]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/ip_output.c
[SOCK]: Rename __tcp_v4_rehash to __sk_prot_rehash
[net-next-2.6.git] / net / ipv4 / ip_output.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Version: $Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Donald Becker, <becker@super.org>
13 * Alan Cox, <Alan.Cox@linux.org>
14 * Richard Underwood
15 * Stefan Becker, <stefanb@yello.ping.de>
16 * Jorge Cwik, <jorge@laser.satlink.net>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Hirokazu Takahashi, <taka@valinux.co.jp>
19 *
20 * See ip_input.c for original log
21 *
22 * Fixes:
23 * Alan Cox : Missing nonblock feature in ip_build_xmit.
24 * Mike Kilburn : htons() missing in ip_build_xmit.
25 * Bradford Johnson: Fix faulty handling of some frames when
26 * no route is found.
27 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
28 * (in case if packet not accepted by
29 * output firewall rules)
30 * Mike McLagan : Routing by source
31 * Alexey Kuznetsov: use new route cache
32 * Andi Kleen: Fix broken PMTU recovery and remove
33 * some redundant tests.
34 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
35 * Andi Kleen : Replace ip_reply with ip_send_reply.
36 * Andi Kleen : Split fast and slow ip_build_xmit path
37 * for decreased register pressure on x86
38 * and more readibility.
39 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
40 * silently drop skb instead of failing with -EPERM.
41 * Detlev Wengorz : Copy protocol for fragments.
42 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * datagrams.
44 * Hirokazu Takahashi: sendfile() on UDP works now.
45 */
46
47#include <asm/uaccess.h>
48#include <asm/system.h>
49#include <linux/module.h>
50#include <linux/types.h>
51#include <linux/kernel.h>
52#include <linux/sched.h>
53#include <linux/mm.h>
54#include <linux/string.h>
55#include <linux/errno.h>
56#include <linux/config.h>
57
58#include <linux/socket.h>
59#include <linux/sockios.h>
60#include <linux/in.h>
61#include <linux/inet.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/proc_fs.h>
65#include <linux/stat.h>
66#include <linux/init.h>
67
68#include <net/snmp.h>
69#include <net/ip.h>
70#include <net/protocol.h>
71#include <net/route.h>
72#include <net/tcp.h>
73#include <net/udp.h>
74#include <linux/skbuff.h>
75#include <net/sock.h>
76#include <net/arp.h>
77#include <net/icmp.h>
78#include <net/raw.h>
79#include <net/checksum.h>
80#include <net/inetpeer.h>
81#include <net/checksum.h>
82#include <linux/igmp.h>
83#include <linux/netfilter_ipv4.h>
84#include <linux/netfilter_bridge.h>
85#include <linux/mroute.h>
86#include <linux/netlink.h>
87
88/*
89 * Shall we try to damage output packets if routing dev changes?
90 */
91
92int sysctl_ip_dynaddr;
93int sysctl_ip_default_ttl = IPDEFTTL;
94
95/* Generate a checksum for an outgoing IP datagram. */
96__inline__ void ip_send_check(struct iphdr *iph)
97{
98 iph->check = 0;
99 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
100}
101
102/* dev_loopback_xmit for use with netfilter. */
103static int ip_dev_loopback_xmit(struct sk_buff *newskb)
104{
105 newskb->mac.raw = newskb->data;
106 __skb_pull(newskb, newskb->nh.raw - newskb->data);
107 newskb->pkt_type = PACKET_LOOPBACK;
108 newskb->ip_summed = CHECKSUM_UNNECESSARY;
109 BUG_TRAP(newskb->dst);
1da177e4
LT
110 netif_rx(newskb);
111 return 0;
112}
113
114static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
115{
116 int ttl = inet->uc_ttl;
117
118 if (ttl < 0)
119 ttl = dst_metric(dst, RTAX_HOPLIMIT);
120 return ttl;
121}
122
123/*
124 * Add an ip header to a skbuff and send it out.
125 *
126 */
127int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
128 u32 saddr, u32 daddr, struct ip_options *opt)
129{
130 struct inet_sock *inet = inet_sk(sk);
131 struct rtable *rt = (struct rtable *)skb->dst;
132 struct iphdr *iph;
133
134 /* Build the IP header. */
135 if (opt)
136 iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr) + opt->optlen);
137 else
138 iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr));
139
140 iph->version = 4;
141 iph->ihl = 5;
142 iph->tos = inet->tos;
143 if (ip_dont_fragment(sk, &rt->u.dst))
144 iph->frag_off = htons(IP_DF);
145 else
146 iph->frag_off = 0;
147 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
148 iph->daddr = rt->rt_dst;
149 iph->saddr = rt->rt_src;
150 iph->protocol = sk->sk_protocol;
151 iph->tot_len = htons(skb->len);
152 ip_select_ident(iph, &rt->u.dst, sk);
153 skb->nh.iph = iph;
154
155 if (opt && opt->optlen) {
156 iph->ihl += opt->optlen>>2;
157 ip_options_build(skb, opt, daddr, rt, 0);
158 }
159 ip_send_check(iph);
160
161 skb->priority = sk->sk_priority;
162
163 /* Send it out. */
164 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
165 dst_output);
166}
167
168static inline int ip_finish_output2(struct sk_buff *skb)
169{
170 struct dst_entry *dst = skb->dst;
171 struct hh_cache *hh = dst->hh;
172 struct net_device *dev = dst->dev;
173 int hh_len = LL_RESERVED_SPACE(dev);
174
175 /* Be paranoid, rather than too clever. */
176 if (unlikely(skb_headroom(skb) < hh_len && dev->hard_header)) {
177 struct sk_buff *skb2;
178
179 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
180 if (skb2 == NULL) {
181 kfree_skb(skb);
182 return -ENOMEM;
183 }
184 if (skb->sk)
185 skb_set_owner_w(skb2, skb->sk);
186 kfree_skb(skb);
187 skb = skb2;
188 }
189
1da177e4
LT
190 if (hh) {
191 int hh_alen;
192
193 read_lock_bh(&hh->hh_lock);
194 hh_alen = HH_DATA_ALIGN(hh->hh_len);
195 memcpy(skb->data - hh_alen, hh->hh_data, hh_alen);
196 read_unlock_bh(&hh->hh_lock);
197 skb_push(skb, hh->hh_len);
198 return hh->hh_output(skb);
199 } else if (dst->neighbour)
200 return dst->neighbour->output(skb);
201
202 if (net_ratelimit())
203 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
204 kfree_skb(skb);
205 return -EINVAL;
206}
207
0742fd53 208static int ip_finish_output(struct sk_buff *skb)
1da177e4
LT
209{
210 struct net_device *dev = skb->dst->dev;
211
212 skb->dev = dev;
213 skb->protocol = htons(ETH_P_IP);
214
215 return NF_HOOK(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
216 ip_finish_output2);
217}
218
219int ip_mc_output(struct sk_buff *skb)
220{
221 struct sock *sk = skb->sk;
222 struct rtable *rt = (struct rtable*)skb->dst;
223 struct net_device *dev = rt->u.dst.dev;
224
225 /*
226 * If the indicated interface is up and running, send the packet.
227 */
228 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
229
230 skb->dev = dev;
231 skb->protocol = htons(ETH_P_IP);
232
233 /*
234 * Multicasts are looped back for other local users
235 */
236
237 if (rt->rt_flags&RTCF_MULTICAST) {
238 if ((!sk || inet_sk(sk)->mc_loop)
239#ifdef CONFIG_IP_MROUTE
240 /* Small optimization: do not loopback not local frames,
241 which returned after forwarding; they will be dropped
242 by ip_mr_input in any case.
243 Note, that local frames are looped back to be delivered
244 to local recipients.
245
246 This check is duplicated in ip_mr_input at the moment.
247 */
248 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
249#endif
250 ) {
251 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
252 if (newskb)
253 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
254 newskb->dev,
255 ip_dev_loopback_xmit);
256 }
257
258 /* Multicasts with ttl 0 must not go beyond the host */
259
260 if (skb->nh.iph->ttl == 0) {
261 kfree_skb(skb);
262 return 0;
263 }
264 }
265
266 if (rt->rt_flags&RTCF_BROADCAST) {
267 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
268 if (newskb)
269 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
270 newskb->dev, ip_dev_loopback_xmit);
271 }
272
273 if (skb->len > dst_mtu(&rt->u.dst))
274 return ip_fragment(skb, ip_finish_output);
275 else
276 return ip_finish_output(skb);
277}
278
279int ip_output(struct sk_buff *skb)
280{
281 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
282
283 if (skb->len > dst_mtu(skb->dst) && !skb_shinfo(skb)->tso_size)
284 return ip_fragment(skb, ip_finish_output);
285 else
286 return ip_finish_output(skb);
287}
288
289int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
290{
291 struct sock *sk = skb->sk;
292 struct inet_sock *inet = inet_sk(sk);
293 struct ip_options *opt = inet->opt;
294 struct rtable *rt;
295 struct iphdr *iph;
296
297 /* Skip all of this if the packet is already routed,
298 * f.e. by something like SCTP.
299 */
300 rt = (struct rtable *) skb->dst;
301 if (rt != NULL)
302 goto packet_routed;
303
304 /* Make sure we can route this packet. */
305 rt = (struct rtable *)__sk_dst_check(sk, 0);
306 if (rt == NULL) {
307 u32 daddr;
308
309 /* Use correct destination address if we have options. */
310 daddr = inet->daddr;
311 if(opt && opt->srr)
312 daddr = opt->faddr;
313
314 {
315 struct flowi fl = { .oif = sk->sk_bound_dev_if,
316 .nl_u = { .ip4_u =
317 { .daddr = daddr,
318 .saddr = inet->saddr,
319 .tos = RT_CONN_FLAGS(sk) } },
320 .proto = sk->sk_protocol,
321 .uli_u = { .ports =
322 { .sport = inet->sport,
323 .dport = inet->dport } } };
324
325 /* If this fails, retransmit mechanism of transport layer will
326 * keep trying until route appears or the connection times
327 * itself out.
328 */
329 if (ip_route_output_flow(&rt, &fl, sk, 0))
330 goto no_route;
331 }
332 __sk_dst_set(sk, &rt->u.dst);
333 tcp_v4_setup_caps(sk, &rt->u.dst);
334 }
335 skb->dst = dst_clone(&rt->u.dst);
336
337packet_routed:
338 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
339 goto no_route;
340
341 /* OK, we know where to send it, allocate and build IP header. */
342 iph = (struct iphdr *) skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
343 *((__u16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
344 iph->tot_len = htons(skb->len);
345 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
346 iph->frag_off = htons(IP_DF);
347 else
348 iph->frag_off = 0;
349 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
350 iph->protocol = sk->sk_protocol;
351 iph->saddr = rt->rt_src;
352 iph->daddr = rt->rt_dst;
353 skb->nh.iph = iph;
354 /* Transport layer set skb->h.foo itself. */
355
356 if (opt && opt->optlen) {
357 iph->ihl += opt->optlen >> 2;
358 ip_options_build(skb, opt, inet->daddr, rt, 0);
359 }
360
361 ip_select_ident_more(iph, &rt->u.dst, sk, skb_shinfo(skb)->tso_segs);
362
363 /* Add an IP checksum. */
364 ip_send_check(iph);
365
366 skb->priority = sk->sk_priority;
367
368 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
369 dst_output);
370
371no_route:
372 IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
373 kfree_skb(skb);
374 return -EHOSTUNREACH;
375}
376
377
378static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
379{
380 to->pkt_type = from->pkt_type;
381 to->priority = from->priority;
382 to->protocol = from->protocol;
1da177e4
LT
383 dst_release(to->dst);
384 to->dst = dst_clone(from->dst);
385 to->dev = from->dev;
386
387 /* Copy the flags to each fragment. */
388 IPCB(to)->flags = IPCB(from)->flags;
389
390#ifdef CONFIG_NET_SCHED
391 to->tc_index = from->tc_index;
392#endif
393#ifdef CONFIG_NETFILTER
394 to->nfmark = from->nfmark;
1da177e4
LT
395 /* Connection association is same as pre-frag packet */
396 nf_conntrack_put(to->nfct);
397 to->nfct = from->nfct;
398 nf_conntrack_get(to->nfct);
399 to->nfctinfo = from->nfctinfo;
400#ifdef CONFIG_BRIDGE_NETFILTER
401 nf_bridge_put(to->nf_bridge);
402 to->nf_bridge = from->nf_bridge;
403 nf_bridge_get(to->nf_bridge);
404#endif
1da177e4
LT
405#endif
406}
407
408/*
409 * This IP datagram is too large to be sent in one piece. Break it up into
410 * smaller pieces (each of size equal to IP header plus
411 * a block of the data of the original IP data part) that will yet fit in a
412 * single device frame, and queue such a frame for sending.
413 */
414
415int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
416{
417 struct iphdr *iph;
418 int raw = 0;
419 int ptr;
420 struct net_device *dev;
421 struct sk_buff *skb2;
422 unsigned int mtu, hlen, left, len, ll_rs;
423 int offset;
424 int not_last_frag;
425 struct rtable *rt = (struct rtable*)skb->dst;
426 int err = 0;
427
428 dev = rt->u.dst.dev;
429
430 /*
431 * Point into the IP datagram header.
432 */
433
434 iph = skb->nh.iph;
435
436 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
437 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
438 htonl(dst_mtu(&rt->u.dst)));
439 kfree_skb(skb);
440 return -EMSGSIZE;
441 }
442
443 /*
444 * Setup starting values.
445 */
446
447 hlen = iph->ihl * 4;
448 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
449
450 /* When frag_list is given, use it. First, check its validity:
451 * some transformers could create wrong frag_list or break existing
452 * one, it is not prohibited. In this case fall back to copying.
453 *
454 * LATER: this step can be merged to real generation of fragments,
455 * we can switch to copy when see the first bad fragment.
456 */
457 if (skb_shinfo(skb)->frag_list) {
458 struct sk_buff *frag;
459 int first_len = skb_pagelen(skb);
460
461 if (first_len - hlen > mtu ||
462 ((first_len - hlen) & 7) ||
463 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
464 skb_cloned(skb))
465 goto slow_path;
466
467 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
468 /* Correct geometry. */
469 if (frag->len > mtu ||
470 ((frag->len & 7) && frag->next) ||
471 skb_headroom(frag) < hlen)
472 goto slow_path;
473
474 /* Partially cloned skb? */
475 if (skb_shared(frag))
476 goto slow_path;
2fdba6b0
HX
477
478 BUG_ON(frag->sk);
479 if (skb->sk) {
480 sock_hold(skb->sk);
481 frag->sk = skb->sk;
482 frag->destructor = sock_wfree;
483 skb->truesize -= frag->truesize;
484 }
1da177e4
LT
485 }
486
487 /* Everything is OK. Generate! */
488
489 err = 0;
490 offset = 0;
491 frag = skb_shinfo(skb)->frag_list;
492 skb_shinfo(skb)->frag_list = NULL;
493 skb->data_len = first_len - skb_headlen(skb);
494 skb->len = first_len;
495 iph->tot_len = htons(first_len);
496 iph->frag_off = htons(IP_MF);
497 ip_send_check(iph);
498
499 for (;;) {
500 /* Prepare header of the next frame,
501 * before previous one went down. */
502 if (frag) {
503 frag->ip_summed = CHECKSUM_NONE;
504 frag->h.raw = frag->data;
505 frag->nh.raw = __skb_push(frag, hlen);
506 memcpy(frag->nh.raw, iph, hlen);
507 iph = frag->nh.iph;
508 iph->tot_len = htons(frag->len);
509 ip_copy_metadata(frag, skb);
510 if (offset == 0)
511 ip_options_fragment(frag);
512 offset += skb->len - hlen;
513 iph->frag_off = htons(offset>>3);
514 if (frag->next != NULL)
515 iph->frag_off |= htons(IP_MF);
516 /* Ready, complete checksum */
517 ip_send_check(iph);
518 }
519
520 err = output(skb);
521
522 if (err || !frag)
523 break;
524
525 skb = frag;
526 frag = skb->next;
527 skb->next = NULL;
528 }
529
530 if (err == 0) {
531 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
532 return 0;
533 }
534
535 while (frag) {
536 skb = frag->next;
537 kfree_skb(frag);
538 frag = skb;
539 }
540 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
541 return err;
542 }
543
544slow_path:
545 left = skb->len - hlen; /* Space per frame */
546 ptr = raw + hlen; /* Where to start from */
547
548#ifdef CONFIG_BRIDGE_NETFILTER
549 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
550 * we need to make room for the encapsulating header */
551 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, nf_bridge_pad(skb));
552 mtu -= nf_bridge_pad(skb);
553#else
554 ll_rs = LL_RESERVED_SPACE(rt->u.dst.dev);
555#endif
556 /*
557 * Fragment the datagram.
558 */
559
560 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
561 not_last_frag = iph->frag_off & htons(IP_MF);
562
563 /*
564 * Keep copying data until we run out.
565 */
566
567 while(left > 0) {
568 len = left;
569 /* IF: it doesn't fit, use 'mtu' - the data space left */
570 if (len > mtu)
571 len = mtu;
572 /* IF: we are not sending upto and including the packet end
573 then align the next start on an eight byte boundary */
574 if (len < left) {
575 len &= ~7;
576 }
577 /*
578 * Allocate buffer.
579 */
580
581 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
582 NETDEBUG(printk(KERN_INFO "IP: frag: no memory for new fragment!\n"));
583 err = -ENOMEM;
584 goto fail;
585 }
586
587 /*
588 * Set up data on packet
589 */
590
591 ip_copy_metadata(skb2, skb);
592 skb_reserve(skb2, ll_rs);
593 skb_put(skb2, len + hlen);
594 skb2->nh.raw = skb2->data;
595 skb2->h.raw = skb2->data + hlen;
596
597 /*
598 * Charge the memory for the fragment to any owner
599 * it might possess
600 */
601
602 if (skb->sk)
603 skb_set_owner_w(skb2, skb->sk);
604
605 /*
606 * Copy the packet header into the new buffer.
607 */
608
609 memcpy(skb2->nh.raw, skb->data, hlen);
610
611 /*
612 * Copy a block of the IP datagram.
613 */
614 if (skb_copy_bits(skb, ptr, skb2->h.raw, len))
615 BUG();
616 left -= len;
617
618 /*
619 * Fill in the new header fields.
620 */
621 iph = skb2->nh.iph;
622 iph->frag_off = htons((offset >> 3));
623
624 /* ANK: dirty, but effective trick. Upgrade options only if
625 * the segment to be fragmented was THE FIRST (otherwise,
626 * options are already fixed) and make it ONCE
627 * on the initial skb, so that all the following fragments
628 * will inherit fixed options.
629 */
630 if (offset == 0)
631 ip_options_fragment(skb);
632
633 /*
634 * Added AC : If we are fragmenting a fragment that's not the
635 * last fragment then keep MF on each bit
636 */
637 if (left > 0 || not_last_frag)
638 iph->frag_off |= htons(IP_MF);
639 ptr += len;
640 offset += len;
641
642 /*
643 * Put this fragment into the sending queue.
644 */
645
646 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
647
648 iph->tot_len = htons(len + hlen);
649
650 ip_send_check(iph);
651
652 err = output(skb2);
653 if (err)
654 goto fail;
655 }
656 kfree_skb(skb);
657 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
658 return err;
659
660fail:
661 kfree_skb(skb);
662 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
663 return err;
664}
665
666int
667ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
668{
669 struct iovec *iov = from;
670
671 if (skb->ip_summed == CHECKSUM_HW) {
672 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
673 return -EFAULT;
674 } else {
675 unsigned int csum = 0;
676 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
677 return -EFAULT;
678 skb->csum = csum_block_add(skb->csum, csum, odd);
679 }
680 return 0;
681}
682
683static inline unsigned int
684csum_page(struct page *page, int offset, int copy)
685{
686 char *kaddr;
687 unsigned int csum;
688 kaddr = kmap(page);
689 csum = csum_partial(kaddr + offset, copy, 0);
690 kunmap(page);
691 return csum;
692}
693
694/*
695 * ip_append_data() and ip_append_page() can make one large IP datagram
696 * from many pieces of data. Each pieces will be holded on the socket
697 * until ip_push_pending_frames() is called. Each piece can be a page
698 * or non-page data.
699 *
700 * Not only UDP, other transport protocols - e.g. raw sockets - can use
701 * this interface potentially.
702 *
703 * LATER: length must be adjusted by pad at tail, when it is required.
704 */
705int ip_append_data(struct sock *sk,
706 int getfrag(void *from, char *to, int offset, int len,
707 int odd, struct sk_buff *skb),
708 void *from, int length, int transhdrlen,
709 struct ipcm_cookie *ipc, struct rtable *rt,
710 unsigned int flags)
711{
712 struct inet_sock *inet = inet_sk(sk);
713 struct sk_buff *skb;
714
715 struct ip_options *opt = NULL;
716 int hh_len;
717 int exthdrlen;
718 int mtu;
719 int copy;
720 int err;
721 int offset = 0;
722 unsigned int maxfraglen, fragheaderlen;
723 int csummode = CHECKSUM_NONE;
724
725 if (flags&MSG_PROBE)
726 return 0;
727
728 if (skb_queue_empty(&sk->sk_write_queue)) {
729 /*
730 * setup for corking.
731 */
732 opt = ipc->opt;
733 if (opt) {
734 if (inet->cork.opt == NULL) {
735 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
736 if (unlikely(inet->cork.opt == NULL))
737 return -ENOBUFS;
738 }
739 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
740 inet->cork.flags |= IPCORK_OPT;
741 inet->cork.addr = ipc->addr;
742 }
743 dst_hold(&rt->u.dst);
744 inet->cork.fragsize = mtu = dst_mtu(rt->u.dst.path);
745 inet->cork.rt = rt;
746 inet->cork.length = 0;
747 sk->sk_sndmsg_page = NULL;
748 sk->sk_sndmsg_off = 0;
749 if ((exthdrlen = rt->u.dst.header_len) != 0) {
750 length += exthdrlen;
751 transhdrlen += exthdrlen;
752 }
753 } else {
754 rt = inet->cork.rt;
755 if (inet->cork.flags & IPCORK_OPT)
756 opt = inet->cork.opt;
757
758 transhdrlen = 0;
759 exthdrlen = 0;
760 mtu = inet->cork.fragsize;
761 }
762 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
763
764 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
765 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
766
767 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
768 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
769 return -EMSGSIZE;
770 }
771
772 /*
773 * transhdrlen > 0 means that this is the first fragment and we wish
774 * it won't be fragmented in the future.
775 */
776 if (transhdrlen &&
777 length + fragheaderlen <= mtu &&
778 rt->u.dst.dev->features&(NETIF_F_IP_CSUM|NETIF_F_NO_CSUM|NETIF_F_HW_CSUM) &&
779 !exthdrlen)
780 csummode = CHECKSUM_HW;
781
782 inet->cork.length += length;
783
784 /* So, what's going on in the loop below?
785 *
786 * We use calculated fragment length to generate chained skb,
787 * each of segments is IP fragment ready for sending to network after
788 * adding appropriate IP header.
789 */
790
791 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
792 goto alloc_new_skb;
793
794 while (length > 0) {
795 /* Check if the remaining data fits into current packet. */
796 copy = mtu - skb->len;
797 if (copy < length)
798 copy = maxfraglen - skb->len;
799 if (copy <= 0) {
800 char *data;
801 unsigned int datalen;
802 unsigned int fraglen;
803 unsigned int fraggap;
804 unsigned int alloclen;
805 struct sk_buff *skb_prev;
806alloc_new_skb:
807 skb_prev = skb;
808 if (skb_prev)
809 fraggap = skb_prev->len - maxfraglen;
810 else
811 fraggap = 0;
812
813 /*
814 * If remaining data exceeds the mtu,
815 * we know we need more fragment(s).
816 */
817 datalen = length + fraggap;
818 if (datalen > mtu - fragheaderlen)
819 datalen = maxfraglen - fragheaderlen;
820 fraglen = datalen + fragheaderlen;
821
822 if ((flags & MSG_MORE) &&
823 !(rt->u.dst.dev->features&NETIF_F_SG))
824 alloclen = mtu;
825 else
826 alloclen = datalen + fragheaderlen;
827
828 /* The last fragment gets additional space at tail.
829 * Note, with MSG_MORE we overallocate on fragments,
830 * because we have no idea what fragment will be
831 * the last.
832 */
833 if (datalen == length)
834 alloclen += rt->u.dst.trailer_len;
835
836 if (transhdrlen) {
837 skb = sock_alloc_send_skb(sk,
838 alloclen + hh_len + 15,
839 (flags & MSG_DONTWAIT), &err);
840 } else {
841 skb = NULL;
842 if (atomic_read(&sk->sk_wmem_alloc) <=
843 2 * sk->sk_sndbuf)
844 skb = sock_wmalloc(sk,
845 alloclen + hh_len + 15, 1,
846 sk->sk_allocation);
847 if (unlikely(skb == NULL))
848 err = -ENOBUFS;
849 }
850 if (skb == NULL)
851 goto error;
852
853 /*
854 * Fill in the control structures
855 */
856 skb->ip_summed = csummode;
857 skb->csum = 0;
858 skb_reserve(skb, hh_len);
859
860 /*
861 * Find where to start putting bytes.
862 */
863 data = skb_put(skb, fraglen);
864 skb->nh.raw = data + exthdrlen;
865 data += fragheaderlen;
866 skb->h.raw = data + exthdrlen;
867
868 if (fraggap) {
869 skb->csum = skb_copy_and_csum_bits(
870 skb_prev, maxfraglen,
871 data + transhdrlen, fraggap, 0);
872 skb_prev->csum = csum_sub(skb_prev->csum,
873 skb->csum);
874 data += fraggap;
875 skb_trim(skb_prev, maxfraglen);
876 }
877
878 copy = datalen - transhdrlen - fraggap;
879 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
880 err = -EFAULT;
881 kfree_skb(skb);
882 goto error;
883 }
884
885 offset += copy;
886 length -= datalen - fraggap;
887 transhdrlen = 0;
888 exthdrlen = 0;
889 csummode = CHECKSUM_NONE;
890
891 /*
892 * Put the packet on the pending queue.
893 */
894 __skb_queue_tail(&sk->sk_write_queue, skb);
895 continue;
896 }
897
898 if (copy > length)
899 copy = length;
900
901 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
902 unsigned int off;
903
904 off = skb->len;
905 if (getfrag(from, skb_put(skb, copy),
906 offset, copy, off, skb) < 0) {
907 __skb_trim(skb, off);
908 err = -EFAULT;
909 goto error;
910 }
911 } else {
912 int i = skb_shinfo(skb)->nr_frags;
913 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
914 struct page *page = sk->sk_sndmsg_page;
915 int off = sk->sk_sndmsg_off;
916 unsigned int left;
917
918 if (page && (left = PAGE_SIZE - off) > 0) {
919 if (copy >= left)
920 copy = left;
921 if (page != frag->page) {
922 if (i == MAX_SKB_FRAGS) {
923 err = -EMSGSIZE;
924 goto error;
925 }
926 get_page(page);
927 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
928 frag = &skb_shinfo(skb)->frags[i];
929 }
930 } else if (i < MAX_SKB_FRAGS) {
931 if (copy > PAGE_SIZE)
932 copy = PAGE_SIZE;
933 page = alloc_pages(sk->sk_allocation, 0);
934 if (page == NULL) {
935 err = -ENOMEM;
936 goto error;
937 }
938 sk->sk_sndmsg_page = page;
939 sk->sk_sndmsg_off = 0;
940
941 skb_fill_page_desc(skb, i, page, 0, 0);
942 frag = &skb_shinfo(skb)->frags[i];
943 skb->truesize += PAGE_SIZE;
944 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
945 } else {
946 err = -EMSGSIZE;
947 goto error;
948 }
949 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
950 err = -EFAULT;
951 goto error;
952 }
953 sk->sk_sndmsg_off += copy;
954 frag->size += copy;
955 skb->len += copy;
956 skb->data_len += copy;
957 }
958 offset += copy;
959 length -= copy;
960 }
961
962 return 0;
963
964error:
965 inet->cork.length -= length;
966 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
967 return err;
968}
969
970ssize_t ip_append_page(struct sock *sk, struct page *page,
971 int offset, size_t size, int flags)
972{
973 struct inet_sock *inet = inet_sk(sk);
974 struct sk_buff *skb;
975 struct rtable *rt;
976 struct ip_options *opt = NULL;
977 int hh_len;
978 int mtu;
979 int len;
980 int err;
981 unsigned int maxfraglen, fragheaderlen, fraggap;
982
983 if (inet->hdrincl)
984 return -EPERM;
985
986 if (flags&MSG_PROBE)
987 return 0;
988
989 if (skb_queue_empty(&sk->sk_write_queue))
990 return -EINVAL;
991
992 rt = inet->cork.rt;
993 if (inet->cork.flags & IPCORK_OPT)
994 opt = inet->cork.opt;
995
996 if (!(rt->u.dst.dev->features&NETIF_F_SG))
997 return -EOPNOTSUPP;
998
999 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1000 mtu = inet->cork.fragsize;
1001
1002 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1003 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1004
1005 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1006 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1007 return -EMSGSIZE;
1008 }
1009
1010 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1011 return -EINVAL;
1012
1013 inet->cork.length += size;
1014
1015 while (size > 0) {
1016 int i;
1017
1018 /* Check if the remaining data fits into current packet. */
1019 len = mtu - skb->len;
1020 if (len < size)
1021 len = maxfraglen - skb->len;
1022 if (len <= 0) {
1023 struct sk_buff *skb_prev;
1024 char *data;
1025 struct iphdr *iph;
1026 int alloclen;
1027
1028 skb_prev = skb;
1029 if (skb_prev)
1030 fraggap = skb_prev->len - maxfraglen;
1031 else
1032 fraggap = 0;
1033
1034 alloclen = fragheaderlen + hh_len + fraggap + 15;
1035 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1036 if (unlikely(!skb)) {
1037 err = -ENOBUFS;
1038 goto error;
1039 }
1040
1041 /*
1042 * Fill in the control structures
1043 */
1044 skb->ip_summed = CHECKSUM_NONE;
1045 skb->csum = 0;
1046 skb_reserve(skb, hh_len);
1047
1048 /*
1049 * Find where to start putting bytes.
1050 */
1051 data = skb_put(skb, fragheaderlen + fraggap);
1052 skb->nh.iph = iph = (struct iphdr *)data;
1053 data += fragheaderlen;
1054 skb->h.raw = data;
1055
1056 if (fraggap) {
1057 skb->csum = skb_copy_and_csum_bits(
1058 skb_prev, maxfraglen,
1059 data, fraggap, 0);
1060 skb_prev->csum = csum_sub(skb_prev->csum,
1061 skb->csum);
1062 skb_trim(skb_prev, maxfraglen);
1063 }
1064
1065 /*
1066 * Put the packet on the pending queue.
1067 */
1068 __skb_queue_tail(&sk->sk_write_queue, skb);
1069 continue;
1070 }
1071
1072 i = skb_shinfo(skb)->nr_frags;
1073 if (len > size)
1074 len = size;
1075 if (skb_can_coalesce(skb, i, page, offset)) {
1076 skb_shinfo(skb)->frags[i-1].size += len;
1077 } else if (i < MAX_SKB_FRAGS) {
1078 get_page(page);
1079 skb_fill_page_desc(skb, i, page, offset, len);
1080 } else {
1081 err = -EMSGSIZE;
1082 goto error;
1083 }
1084
1085 if (skb->ip_summed == CHECKSUM_NONE) {
1086 unsigned int csum;
1087 csum = csum_page(page, offset, len);
1088 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1089 }
1090
1091 skb->len += len;
1092 skb->data_len += len;
1093 offset += len;
1094 size -= len;
1095 }
1096 return 0;
1097
1098error:
1099 inet->cork.length -= size;
1100 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1101 return err;
1102}
1103
1104/*
1105 * Combined all pending IP fragments on the socket as one IP datagram
1106 * and push them out.
1107 */
1108int ip_push_pending_frames(struct sock *sk)
1109{
1110 struct sk_buff *skb, *tmp_skb;
1111 struct sk_buff **tail_skb;
1112 struct inet_sock *inet = inet_sk(sk);
1113 struct ip_options *opt = NULL;
1114 struct rtable *rt = inet->cork.rt;
1115 struct iphdr *iph;
1116 int df = 0;
1117 __u8 ttl;
1118 int err = 0;
1119
1120 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1121 goto out;
1122 tail_skb = &(skb_shinfo(skb)->frag_list);
1123
1124 /* move skb->data to ip header from ext header */
1125 if (skb->data < skb->nh.raw)
1126 __skb_pull(skb, skb->nh.raw - skb->data);
1127 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1128 __skb_pull(tmp_skb, skb->h.raw - skb->nh.raw);
1129 *tail_skb = tmp_skb;
1130 tail_skb = &(tmp_skb->next);
1131 skb->len += tmp_skb->len;
1132 skb->data_len += tmp_skb->len;
1133 skb->truesize += tmp_skb->truesize;
1134 __sock_put(tmp_skb->sk);
1135 tmp_skb->destructor = NULL;
1136 tmp_skb->sk = NULL;
1137 }
1138
1139 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1140 * to fragment the frame generated here. No matter, what transforms
1141 * how transforms change size of the packet, it will come out.
1142 */
1143 if (inet->pmtudisc != IP_PMTUDISC_DO)
1144 skb->local_df = 1;
1145
1146 /* DF bit is set when we want to see DF on outgoing frames.
1147 * If local_df is set too, we still allow to fragment this frame
1148 * locally. */
1149 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1150 (skb->len <= dst_mtu(&rt->u.dst) &&
1151 ip_dont_fragment(sk, &rt->u.dst)))
1152 df = htons(IP_DF);
1153
1154 if (inet->cork.flags & IPCORK_OPT)
1155 opt = inet->cork.opt;
1156
1157 if (rt->rt_type == RTN_MULTICAST)
1158 ttl = inet->mc_ttl;
1159 else
1160 ttl = ip_select_ttl(inet, &rt->u.dst);
1161
1162 iph = (struct iphdr *)skb->data;
1163 iph->version = 4;
1164 iph->ihl = 5;
1165 if (opt) {
1166 iph->ihl += opt->optlen>>2;
1167 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1168 }
1169 iph->tos = inet->tos;
1170 iph->tot_len = htons(skb->len);
1171 iph->frag_off = df;
1172 if (!df) {
1173 __ip_select_ident(iph, &rt->u.dst, 0);
1174 } else {
1175 iph->id = htons(inet->id++);
1176 }
1177 iph->ttl = ttl;
1178 iph->protocol = sk->sk_protocol;
1179 iph->saddr = rt->rt_src;
1180 iph->daddr = rt->rt_dst;
1181 ip_send_check(iph);
1182
1183 skb->priority = sk->sk_priority;
1184 skb->dst = dst_clone(&rt->u.dst);
1185
1186 /* Netfilter gets whole the not fragmented skb. */
1187 err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
1188 skb->dst->dev, dst_output);
1189 if (err) {
1190 if (err > 0)
1191 err = inet->recverr ? net_xmit_errno(err) : 0;
1192 if (err)
1193 goto error;
1194 }
1195
1196out:
1197 inet->cork.flags &= ~IPCORK_OPT;
1198 if (inet->cork.opt) {
1199 kfree(inet->cork.opt);
1200 inet->cork.opt = NULL;
1201 }
1202 if (inet->cork.rt) {
1203 ip_rt_put(inet->cork.rt);
1204 inet->cork.rt = NULL;
1205 }
1206 return err;
1207
1208error:
1209 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1210 goto out;
1211}
1212
1213/*
1214 * Throw away all pending data on the socket.
1215 */
1216void ip_flush_pending_frames(struct sock *sk)
1217{
1218 struct inet_sock *inet = inet_sk(sk);
1219 struct sk_buff *skb;
1220
1221 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1222 kfree_skb(skb);
1223
1224 inet->cork.flags &= ~IPCORK_OPT;
1225 if (inet->cork.opt) {
1226 kfree(inet->cork.opt);
1227 inet->cork.opt = NULL;
1228 }
1229 if (inet->cork.rt) {
1230 ip_rt_put(inet->cork.rt);
1231 inet->cork.rt = NULL;
1232 }
1233}
1234
1235
1236/*
1237 * Fetch data from kernel space and fill in checksum if needed.
1238 */
1239static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1240 int len, int odd, struct sk_buff *skb)
1241{
1242 unsigned int csum;
1243
1244 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1245 skb->csum = csum_block_add(skb->csum, csum, odd);
1246 return 0;
1247}
1248
1249/*
1250 * Generic function to send a packet as reply to another packet.
1251 * Used to send TCP resets so far. ICMP should use this function too.
1252 *
1253 * Should run single threaded per socket because it uses the sock
1254 * structure to pass arguments.
1255 *
1256 * LATER: switch from ip_build_xmit to ip_append_*
1257 */
1258void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1259 unsigned int len)
1260{
1261 struct inet_sock *inet = inet_sk(sk);
1262 struct {
1263 struct ip_options opt;
1264 char data[40];
1265 } replyopts;
1266 struct ipcm_cookie ipc;
1267 u32 daddr;
1268 struct rtable *rt = (struct rtable*)skb->dst;
1269
1270 if (ip_options_echo(&replyopts.opt, skb))
1271 return;
1272
1273 daddr = ipc.addr = rt->rt_src;
1274 ipc.opt = NULL;
1275
1276 if (replyopts.opt.optlen) {
1277 ipc.opt = &replyopts.opt;
1278
1279 if (ipc.opt->srr)
1280 daddr = replyopts.opt.faddr;
1281 }
1282
1283 {
1284 struct flowi fl = { .nl_u = { .ip4_u =
1285 { .daddr = daddr,
1286 .saddr = rt->rt_spec_dst,
1287 .tos = RT_TOS(skb->nh.iph->tos) } },
1288 /* Not quite clean, but right. */
1289 .uli_u = { .ports =
1290 { .sport = skb->h.th->dest,
1291 .dport = skb->h.th->source } },
1292 .proto = sk->sk_protocol };
1293 if (ip_route_output_key(&rt, &fl))
1294 return;
1295 }
1296
1297 /* And let IP do all the hard work.
1298
1299 This chunk is not reenterable, hence spinlock.
1300 Note that it uses the fact, that this function is called
1301 with locally disabled BH and that sk cannot be already spinlocked.
1302 */
1303 bh_lock_sock(sk);
1304 inet->tos = skb->nh.iph->tos;
1305 sk->sk_priority = skb->priority;
1306 sk->sk_protocol = skb->nh.iph->protocol;
1307 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1308 &ipc, rt, MSG_DONTWAIT);
1309 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1310 if (arg->csumoffset >= 0)
1311 *((u16 *)skb->h.raw + arg->csumoffset) = csum_fold(csum_add(skb->csum, arg->csum));
1312 skb->ip_summed = CHECKSUM_NONE;
1313 ip_push_pending_frames(sk);
1314 }
1315
1316 bh_unlock_sock(sk);
1317
1318 ip_rt_put(rt);
1319}
1320
1da177e4
LT
1321void __init ip_init(void)
1322{
1da177e4
LT
1323 ip_rt_init();
1324 inet_initpeers();
1325
1326#if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1327 igmp_mc_proc_init();
1328#endif
1329}
1330
1da177e4
LT
1331EXPORT_SYMBOL(ip_fragment);
1332EXPORT_SYMBOL(ip_generic_getfrag);
1333EXPORT_SYMBOL(ip_queue_xmit);
1334EXPORT_SYMBOL(ip_send_check);