible. */
170 if (space > mss)
171 space = (space / mss) * mss;
172
173 /* NOTE: offering an initial window larger than 32767
174 * will break some buggy TCP stacks. We try to be nice.
175 * If we are not window scaling, then this truncates
176 * our initial window offering to 32k. There should also
177 * be a sysctl option to stop being nice.
178 */
179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
180 (*rcv_wscale) = 0;
181 if (wscale_ok) {
182 /* Set window scaling on max possible window
183 * See RFC1323 for an explanation of the limit to 14
184 */
185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
186 while (space > 65535 && (*rcv_wscale) < 14) {
187 space >>= 1;
188 (*rcv_wscale)++;
189 }
190 }
191
192 /* Set initial window to value enough for senders,
193 * following RFC1414. Senders, not following this RFC,
194 * will be satisfied with 2.
195 */
196 if (mss > (1<<*rcv_wscale)) {
197 int init_cwnd = 4;
198 if (mss > 1460*3)
199 init_cwnd = 2;
200 else if (mss > 1460)
201 init_cwnd = 3;
202 if (*rcv_wnd > init_cwnd*mss)
203 *rcv_wnd = init_cwnd*mss;
204 }
205
206 /* Set the clamp no higher than max representable value */
207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
208}
209
210/* Chose a new window to advertise, update state in tcp_sock for the
211 * socket, and return result with RFC1323 scaling applied. The return
212 * value can be stuffed directly into th->window for an outgoing
213 * frame.
214 */
215static __inline__ u16 tcp_select_window(struct sock *sk)
216{
217 struct tcp_sock *tp = tcp_sk(sk);
218 u32 cur_win = tcp_receive_window(tp);
219 u32 new_win = __tcp_select_window(sk);
220
221 /* Never shrink the offered window */
222 if(new_win < cur_win) {
223 /* Danger Will Robinson!
224 * Don't update rcv_wup/rcv_wnd here or else
225 * we will not be able to advertise a zero
226 * window in time. --DaveM
227 *
228 * Relax Will Robinson.
229 */
230 new_win = cur_win;
231 }
232 tp->rcv_wnd = new_win;
233 tp->rcv_wup = tp->rcv_nxt;
234
235 /* Make sure we do not exceed the maximum possible
236 * scaled window.
237 */
238 if (!tp->rx_opt.rcv_wscale)
239 new_win = min(new_win, MAX_TCP_WINDOW);
240 else
241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
242
243 /* RFC1323 scaling applied */
244 new_win >>= tp->rx_opt.rcv_wscale;
245
246 /* If we advertise zero window, disable fast path. */
247 if (new_win == 0)
248 tp->pred_flags = 0;
249
250 return new_win;
251}
252
253
254/* This routine actually transmits TCP packets queued in by
255 * tcp_do_sendmsg(). This is used by both the initial
256 * transmission and possible later retransmissions.
257 * All SKB's seen here are completely headerless. It is our
258 * job to build the TCP header, and pass the packet down to
259 * IP so it can do the same plus pass the packet off to the
260 * device.
261 *
262 * We are working here with either a clone of the original
263 * SKB, or a fresh unique copy made by the retransmit engine.
264 */
265static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
266{
267 if (skb != NULL) {
268 struct inet_sock *inet = inet_sk(sk);
269 struct tcp_sock *tp = tcp_sk(sk);
270 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
271 int tcp_header_size = tp->tcp_header_len;
272 struct tcphdr *th;
273 int sysctl_flags;
274 int err;
275
276 BUG_ON(!tcp_skb_pcount(skb));
277
278#define SYSCTL_FLAG_TSTAMPS 0x1
279#define SYSCTL_FLAG_WSCALE 0x2
280#define SYSCTL_FLAG_SACK 0x4
281
317a76f9
SH
282 /* If congestion control is doing timestamping */
283 if (tp->ca_ops->rtt_sample)
284 do_gettimeofday(&skb->stamp);
285
1da177e4
LT
286 sysctl_flags = 0;
287 if (tcb->flags & TCPCB_FLAG_SYN) {
288 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
289 if(sysctl_tcp_timestamps) {
290 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
291 sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
292 }
293 if(sysctl_tcp_window_scaling) {
294 tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
295 sysctl_flags |= SYSCTL_FLAG_WSCALE;
296 }
297 if(sysctl_tcp_sack) {
298 sysctl_flags |= SYSCTL_FLAG_SACK;
299 if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
300 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
301 }
302 } else if (tp->rx_opt.eff_sacks) {
303 /* A SACK is 2 pad bytes, a 2 byte header, plus
304 * 2 32-bit sequence numbers for each SACK block.
305 */
306 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
307 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
308 }
309
317a76f9
SH
310 if (tcp_packets_in_flight(tp) == 0)
311 tcp_ca_event(tp, CA_EVENT_TX_START);
1da177e4
LT
312
313 th = (struct tcphdr *) skb_push(skb, tcp_header_size);
314 skb->h.th = th;
315 skb_set_owner_w(skb, sk);
316
317 /* Build TCP header and checksum it. */
318 th->source = inet->sport;
319 th->dest = inet->dport;
320 th->seq = htonl(tcb->seq);
321 th->ack_seq = htonl(tp->rcv_nxt);
322 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags);
323 if (tcb->flags & TCPCB_FLAG_SYN) {
324 /* RFC1323: The window in SYN & SYN/ACK segments
325 * is never scaled.
326 */
327 th->window = htons(tp->rcv_wnd);
328 } else {
329 th->window = htons(tcp_select_window(sk));
330 }
331 th->check = 0;
332 th->urg_ptr = 0;
333
334 if (tp->urg_mode &&
335 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
336 th->urg_ptr = htons(tp->snd_up-tcb->seq);
337 th->urg = 1;
338 }
339
340 if (tcb->flags & TCPCB_FLAG_SYN) {
341 tcp_syn_build_options((__u32 *)(th + 1),
342 tcp_advertise_mss(sk),
343 (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
344 (sysctl_flags & SYSCTL_FLAG_SACK),
345 (sysctl_flags & SYSCTL_FLAG_WSCALE),
346 tp->rx_opt.rcv_wscale,
347 tcb->when,
348 tp->rx_opt.ts_recent);
349 } else {
350 tcp_build_and_update_options((__u32 *)(th + 1),
351 tp, tcb->when);
352
353 TCP_ECN_send(sk, tp, skb, tcp_header_size);
354 }
355 tp->af_specific->send_check(sk, th, skb->len, skb);
356
357 if (tcb->flags & TCPCB_FLAG_ACK)
fc6415bc 358 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1da177e4
LT
359
360 if (skb->len != tcp_header_size)
361 tcp_event_data_sent(tp, skb, sk);
362
363 TCP_INC_STATS(TCP_MIB_OUTSEGS);
364
365 err = tp->af_specific->queue_xmit(skb, 0);
366 if (err <= 0)
367 return err;
368
369 tcp_enter_cwr(tp);
370
371 /* NET_XMIT_CN is special. It does not guarantee,
372 * that this packet is lost. It tells that device
373 * is about to start to drop packets or already
374 * drops some packets of the same priority and
375 * invokes us to send less aggressively.
376 */
377 return err == NET_XMIT_CN ? 0 : err;
378 }
379 return -ENOBUFS;
380#undef SYSCTL_FLAG_TSTAMPS
381#undef SYSCTL_FLAG_WSCALE
382#undef SYSCTL_FLAG_SACK
383}
384
385
386/* This routine just queue's the buffer
387 *
388 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
389 * otherwise socket can stall.
390 */
391static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
392{
393 struct tcp_sock *tp = tcp_sk(sk);
394
395 /* Advance write_seq and place onto the write_queue. */
396 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
397 skb_header_release(skb);
398 __skb_queue_tail(&sk->sk_write_queue, skb);
399 sk_charge_skb(sk, skb);
400
401 /* Queue it, remembering where we must start sending. */
402 if (sk->sk_send_head == NULL)
403 sk->sk_send_head = skb;
404}
405
406static inline void tcp_tso_set_push(struct sk_buff *skb)
407{
408 /* Force push to be on for any TSO frames to workaround
409 * problems with busted implementations like Mac OS-X that
410 * hold off socket receive wakeups until push is seen.
411 */
412 if (tcp_skb_pcount(skb) > 1)
413 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
414}
415
f6302d1d
DM
416static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb)
417{
418 struct tcp_sock *tp = tcp_sk(sk);
419
420 if (skb->len <= tp->mss_cache_std ||
421 !(sk->sk_route_caps & NETIF_F_TSO)) {
422 /* Avoid the costly divide in the normal
423 * non-TSO case.
424 */
425 skb_shinfo(skb)->tso_segs = 1;
426 skb_shinfo(skb)->tso_size = 0;
427 } else {
428 unsigned int factor;
429
430 factor = skb->len + (tp->mss_cache_std - 1);
431 factor /= tp->mss_cache_std;
432 skb_shinfo(skb)->tso_segs = factor;
433 skb_shinfo(skb)->tso_size = tp->mss_cache_std;
434 }
435}
436
437static inline int tcp_minshall_check(const struct tcp_sock *tp)
438{
439 return after(tp->snd_sml,tp->snd_una) &&
440 !after(tp->snd_sml, tp->snd_nxt);
441}
442
443/* Return 0, if packet can be sent now without violation Nagle's rules:
444 * 1. It is full sized.
445 * 2. Or it contains FIN.
446 * 3. Or TCP_NODELAY was set.
447 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
448 * With Minshall's modification: all sent small packets are ACKed.
449 */
450
451static inline int tcp_nagle_check(const struct tcp_sock *tp,
452 const struct sk_buff *skb,
453 unsigned mss_now, int nonagle)
454{
455 return (skb->len < mss_now &&
456 !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
457 ((nonagle&TCP_NAGLE_CORK) ||
458 (!nonagle &&
459 tp->packets_out &&
460 tcp_minshall_check(tp))));
461}
462
463/* This checks if the data bearing packet SKB (usually sk->sk_send_head)
464 * should be put on the wire right now.
465 */
466static int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
467 unsigned cur_mss, int nonagle)
468{
469 struct tcp_sock *tp = tcp_sk(sk);
470 int pkts = tcp_skb_pcount(skb);
471
472 if (!pkts) {
473 tcp_set_skb_tso_segs(sk, skb);
474 pkts = tcp_skb_pcount(skb);
475 }
476
477 /* RFC 1122 - section 4.2.3.4
478 *
479 * We must queue if
480 *
481 * a) The right edge of this frame exceeds the window
482 * b) There are packets in flight and we have a small segment
483 * [SWS avoidance and Nagle algorithm]
484 * (part of SWS is done on packetization)
485 * Minshall version sounds: there are no _small_
486 * segments in flight. (tcp_nagle_check)
487 * c) We have too many packets 'in flight'
488 *
489 * Don't use the nagle rule for urgent data (or
490 * for the final FIN -DaveM).
491 *
492 * Also, Nagle rule does not apply to frames, which
493 * sit in the middle of queue (they have no chances
494 * to get new data) and if room at tail of skb is
495 * not enough to save something seriously (<32 for now).
496 */
497
498 /* Don't be strict about the congestion window for the
499 * final FIN frame. -DaveM
500 */
501 return (((nonagle&TCP_NAGLE_PUSH) || tp->urg_mode
502 || !tcp_nagle_check(tp, skb, cur_mss, nonagle)) &&
503 (((tcp_packets_in_flight(tp) + (pkts-1)) < tp->snd_cwnd) ||
504 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) &&
505 !after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd));
506}
507
508static inline int tcp_skb_is_last(const struct sock *sk,
509 const struct sk_buff *skb)
510{
511 return skb->next == (struct sk_buff *)&sk->sk_write_queue;
512}
513
f6302d1d
DM
514int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
515{
516 struct sk_buff *skb = sk->sk_send_head;
517
518 return (skb &&
519 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
520 (tcp_skb_is_last(sk, skb) ?
521 TCP_NAGLE_PUSH :
522 tp->nonagle)));
523}
524
525
1da177e4
LT
526/* Send _single_ skb sitting at the send head. This function requires
527 * true push pending frames to setup probe timer etc.
528 */
529void tcp_push_one(struct sock *sk, unsigned cur_mss)
530{
531 struct tcp_sock *tp = tcp_sk(sk);
532 struct sk_buff *skb = sk->sk_send_head;
533
d5ac99a6 534 if (tcp_snd_test(sk, skb, cur_mss, TCP_NAGLE_PUSH)) {
1da177e4
LT
535 /* Send it out now. */
536 TCP_SKB_CB(skb)->when = tcp_time_stamp;
537 tcp_tso_set_push(skb);
538 if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) {
539 sk->sk_send_head = NULL;
540 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
541 tcp_packets_out_inc(sk, tp, skb);
542 return;
543 }
544 }
545}
546
1da177e4
LT
547/* Function to create two new TCP segments. Shrinks the given segment
548 * to the specified size and appends a new segment with the rest of the
549 * packet to the list. This won't be called frequently, I hope.
550 * Remember, these are still headerless SKBs at this point.
551 */
552static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len)
553{
554 struct tcp_sock *tp = tcp_sk(sk);
555 struct sk_buff *buff;
556 int nsize;
557 u16 flags;
558
559 nsize = skb_headlen(skb) - len;
560 if (nsize < 0)
561 nsize = 0;
562
563 if (skb_cloned(skb) &&
564 skb_is_nonlinear(skb) &&
565 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
566 return -ENOMEM;
567
568 /* Get a new skb... force flag on. */
569 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
570 if (buff == NULL)
571 return -ENOMEM; /* We'll just try again later. */
572 sk_charge_skb(sk, buff);
573
574 /* Correct the sequence numbers. */
575 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
576 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
577 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
578
579 /* PSH and FIN should only be set in the second packet. */
580 flags = TCP_SKB_CB(skb)->flags;
581 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
582 TCP_SKB_CB(buff)->flags = flags;
583 TCP_SKB_CB(buff)->sacked =
584 (TCP_SKB_CB(skb)->sacked &
585 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL));
586 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
587
588 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
589 /* Copy and checksum data tail into the new buffer. */
590 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
591 nsize, 0);
592
593 skb_trim(skb, len);
594
595 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
596 } else {
597 skb->ip_summed = CHECKSUM_HW;
598 skb_split(skb, buff, len);
599 }
600
601 buff->ip_summed = skb->ip_summed;
602
603 /* Looks stupid, but our code really uses when of
604 * skbs, which it never sent before. --ANK
605 */
606 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
317a76f9 607 buff->stamp = skb->stamp;
1da177e4
LT
608
609 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
610 tp->lost_out -= tcp_skb_pcount(skb);
611 tp->left_out -= tcp_skb_pcount(skb);
612 }
613
614 /* Fix up tso_factor for both original and new SKB. */
d5ac99a6
DM
615 tcp_set_skb_tso_segs(sk, skb);
616 tcp_set_skb_tso_segs(sk, buff);
1da177e4
LT
617
618 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
619 tp->lost_out += tcp_skb_pcount(skb);
620 tp->left_out += tcp_skb_pcount(skb);
621 }
622
623 if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) {
624 tp->lost_out += tcp_skb_pcount(buff);
625 tp->left_out += tcp_skb_pcount(buff);
626 }
627
628 /* Link BUFF into the send queue. */
f44b5271 629 skb_header_release(buff);
1da177e4
LT
630 __skb_append(skb, buff);
631
632 return 0;
633}
634
635/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
636 * eventually). The difference is that pulled data not copied, but
637 * immediately discarded.
638 */
639static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
640{
641 int i, k, eat;
642
643 eat = len;
644 k = 0;
645 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
646 if (skb_shinfo(skb)->frags[i].size <= eat) {
647 put_page(skb_shinfo(skb)->frags[i].page);
648 eat -= skb_shinfo(skb)->frags[i].size;
649 } else {
650 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
651 if (eat) {
652 skb_shinfo(skb)->frags[k].page_offset += eat;
653 skb_shinfo(skb)->frags[k].size -= eat;
654 eat = 0;
655 }
656 k++;
657 }
658 }
659 skb_shinfo(skb)->nr_frags = k;
660
661 skb->tail = skb->data;
662 skb->data_len -= len;
663 skb->len = skb->data_len;
664 return skb->tail;
665}
666
667int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
668{
669 if (skb_cloned(skb) &&
670 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
671 return -ENOMEM;
672
673 if (len <= skb_headlen(skb)) {
674 __skb_pull(skb, len);
675 } else {
676 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
677 return -ENOMEM;
678 }
679
680 TCP_SKB_CB(skb)->seq += len;
681 skb->ip_summed = CHECKSUM_HW;
682
683 skb->truesize -= len;
684 sk->sk_wmem_queued -= len;
685 sk->sk_forward_alloc += len;
686 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
687
688 /* Any change of skb->len requires recalculation of tso
689 * factor and mss.
690 */
691 if (tcp_skb_pcount(skb) > 1)
d5ac99a6 692 tcp_set_skb_tso_segs(sk, skb);
1da177e4
LT
693
694 return 0;
695}
696
697/* This function synchronize snd mss to current pmtu/exthdr set.
698
699 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
700 for TCP options, but includes only bare TCP header.
701
702 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
703 It is minumum of user_mss and mss received with SYN.
704 It also does not include TCP options.
705
706 tp->pmtu_cookie is last pmtu, seen by this function.
707
708 tp->mss_cache is current effective sending mss, including
709 all tcp options except for SACKs. It is evaluated,
710 taking into account current pmtu, but never exceeds
711 tp->rx_opt.mss_clamp.
712
713 NOTE1. rfc1122 clearly states that advertised MSS
714 DOES NOT include either tcp or ip options.
715
716 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
717 this function. --ANK (980731)
718 */
719
720unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
721{
722 struct tcp_sock *tp = tcp_sk(sk);
723 int mss_now;
724
725 /* Calculate base mss without TCP options:
726 It is MMS_S - sizeof(tcphdr) of rfc1122
727 */
728 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
729
730 /* Clamp it (mss_clamp does not include tcp options) */
731 if (mss_now > tp->rx_opt.mss_clamp)
732 mss_now = tp->rx_opt.mss_clamp;
733
734 /* Now subtract optional transport overhead */
735 mss_now -= tp->ext_header_len;
736
737 /* Then reserve room for full set of TCP options and 8 bytes of data */
738 if (mss_now < 48)
739 mss_now = 48;
740
741 /* Now subtract TCP options size, not including SACKs */
742 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
743
744 /* Bound mss with half of window */
745 if (tp->max_window && mss_now > (tp->max_window>>1))
746 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
747
748 /* And store cached results */
749 tp->pmtu_cookie = pmtu;
750 tp->mss_cache = tp->mss_cache_std = mss_now;
751
752 return mss_now;
753}
754
755/* Compute the current effective MSS, taking SACKs and IP options,
756 * and even PMTU discovery events into account.
757 *
758 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
759 * cannot be large. However, taking into account rare use of URG, this
760 * is not a big flaw.
761 */
762
763unsigned int tcp_current_mss(struct sock *sk, int large)
764{
765 struct tcp_sock *tp = tcp_sk(sk);
766 struct dst_entry *dst = __sk_dst_get(sk);
767 unsigned int do_large, mss_now;
768
769 mss_now = tp->mss_cache_std;
770 if (dst) {
771 u32 mtu = dst_mtu(dst);
772 if (mtu != tp->pmtu_cookie)
773 mss_now = tcp_sync_mss(sk, mtu);
774 }
775
776 do_large = (large &&
777 (sk->sk_route_caps & NETIF_F_TSO) &&
778 !tp->urg_mode);
779
780 if (do_large) {
781 unsigned int large_mss, factor, limit;
782
783 large_mss = 65535 - tp->af_specific->net_header_len -
784 tp->ext_header_len - tp->tcp_header_len;
785
786 if (tp->max_window && large_mss > (tp->max_window>>1))
787 large_mss = max((tp->max_window>>1),
788 68U - tp->tcp_header_len);
789
790 factor = large_mss / mss_now;
791
792 /* Always keep large mss multiple of real mss, but
793 * do not exceed 1/tso_win_divisor of the congestion window
794 * so we can keep the ACK clock ticking and minimize
795 * bursting.
796 */
797 limit = tp->snd_cwnd;
798 if (sysctl_tcp_tso_win_divisor)
799 limit /= sysctl_tcp_tso_win_divisor;
800 limit = max(1U, limit);
801 if (factor > limit)
802 factor = limit;
803
804 tp->mss_cache = mss_now * factor;
805
806 mss_now = tp->mss_cache;
807 }
808
809 if (tp->rx_opt.eff_sacks)
810 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
811 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
812 return mss_now;
813}
814
a762a980
DM
815/* Congestion window validation. (RFC2861) */
816
817static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
818{
819 __u32 packets_out = tp->packets_out;
820
821 if (packets_out >= tp->snd_cwnd) {
822 /* Network is feed fully. */
823 tp->snd_cwnd_used = 0;
824 tp->snd_cwnd_stamp = tcp_time_stamp;
825 } else {
826 /* Network starves. */
827 if (tp->packets_out > tp->snd_cwnd_used)
828 tp->snd_cwnd_used = tp->packets_out;
829
830 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= tp->rto)
831 tcp_cwnd_application_limited(sk);
832 }
833}
834
1da177e4
LT
835/* This routine writes packets to the network. It advances the
836 * send_head. This happens as incoming acks open up the remote
837 * window for us.
838 *
839 * Returns 1, if no segments are in flight and we have queued segments, but
840 * cannot send anything now because of SWS or another problem.
841 */
a762a980 842static int tcp_write_xmit(struct sock *sk, int nonagle)
1da177e4
LT
843{
844 struct tcp_sock *tp = tcp_sk(sk);
845 unsigned int mss_now;
846
847 /* If we are closed, the bytes will have to remain here.
848 * In time closedown will finish, we empty the write queue and all
849 * will be happy.
850 */
851 if (sk->sk_state != TCP_CLOSE) {
852 struct sk_buff *skb;
853 int sent_pkts = 0;
854
855 /* Account for SACKS, we may need to fragment due to this.
856 * It is just like the real MSS changing on us midstream.
857 * We also handle things correctly when the user adds some
858 * IP options mid-stream. Silly to do, but cover it.
859 */
860 mss_now = tcp_current_mss(sk, 1);
861
862 while ((skb = sk->sk_send_head) &&
d5ac99a6 863 tcp_snd_test(sk, skb, mss_now,
1da177e4
LT
864 tcp_skb_is_last(sk, skb) ? nonagle :
865 TCP_NAGLE_PUSH)) {
866 if (skb->len > mss_now) {
867 if (tcp_fragment(sk, skb, mss_now))
868 break;
869 }
870
871 TCP_SKB_CB(skb)->when = tcp_time_stamp;
872 tcp_tso_set_push(skb);
873 if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)))
874 break;
875
876 /* Advance the send_head. This one is sent out.
877 * This call will increment packets_out.
878 */
879 update_send_head(sk, tp, skb);
880
881 tcp_minshall_update(tp, mss_now, skb);
882 sent_pkts = 1;
883 }
884
885 if (sent_pkts) {
886 tcp_cwnd_validate(sk, tp);
887 return 0;
888 }
889
890 return !tp->packets_out && sk->sk_send_head;
891 }
892 return 0;
893}
894
a762a980
DM
895/* Push out any pending frames which were held back due to
896 * TCP_CORK or attempt at coalescing tiny packets.
897 * The socket must be locked by the caller.
898 */
899void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
900 unsigned cur_mss, int nonagle)
901{
902 struct sk_buff *skb = sk->sk_send_head;
903
904 if (skb) {
905 if (!tcp_skb_is_last(sk, skb))
906 nonagle = TCP_NAGLE_PUSH;
907 if (!tcp_snd_test(sk, skb, cur_mss, nonagle) ||
908 tcp_write_xmit(sk, nonagle))
909 tcp_check_probe_timer(sk, tp);
910 }
911}
912
913void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
914{
915 struct tcp_sock *tp = tcp_sk(sk);
916
917 if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
918 tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
919 tcp_write_xmit(sk, tp->nonagle))
920 tcp_check_probe_timer(sk, tp);
921}
922
1da177e4
LT
923/* This function returns the amount that we can raise the
924 * usable window based on the following constraints
925 *
926 * 1. The window can never be shrunk once it is offered (RFC 793)
927 * 2. We limit memory per socket
928 *
929 * RFC 1122:
930 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
931 * RECV.NEXT + RCV.WIN fixed until:
932 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
933 *
934 * i.e. don't raise the right edge of the window until you can raise
935 * it at least MSS bytes.
936 *
937 * Unfortunately, the recommended algorithm breaks header prediction,
938 * since header prediction assumes th->window stays fixed.
939 *
940 * Strictly speaking, keeping th->window fixed violates the receiver
941 * side SWS prevention criteria. The problem is that under this rule
942 * a stream of single byte packets will cause the right side of the
943 * window to always advance by a single byte.
944 *
945 * Of course, if the sender implements sender side SWS prevention
946 * then this will not be a problem.
947 *
948 * BSD seems to make the following compromise:
949 *
950 * If the free space is less than the 1/4 of the maximum
951 * space available and the free space is less than 1/2 mss,
952 * then set the window to 0.
953 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
954 * Otherwise, just prevent the window from shrinking
955 * and from being larger than the largest representable value.
956 *
957 * This prevents incremental opening of the window in the regime
958 * where TCP is limited by the speed of the reader side taking
959 * data out of the TCP receive queue. It does nothing about
960 * those cases where the window is constrained on the sender side
961 * because the pipeline is full.
962 *
963 * BSD also seems to "accidentally" limit itself to windows that are a
964 * multiple of MSS, at least until the free space gets quite small.
965 * This would appear to be a side effect of the mbuf implementation.
966 * Combining these two algorithms results in the observed behavior
967 * of having a fixed window size at almost all times.
968 *
969 * Below we obtain similar behavior by forcing the offered window to
970 * a multiple of the mss when it is feasible to do so.
971 *
972 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
973 * Regular options like TIMESTAMP are taken into account.
974 */
975u32 __tcp_select_window(struct sock *sk)
976{
977 struct tcp_sock *tp = tcp_sk(sk);
978 /* MSS for the peer's data. Previous verions used mss_clamp
979 * here. I don't know if the value based on our guesses
980 * of peer's MSS is better for the performance. It's more correct
981 * but may be worse for the performance because of rcv_mss
982 * fluctuations. --SAW 1998/11/1
983 */
984 int mss = tp->ack.rcv_mss;
985 int free_space = tcp_space(sk);
986 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
987 int window;
988
989 if (mss > full_space)
990 mss = full_space;
991
992 if (free_space < full_space/2) {
993 tp->ack.quick = 0;
994
995 if (tcp_memory_pressure)
996 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
997
998 if (free_space < mss)
999 return 0;
1000 }
1001
1002 if (free_space > tp->rcv_ssthresh)
1003 free_space = tp->rcv_ssthresh;
1004
1005 /* Don't do rounding if we are using window scaling, since the
1006 * scaled window will not line up with the MSS boundary anyway.
1007 */
1008 window = tp->rcv_wnd;
1009 if (tp->rx_opt.rcv_wscale) {
1010 window = free_space;
1011
1012 /* Advertise enough space so that it won't get scaled away.
1013 * Import case: prevent zero window announcement if
1014 * 1<<rcv_wscale > mss.
1015 */
1016 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1017 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1018 << tp->rx_opt.rcv_wscale);
1019 } else {
1020 /* Get the largest window that is a nice multiple of mss.
1021 * Window clamp already applied above.
1022 * If our current window offering is within 1 mss of the
1023 * free space we just keep it. This prevents the divide
1024 * and multiply from happening most of the time.
1025 * We also don't do any window rounding when the free space
1026 * is too small.
1027 */
1028 if (window <= free_space - mss || window > free_space)
1029 window = (free_space/mss)*mss;
1030 }
1031
1032 return window;
1033}
1034
1035/* Attempt to collapse two adjacent SKB's during retransmission. */
1036static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1037{
1038 struct tcp_sock *tp = tcp_sk(sk);
1039 struct sk_buff *next_skb = skb->next;
1040
1041 /* The first test we must make is that neither of these two
1042 * SKB's are still referenced by someone else.
1043 */
1044 if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1045 int skb_size = skb->len, next_skb_size = next_skb->len;
1046 u16 flags = TCP_SKB_CB(skb)->flags;
1047
1048 /* Also punt if next skb has been SACK'd. */
1049 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1050 return;
1051
1052 /* Next skb is out of window. */
1053 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1054 return;
1055
1056 /* Punt if not enough space exists in the first SKB for
1057 * the data in the second, or the total combined payload
1058 * would exceed the MSS.
1059 */
1060 if ((next_skb_size > skb_tailroom(skb)) ||
1061 ((skb_size + next_skb_size) > mss_now))
1062 return;
1063
1064 BUG_ON(tcp_skb_pcount(skb) != 1 ||
1065 tcp_skb_pcount(next_skb) != 1);
1066
1067 /* Ok. We will be able to collapse the packet. */
1068 __skb_unlink(next_skb, next_skb->list);
1069
1070 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1071
1072 if (next_skb->ip_summed == CHECKSUM_HW)
1073 skb->ip_summed = CHECKSUM_HW;
1074
1075 if (skb->ip_summed != CHECKSUM_HW)
1076 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1077
1078 /* Update sequence range on original skb. */
1079 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1080
1081 /* Merge over control information. */
1082 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1083 TCP_SKB_CB(skb)->flags = flags;
1084
1085 /* All done, get rid of second SKB and account for it so
1086 * packet counting does not break.
1087 */
1088 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1089 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1090 tp->retrans_out -= tcp_skb_pcount(next_skb);
1091 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1092 tp->lost_out -= tcp_skb_pcount(next_skb);
1093 tp->left_out -= tcp_skb_pcount(next_skb);
1094 }
1095 /* Reno case is special. Sigh... */
1096 if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1097 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1098 tp->left_out -= tcp_skb_pcount(next_skb);
1099 }
1100
1101 /* Not quite right: it can be > snd.fack, but
1102 * it is better to underestimate fackets.
1103 */
1104 tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1105 tcp_packets_out_dec(tp, next_skb);
1106 sk_stream_free_skb(sk, next_skb);
1107 }
1108}
1109
1110/* Do a simple retransmit without using the backoff mechanisms in
1111 * tcp_timer. This is used for path mtu discovery.
1112 * The socket is already locked here.
1113 */
1114void tcp_simple_retransmit(struct sock *sk)
1115{
1116 struct tcp_sock *tp = tcp_sk(sk);
1117 struct sk_buff *skb;
1118 unsigned int mss = tcp_current_mss(sk, 0);
1119 int lost = 0;
1120
1121 sk_stream_for_retrans_queue(skb, sk) {
1122 if (skb->len > mss &&
1123 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1124 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1125 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1126 tp->retrans_out -= tcp_skb_pcount(skb);
1127 }
1128 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1129 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1130 tp->lost_out += tcp_skb_pcount(skb);
1131 lost = 1;
1132 }
1133 }
1134 }
1135
1136 if (!lost)
1137 return;
1138
1139 tcp_sync_left_out(tp);
1140
1141 /* Don't muck with the congestion window here.
1142 * Reason is that we do not increase amount of _data_
1143 * in network, but units changed and effective
1144 * cwnd/ssthresh really reduced now.
1145 */
1146 if (tp->ca_state != TCP_CA_Loss) {
1147 tp->high_seq = tp->snd_nxt;
1148 tp->snd_ssthresh = tcp_current_ssthresh(tp);
1149 tp->prior_ssthresh = 0;
1150 tp->undo_marker = 0;
1151 tcp_set_ca_state(tp, TCP_CA_Loss);
1152 }
1153 tcp_xmit_retransmit_queue(sk);
1154}
1155
1156/* This retransmits one SKB. Policy decisions and retransmit queue
1157 * state updates are done by the caller. Returns non-zero if an
1158 * error occurred which prevented the send.
1159 */
1160int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1161{
1162 struct tcp_sock *tp = tcp_sk(sk);
1163 unsigned int cur_mss = tcp_current_mss(sk, 0);
1164 int err;
1165
1166 /* Do not sent more than we queued. 1/4 is reserved for possible
1167 * copying overhead: frgagmentation, tunneling, mangling etc.
1168 */
1169 if (atomic_read(&sk->sk_wmem_alloc) >
1170 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1171 return -EAGAIN;
1172
1173 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1174 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1175 BUG();
1176
1177 if (sk->sk_route_caps & NETIF_F_TSO) {
1178 sk->sk_route_caps &= ~NETIF_F_TSO;
1179 sock_set_flag(sk, SOCK_NO_LARGESEND);
1180 tp->mss_cache = tp->mss_cache_std;
1181 }
1182
1183 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1184 return -ENOMEM;
1185 }
1186
1187 /* If receiver has shrunk his window, and skb is out of
1188 * new window, do not retransmit it. The exception is the
1189 * case, when window is shrunk to zero. In this case
1190 * our retransmit serves as a zero window probe.
1191 */
1192 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1193 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1194 return -EAGAIN;
1195
1196 if (skb->len > cur_mss) {
1197 int old_factor = tcp_skb_pcount(skb);
1198 int new_factor;
1199
1200 if (tcp_fragment(sk, skb, cur_mss))
1201 return -ENOMEM; /* We'll try again later. */
1202
1203 /* New SKB created, account for it. */
1204 new_factor = tcp_skb_pcount(skb);
1205 tp->packets_out -= old_factor - new_factor;
1206 tp->packets_out += tcp_skb_pcount(skb->next);
1207 }
1208
1209 /* Collapse two adjacent packets if worthwhile and we can. */
1210 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1211 (skb->len < (cur_mss >> 1)) &&
1212 (skb->next != sk->sk_send_head) &&
1213 (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1214 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1215 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1216 (sysctl_tcp_retrans_collapse != 0))
1217 tcp_retrans_try_collapse(sk, skb, cur_mss);
1218
1219 if(tp->af_specific->rebuild_header(sk))
1220 return -EHOSTUNREACH; /* Routing failure or similar. */
1221
1222 /* Some Solaris stacks overoptimize and ignore the FIN on a
1223 * retransmit when old data is attached. So strip it off
1224 * since it is cheap to do so and saves bytes on the network.
1225 */
1226 if(skb->len > 0 &&
1227 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1228 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1229 if (!pskb_trim(skb, 0)) {
1230 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1231 skb_shinfo(skb)->tso_segs = 1;
1232 skb_shinfo(skb)->tso_size = 0;
1233 skb->ip_summed = CHECKSUM_NONE;
1234 skb->csum = 0;
1235 }
1236 }
1237
1238 /* Make a copy, if the first transmission SKB clone we made
1239 * is still in somebody's hands, else make a clone.
1240 */
1241 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1242 tcp_tso_set_push(skb);
1243
1244 err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
1245 pskb_copy(skb, GFP_ATOMIC):
1246 skb_clone(skb, GFP_ATOMIC)));
1247
1248 if (err == 0) {
1249 /* Update global TCP statistics. */
1250 TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1251
1252 tp->total_retrans++;
1253
1254#if FASTRETRANS_DEBUG > 0
1255 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1256 if (net_ratelimit())
1257 printk(KERN_DEBUG "retrans_out leaked.\n");
1258 }
1259#endif
1260 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1261 tp->retrans_out += tcp_skb_pcount(skb);
1262
1263 /* Save stamp of the first retransmit. */
1264 if (!tp->retrans_stamp)
1265 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1266
1267 tp->undo_retrans++;
1268
1269 /* snd_nxt is stored to detect loss of retransmitted segment,
1270 * see tcp_input.c tcp_sacktag_write_queue().
1271 */
1272 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1273 }
1274 return err;
1275}
1276
1277/* This gets called after a retransmit timeout, and the initially
1278 * retransmitted data is acknowledged. It tries to continue
1279 * resending the rest of the retransmit queue, until either
1280 * we've sent it all or the congestion window limit is reached.
1281 * If doing SACK, the first ACK which comes back for a timeout
1282 * based retransmit packet might feed us FACK information again.
1283 * If so, we use it to avoid unnecessarily retransmissions.
1284 */
1285void tcp_xmit_retransmit_queue(struct sock *sk)
1286{
1287 struct tcp_sock *tp = tcp_sk(sk);
1288 struct sk_buff *skb;
1289 int packet_cnt = tp->lost_out;
1290
1291 /* First pass: retransmit lost packets. */
1292 if (packet_cnt) {
1293 sk_stream_for_retrans_queue(skb, sk) {
1294 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1295
1296 /* Assume this retransmit will generate
1297 * only one packet for congestion window
1298 * calculation purposes. This works because
1299 * tcp_retransmit_skb() will chop up the
1300 * packet to be MSS sized and all the
1301 * packet counting works out.
1302 */
1303 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1304 return;
1305
1306 if (sacked&TCPCB_LOST) {
1307 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1308 if (tcp_retransmit_skb(sk, skb))
1309 return;
1310 if (tp->ca_state != TCP_CA_Loss)
1311 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1312 else
1313 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1314
1315 if (skb ==
1316 skb_peek(&sk->sk_write_queue))
1317 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1318 }
1319
1320 packet_cnt -= tcp_skb_pcount(skb);
1321 if (packet_cnt <= 0)
1322 break;
1323 }
1324 }
1325 }
1326
1327 /* OK, demanded retransmission is finished. */
1328
1329 /* Forward retransmissions are possible only during Recovery. */
1330 if (tp->ca_state != TCP_CA_Recovery)
1331 return;
1332
1333 /* No forward retransmissions in Reno are possible. */
1334 if (!tp->rx_opt.sack_ok)
1335 return;
1336
1337 /* Yeah, we have to make difficult choice between forward transmission
1338 * and retransmission... Both ways have their merits...
1339 *
1340 * For now we do not retransmit anything, while we have some new
1341 * segments to send.
1342 */
1343
1344 if (tcp_may_send_now(sk, tp))
1345 return;
1346
1347 packet_cnt = 0;
1348
1349 sk_stream_for_retrans_queue(skb, sk) {
1350 /* Similar to the retransmit loop above we
1351 * can pretend that the retransmitted SKB
1352 * we send out here will be composed of one
1353 * real MSS sized packet because tcp_retransmit_skb()
1354 * will fragment it if necessary.
1355 */
1356 if (++packet_cnt > tp->fackets_out)
1357 break;
1358
1359 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1360 break;
1361
1362 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1363 continue;
1364
1365 /* Ok, retransmit it. */
1366 if (tcp_retransmit_skb(sk, skb))
1367 break;
1368
1369 if (skb == skb_peek(&sk->sk_write_queue))
1370 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1371
1372 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1373 }
1374}
1375
1376
1377/* Send a fin. The caller locks the socket for us. This cannot be
1378 * allowed to fail queueing a FIN frame under any circumstances.
1379 */
1380void tcp_send_fin(struct sock *sk)
1381{
1382 struct tcp_sock *tp = tcp_sk(sk);
1383 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1384 int mss_now;
1385
1386 /* Optimization, tack on the FIN if we have a queue of
1387 * unsent frames. But be careful about outgoing SACKS
1388 * and IP options.
1389 */
1390 mss_now = tcp_current_mss(sk, 1);
1391
1392 if (sk->sk_send_head != NULL) {
1393 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1394 TCP_SKB_CB(skb)->end_seq++;
1395 tp->write_seq++;
1396 } else {
1397 /* Socket is locked, keep trying until memory is available. */
1398 for (;;) {
1399 skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL);
1400 if (skb)
1401 break;
1402 yield();
1403 }
1404
1405 /* Reserve space for headers and prepare control bits. */
1406 skb_reserve(skb, MAX_TCP_HEADER);
1407 skb->csum = 0;
1408 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1409 TCP_SKB_CB(skb)->sacked = 0;
1410 skb_shinfo(skb)->tso_segs = 1;
1411 skb_shinfo(skb)->tso_size = 0;
1412
1413 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1414 TCP_SKB_CB(skb)->seq = tp->write_seq;
1415 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1416 tcp_queue_skb(sk, skb);
1417 }
1418 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1419}
1420
1421/* We get here when a process closes a file descriptor (either due to
1422 * an explicit close() or as a byproduct of exit()'ing) and there
1423 * was unread data in the receive queue. This behavior is recommended
1424 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
1425 */
1426void tcp_send_active_reset(struct sock *sk, int priority)
1427{
1428 struct tcp_sock *tp = tcp_sk(sk);
1429 struct sk_buff *skb;
1430
1431 /* NOTE: No TCP options attached and we never retransmit this. */
1432 skb = alloc_skb(MAX_TCP_HEADER, priority);
1433 if (!skb) {
1434 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1435 return;
1436 }
1437
1438 /* Reserve space for headers and prepare control bits. */
1439 skb_reserve(skb, MAX_TCP_HEADER);
1440 skb->csum = 0;
1441 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1442 TCP_SKB_CB(skb)->sacked = 0;
1443 skb_shinfo(skb)->tso_segs = 1;
1444 skb_shinfo(skb)->tso_size = 0;
1445
1446 /* Send it off. */
1447 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1448 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1449 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1450 if (tcp_transmit_skb(sk, skb))
1451 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1452}
1453
1454/* WARNING: This routine must only be called when we have already sent
1455 * a SYN packet that crossed the incoming SYN that caused this routine
1456 * to get called. If this assumption fails then the initial rcv_wnd
1457 * and rcv_wscale values will not be correct.
1458 */
1459int tcp_send_synack(struct sock *sk)
1460{
1461 struct sk_buff* skb;
1462
1463 skb = skb_peek(&sk->sk_write_queue);
1464 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1465 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1466 return -EFAULT;
1467 }
1468 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1469 if (skb_cloned(skb)) {
1470 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1471 if (nskb == NULL)
1472 return -ENOMEM;
1473 __skb_unlink(skb, &sk->sk_write_queue);
1474 skb_header_release(nskb);
1475 __skb_queue_head(&sk->sk_write_queue, nskb);
1476 sk_stream_free_skb(sk, skb);
1477 sk_charge_skb(sk, nskb);
1478 skb = nskb;
1479 }
1480
1481 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1482 TCP_ECN_send_synack(tcp_sk(sk), skb);
1483 }
1484 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1485 return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1486}
1487
1488/*
1489 * Prepare a SYN-ACK.
1490 */
1491struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
60236fdd 1492 struct request_sock *req)
1da177e4 1493{
2e6599cb 1494 struct inet_request_sock *ireq = inet_rsk(req);
1da177e4
LT
1495 struct tcp_sock *tp = tcp_sk(sk);
1496 struct tcphdr *th;
1497 int tcp_header_size;
1498 struct sk_buff *skb;
1499
1500 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1501 if (skb == NULL)
1502 return NULL;
1503
1504 /* Reserve space for headers. */
1505 skb_reserve(skb, MAX_TCP_HEADER);
1506
1507 skb->dst = dst_clone(dst);
1508
1509 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
2e6599cb
ACM
1510 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1511 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1da177e4 1512 /* SACK_PERM is in the place of NOP NOP of TS */
2e6599cb 1513 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1da177e4
LT
1514 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1515
1516 memset(th, 0, sizeof(struct tcphdr));
1517 th->syn = 1;
1518 th->ack = 1;
1519 if (dst->dev->features&NETIF_F_TSO)
2e6599cb 1520 ireq->ecn_ok = 0;
1da177e4
LT
1521 TCP_ECN_make_synack(req, th);
1522 th->source = inet_sk(sk)->sport;
2e6599cb
ACM
1523 th->dest = ireq->rmt_port;
1524 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
1da177e4
LT
1525 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1526 TCP_SKB_CB(skb)->sacked = 0;
1527 skb_shinfo(skb)->tso_segs = 1;
1528 skb_shinfo(skb)->tso_size = 0;
1529 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2e6599cb 1530 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
1da177e4
LT
1531 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1532 __u8 rcv_wscale;
1533 /* Set this up on the first call only */
1534 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1535 /* tcp_full_space because it is guaranteed to be the first packet */
1536 tcp_select_initial_window(tcp_full_space(sk),
2e6599cb 1537 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1da177e4
LT
1538 &req->rcv_wnd,
1539 &req->window_clamp,
2e6599cb 1540 ireq->wscale_ok,
1da177e4 1541 &rcv_wscale);
2e6599cb 1542 ireq->rcv_wscale = rcv_wscale;
1da177e4
LT
1543 }
1544
1545 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1546 th->window = htons(req->rcv_wnd);
1547
1548 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2e6599cb
ACM
1549 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
1550 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
1da177e4
LT
1551 TCP_SKB_CB(skb)->when,
1552 req->ts_recent);
1553
1554 skb->csum = 0;
1555 th->doff = (tcp_header_size >> 2);
1556 TCP_INC_STATS(TCP_MIB_OUTSEGS);
1557 return skb;
1558}
1559
1560/*
1561 * Do all connect socket setups that can be done AF independent.
1562 */
1563static inline void tcp_connect_init(struct sock *sk)
1564{
1565 struct dst_entry *dst = __sk_dst_get(sk);
1566 struct tcp_sock *tp = tcp_sk(sk);
1567 __u8 rcv_wscale;
1568
1569 /* We'll fix this up when we get a response from the other end.
1570 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1571 */
1572 tp->tcp_header_len = sizeof(struct tcphdr) +
1573 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1574
1575 /* If user gave his TCP_MAXSEG, record it to clamp */
1576 if (tp->rx_opt.user_mss)
1577 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1578 tp->max_window = 0;
1579 tcp_sync_mss(sk, dst_mtu(dst));
1580
1581 if (!tp->window_clamp)
1582 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1583 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1584 tcp_initialize_rcv_mss(sk);
1da177e4
LT
1585
1586 tcp_select_initial_window(tcp_full_space(sk),
1587 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1588 &tp->rcv_wnd,
1589 &tp->window_clamp,
1590 sysctl_tcp_window_scaling,
1591 &rcv_wscale);
1592
1593 tp->rx_opt.rcv_wscale = rcv_wscale;
1594 tp->rcv_ssthresh = tp->rcv_wnd;
1595
1596 sk->sk_err = 0;
1597 sock_reset_flag(sk, SOCK_DONE);
1598 tp->snd_wnd = 0;
1599 tcp_init_wl(tp, tp->write_seq, 0);
1600 tp->snd_una = tp->write_seq;
1601 tp->snd_sml = tp->write_seq;
1602 tp->rcv_nxt = 0;
1603 tp->rcv_wup = 0;
1604 tp->copied_seq = 0;
1605
1606 tp->rto = TCP_TIMEOUT_INIT;
1607 tp->retransmits = 0;
1608 tcp_clear_retrans(tp);
1609}
1610
1611/*
1612 * Build a SYN and send it off.
1613 */
1614int tcp_connect(struct sock *sk)
1615{
1616 struct tcp_sock *tp = tcp_sk(sk);
1617 struct sk_buff *buff;
1618
1619 tcp_connect_init(sk);
1620
1621 buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation);
1622 if (unlikely(buff == NULL))
1623 return -ENOBUFS;
1624
1625 /* Reserve space for headers. */
1626 skb_reserve(buff, MAX_TCP_HEADER);
1627
1628 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1629 TCP_ECN_send_syn(sk, tp, buff);
1630 TCP_SKB_CB(buff)->sacked = 0;
1631 skb_shinfo(buff)->tso_segs = 1;
1632 skb_shinfo(buff)->tso_size = 0;
1633 buff->csum = 0;
1634 TCP_SKB_CB(buff)->seq = tp->write_seq++;
1635 TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1636 tp->snd_nxt = tp->write_seq;
1637 tp->pushed_seq = tp->write_seq;
1da177e4
LT
1638
1639 /* Send it off. */
1640 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1641 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1642 skb_header_release(buff);
1643 __skb_queue_tail(&sk->sk_write_queue, buff);
1644 sk_charge_skb(sk, buff);
1645 tp->packets_out += tcp_skb_pcount(buff);
1646 tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
1647 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1648
1649 /* Timer for repeating the SYN until an answer. */
1650 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1651 return 0;
1652}
1653
1654/* Send out a delayed ack, the caller does the policy checking
1655 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
1656 * for details.
1657 */
1658void tcp_send_delayed_ack(struct sock *sk)
1659{
1660 struct tcp_sock *tp = tcp_sk(sk);
1661 int ato = tp->ack.ato;
1662 unsigned long timeout;
1663
1664 if (ato > TCP_DELACK_MIN) {
1665 int max_ato = HZ/2;
1666
1667 if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED))
1668 max_ato = TCP_DELACK_MAX;
1669
1670 /* Slow path, intersegment interval is "high". */
1671
1672 /* If some rtt estimate is known, use it to bound delayed ack.
1673 * Do not use tp->rto here, use results of rtt measurements
1674 * directly.
1675 */
1676 if (tp->srtt) {
1677 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1678
1679 if (rtt < max_ato)
1680 max_ato = rtt;
1681 }
1682
1683 ato = min(ato, max_ato);
1684 }
1685
1686 /* Stay within the limit we were given */
1687 timeout = jiffies + ato;
1688
1689 /* Use new timeout only if there wasn't a older one earlier. */
1690 if (tp->ack.pending&TCP_ACK_TIMER) {
1691 /* If delack timer was blocked or is about to expire,
1692 * send ACK now.
1693 */
1694 if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) {
1695 tcp_send_ack(sk);
1696 return;
1697 }
1698
1699 if (!time_before(timeout, tp->ack.timeout))
1700 timeout = tp->ack.timeout;
1701 }
1702 tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER;
1703 tp->ack.timeout = timeout;
1704 sk_reset_timer(sk, &tp->delack_timer, timeout);
1705}
1706
1707/* This routine sends an ack and also updates the window. */
1708void tcp_send_ack(struct sock *sk)
1709{
1710 /* If we have been reset, we may not send again. */
1711 if (sk->sk_state != TCP_CLOSE) {
1712 struct tcp_sock *tp = tcp_sk(sk);
1713 struct sk_buff *buff;
1714
1715 /* We are not putting this on the write queue, so
1716 * tcp_transmit_skb() will set the ownership to this
1717 * sock.
1718 */
1719 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1720 if (buff == NULL) {
1721 tcp_schedule_ack(tp);
1722 tp->ack.ato = TCP_ATO_MIN;
1723 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
1724 return;
1725 }
1726
1727 /* Reserve space for headers and prepare control bits. */
1728 skb_reserve(buff, MAX_TCP_HEADER);
1729 buff->csum = 0;
1730 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
1731 TCP_SKB_CB(buff)->sacked = 0;
1732 skb_shinfo(buff)->tso_segs = 1;
1733 skb_shinfo(buff)->tso_size = 0;
1734
1735 /* Send it off, this clears delayed acks for us. */
1736 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
1737 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1738 tcp_transmit_skb(sk, buff);
1739 }
1740}
1741
1742/* This routine sends a packet with an out of date sequence
1743 * number. It assumes the other end will try to ack it.
1744 *
1745 * Question: what should we make while urgent mode?
1746 * 4.4BSD forces sending single byte of data. We cannot send
1747 * out of window data, because we have SND.NXT==SND.MAX...
1748 *
1749 * Current solution: to send TWO zero-length segments in urgent mode:
1750 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1751 * out-of-date with SND.UNA-1 to probe window.
1752 */
1753static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
1754{
1755 struct tcp_sock *tp = tcp_sk(sk);
1756 struct sk_buff *skb;
1757
1758 /* We don't queue it, tcp_transmit_skb() sets ownership. */
1759 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1760 if (skb == NULL)
1761 return -1;
1762
1763 /* Reserve space for headers and set control bits. */
1764 skb_reserve(skb, MAX_TCP_HEADER);
1765 skb->csum = 0;
1766 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
1767 TCP_SKB_CB(skb)->sacked = urgent;
1768 skb_shinfo(skb)->tso_segs = 1;
1769 skb_shinfo(skb)->tso_size = 0;
1770
1771 /* Use a previous sequence. This should cause the other
1772 * end to send an ack. Don't queue or clone SKB, just
1773 * send it.
1774 */
1775 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
1776 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1777 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1778 return tcp_transmit_skb(sk, skb);
1779}
1780
1781int tcp_write_wakeup(struct sock *sk)
1782{
1783 if (sk->sk_state != TCP_CLOSE) {
1784 struct tcp_sock *tp = tcp_sk(sk);
1785 struct sk_buff *skb;
1786
1787 if ((skb = sk->sk_send_head) != NULL &&
1788 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
1789 int err;
1790 unsigned int mss = tcp_current_mss(sk, 0);
1791 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
1792
1793 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
1794 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
1795
1796 /* We are probing the opening of a window
1797 * but the window size is != 0
1798 * must have been a result SWS avoidance ( sender )
1799 */
1800 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
1801 skb->len > mss) {
1802 seg_size = min(seg_size, mss);
1803 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1804 if (tcp_fragment(sk, skb, seg_size))
1805 return -1;
1806 /* SWS override triggered forced fragmentation.
1807 * Disable TSO, the connection is too sick. */
1808 if (sk->sk_route_caps & NETIF_F_TSO) {
1809 sock_set_flag(sk, SOCK_NO_LARGESEND);
1810 sk->sk_route_caps &= ~NETIF_F_TSO;
1811 tp->mss_cache = tp->mss_cache_std;
1812 }
1813 } else if (!tcp_skb_pcount(skb))
d5ac99a6 1814 tcp_set_skb_tso_segs(sk, skb);
1da177e4
LT
1815
1816 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1817 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1818 tcp_tso_set_push(skb);
1819 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1820 if (!err) {
1821 update_send_head(sk, tp, skb);
1822 }
1823 return err;
1824 } else {
1825 if (tp->urg_mode &&
1826 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
1827 tcp_xmit_probe_skb(sk, TCPCB_URG);
1828 return tcp_xmit_probe_skb(sk, 0);
1829 }
1830 }
1831 return -1;
1832}
1833
1834/* A window probe timeout has occurred. If window is not closed send
1835 * a partial packet else a zero probe.
1836 */
1837void tcp_send_probe0(struct sock *sk)
1838{
1839 struct tcp_sock *tp = tcp_sk(sk);
1840 int err;
1841
1842 err = tcp_write_wakeup(sk);
1843
1844 if (tp->packets_out || !sk->sk_send_head) {
1845 /* Cancel probe timer, if it is not required. */
1846 tp->probes_out = 0;
1847 tp->backoff = 0;
1848 return;
1849 }
1850
1851 if (err <= 0) {
1852 if (tp->backoff < sysctl_tcp_retries2)
1853 tp->backoff++;
1854 tp->probes_out++;
1855 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
1856 min(tp->rto << tp->backoff, TCP_RTO_MAX));
1857 } else {
1858 /* If packet was not sent due to local congestion,
1859 * do not backoff and do not remember probes_out.
1860 * Let local senders to fight for local resources.
1861 *
1862 * Use accumulated backoff yet.
1863 */
1864 if (!tp->probes_out)
1865 tp->probes_out=1;
1866 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
1867 min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL));
1868 }
1869}
1870
1871EXPORT_SYMBOL(tcp_connect);
1872EXPORT_SYMBOL(tcp_make_synack);
1873EXPORT_SYMBOL(tcp_simple_retransmit);
1874EXPORT_SYMBOL(tcp_sync_mss);