]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmscan.c
page allocator: smarter retry of costly-order allocations
[net-next-2.6.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
1da177e4
LT
41
42#include <asm/tlbflush.h>
43#include <asm/div64.h>
44
45#include <linux/swapops.h>
46
0f8053a5
NP
47#include "internal.h"
48
1da177e4 49struct scan_control {
1da177e4
LT
50 /* Incremented by the number of inactive pages that were scanned */
51 unsigned long nr_scanned;
52
1da177e4 53 /* This context's GFP mask */
6daa0e28 54 gfp_t gfp_mask;
1da177e4
LT
55
56 int may_writepage;
57
f1fd1067
CL
58 /* Can pages be swapped as part of reclaim? */
59 int may_swap;
60
1da177e4
LT
61 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
62 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
63 * In this context, it doesn't matter that we scan the
64 * whole list at once. */
65 int swap_cluster_max;
d6277db4
RW
66
67 int swappiness;
408d8544
NP
68
69 int all_unreclaimable;
5ad333eb
AW
70
71 int order;
66e1707b
BS
72
73 /* Which cgroup do we reclaim from */
74 struct mem_cgroup *mem_cgroup;
75
76 /* Pluggable isolate pages callback */
77 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
78 unsigned long *scanned, int order, int mode,
79 struct zone *z, struct mem_cgroup *mem_cont,
80 int active);
1da177e4
LT
81};
82
1da177e4
LT
83#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
84
85#ifdef ARCH_HAS_PREFETCH
86#define prefetch_prev_lru_page(_page, _base, _field) \
87 do { \
88 if ((_page)->lru.prev != _base) { \
89 struct page *prev; \
90 \
91 prev = lru_to_page(&(_page->lru)); \
92 prefetch(&prev->_field); \
93 } \
94 } while (0)
95#else
96#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
97#endif
98
99#ifdef ARCH_HAS_PREFETCHW
100#define prefetchw_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetchw(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113/*
114 * From 0 .. 100. Higher means more swappy.
115 */
116int vm_swappiness = 60;
bd1e22b8 117long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
118
119static LIST_HEAD(shrinker_list);
120static DECLARE_RWSEM(shrinker_rwsem);
121
00f0b825 122#ifdef CONFIG_CGROUP_MEM_RES_CTLR
91a45470
KH
123#define scan_global_lru(sc) (!(sc)->mem_cgroup)
124#else
125#define scan_global_lru(sc) (1)
126#endif
127
1da177e4
LT
128/*
129 * Add a shrinker callback to be called from the vm
130 */
8e1f936b 131void register_shrinker(struct shrinker *shrinker)
1da177e4 132{
8e1f936b
RR
133 shrinker->nr = 0;
134 down_write(&shrinker_rwsem);
135 list_add_tail(&shrinker->list, &shrinker_list);
136 up_write(&shrinker_rwsem);
1da177e4 137}
8e1f936b 138EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
139
140/*
141 * Remove one
142 */
8e1f936b 143void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
144{
145 down_write(&shrinker_rwsem);
146 list_del(&shrinker->list);
147 up_write(&shrinker_rwsem);
1da177e4 148}
8e1f936b 149EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
150
151#define SHRINK_BATCH 128
152/*
153 * Call the shrink functions to age shrinkable caches
154 *
155 * Here we assume it costs one seek to replace a lru page and that it also
156 * takes a seek to recreate a cache object. With this in mind we age equal
157 * percentages of the lru and ageable caches. This should balance the seeks
158 * generated by these structures.
159 *
183ff22b 160 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
161 * slab to avoid swapping.
162 *
163 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
164 *
165 * `lru_pages' represents the number of on-LRU pages in all the zones which
166 * are eligible for the caller's allocation attempt. It is used for balancing
167 * slab reclaim versus page reclaim.
b15e0905
AM
168 *
169 * Returns the number of slab objects which we shrunk.
1da177e4 170 */
69e05944
AM
171unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
172 unsigned long lru_pages)
1da177e4
LT
173{
174 struct shrinker *shrinker;
69e05944 175 unsigned long ret = 0;
1da177e4
LT
176
177 if (scanned == 0)
178 scanned = SWAP_CLUSTER_MAX;
179
180 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 181 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
182
183 list_for_each_entry(shrinker, &shrinker_list, list) {
184 unsigned long long delta;
185 unsigned long total_scan;
8e1f936b 186 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
187
188 delta = (4 * scanned) / shrinker->seeks;
ea164d73 189 delta *= max_pass;
1da177e4
LT
190 do_div(delta, lru_pages + 1);
191 shrinker->nr += delta;
ea164d73
AA
192 if (shrinker->nr < 0) {
193 printk(KERN_ERR "%s: nr=%ld\n",
194 __FUNCTION__, shrinker->nr);
195 shrinker->nr = max_pass;
196 }
197
198 /*
199 * Avoid risking looping forever due to too large nr value:
200 * never try to free more than twice the estimate number of
201 * freeable entries.
202 */
203 if (shrinker->nr > max_pass * 2)
204 shrinker->nr = max_pass * 2;
1da177e4
LT
205
206 total_scan = shrinker->nr;
207 shrinker->nr = 0;
208
209 while (total_scan >= SHRINK_BATCH) {
210 long this_scan = SHRINK_BATCH;
211 int shrink_ret;
b15e0905 212 int nr_before;
1da177e4 213
8e1f936b
RR
214 nr_before = (*shrinker->shrink)(0, gfp_mask);
215 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
216 if (shrink_ret == -1)
217 break;
b15e0905
AM
218 if (shrink_ret < nr_before)
219 ret += nr_before - shrink_ret;
f8891e5e 220 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
221 total_scan -= this_scan;
222
223 cond_resched();
224 }
225
226 shrinker->nr += total_scan;
227 }
228 up_read(&shrinker_rwsem);
b15e0905 229 return ret;
1da177e4
LT
230}
231
232/* Called without lock on whether page is mapped, so answer is unstable */
233static inline int page_mapping_inuse(struct page *page)
234{
235 struct address_space *mapping;
236
237 /* Page is in somebody's page tables. */
238 if (page_mapped(page))
239 return 1;
240
241 /* Be more reluctant to reclaim swapcache than pagecache */
242 if (PageSwapCache(page))
243 return 1;
244
245 mapping = page_mapping(page);
246 if (!mapping)
247 return 0;
248
249 /* File is mmap'd by somebody? */
250 return mapping_mapped(mapping);
251}
252
253static inline int is_page_cache_freeable(struct page *page)
254{
255 return page_count(page) - !!PagePrivate(page) == 2;
256}
257
258static int may_write_to_queue(struct backing_dev_info *bdi)
259{
930d9152 260 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
261 return 1;
262 if (!bdi_write_congested(bdi))
263 return 1;
264 if (bdi == current->backing_dev_info)
265 return 1;
266 return 0;
267}
268
269/*
270 * We detected a synchronous write error writing a page out. Probably
271 * -ENOSPC. We need to propagate that into the address_space for a subsequent
272 * fsync(), msync() or close().
273 *
274 * The tricky part is that after writepage we cannot touch the mapping: nothing
275 * prevents it from being freed up. But we have a ref on the page and once
276 * that page is locked, the mapping is pinned.
277 *
278 * We're allowed to run sleeping lock_page() here because we know the caller has
279 * __GFP_FS.
280 */
281static void handle_write_error(struct address_space *mapping,
282 struct page *page, int error)
283{
284 lock_page(page);
3e9f45bd
GC
285 if (page_mapping(page) == mapping)
286 mapping_set_error(mapping, error);
1da177e4
LT
287 unlock_page(page);
288}
289
c661b078
AW
290/* Request for sync pageout. */
291enum pageout_io {
292 PAGEOUT_IO_ASYNC,
293 PAGEOUT_IO_SYNC,
294};
295
04e62a29
CL
296/* possible outcome of pageout() */
297typedef enum {
298 /* failed to write page out, page is locked */
299 PAGE_KEEP,
300 /* move page to the active list, page is locked */
301 PAGE_ACTIVATE,
302 /* page has been sent to the disk successfully, page is unlocked */
303 PAGE_SUCCESS,
304 /* page is clean and locked */
305 PAGE_CLEAN,
306} pageout_t;
307
1da177e4 308/*
1742f19f
AM
309 * pageout is called by shrink_page_list() for each dirty page.
310 * Calls ->writepage().
1da177e4 311 */
c661b078
AW
312static pageout_t pageout(struct page *page, struct address_space *mapping,
313 enum pageout_io sync_writeback)
1da177e4
LT
314{
315 /*
316 * If the page is dirty, only perform writeback if that write
317 * will be non-blocking. To prevent this allocation from being
318 * stalled by pagecache activity. But note that there may be
319 * stalls if we need to run get_block(). We could test
320 * PagePrivate for that.
321 *
322 * If this process is currently in generic_file_write() against
323 * this page's queue, we can perform writeback even if that
324 * will block.
325 *
326 * If the page is swapcache, write it back even if that would
327 * block, for some throttling. This happens by accident, because
328 * swap_backing_dev_info is bust: it doesn't reflect the
329 * congestion state of the swapdevs. Easy to fix, if needed.
330 * See swapfile.c:page_queue_congested().
331 */
332 if (!is_page_cache_freeable(page))
333 return PAGE_KEEP;
334 if (!mapping) {
335 /*
336 * Some data journaling orphaned pages can have
337 * page->mapping == NULL while being dirty with clean buffers.
338 */
323aca6c 339 if (PagePrivate(page)) {
1da177e4
LT
340 if (try_to_free_buffers(page)) {
341 ClearPageDirty(page);
342 printk("%s: orphaned page\n", __FUNCTION__);
343 return PAGE_CLEAN;
344 }
345 }
346 return PAGE_KEEP;
347 }
348 if (mapping->a_ops->writepage == NULL)
349 return PAGE_ACTIVATE;
350 if (!may_write_to_queue(mapping->backing_dev_info))
351 return PAGE_KEEP;
352
353 if (clear_page_dirty_for_io(page)) {
354 int res;
355 struct writeback_control wbc = {
356 .sync_mode = WB_SYNC_NONE,
357 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
358 .range_start = 0,
359 .range_end = LLONG_MAX,
1da177e4
LT
360 .nonblocking = 1,
361 .for_reclaim = 1,
362 };
363
364 SetPageReclaim(page);
365 res = mapping->a_ops->writepage(page, &wbc);
366 if (res < 0)
367 handle_write_error(mapping, page, res);
994fc28c 368 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
369 ClearPageReclaim(page);
370 return PAGE_ACTIVATE;
371 }
c661b078
AW
372
373 /*
374 * Wait on writeback if requested to. This happens when
375 * direct reclaiming a large contiguous area and the
376 * first attempt to free a range of pages fails.
377 */
378 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
379 wait_on_page_writeback(page);
380
1da177e4
LT
381 if (!PageWriteback(page)) {
382 /* synchronous write or broken a_ops? */
383 ClearPageReclaim(page);
384 }
e129b5c2 385 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
386 return PAGE_SUCCESS;
387 }
388
389 return PAGE_CLEAN;
390}
391
a649fd92
AM
392/*
393 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
394 * someone else has a ref on the page, abort and return 0. If it was
395 * successfully detached, return 1. Assumes the caller has a single ref on
396 * this page.
397 */
b20a3503 398int remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 399{
28e4d965
NP
400 BUG_ON(!PageLocked(page));
401 BUG_ON(mapping != page_mapping(page));
49d2e9cc
CL
402
403 write_lock_irq(&mapping->tree_lock);
49d2e9cc 404 /*
0fd0e6b0
NP
405 * The non racy check for a busy page.
406 *
407 * Must be careful with the order of the tests. When someone has
408 * a ref to the page, it may be possible that they dirty it then
409 * drop the reference. So if PageDirty is tested before page_count
410 * here, then the following race may occur:
411 *
412 * get_user_pages(&page);
413 * [user mapping goes away]
414 * write_to(page);
415 * !PageDirty(page) [good]
416 * SetPageDirty(page);
417 * put_page(page);
418 * !page_count(page) [good, discard it]
419 *
420 * [oops, our write_to data is lost]
421 *
422 * Reversing the order of the tests ensures such a situation cannot
423 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 * load is not satisfied before that of page->_count.
425 *
426 * Note that if SetPageDirty is always performed via set_page_dirty,
427 * and thus under tree_lock, then this ordering is not required.
49d2e9cc
CL
428 */
429 if (unlikely(page_count(page) != 2))
430 goto cannot_free;
431 smp_rmb();
432 if (unlikely(PageDirty(page)))
433 goto cannot_free;
434
435 if (PageSwapCache(page)) {
436 swp_entry_t swap = { .val = page_private(page) };
437 __delete_from_swap_cache(page);
438 write_unlock_irq(&mapping->tree_lock);
439 swap_free(swap);
440 __put_page(page); /* The pagecache ref */
441 return 1;
442 }
443
444 __remove_from_page_cache(page);
445 write_unlock_irq(&mapping->tree_lock);
446 __put_page(page);
447 return 1;
448
449cannot_free:
450 write_unlock_irq(&mapping->tree_lock);
451 return 0;
452}
453
1da177e4 454/*
1742f19f 455 * shrink_page_list() returns the number of reclaimed pages
1da177e4 456 */
1742f19f 457static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
458 struct scan_control *sc,
459 enum pageout_io sync_writeback)
1da177e4
LT
460{
461 LIST_HEAD(ret_pages);
462 struct pagevec freed_pvec;
463 int pgactivate = 0;
05ff5137 464 unsigned long nr_reclaimed = 0;
1da177e4
LT
465
466 cond_resched();
467
468 pagevec_init(&freed_pvec, 1);
469 while (!list_empty(page_list)) {
470 struct address_space *mapping;
471 struct page *page;
472 int may_enter_fs;
473 int referenced;
474
475 cond_resched();
476
477 page = lru_to_page(page_list);
478 list_del(&page->lru);
479
480 if (TestSetPageLocked(page))
481 goto keep;
482
725d704e 483 VM_BUG_ON(PageActive(page));
1da177e4
LT
484
485 sc->nr_scanned++;
80e43426
CL
486
487 if (!sc->may_swap && page_mapped(page))
488 goto keep_locked;
489
1da177e4
LT
490 /* Double the slab pressure for mapped and swapcache pages */
491 if (page_mapped(page) || PageSwapCache(page))
492 sc->nr_scanned++;
493
c661b078
AW
494 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
495 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
496
497 if (PageWriteback(page)) {
498 /*
499 * Synchronous reclaim is performed in two passes,
500 * first an asynchronous pass over the list to
501 * start parallel writeback, and a second synchronous
502 * pass to wait for the IO to complete. Wait here
503 * for any page for which writeback has already
504 * started.
505 */
506 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
507 wait_on_page_writeback(page);
4dd4b920 508 else
c661b078
AW
509 goto keep_locked;
510 }
1da177e4 511
bed7161a 512 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 513 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
514 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
515 referenced && page_mapping_inuse(page))
1da177e4
LT
516 goto activate_locked;
517
518#ifdef CONFIG_SWAP
519 /*
520 * Anonymous process memory has backing store?
521 * Try to allocate it some swap space here.
522 */
6e5ef1a9 523 if (PageAnon(page) && !PageSwapCache(page))
1480a540 524 if (!add_to_swap(page, GFP_ATOMIC))
1da177e4 525 goto activate_locked;
1da177e4
LT
526#endif /* CONFIG_SWAP */
527
528 mapping = page_mapping(page);
1da177e4
LT
529
530 /*
531 * The page is mapped into the page tables of one or more
532 * processes. Try to unmap it here.
533 */
534 if (page_mapped(page) && mapping) {
a48d07af 535 switch (try_to_unmap(page, 0)) {
1da177e4
LT
536 case SWAP_FAIL:
537 goto activate_locked;
538 case SWAP_AGAIN:
539 goto keep_locked;
540 case SWAP_SUCCESS:
541 ; /* try to free the page below */
542 }
543 }
544
545 if (PageDirty(page)) {
5ad333eb 546 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 547 goto keep_locked;
4dd4b920 548 if (!may_enter_fs)
1da177e4 549 goto keep_locked;
52a8363e 550 if (!sc->may_writepage)
1da177e4
LT
551 goto keep_locked;
552
553 /* Page is dirty, try to write it out here */
c661b078 554 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
555 case PAGE_KEEP:
556 goto keep_locked;
557 case PAGE_ACTIVATE:
558 goto activate_locked;
559 case PAGE_SUCCESS:
4dd4b920 560 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
561 goto keep;
562 /*
563 * A synchronous write - probably a ramdisk. Go
564 * ahead and try to reclaim the page.
565 */
566 if (TestSetPageLocked(page))
567 goto keep;
568 if (PageDirty(page) || PageWriteback(page))
569 goto keep_locked;
570 mapping = page_mapping(page);
571 case PAGE_CLEAN:
572 ; /* try to free the page below */
573 }
574 }
575
576 /*
577 * If the page has buffers, try to free the buffer mappings
578 * associated with this page. If we succeed we try to free
579 * the page as well.
580 *
581 * We do this even if the page is PageDirty().
582 * try_to_release_page() does not perform I/O, but it is
583 * possible for a page to have PageDirty set, but it is actually
584 * clean (all its buffers are clean). This happens if the
585 * buffers were written out directly, with submit_bh(). ext3
586 * will do this, as well as the blockdev mapping.
587 * try_to_release_page() will discover that cleanness and will
588 * drop the buffers and mark the page clean - it can be freed.
589 *
590 * Rarely, pages can have buffers and no ->mapping. These are
591 * the pages which were not successfully invalidated in
592 * truncate_complete_page(). We try to drop those buffers here
593 * and if that worked, and the page is no longer mapped into
594 * process address space (page_count == 1) it can be freed.
595 * Otherwise, leave the page on the LRU so it is swappable.
596 */
597 if (PagePrivate(page)) {
598 if (!try_to_release_page(page, sc->gfp_mask))
599 goto activate_locked;
600 if (!mapping && page_count(page) == 1)
601 goto free_it;
602 }
603
28e4d965 604 if (!mapping || !remove_mapping(mapping, page))
49d2e9cc 605 goto keep_locked;
1da177e4
LT
606
607free_it:
608 unlock_page(page);
05ff5137 609 nr_reclaimed++;
1da177e4
LT
610 if (!pagevec_add(&freed_pvec, page))
611 __pagevec_release_nonlru(&freed_pvec);
612 continue;
613
614activate_locked:
615 SetPageActive(page);
616 pgactivate++;
617keep_locked:
618 unlock_page(page);
619keep:
620 list_add(&page->lru, &ret_pages);
725d704e 621 VM_BUG_ON(PageLRU(page));
1da177e4
LT
622 }
623 list_splice(&ret_pages, page_list);
624 if (pagevec_count(&freed_pvec))
625 __pagevec_release_nonlru(&freed_pvec);
f8891e5e 626 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 627 return nr_reclaimed;
1da177e4
LT
628}
629
5ad333eb
AW
630/* LRU Isolation modes. */
631#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
632#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
633#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
634
635/*
636 * Attempt to remove the specified page from its LRU. Only take this page
637 * if it is of the appropriate PageActive status. Pages which are being
638 * freed elsewhere are also ignored.
639 *
640 * page: page to consider
641 * mode: one of the LRU isolation modes defined above
642 *
643 * returns 0 on success, -ve errno on failure.
644 */
66e1707b 645int __isolate_lru_page(struct page *page, int mode)
5ad333eb
AW
646{
647 int ret = -EINVAL;
648
649 /* Only take pages on the LRU. */
650 if (!PageLRU(page))
651 return ret;
652
653 /*
654 * When checking the active state, we need to be sure we are
655 * dealing with comparible boolean values. Take the logical not
656 * of each.
657 */
658 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
659 return ret;
660
661 ret = -EBUSY;
662 if (likely(get_page_unless_zero(page))) {
663 /*
664 * Be careful not to clear PageLRU until after we're
665 * sure the page is not being freed elsewhere -- the
666 * page release code relies on it.
667 */
668 ClearPageLRU(page);
669 ret = 0;
670 }
671
672 return ret;
673}
674
1da177e4
LT
675/*
676 * zone->lru_lock is heavily contended. Some of the functions that
677 * shrink the lists perform better by taking out a batch of pages
678 * and working on them outside the LRU lock.
679 *
680 * For pagecache intensive workloads, this function is the hottest
681 * spot in the kernel (apart from copy_*_user functions).
682 *
683 * Appropriate locks must be held before calling this function.
684 *
685 * @nr_to_scan: The number of pages to look through on the list.
686 * @src: The LRU list to pull pages off.
687 * @dst: The temp list to put pages on to.
688 * @scanned: The number of pages that were scanned.
5ad333eb
AW
689 * @order: The caller's attempted allocation order
690 * @mode: One of the LRU isolation modes
1da177e4
LT
691 *
692 * returns how many pages were moved onto *@dst.
693 */
69e05944
AM
694static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
695 struct list_head *src, struct list_head *dst,
5ad333eb 696 unsigned long *scanned, int order, int mode)
1da177e4 697{
69e05944 698 unsigned long nr_taken = 0;
c9b02d97 699 unsigned long scan;
1da177e4 700
c9b02d97 701 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
702 struct page *page;
703 unsigned long pfn;
704 unsigned long end_pfn;
705 unsigned long page_pfn;
706 int zone_id;
707
1da177e4
LT
708 page = lru_to_page(src);
709 prefetchw_prev_lru_page(page, src, flags);
710
725d704e 711 VM_BUG_ON(!PageLRU(page));
8d438f96 712
5ad333eb
AW
713 switch (__isolate_lru_page(page, mode)) {
714 case 0:
715 list_move(&page->lru, dst);
7c8ee9a8 716 nr_taken++;
5ad333eb
AW
717 break;
718
719 case -EBUSY:
720 /* else it is being freed elsewhere */
721 list_move(&page->lru, src);
722 continue;
46453a6e 723
5ad333eb
AW
724 default:
725 BUG();
726 }
727
728 if (!order)
729 continue;
730
731 /*
732 * Attempt to take all pages in the order aligned region
733 * surrounding the tag page. Only take those pages of
734 * the same active state as that tag page. We may safely
735 * round the target page pfn down to the requested order
736 * as the mem_map is guarenteed valid out to MAX_ORDER,
737 * where that page is in a different zone we will detect
738 * it from its zone id and abort this block scan.
739 */
740 zone_id = page_zone_id(page);
741 page_pfn = page_to_pfn(page);
742 pfn = page_pfn & ~((1 << order) - 1);
743 end_pfn = pfn + (1 << order);
744 for (; pfn < end_pfn; pfn++) {
745 struct page *cursor_page;
746
747 /* The target page is in the block, ignore it. */
748 if (unlikely(pfn == page_pfn))
749 continue;
750
751 /* Avoid holes within the zone. */
752 if (unlikely(!pfn_valid_within(pfn)))
753 break;
754
755 cursor_page = pfn_to_page(pfn);
756 /* Check that we have not crossed a zone boundary. */
757 if (unlikely(page_zone_id(cursor_page) != zone_id))
758 continue;
759 switch (__isolate_lru_page(cursor_page, mode)) {
760 case 0:
761 list_move(&cursor_page->lru, dst);
762 nr_taken++;
763 scan++;
764 break;
765
766 case -EBUSY:
767 /* else it is being freed elsewhere */
768 list_move(&cursor_page->lru, src);
769 default:
770 break;
771 }
772 }
1da177e4
LT
773 }
774
775 *scanned = scan;
776 return nr_taken;
777}
778
66e1707b
BS
779static unsigned long isolate_pages_global(unsigned long nr,
780 struct list_head *dst,
781 unsigned long *scanned, int order,
782 int mode, struct zone *z,
783 struct mem_cgroup *mem_cont,
784 int active)
785{
786 if (active)
787 return isolate_lru_pages(nr, &z->active_list, dst,
788 scanned, order, mode);
789 else
790 return isolate_lru_pages(nr, &z->inactive_list, dst,
791 scanned, order, mode);
792}
793
5ad333eb
AW
794/*
795 * clear_active_flags() is a helper for shrink_active_list(), clearing
796 * any active bits from the pages in the list.
797 */
798static unsigned long clear_active_flags(struct list_head *page_list)
799{
800 int nr_active = 0;
801 struct page *page;
802
803 list_for_each_entry(page, page_list, lru)
804 if (PageActive(page)) {
805 ClearPageActive(page);
806 nr_active++;
807 }
808
809 return nr_active;
810}
811
1da177e4 812/*
1742f19f
AM
813 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
814 * of reclaimed pages
1da177e4 815 */
1742f19f
AM
816static unsigned long shrink_inactive_list(unsigned long max_scan,
817 struct zone *zone, struct scan_control *sc)
1da177e4
LT
818{
819 LIST_HEAD(page_list);
820 struct pagevec pvec;
69e05944 821 unsigned long nr_scanned = 0;
05ff5137 822 unsigned long nr_reclaimed = 0;
1da177e4
LT
823
824 pagevec_init(&pvec, 1);
825
826 lru_add_drain();
827 spin_lock_irq(&zone->lru_lock);
69e05944 828 do {
1da177e4 829 struct page *page;
69e05944
AM
830 unsigned long nr_taken;
831 unsigned long nr_scan;
832 unsigned long nr_freed;
5ad333eb 833 unsigned long nr_active;
1da177e4 834
66e1707b 835 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
5ad333eb
AW
836 &page_list, &nr_scan, sc->order,
837 (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
66e1707b
BS
838 ISOLATE_BOTH : ISOLATE_INACTIVE,
839 zone, sc->mem_cgroup, 0);
5ad333eb 840 nr_active = clear_active_flags(&page_list);
e9187bdc 841 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb
AW
842
843 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
844 __mod_zone_page_state(zone, NR_INACTIVE,
845 -(nr_taken - nr_active));
1cfb419b
KH
846 if (scan_global_lru(sc))
847 zone->pages_scanned += nr_scan;
1da177e4
LT
848 spin_unlock_irq(&zone->lru_lock);
849
69e05944 850 nr_scanned += nr_scan;
c661b078
AW
851 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
852
853 /*
854 * If we are direct reclaiming for contiguous pages and we do
855 * not reclaim everything in the list, try again and wait
856 * for IO to complete. This will stall high-order allocations
857 * but that should be acceptable to the caller
858 */
859 if (nr_freed < nr_taken && !current_is_kswapd() &&
860 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
861 congestion_wait(WRITE, HZ/10);
862
863 /*
864 * The attempt at page out may have made some
865 * of the pages active, mark them inactive again.
866 */
867 nr_active = clear_active_flags(&page_list);
868 count_vm_events(PGDEACTIVATE, nr_active);
869
870 nr_freed += shrink_page_list(&page_list, sc,
871 PAGEOUT_IO_SYNC);
872 }
873
05ff5137 874 nr_reclaimed += nr_freed;
a74609fa
NP
875 local_irq_disable();
876 if (current_is_kswapd()) {
f8891e5e
CL
877 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
878 __count_vm_events(KSWAPD_STEAL, nr_freed);
1cfb419b 879 } else if (scan_global_lru(sc))
f8891e5e 880 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1cfb419b 881
918d3f90 882 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 883
fb8d14e1
WF
884 if (nr_taken == 0)
885 goto done;
886
a74609fa 887 spin_lock(&zone->lru_lock);
1da177e4
LT
888 /*
889 * Put back any unfreeable pages.
890 */
891 while (!list_empty(&page_list)) {
892 page = lru_to_page(&page_list);
725d704e 893 VM_BUG_ON(PageLRU(page));
8d438f96 894 SetPageLRU(page);
1da177e4
LT
895 list_del(&page->lru);
896 if (PageActive(page))
897 add_page_to_active_list(zone, page);
898 else
899 add_page_to_inactive_list(zone, page);
900 if (!pagevec_add(&pvec, page)) {
901 spin_unlock_irq(&zone->lru_lock);
902 __pagevec_release(&pvec);
903 spin_lock_irq(&zone->lru_lock);
904 }
905 }
69e05944 906 } while (nr_scanned < max_scan);
fb8d14e1 907 spin_unlock(&zone->lru_lock);
1da177e4 908done:
fb8d14e1 909 local_irq_enable();
1da177e4 910 pagevec_release(&pvec);
05ff5137 911 return nr_reclaimed;
1da177e4
LT
912}
913
3bb1a852
MB
914/*
915 * We are about to scan this zone at a certain priority level. If that priority
916 * level is smaller (ie: more urgent) than the previous priority, then note
917 * that priority level within the zone. This is done so that when the next
918 * process comes in to scan this zone, it will immediately start out at this
919 * priority level rather than having to build up its own scanning priority.
920 * Here, this priority affects only the reclaim-mapped threshold.
921 */
922static inline void note_zone_scanning_priority(struct zone *zone, int priority)
923{
924 if (priority < zone->prev_priority)
925 zone->prev_priority = priority;
926}
927
4ff1ffb4
NP
928static inline int zone_is_near_oom(struct zone *zone)
929{
c8785385
CL
930 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
931 + zone_page_state(zone, NR_INACTIVE))*3;
4ff1ffb4
NP
932}
933
1cfb419b
KH
934/*
935 * Determine we should try to reclaim mapped pages.
936 * This is called only when sc->mem_cgroup is NULL.
937 */
938static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
939 int priority)
940{
941 long mapped_ratio;
942 long distress;
943 long swap_tendency;
944 long imbalance;
945 int reclaim_mapped = 0;
946 int prev_priority;
947
948 if (scan_global_lru(sc) && zone_is_near_oom(zone))
949 return 1;
950 /*
951 * `distress' is a measure of how much trouble we're having
952 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
953 */
954 if (scan_global_lru(sc))
955 prev_priority = zone->prev_priority;
956 else
957 prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);
958
959 distress = 100 >> min(prev_priority, priority);
960
961 /*
962 * The point of this algorithm is to decide when to start
963 * reclaiming mapped memory instead of just pagecache. Work out
964 * how much memory
965 * is mapped.
966 */
967 if (scan_global_lru(sc))
968 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
969 global_page_state(NR_ANON_PAGES)) * 100) /
970 vm_total_pages;
971 else
972 mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);
973
974 /*
975 * Now decide how much we really want to unmap some pages. The
976 * mapped ratio is downgraded - just because there's a lot of
977 * mapped memory doesn't necessarily mean that page reclaim
978 * isn't succeeding.
979 *
980 * The distress ratio is important - we don't want to start
981 * going oom.
982 *
983 * A 100% value of vm_swappiness overrides this algorithm
984 * altogether.
985 */
986 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
987
988 /*
989 * If there's huge imbalance between active and inactive
990 * (think active 100 times larger than inactive) we should
991 * become more permissive, or the system will take too much
992 * cpu before it start swapping during memory pressure.
993 * Distress is about avoiding early-oom, this is about
994 * making swappiness graceful despite setting it to low
995 * values.
996 *
997 * Avoid div by zero with nr_inactive+1, and max resulting
998 * value is vm_total_pages.
999 */
1000 if (scan_global_lru(sc)) {
1001 imbalance = zone_page_state(zone, NR_ACTIVE);
1002 imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1003 } else
1004 imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);
1005
1006 /*
1007 * Reduce the effect of imbalance if swappiness is low,
1008 * this means for a swappiness very low, the imbalance
1009 * must be much higher than 100 for this logic to make
1010 * the difference.
1011 *
1012 * Max temporary value is vm_total_pages*100.
1013 */
1014 imbalance *= (vm_swappiness + 1);
1015 imbalance /= 100;
1016
1017 /*
1018 * If not much of the ram is mapped, makes the imbalance
1019 * less relevant, it's high priority we refill the inactive
1020 * list with mapped pages only in presence of high ratio of
1021 * mapped pages.
1022 *
1023 * Max temporary value is vm_total_pages*100.
1024 */
1025 imbalance *= mapped_ratio;
1026 imbalance /= 100;
1027
1028 /* apply imbalance feedback to swap_tendency */
1029 swap_tendency += imbalance;
1030
1031 /*
1032 * Now use this metric to decide whether to start moving mapped
1033 * memory onto the inactive list.
1034 */
1035 if (swap_tendency >= 100)
1036 reclaim_mapped = 1;
1037
1038 return reclaim_mapped;
1039}
1040
1da177e4
LT
1041/*
1042 * This moves pages from the active list to the inactive list.
1043 *
1044 * We move them the other way if the page is referenced by one or more
1045 * processes, from rmap.
1046 *
1047 * If the pages are mostly unmapped, the processing is fast and it is
1048 * appropriate to hold zone->lru_lock across the whole operation. But if
1049 * the pages are mapped, the processing is slow (page_referenced()) so we
1050 * should drop zone->lru_lock around each page. It's impossible to balance
1051 * this, so instead we remove the pages from the LRU while processing them.
1052 * It is safe to rely on PG_active against the non-LRU pages in here because
1053 * nobody will play with that bit on a non-LRU page.
1054 *
1055 * The downside is that we have to touch page->_count against each page.
1056 * But we had to alter page->flags anyway.
1057 */
1cfb419b
KH
1058
1059
1742f19f 1060static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
bbdb396a 1061 struct scan_control *sc, int priority)
1da177e4 1062{
69e05944 1063 unsigned long pgmoved;
1da177e4 1064 int pgdeactivate = 0;
69e05944 1065 unsigned long pgscanned;
1da177e4
LT
1066 LIST_HEAD(l_hold); /* The pages which were snipped off */
1067 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
1068 LIST_HEAD(l_active); /* Pages to go onto the active_list */
1069 struct page *page;
1070 struct pagevec pvec;
1071 int reclaim_mapped = 0;
2903fb16 1072
1cfb419b
KH
1073 if (sc->may_swap)
1074 reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);
1da177e4
LT
1075
1076 lru_add_drain();
1077 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1078 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1079 ISOLATE_ACTIVE, zone,
1080 sc->mem_cgroup, 1);
1cfb419b
KH
1081 /*
1082 * zone->pages_scanned is used for detect zone's oom
1083 * mem_cgroup remembers nr_scan by itself.
1084 */
1085 if (scan_global_lru(sc))
1086 zone->pages_scanned += pgscanned;
1087
c8785385 1088 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1da177e4
LT
1089 spin_unlock_irq(&zone->lru_lock);
1090
1da177e4
LT
1091 while (!list_empty(&l_hold)) {
1092 cond_resched();
1093 page = lru_to_page(&l_hold);
1094 list_del(&page->lru);
1095 if (page_mapped(page)) {
1096 if (!reclaim_mapped ||
1097 (total_swap_pages == 0 && PageAnon(page)) ||
bed7161a 1098 page_referenced(page, 0, sc->mem_cgroup)) {
1da177e4
LT
1099 list_add(&page->lru, &l_active);
1100 continue;
1101 }
1102 }
1103 list_add(&page->lru, &l_inactive);
1104 }
1105
1106 pagevec_init(&pvec, 1);
1107 pgmoved = 0;
1108 spin_lock_irq(&zone->lru_lock);
1109 while (!list_empty(&l_inactive)) {
1110 page = lru_to_page(&l_inactive);
1111 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1112 VM_BUG_ON(PageLRU(page));
8d438f96 1113 SetPageLRU(page);
725d704e 1114 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1115 ClearPageActive(page);
1116
1da177e4 1117 list_move(&page->lru, &zone->inactive_list);
427d5416 1118 mem_cgroup_move_lists(page, false);
1da177e4
LT
1119 pgmoved++;
1120 if (!pagevec_add(&pvec, page)) {
c8785385 1121 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1da177e4
LT
1122 spin_unlock_irq(&zone->lru_lock);
1123 pgdeactivate += pgmoved;
1124 pgmoved = 0;
1125 if (buffer_heads_over_limit)
1126 pagevec_strip(&pvec);
1127 __pagevec_release(&pvec);
1128 spin_lock_irq(&zone->lru_lock);
1129 }
1130 }
c8785385 1131 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1da177e4
LT
1132 pgdeactivate += pgmoved;
1133 if (buffer_heads_over_limit) {
1134 spin_unlock_irq(&zone->lru_lock);
1135 pagevec_strip(&pvec);
1136 spin_lock_irq(&zone->lru_lock);
1137 }
1138
1139 pgmoved = 0;
1140 while (!list_empty(&l_active)) {
1141 page = lru_to_page(&l_active);
1142 prefetchw_prev_lru_page(page, &l_active, flags);
725d704e 1143 VM_BUG_ON(PageLRU(page));
8d438f96 1144 SetPageLRU(page);
725d704e 1145 VM_BUG_ON(!PageActive(page));
427d5416 1146
1da177e4 1147 list_move(&page->lru, &zone->active_list);
427d5416 1148 mem_cgroup_move_lists(page, true);
1da177e4
LT
1149 pgmoved++;
1150 if (!pagevec_add(&pvec, page)) {
c8785385 1151 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1da177e4
LT
1152 pgmoved = 0;
1153 spin_unlock_irq(&zone->lru_lock);
1154 __pagevec_release(&pvec);
1155 spin_lock_irq(&zone->lru_lock);
1156 }
1157 }
c8785385 1158 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
a74609fa 1159
f8891e5e
CL
1160 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1161 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1162 spin_unlock_irq(&zone->lru_lock);
1da177e4 1163
a74609fa 1164 pagevec_release(&pvec);
1da177e4
LT
1165}
1166
1167/*
1168 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1169 */
05ff5137
AM
1170static unsigned long shrink_zone(int priority, struct zone *zone,
1171 struct scan_control *sc)
1da177e4
LT
1172{
1173 unsigned long nr_active;
1174 unsigned long nr_inactive;
8695949a 1175 unsigned long nr_to_scan;
05ff5137 1176 unsigned long nr_reclaimed = 0;
1da177e4 1177
1cfb419b
KH
1178 if (scan_global_lru(sc)) {
1179 /*
1180 * Add one to nr_to_scan just to make sure that the kernel
1181 * will slowly sift through the active list.
1182 */
1183 zone->nr_scan_active +=
1184 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1185 nr_active = zone->nr_scan_active;
1186 zone->nr_scan_inactive +=
1187 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1188 nr_inactive = zone->nr_scan_inactive;
1189 if (nr_inactive >= sc->swap_cluster_max)
1190 zone->nr_scan_inactive = 0;
1191 else
1192 nr_inactive = 0;
1193
1194 if (nr_active >= sc->swap_cluster_max)
1195 zone->nr_scan_active = 0;
1196 else
1197 nr_active = 0;
1198 } else {
1199 /*
1200 * This reclaim occurs not because zone memory shortage but
1201 * because memory controller hits its limit.
1202 * Then, don't modify zone reclaim related data.
1203 */
1204 nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup,
1205 zone, priority);
1206
1207 nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup,
1208 zone, priority);
1209 }
1da177e4 1210
1da177e4 1211
1da177e4
LT
1212 while (nr_active || nr_inactive) {
1213 if (nr_active) {
8695949a 1214 nr_to_scan = min(nr_active,
1da177e4 1215 (unsigned long)sc->swap_cluster_max);
8695949a 1216 nr_active -= nr_to_scan;
bbdb396a 1217 shrink_active_list(nr_to_scan, zone, sc, priority);
1da177e4
LT
1218 }
1219
1220 if (nr_inactive) {
8695949a 1221 nr_to_scan = min(nr_inactive,
1da177e4 1222 (unsigned long)sc->swap_cluster_max);
8695949a 1223 nr_inactive -= nr_to_scan;
1742f19f
AM
1224 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1225 sc);
1da177e4
LT
1226 }
1227 }
1228
232ea4d6 1229 throttle_vm_writeout(sc->gfp_mask);
05ff5137 1230 return nr_reclaimed;
1da177e4
LT
1231}
1232
1233/*
1234 * This is the direct reclaim path, for page-allocating processes. We only
1235 * try to reclaim pages from zones which will satisfy the caller's allocation
1236 * request.
1237 *
1238 * We reclaim from a zone even if that zone is over pages_high. Because:
1239 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1240 * allocation or
1241 * b) The zones may be over pages_high but they must go *over* pages_high to
1242 * satisfy the `incremental min' zone defense algorithm.
1243 *
1244 * Returns the number of reclaimed pages.
1245 *
1246 * If a zone is deemed to be full of pinned pages then just give it a light
1247 * scan then give up on it.
1248 */
dac1d27b 1249static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1250 struct scan_control *sc)
1da177e4 1251{
54a6eb5c 1252 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
05ff5137 1253 unsigned long nr_reclaimed = 0;
dd1a239f 1254 struct zoneref *z;
54a6eb5c 1255 struct zone *zone;
1cfb419b 1256
408d8544 1257 sc->all_unreclaimable = 1;
54a6eb5c 1258 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
f3fe6512 1259 if (!populated_zone(zone))
1da177e4 1260 continue;
1cfb419b
KH
1261 /*
1262 * Take care memory controller reclaiming has small influence
1263 * to global LRU.
1264 */
1265 if (scan_global_lru(sc)) {
1266 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1267 continue;
1268 note_zone_scanning_priority(zone, priority);
1da177e4 1269
1cfb419b
KH
1270 if (zone_is_all_unreclaimable(zone) &&
1271 priority != DEF_PRIORITY)
1272 continue; /* Let kswapd poll it */
1273 sc->all_unreclaimable = 0;
1274 } else {
1275 /*
1276 * Ignore cpuset limitation here. We just want to reduce
1277 * # of used pages by us regardless of memory shortage.
1278 */
1279 sc->all_unreclaimable = 0;
1280 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1281 priority);
1282 }
408d8544 1283
05ff5137 1284 nr_reclaimed += shrink_zone(priority, zone, sc);
1da177e4 1285 }
1cfb419b 1286
05ff5137 1287 return nr_reclaimed;
1da177e4
LT
1288}
1289
1290/*
1291 * This is the main entry point to direct page reclaim.
1292 *
1293 * If a full scan of the inactive list fails to free enough memory then we
1294 * are "out of memory" and something needs to be killed.
1295 *
1296 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1297 * high - the zone may be full of dirty or under-writeback pages, which this
1298 * caller can't do much about. We kick pdflush and take explicit naps in the
1299 * hope that some of these pages can be written. But if the allocating task
1300 * holds filesystem locks which prevent writeout this might not work, and the
1301 * allocation attempt will fail.
a41f24ea
NA
1302 *
1303 * returns: 0, if no pages reclaimed
1304 * else, the number of pages reclaimed
1da177e4 1305 */
dac1d27b 1306static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1307 struct scan_control *sc)
1da177e4
LT
1308{
1309 int priority;
1310 int ret = 0;
69e05944 1311 unsigned long total_scanned = 0;
05ff5137 1312 unsigned long nr_reclaimed = 0;
1da177e4 1313 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1314 unsigned long lru_pages = 0;
dd1a239f 1315 struct zoneref *z;
54a6eb5c 1316 struct zone *zone;
dd1a239f 1317 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1318
1cfb419b
KH
1319 if (scan_global_lru(sc))
1320 count_vm_event(ALLOCSTALL);
1321 /*
1322 * mem_cgroup will not do shrink_slab.
1323 */
1324 if (scan_global_lru(sc)) {
54a6eb5c 1325 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1326
1cfb419b
KH
1327 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1328 continue;
1da177e4 1329
1cfb419b
KH
1330 lru_pages += zone_page_state(zone, NR_ACTIVE)
1331 + zone_page_state(zone, NR_INACTIVE);
1332 }
1da177e4
LT
1333 }
1334
1335 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1336 sc->nr_scanned = 0;
f7b7fd8f
RR
1337 if (!priority)
1338 disable_swap_token();
dac1d27b 1339 nr_reclaimed += shrink_zones(priority, zonelist, sc);
66e1707b
BS
1340 /*
1341 * Don't shrink slabs when reclaiming memory from
1342 * over limit cgroups
1343 */
91a45470 1344 if (scan_global_lru(sc)) {
dd1a239f 1345 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470
KH
1346 if (reclaim_state) {
1347 nr_reclaimed += reclaim_state->reclaimed_slab;
1348 reclaim_state->reclaimed_slab = 0;
1349 }
1da177e4 1350 }
66e1707b
BS
1351 total_scanned += sc->nr_scanned;
1352 if (nr_reclaimed >= sc->swap_cluster_max) {
a41f24ea 1353 ret = nr_reclaimed;
1da177e4
LT
1354 goto out;
1355 }
1356
1357 /*
1358 * Try to write back as many pages as we just scanned. This
1359 * tends to cause slow streaming writers to write data to the
1360 * disk smoothly, at the dirtying rate, which is nice. But
1361 * that's undesirable in laptop mode, where we *want* lumpy
1362 * writeout. So in laptop mode, write out the whole world.
1363 */
66e1707b
BS
1364 if (total_scanned > sc->swap_cluster_max +
1365 sc->swap_cluster_max / 2) {
687a21ce 1366 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1367 sc->may_writepage = 1;
1da177e4
LT
1368 }
1369
1370 /* Take a nap, wait for some writeback to complete */
4dd4b920 1371 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1372 congestion_wait(WRITE, HZ/10);
1da177e4 1373 }
408d8544 1374 /* top priority shrink_caches still had more to do? don't OOM, then */
91a45470 1375 if (!sc->all_unreclaimable && scan_global_lru(sc))
a41f24ea 1376 ret = nr_reclaimed;
1da177e4 1377out:
3bb1a852
MB
1378 /*
1379 * Now that we've scanned all the zones at this priority level, note
1380 * that level within the zone so that the next thread which performs
1381 * scanning of this zone will immediately start out at this priority
1382 * level. This affects only the decision whether or not to bring
1383 * mapped pages onto the inactive list.
1384 */
1385 if (priority < 0)
1386 priority = 0;
1da177e4 1387
1cfb419b 1388 if (scan_global_lru(sc)) {
54a6eb5c 1389 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1390
1391 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1392 continue;
1393
1394 zone->prev_priority = priority;
1395 }
1396 } else
1397 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1398
1da177e4
LT
1399 return ret;
1400}
1401
dac1d27b
MG
1402unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1403 gfp_t gfp_mask)
66e1707b
BS
1404{
1405 struct scan_control sc = {
1406 .gfp_mask = gfp_mask,
1407 .may_writepage = !laptop_mode,
1408 .swap_cluster_max = SWAP_CLUSTER_MAX,
1409 .may_swap = 1,
1410 .swappiness = vm_swappiness,
1411 .order = order,
1412 .mem_cgroup = NULL,
1413 .isolate_pages = isolate_pages_global,
1414 };
1415
dd1a239f 1416 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1417}
1418
00f0b825 1419#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1420
e1a1cd59
BS
1421unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1422 gfp_t gfp_mask)
66e1707b
BS
1423{
1424 struct scan_control sc = {
66e1707b
BS
1425 .may_writepage = !laptop_mode,
1426 .may_swap = 1,
1427 .swap_cluster_max = SWAP_CLUSTER_MAX,
1428 .swappiness = vm_swappiness,
1429 .order = 0,
1430 .mem_cgroup = mem_cont,
1431 .isolate_pages = mem_cgroup_isolate_pages,
1432 };
dac1d27b 1433 struct zonelist *zonelist;
66e1707b 1434
dd1a239f
MG
1435 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1436 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1437 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1438 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1439}
1440#endif
1441
1da177e4
LT
1442/*
1443 * For kswapd, balance_pgdat() will work across all this node's zones until
1444 * they are all at pages_high.
1445 *
1da177e4
LT
1446 * Returns the number of pages which were actually freed.
1447 *
1448 * There is special handling here for zones which are full of pinned pages.
1449 * This can happen if the pages are all mlocked, or if they are all used by
1450 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1451 * What we do is to detect the case where all pages in the zone have been
1452 * scanned twice and there has been zero successful reclaim. Mark the zone as
1453 * dead and from now on, only perform a short scan. Basically we're polling
1454 * the zone for when the problem goes away.
1455 *
1456 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1457 * zones which have free_pages > pages_high, but once a zone is found to have
1458 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1459 * of the number of free pages in the lower zones. This interoperates with
1460 * the page allocator fallback scheme to ensure that aging of pages is balanced
1461 * across the zones.
1462 */
d6277db4 1463static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1464{
1da177e4
LT
1465 int all_zones_ok;
1466 int priority;
1467 int i;
69e05944 1468 unsigned long total_scanned;
05ff5137 1469 unsigned long nr_reclaimed;
1da177e4 1470 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1471 struct scan_control sc = {
1472 .gfp_mask = GFP_KERNEL,
1473 .may_swap = 1,
d6277db4
RW
1474 .swap_cluster_max = SWAP_CLUSTER_MAX,
1475 .swappiness = vm_swappiness,
5ad333eb 1476 .order = order,
66e1707b
BS
1477 .mem_cgroup = NULL,
1478 .isolate_pages = isolate_pages_global,
179e9639 1479 };
3bb1a852
MB
1480 /*
1481 * temp_priority is used to remember the scanning priority at which
1482 * this zone was successfully refilled to free_pages == pages_high.
1483 */
1484 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1485
1486loop_again:
1487 total_scanned = 0;
05ff5137 1488 nr_reclaimed = 0;
c0bbbc73 1489 sc.may_writepage = !laptop_mode;
f8891e5e 1490 count_vm_event(PAGEOUTRUN);
1da177e4 1491
3bb1a852
MB
1492 for (i = 0; i < pgdat->nr_zones; i++)
1493 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1494
1495 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1496 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1497 unsigned long lru_pages = 0;
1498
f7b7fd8f
RR
1499 /* The swap token gets in the way of swapout... */
1500 if (!priority)
1501 disable_swap_token();
1502
1da177e4
LT
1503 all_zones_ok = 1;
1504
d6277db4
RW
1505 /*
1506 * Scan in the highmem->dma direction for the highest
1507 * zone which needs scanning
1508 */
1509 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1510 struct zone *zone = pgdat->node_zones + i;
1da177e4 1511
d6277db4
RW
1512 if (!populated_zone(zone))
1513 continue;
1da177e4 1514
e815af95
DR
1515 if (zone_is_all_unreclaimable(zone) &&
1516 priority != DEF_PRIORITY)
d6277db4 1517 continue;
1da177e4 1518
d6277db4
RW
1519 if (!zone_watermark_ok(zone, order, zone->pages_high,
1520 0, 0)) {
1521 end_zone = i;
e1dbeda6 1522 break;
1da177e4 1523 }
1da177e4 1524 }
e1dbeda6
AM
1525 if (i < 0)
1526 goto out;
1527
1da177e4
LT
1528 for (i = 0; i <= end_zone; i++) {
1529 struct zone *zone = pgdat->node_zones + i;
1530
c8785385
CL
1531 lru_pages += zone_page_state(zone, NR_ACTIVE)
1532 + zone_page_state(zone, NR_INACTIVE);
1da177e4
LT
1533 }
1534
1535 /*
1536 * Now scan the zone in the dma->highmem direction, stopping
1537 * at the last zone which needs scanning.
1538 *
1539 * We do this because the page allocator works in the opposite
1540 * direction. This prevents the page allocator from allocating
1541 * pages behind kswapd's direction of progress, which would
1542 * cause too much scanning of the lower zones.
1543 */
1544 for (i = 0; i <= end_zone; i++) {
1545 struct zone *zone = pgdat->node_zones + i;
b15e0905 1546 int nr_slab;
1da177e4 1547
f3fe6512 1548 if (!populated_zone(zone))
1da177e4
LT
1549 continue;
1550
e815af95
DR
1551 if (zone_is_all_unreclaimable(zone) &&
1552 priority != DEF_PRIORITY)
1da177e4
LT
1553 continue;
1554
d6277db4
RW
1555 if (!zone_watermark_ok(zone, order, zone->pages_high,
1556 end_zone, 0))
1557 all_zones_ok = 0;
3bb1a852 1558 temp_priority[i] = priority;
1da177e4 1559 sc.nr_scanned = 0;
3bb1a852 1560 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1561 /*
1562 * We put equal pressure on every zone, unless one
1563 * zone has way too many pages free already.
1564 */
1565 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1566 end_zone, 0))
1567 nr_reclaimed += shrink_zone(priority, zone, &sc);
1da177e4 1568 reclaim_state->reclaimed_slab = 0;
b15e0905
AM
1569 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1570 lru_pages);
05ff5137 1571 nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1572 total_scanned += sc.nr_scanned;
e815af95 1573 if (zone_is_all_unreclaimable(zone))
1da177e4 1574 continue;
b15e0905 1575 if (nr_slab == 0 && zone->pages_scanned >=
c8785385
CL
1576 (zone_page_state(zone, NR_ACTIVE)
1577 + zone_page_state(zone, NR_INACTIVE)) * 6)
e815af95
DR
1578 zone_set_flag(zone,
1579 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1580 /*
1581 * If we've done a decent amount of scanning and
1582 * the reclaim ratio is low, start doing writepage
1583 * even in laptop mode
1584 */
1585 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
05ff5137 1586 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1da177e4
LT
1587 sc.may_writepage = 1;
1588 }
1da177e4
LT
1589 if (all_zones_ok)
1590 break; /* kswapd: all done */
1591 /*
1592 * OK, kswapd is getting into trouble. Take a nap, then take
1593 * another pass across the zones.
1594 */
4dd4b920 1595 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1596 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1597
1598 /*
1599 * We do this so kswapd doesn't build up large priorities for
1600 * example when it is freeing in parallel with allocators. It
1601 * matches the direct reclaim path behaviour in terms of impact
1602 * on zone->*_priority.
1603 */
d6277db4 1604 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1605 break;
1606 }
1607out:
3bb1a852
MB
1608 /*
1609 * Note within each zone the priority level at which this zone was
1610 * brought into a happy state. So that the next thread which scans this
1611 * zone will start out at that priority level.
1612 */
1da177e4
LT
1613 for (i = 0; i < pgdat->nr_zones; i++) {
1614 struct zone *zone = pgdat->node_zones + i;
1615
3bb1a852 1616 zone->prev_priority = temp_priority[i];
1da177e4
LT
1617 }
1618 if (!all_zones_ok) {
1619 cond_resched();
8357376d
RW
1620
1621 try_to_freeze();
1622
1da177e4
LT
1623 goto loop_again;
1624 }
1625
05ff5137 1626 return nr_reclaimed;
1da177e4
LT
1627}
1628
1629/*
1630 * The background pageout daemon, started as a kernel thread
1631 * from the init process.
1632 *
1633 * This basically trickles out pages so that we have _some_
1634 * free memory available even if there is no other activity
1635 * that frees anything up. This is needed for things like routing
1636 * etc, where we otherwise might have all activity going on in
1637 * asynchronous contexts that cannot page things out.
1638 *
1639 * If there are applications that are active memory-allocators
1640 * (most normal use), this basically shouldn't matter.
1641 */
1642static int kswapd(void *p)
1643{
1644 unsigned long order;
1645 pg_data_t *pgdat = (pg_data_t*)p;
1646 struct task_struct *tsk = current;
1647 DEFINE_WAIT(wait);
1648 struct reclaim_state reclaim_state = {
1649 .reclaimed_slab = 0,
1650 };
c5f59f08 1651 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1da177e4 1652
c5f59f08
MT
1653 if (!cpus_empty(*cpumask))
1654 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
1655 current->reclaim_state = &reclaim_state;
1656
1657 /*
1658 * Tell the memory management that we're a "memory allocator",
1659 * and that if we need more memory we should get access to it
1660 * regardless (see "__alloc_pages()"). "kswapd" should
1661 * never get caught in the normal page freeing logic.
1662 *
1663 * (Kswapd normally doesn't need memory anyway, but sometimes
1664 * you need a small amount of memory in order to be able to
1665 * page out something else, and this flag essentially protects
1666 * us from recursively trying to free more memory as we're
1667 * trying to free the first piece of memory in the first place).
1668 */
930d9152 1669 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 1670 set_freezable();
1da177e4
LT
1671
1672 order = 0;
1673 for ( ; ; ) {
1674 unsigned long new_order;
3e1d1d28 1675
1da177e4
LT
1676 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1677 new_order = pgdat->kswapd_max_order;
1678 pgdat->kswapd_max_order = 0;
1679 if (order < new_order) {
1680 /*
1681 * Don't sleep if someone wants a larger 'order'
1682 * allocation
1683 */
1684 order = new_order;
1685 } else {
b1296cc4
RW
1686 if (!freezing(current))
1687 schedule();
1688
1da177e4
LT
1689 order = pgdat->kswapd_max_order;
1690 }
1691 finish_wait(&pgdat->kswapd_wait, &wait);
1692
b1296cc4
RW
1693 if (!try_to_freeze()) {
1694 /* We can speed up thawing tasks if we don't call
1695 * balance_pgdat after returning from the refrigerator
1696 */
1697 balance_pgdat(pgdat, order);
1698 }
1da177e4
LT
1699 }
1700 return 0;
1701}
1702
1703/*
1704 * A zone is low on free memory, so wake its kswapd task to service it.
1705 */
1706void wakeup_kswapd(struct zone *zone, int order)
1707{
1708 pg_data_t *pgdat;
1709
f3fe6512 1710 if (!populated_zone(zone))
1da177e4
LT
1711 return;
1712
1713 pgdat = zone->zone_pgdat;
7fb1d9fc 1714 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
1715 return;
1716 if (pgdat->kswapd_max_order < order)
1717 pgdat->kswapd_max_order = order;
02a0e53d 1718 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 1719 return;
8d0986e2 1720 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 1721 return;
8d0986e2 1722 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
1723}
1724
1725#ifdef CONFIG_PM
1726/*
d6277db4
RW
1727 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1728 * from LRU lists system-wide, for given pass and priority, and returns the
1729 * number of reclaimed pages
1730 *
1731 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1732 */
e07aa05b
NC
1733static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1734 int pass, struct scan_control *sc)
d6277db4
RW
1735{
1736 struct zone *zone;
1737 unsigned long nr_to_scan, ret = 0;
1738
1739 for_each_zone(zone) {
1740
1741 if (!populated_zone(zone))
1742 continue;
1743
e815af95 1744 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
1745 continue;
1746
1747 /* For pass = 0 we don't shrink the active list */
1748 if (pass > 0) {
c8785385
CL
1749 zone->nr_scan_active +=
1750 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
d6277db4
RW
1751 if (zone->nr_scan_active >= nr_pages || pass > 3) {
1752 zone->nr_scan_active = 0;
c8785385
CL
1753 nr_to_scan = min(nr_pages,
1754 zone_page_state(zone, NR_ACTIVE));
bbdb396a 1755 shrink_active_list(nr_to_scan, zone, sc, prio);
d6277db4
RW
1756 }
1757 }
1758
c8785385
CL
1759 zone->nr_scan_inactive +=
1760 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
d6277db4
RW
1761 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1762 zone->nr_scan_inactive = 0;
c8785385
CL
1763 nr_to_scan = min(nr_pages,
1764 zone_page_state(zone, NR_INACTIVE));
d6277db4
RW
1765 ret += shrink_inactive_list(nr_to_scan, zone, sc);
1766 if (ret >= nr_pages)
1767 return ret;
1768 }
1769 }
1770
1771 return ret;
1772}
1773
76395d37
AM
1774static unsigned long count_lru_pages(void)
1775{
c8785385 1776 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
76395d37
AM
1777}
1778
d6277db4
RW
1779/*
1780 * Try to free `nr_pages' of memory, system-wide, and return the number of
1781 * freed pages.
1782 *
1783 * Rather than trying to age LRUs the aim is to preserve the overall
1784 * LRU order by reclaiming preferentially
1785 * inactive > active > active referenced > active mapped
1da177e4 1786 */
69e05944 1787unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 1788{
d6277db4 1789 unsigned long lru_pages, nr_slab;
69e05944 1790 unsigned long ret = 0;
d6277db4
RW
1791 int pass;
1792 struct reclaim_state reclaim_state;
d6277db4
RW
1793 struct scan_control sc = {
1794 .gfp_mask = GFP_KERNEL,
1795 .may_swap = 0,
1796 .swap_cluster_max = nr_pages,
1797 .may_writepage = 1,
1798 .swappiness = vm_swappiness,
66e1707b 1799 .isolate_pages = isolate_pages_global,
1da177e4
LT
1800 };
1801
1802 current->reclaim_state = &reclaim_state;
69e05944 1803
76395d37 1804 lru_pages = count_lru_pages();
972d1a7b 1805 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
1806 /* If slab caches are huge, it's better to hit them first */
1807 while (nr_slab >= lru_pages) {
1808 reclaim_state.reclaimed_slab = 0;
1809 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1810 if (!reclaim_state.reclaimed_slab)
1da177e4 1811 break;
d6277db4
RW
1812
1813 ret += reclaim_state.reclaimed_slab;
1814 if (ret >= nr_pages)
1815 goto out;
1816
1817 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 1818 }
d6277db4
RW
1819
1820 /*
1821 * We try to shrink LRUs in 5 passes:
1822 * 0 = Reclaim from inactive_list only
1823 * 1 = Reclaim from active list but don't reclaim mapped
1824 * 2 = 2nd pass of type 1
1825 * 3 = Reclaim mapped (normal reclaim)
1826 * 4 = 2nd pass of type 3
1827 */
1828 for (pass = 0; pass < 5; pass++) {
1829 int prio;
1830
d6277db4
RW
1831 /* Force reclaiming mapped pages in the passes #3 and #4 */
1832 if (pass > 2) {
1833 sc.may_swap = 1;
1834 sc.swappiness = 100;
1835 }
1836
1837 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1838 unsigned long nr_to_scan = nr_pages - ret;
1839
d6277db4 1840 sc.nr_scanned = 0;
d6277db4
RW
1841 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1842 if (ret >= nr_pages)
1843 goto out;
1844
1845 reclaim_state.reclaimed_slab = 0;
76395d37
AM
1846 shrink_slab(sc.nr_scanned, sc.gfp_mask,
1847 count_lru_pages());
d6277db4
RW
1848 ret += reclaim_state.reclaimed_slab;
1849 if (ret >= nr_pages)
1850 goto out;
1851
1852 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 1853 congestion_wait(WRITE, HZ / 10);
d6277db4 1854 }
248a0301 1855 }
d6277db4
RW
1856
1857 /*
1858 * If ret = 0, we could not shrink LRUs, but there may be something
1859 * in slab caches
1860 */
76395d37 1861 if (!ret) {
d6277db4
RW
1862 do {
1863 reclaim_state.reclaimed_slab = 0;
76395d37 1864 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
d6277db4
RW
1865 ret += reclaim_state.reclaimed_slab;
1866 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
76395d37 1867 }
d6277db4
RW
1868
1869out:
1da177e4 1870 current->reclaim_state = NULL;
d6277db4 1871
1da177e4
LT
1872 return ret;
1873}
1874#endif
1875
1da177e4
LT
1876/* It's optimal to keep kswapds on the same CPUs as their memory, but
1877 not required for correctness. So if the last cpu in a node goes
1878 away, we get changed to run anywhere: as the first one comes back,
1879 restore their cpu bindings. */
9c7b216d 1880static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 1881 unsigned long action, void *hcpu)
1da177e4 1882{
58c0a4a7 1883 int nid;
1da177e4 1884
8bb78442 1885 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 1886 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08
MT
1887 pg_data_t *pgdat = NODE_DATA(nid);
1888 node_to_cpumask_ptr(mask, pgdat->node_id);
1889
1890 if (any_online_cpu(*mask) < nr_cpu_ids)
1da177e4 1891 /* One of our CPUs online: restore mask */
c5f59f08 1892 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
1893 }
1894 }
1895 return NOTIFY_OK;
1896}
1da177e4 1897
3218ae14
YG
1898/*
1899 * This kswapd start function will be called by init and node-hot-add.
1900 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1901 */
1902int kswapd_run(int nid)
1903{
1904 pg_data_t *pgdat = NODE_DATA(nid);
1905 int ret = 0;
1906
1907 if (pgdat->kswapd)
1908 return 0;
1909
1910 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1911 if (IS_ERR(pgdat->kswapd)) {
1912 /* failure at boot is fatal */
1913 BUG_ON(system_state == SYSTEM_BOOTING);
1914 printk("Failed to start kswapd on node %d\n",nid);
1915 ret = -1;
1916 }
1917 return ret;
1918}
1919
1da177e4
LT
1920static int __init kswapd_init(void)
1921{
3218ae14 1922 int nid;
69e05944 1923
1da177e4 1924 swap_setup();
9422ffba 1925 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 1926 kswapd_run(nid);
1da177e4
LT
1927 hotcpu_notifier(cpu_callback, 0);
1928 return 0;
1929}
1930
1931module_init(kswapd_init)
9eeff239
CL
1932
1933#ifdef CONFIG_NUMA
1934/*
1935 * Zone reclaim mode
1936 *
1937 * If non-zero call zone_reclaim when the number of free pages falls below
1938 * the watermarks.
9eeff239
CL
1939 */
1940int zone_reclaim_mode __read_mostly;
1941
1b2ffb78
CL
1942#define RECLAIM_OFF 0
1943#define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1944#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1945#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1946
a92f7126
CL
1947/*
1948 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1949 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1950 * a zone.
1951 */
1952#define ZONE_RECLAIM_PRIORITY 4
1953
9614634f
CL
1954/*
1955 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1956 * occur.
1957 */
1958int sysctl_min_unmapped_ratio = 1;
1959
0ff38490
CL
1960/*
1961 * If the number of slab pages in a zone grows beyond this percentage then
1962 * slab reclaim needs to occur.
1963 */
1964int sysctl_min_slab_ratio = 5;
1965
9eeff239
CL
1966/*
1967 * Try to free up some pages from this zone through reclaim.
1968 */
179e9639 1969static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 1970{
7fb2d46d 1971 /* Minimum pages needed in order to stay on node */
69e05944 1972 const unsigned long nr_pages = 1 << order;
9eeff239
CL
1973 struct task_struct *p = current;
1974 struct reclaim_state reclaim_state;
8695949a 1975 int priority;
05ff5137 1976 unsigned long nr_reclaimed = 0;
179e9639
AM
1977 struct scan_control sc = {
1978 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1979 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
69e05944
AM
1980 .swap_cluster_max = max_t(unsigned long, nr_pages,
1981 SWAP_CLUSTER_MAX),
179e9639 1982 .gfp_mask = gfp_mask,
d6277db4 1983 .swappiness = vm_swappiness,
66e1707b 1984 .isolate_pages = isolate_pages_global,
179e9639 1985 };
83e33a47 1986 unsigned long slab_reclaimable;
9eeff239
CL
1987
1988 disable_swap_token();
9eeff239 1989 cond_resched();
d4f7796e
CL
1990 /*
1991 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1992 * and we also need to be able to write out pages for RECLAIM_WRITE
1993 * and RECLAIM_SWAP.
1994 */
1995 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
1996 reclaim_state.reclaimed_slab = 0;
1997 p->reclaim_state = &reclaim_state;
c84db23c 1998
0ff38490
CL
1999 if (zone_page_state(zone, NR_FILE_PAGES) -
2000 zone_page_state(zone, NR_FILE_MAPPED) >
2001 zone->min_unmapped_pages) {
2002 /*
2003 * Free memory by calling shrink zone with increasing
2004 * priorities until we have enough memory freed.
2005 */
2006 priority = ZONE_RECLAIM_PRIORITY;
2007 do {
3bb1a852 2008 note_zone_scanning_priority(zone, priority);
0ff38490
CL
2009 nr_reclaimed += shrink_zone(priority, zone, &sc);
2010 priority--;
2011 } while (priority >= 0 && nr_reclaimed < nr_pages);
2012 }
c84db23c 2013
83e33a47
CL
2014 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2015 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2016 /*
7fb2d46d 2017 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2018 * many pages were freed in this zone. So we take the current
2019 * number of slab pages and shake the slab until it is reduced
2020 * by the same nr_pages that we used for reclaiming unmapped
2021 * pages.
2a16e3f4 2022 *
0ff38490
CL
2023 * Note that shrink_slab will free memory on all zones and may
2024 * take a long time.
2a16e3f4 2025 */
0ff38490 2026 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2027 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2028 slab_reclaimable - nr_pages)
0ff38490 2029 ;
83e33a47
CL
2030
2031 /*
2032 * Update nr_reclaimed by the number of slab pages we
2033 * reclaimed from this zone.
2034 */
2035 nr_reclaimed += slab_reclaimable -
2036 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2037 }
2038
9eeff239 2039 p->reclaim_state = NULL;
d4f7796e 2040 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
05ff5137 2041 return nr_reclaimed >= nr_pages;
9eeff239 2042}
179e9639
AM
2043
2044int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2045{
179e9639 2046 int node_id;
d773ed6b 2047 int ret;
179e9639
AM
2048
2049 /*
0ff38490
CL
2050 * Zone reclaim reclaims unmapped file backed pages and
2051 * slab pages if we are over the defined limits.
34aa1330 2052 *
9614634f
CL
2053 * A small portion of unmapped file backed pages is needed for
2054 * file I/O otherwise pages read by file I/O will be immediately
2055 * thrown out if the zone is overallocated. So we do not reclaim
2056 * if less than a specified percentage of the zone is used by
2057 * unmapped file backed pages.
179e9639 2058 */
34aa1330 2059 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2060 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2061 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2062 <= zone->min_slab_pages)
9614634f 2063 return 0;
179e9639 2064
d773ed6b
DR
2065 if (zone_is_all_unreclaimable(zone))
2066 return 0;
2067
179e9639 2068 /*
d773ed6b 2069 * Do not scan if the allocation should not be delayed.
179e9639 2070 */
d773ed6b 2071 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2072 return 0;
2073
2074 /*
2075 * Only run zone reclaim on the local zone or on zones that do not
2076 * have associated processors. This will favor the local processor
2077 * over remote processors and spread off node memory allocations
2078 * as wide as possible.
2079 */
89fa3024 2080 node_id = zone_to_nid(zone);
37c0708d 2081 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2082 return 0;
d773ed6b
DR
2083
2084 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2085 return 0;
2086 ret = __zone_reclaim(zone, gfp_mask, order);
2087 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2088
2089 return ret;
179e9639 2090}
9eeff239 2091#endif