]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/swapfile.c
swap: Add flag to identify block swap devices
[net-next-2.6.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
5ad64688 25#include <linux/ksm.h>
1da177e4
LT
26#include <linux/rmap.h>
27#include <linux/security.h>
28#include <linux/backing-dev.h>
fc0abb14 29#include <linux/mutex.h>
c59ede7b 30#include <linux/capability.h>
1da177e4 31#include <linux/syscalls.h>
8a9f3ccd 32#include <linux/memcontrol.h>
1da177e4
LT
33
34#include <asm/pgtable.h>
35#include <asm/tlbflush.h>
36#include <linux/swapops.h>
27a7faa0 37#include <linux/page_cgroup.h>
1da177e4 38
570a335b
HD
39static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40 unsigned char);
41static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 42static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 43
7c363b8c
AB
44static DEFINE_SPINLOCK(swap_lock);
45static unsigned int nr_swapfiles;
b962716b 46long nr_swap_pages;
1da177e4 47long total_swap_pages;
78ecba08 48static int least_priority;
1da177e4 49
1da177e4
LT
50static const char Bad_file[] = "Bad swap file entry ";
51static const char Unused_file[] = "Unused swap file entry ";
52static const char Bad_offset[] = "Bad swap offset entry ";
53static const char Unused_offset[] = "Unused swap offset entry ";
54
7c363b8c 55static struct swap_list_t swap_list = {-1, -1};
1da177e4 56
efa90a98 57static struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 58
fc0abb14 59static DEFINE_MUTEX(swapon_mutex);
1da177e4 60
8d69aaee 61static inline unsigned char swap_count(unsigned char ent)
355cfa73 62{
570a335b 63 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
64}
65
efa90a98 66/* returns 1 if swap entry is freed */
c9e44410
KH
67static int
68__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69{
efa90a98 70 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
71 struct page *page;
72 int ret = 0;
73
74 page = find_get_page(&swapper_space, entry.val);
75 if (!page)
76 return 0;
77 /*
78 * This function is called from scan_swap_map() and it's called
79 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 * We have to use trylock for avoiding deadlock. This is a special
81 * case and you should use try_to_free_swap() with explicit lock_page()
82 * in usual operations.
83 */
84 if (trylock_page(page)) {
85 ret = try_to_free_swap(page);
86 unlock_page(page);
87 }
88 page_cache_release(page);
89 return ret;
90}
355cfa73 91
1da177e4
LT
92/*
93 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 94 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 95 * cannot be turned into a mutex.
1da177e4
LT
96 */
97static DECLARE_RWSEM(swap_unplug_sem);
98
1da177e4
LT
99void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100{
101 swp_entry_t entry;
102
103 down_read(&swap_unplug_sem);
4c21e2f2 104 entry.val = page_private(page);
1da177e4 105 if (PageSwapCache(page)) {
efa90a98 106 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
1da177e4
LT
107 struct backing_dev_info *bdi;
108
109 /*
110 * If the page is removed from swapcache from under us (with a
111 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
112 * count to avoid reading garbage from page_private(page) above.
113 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
114 * condition and it's harmless. However if it triggers without
115 * swapoff it signals a problem.
116 */
117 WARN_ON(page_count(page) <= 1);
118
119 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 120 blk_run_backing_dev(bdi, page);
1da177e4
LT
121 }
122 up_read(&swap_unplug_sem);
123}
124
6a6ba831
HD
125/*
126 * swapon tell device that all the old swap contents can be discarded,
127 * to allow the swap device to optimize its wear-levelling.
128 */
129static int discard_swap(struct swap_info_struct *si)
130{
131 struct swap_extent *se;
9625a5f2
HD
132 sector_t start_block;
133 sector_t nr_blocks;
6a6ba831
HD
134 int err = 0;
135
9625a5f2
HD
136 /* Do not discard the swap header page! */
137 se = &si->first_swap_extent;
138 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140 if (nr_blocks) {
141 err = blkdev_issue_discard(si->bdev, start_block,
142 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
143 if (err)
144 return err;
145 cond_resched();
146 }
6a6ba831 147
9625a5f2
HD
148 list_for_each_entry(se, &si->first_swap_extent.list, list) {
149 start_block = se->start_block << (PAGE_SHIFT - 9);
150 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
151
152 err = blkdev_issue_discard(si->bdev, start_block,
9625a5f2 153 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
6a6ba831
HD
154 if (err)
155 break;
156
157 cond_resched();
158 }
159 return err; /* That will often be -EOPNOTSUPP */
160}
161
7992fde7
HD
162/*
163 * swap allocation tell device that a cluster of swap can now be discarded,
164 * to allow the swap device to optimize its wear-levelling.
165 */
166static void discard_swap_cluster(struct swap_info_struct *si,
167 pgoff_t start_page, pgoff_t nr_pages)
168{
169 struct swap_extent *se = si->curr_swap_extent;
170 int found_extent = 0;
171
172 while (nr_pages) {
173 struct list_head *lh;
174
175 if (se->start_page <= start_page &&
176 start_page < se->start_page + se->nr_pages) {
177 pgoff_t offset = start_page - se->start_page;
178 sector_t start_block = se->start_block + offset;
858a2990 179 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
180
181 if (nr_blocks > nr_pages)
182 nr_blocks = nr_pages;
183 start_page += nr_blocks;
184 nr_pages -= nr_blocks;
185
186 if (!found_extent++)
187 si->curr_swap_extent = se;
188
189 start_block <<= PAGE_SHIFT - 9;
190 nr_blocks <<= PAGE_SHIFT - 9;
191 if (blkdev_issue_discard(si->bdev, start_block,
9625a5f2 192 nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
7992fde7
HD
193 break;
194 }
195
196 lh = se->list.next;
7992fde7
HD
197 se = list_entry(lh, struct swap_extent, list);
198 }
199}
200
201static int wait_for_discard(void *word)
202{
203 schedule();
204 return 0;
205}
206
048c27fd
HD
207#define SWAPFILE_CLUSTER 256
208#define LATENCY_LIMIT 256
209
355cfa73 210static inline unsigned long scan_swap_map(struct swap_info_struct *si,
8d69aaee 211 unsigned char usage)
1da177e4 212{
ebebbbe9 213 unsigned long offset;
c60aa176 214 unsigned long scan_base;
7992fde7 215 unsigned long last_in_cluster = 0;
048c27fd 216 int latency_ration = LATENCY_LIMIT;
7992fde7 217 int found_free_cluster = 0;
7dfad418 218
886bb7e9 219 /*
7dfad418
HD
220 * We try to cluster swap pages by allocating them sequentially
221 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
222 * way, however, we resort to first-free allocation, starting
223 * a new cluster. This prevents us from scattering swap pages
224 * all over the entire swap partition, so that we reduce
225 * overall disk seek times between swap pages. -- sct
226 * But we do now try to find an empty cluster. -Andrea
c60aa176 227 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
228 */
229
52b7efdb 230 si->flags += SWP_SCANNING;
c60aa176 231 scan_base = offset = si->cluster_next;
ebebbbe9
HD
232
233 if (unlikely(!si->cluster_nr--)) {
234 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235 si->cluster_nr = SWAPFILE_CLUSTER - 1;
236 goto checks;
237 }
7992fde7
HD
238 if (si->flags & SWP_DISCARDABLE) {
239 /*
240 * Start range check on racing allocations, in case
241 * they overlap the cluster we eventually decide on
242 * (we scan without swap_lock to allow preemption).
243 * It's hardly conceivable that cluster_nr could be
244 * wrapped during our scan, but don't depend on it.
245 */
246 if (si->lowest_alloc)
247 goto checks;
248 si->lowest_alloc = si->max;
249 si->highest_alloc = 0;
250 }
5d337b91 251 spin_unlock(&swap_lock);
7dfad418 252
c60aa176
HD
253 /*
254 * If seek is expensive, start searching for new cluster from
255 * start of partition, to minimize the span of allocated swap.
256 * But if seek is cheap, search from our current position, so
257 * that swap is allocated from all over the partition: if the
258 * Flash Translation Layer only remaps within limited zones,
259 * we don't want to wear out the first zone too quickly.
260 */
261 if (!(si->flags & SWP_SOLIDSTATE))
262 scan_base = offset = si->lowest_bit;
7dfad418
HD
263 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
264
265 /* Locate the first empty (unaligned) cluster */
266 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 267 if (si->swap_map[offset])
7dfad418
HD
268 last_in_cluster = offset + SWAPFILE_CLUSTER;
269 else if (offset == last_in_cluster) {
5d337b91 270 spin_lock(&swap_lock);
ebebbbe9
HD
271 offset -= SWAPFILE_CLUSTER - 1;
272 si->cluster_next = offset;
273 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 274 found_free_cluster = 1;
ebebbbe9 275 goto checks;
1da177e4 276 }
048c27fd
HD
277 if (unlikely(--latency_ration < 0)) {
278 cond_resched();
279 latency_ration = LATENCY_LIMIT;
280 }
7dfad418 281 }
ebebbbe9
HD
282
283 offset = si->lowest_bit;
c60aa176
HD
284 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
285
286 /* Locate the first empty (unaligned) cluster */
287 for (; last_in_cluster < scan_base; offset++) {
288 if (si->swap_map[offset])
289 last_in_cluster = offset + SWAPFILE_CLUSTER;
290 else if (offset == last_in_cluster) {
291 spin_lock(&swap_lock);
292 offset -= SWAPFILE_CLUSTER - 1;
293 si->cluster_next = offset;
294 si->cluster_nr = SWAPFILE_CLUSTER - 1;
295 found_free_cluster = 1;
296 goto checks;
297 }
298 if (unlikely(--latency_ration < 0)) {
299 cond_resched();
300 latency_ration = LATENCY_LIMIT;
301 }
302 }
303
304 offset = scan_base;
5d337b91 305 spin_lock(&swap_lock);
ebebbbe9 306 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 307 si->lowest_alloc = 0;
1da177e4 308 }
7dfad418 309
ebebbbe9
HD
310checks:
311 if (!(si->flags & SWP_WRITEOK))
52b7efdb 312 goto no_page;
7dfad418
HD
313 if (!si->highest_bit)
314 goto no_page;
ebebbbe9 315 if (offset > si->highest_bit)
c60aa176 316 scan_base = offset = si->lowest_bit;
c9e44410
KH
317
318 /* reuse swap entry of cache-only swap if not busy. */
319 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
320 int swap_was_freed;
321 spin_unlock(&swap_lock);
322 swap_was_freed = __try_to_reclaim_swap(si, offset);
323 spin_lock(&swap_lock);
324 /* entry was freed successfully, try to use this again */
325 if (swap_was_freed)
326 goto checks;
327 goto scan; /* check next one */
328 }
329
ebebbbe9
HD
330 if (si->swap_map[offset])
331 goto scan;
332
333 if (offset == si->lowest_bit)
334 si->lowest_bit++;
335 if (offset == si->highest_bit)
336 si->highest_bit--;
337 si->inuse_pages++;
338 if (si->inuse_pages == si->pages) {
339 si->lowest_bit = si->max;
340 si->highest_bit = 0;
1da177e4 341 }
253d553b 342 si->swap_map[offset] = usage;
ebebbbe9
HD
343 si->cluster_next = offset + 1;
344 si->flags -= SWP_SCANNING;
7992fde7
HD
345
346 if (si->lowest_alloc) {
347 /*
348 * Only set when SWP_DISCARDABLE, and there's a scan
349 * for a free cluster in progress or just completed.
350 */
351 if (found_free_cluster) {
352 /*
353 * To optimize wear-levelling, discard the
354 * old data of the cluster, taking care not to
355 * discard any of its pages that have already
356 * been allocated by racing tasks (offset has
357 * already stepped over any at the beginning).
358 */
359 if (offset < si->highest_alloc &&
360 si->lowest_alloc <= last_in_cluster)
361 last_in_cluster = si->lowest_alloc - 1;
362 si->flags |= SWP_DISCARDING;
363 spin_unlock(&swap_lock);
364
365 if (offset < last_in_cluster)
366 discard_swap_cluster(si, offset,
367 last_in_cluster - offset + 1);
368
369 spin_lock(&swap_lock);
370 si->lowest_alloc = 0;
371 si->flags &= ~SWP_DISCARDING;
372
373 smp_mb(); /* wake_up_bit advises this */
374 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
375
376 } else if (si->flags & SWP_DISCARDING) {
377 /*
378 * Delay using pages allocated by racing tasks
379 * until the whole discard has been issued. We
380 * could defer that delay until swap_writepage,
381 * but it's easier to keep this self-contained.
382 */
383 spin_unlock(&swap_lock);
384 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
385 wait_for_discard, TASK_UNINTERRUPTIBLE);
386 spin_lock(&swap_lock);
387 } else {
388 /*
389 * Note pages allocated by racing tasks while
390 * scan for a free cluster is in progress, so
391 * that its final discard can exclude them.
392 */
393 if (offset < si->lowest_alloc)
394 si->lowest_alloc = offset;
395 if (offset > si->highest_alloc)
396 si->highest_alloc = offset;
397 }
398 }
ebebbbe9 399 return offset;
7dfad418 400
ebebbbe9 401scan:
5d337b91 402 spin_unlock(&swap_lock);
7dfad418 403 while (++offset <= si->highest_bit) {
52b7efdb 404 if (!si->swap_map[offset]) {
5d337b91 405 spin_lock(&swap_lock);
52b7efdb
HD
406 goto checks;
407 }
c9e44410
KH
408 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
409 spin_lock(&swap_lock);
410 goto checks;
411 }
048c27fd
HD
412 if (unlikely(--latency_ration < 0)) {
413 cond_resched();
414 latency_ration = LATENCY_LIMIT;
415 }
7dfad418 416 }
c60aa176
HD
417 offset = si->lowest_bit;
418 while (++offset < scan_base) {
419 if (!si->swap_map[offset]) {
420 spin_lock(&swap_lock);
421 goto checks;
422 }
c9e44410
KH
423 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
424 spin_lock(&swap_lock);
425 goto checks;
426 }
c60aa176
HD
427 if (unlikely(--latency_ration < 0)) {
428 cond_resched();
429 latency_ration = LATENCY_LIMIT;
430 }
431 }
5d337b91 432 spin_lock(&swap_lock);
7dfad418
HD
433
434no_page:
52b7efdb 435 si->flags -= SWP_SCANNING;
1da177e4
LT
436 return 0;
437}
438
439swp_entry_t get_swap_page(void)
440{
fb4f88dc
HD
441 struct swap_info_struct *si;
442 pgoff_t offset;
443 int type, next;
444 int wrapped = 0;
1da177e4 445
5d337b91 446 spin_lock(&swap_lock);
1da177e4 447 if (nr_swap_pages <= 0)
fb4f88dc
HD
448 goto noswap;
449 nr_swap_pages--;
450
451 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
efa90a98 452 si = swap_info[type];
fb4f88dc
HD
453 next = si->next;
454 if (next < 0 ||
efa90a98 455 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
456 next = swap_list.head;
457 wrapped++;
1da177e4 458 }
fb4f88dc
HD
459
460 if (!si->highest_bit)
461 continue;
462 if (!(si->flags & SWP_WRITEOK))
463 continue;
464
465 swap_list.next = next;
355cfa73 466 /* This is called for allocating swap entry for cache */
253d553b 467 offset = scan_swap_map(si, SWAP_HAS_CACHE);
5d337b91
HD
468 if (offset) {
469 spin_unlock(&swap_lock);
fb4f88dc 470 return swp_entry(type, offset);
5d337b91 471 }
fb4f88dc 472 next = swap_list.next;
1da177e4 473 }
fb4f88dc
HD
474
475 nr_swap_pages++;
476noswap:
5d337b91 477 spin_unlock(&swap_lock);
fb4f88dc 478 return (swp_entry_t) {0};
1da177e4
LT
479}
480
355cfa73 481/* The only caller of this function is now susupend routine */
3a291a20
RW
482swp_entry_t get_swap_page_of_type(int type)
483{
484 struct swap_info_struct *si;
485 pgoff_t offset;
486
487 spin_lock(&swap_lock);
efa90a98
HD
488 si = swap_info[type];
489 if (si && (si->flags & SWP_WRITEOK)) {
3a291a20 490 nr_swap_pages--;
355cfa73 491 /* This is called for allocating swap entry, not cache */
253d553b 492 offset = scan_swap_map(si, 1);
3a291a20
RW
493 if (offset) {
494 spin_unlock(&swap_lock);
495 return swp_entry(type, offset);
496 }
497 nr_swap_pages++;
498 }
499 spin_unlock(&swap_lock);
500 return (swp_entry_t) {0};
501}
502
73c34b6a 503static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 504{
73c34b6a 505 struct swap_info_struct *p;
1da177e4
LT
506 unsigned long offset, type;
507
508 if (!entry.val)
509 goto out;
510 type = swp_type(entry);
511 if (type >= nr_swapfiles)
512 goto bad_nofile;
efa90a98 513 p = swap_info[type];
1da177e4
LT
514 if (!(p->flags & SWP_USED))
515 goto bad_device;
516 offset = swp_offset(entry);
517 if (offset >= p->max)
518 goto bad_offset;
519 if (!p->swap_map[offset])
520 goto bad_free;
5d337b91 521 spin_lock(&swap_lock);
1da177e4
LT
522 return p;
523
524bad_free:
525 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
526 goto out;
527bad_offset:
528 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
529 goto out;
530bad_device:
531 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
532 goto out;
533bad_nofile:
534 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
535out:
536 return NULL;
886bb7e9 537}
1da177e4 538
8d69aaee
HD
539static unsigned char swap_entry_free(struct swap_info_struct *p,
540 swp_entry_t entry, unsigned char usage)
1da177e4 541{
253d553b 542 unsigned long offset = swp_offset(entry);
8d69aaee
HD
543 unsigned char count;
544 unsigned char has_cache;
355cfa73 545
253d553b
HD
546 count = p->swap_map[offset];
547 has_cache = count & SWAP_HAS_CACHE;
548 count &= ~SWAP_HAS_CACHE;
355cfa73 549
253d553b 550 if (usage == SWAP_HAS_CACHE) {
355cfa73 551 VM_BUG_ON(!has_cache);
253d553b 552 has_cache = 0;
aaa46865
HD
553 } else if (count == SWAP_MAP_SHMEM) {
554 /*
555 * Or we could insist on shmem.c using a special
556 * swap_shmem_free() and free_shmem_swap_and_cache()...
557 */
558 count = 0;
570a335b
HD
559 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
560 if (count == COUNT_CONTINUED) {
561 if (swap_count_continued(p, offset, count))
562 count = SWAP_MAP_MAX | COUNT_CONTINUED;
563 else
564 count = SWAP_MAP_MAX;
565 } else
566 count--;
567 }
253d553b
HD
568
569 if (!count)
570 mem_cgroup_uncharge_swap(entry);
571
572 usage = count | has_cache;
573 p->swap_map[offset] = usage;
355cfa73 574
355cfa73 575 /* free if no reference */
253d553b 576 if (!usage) {
355cfa73
KH
577 if (offset < p->lowest_bit)
578 p->lowest_bit = offset;
579 if (offset > p->highest_bit)
580 p->highest_bit = offset;
efa90a98
HD
581 if (swap_list.next >= 0 &&
582 p->prio > swap_info[swap_list.next]->prio)
583 swap_list.next = p->type;
355cfa73
KH
584 nr_swap_pages++;
585 p->inuse_pages--;
1da177e4 586 }
253d553b
HD
587
588 return usage;
1da177e4
LT
589}
590
591/*
592 * Caller has made sure that the swapdevice corresponding to entry
593 * is still around or has not been recycled.
594 */
595void swap_free(swp_entry_t entry)
596{
73c34b6a 597 struct swap_info_struct *p;
1da177e4
LT
598
599 p = swap_info_get(entry);
600 if (p) {
253d553b 601 swap_entry_free(p, entry, 1);
5d337b91 602 spin_unlock(&swap_lock);
1da177e4
LT
603 }
604}
605
cb4b86ba
KH
606/*
607 * Called after dropping swapcache to decrease refcnt to swap entries.
608 */
609void swapcache_free(swp_entry_t entry, struct page *page)
610{
355cfa73 611 struct swap_info_struct *p;
8d69aaee 612 unsigned char count;
355cfa73 613
355cfa73
KH
614 p = swap_info_get(entry);
615 if (p) {
253d553b
HD
616 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
617 if (page)
618 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
355cfa73
KH
619 spin_unlock(&swap_lock);
620 }
cb4b86ba
KH
621}
622
1da177e4 623/*
c475a8ab 624 * How many references to page are currently swapped out?
570a335b
HD
625 * This does not give an exact answer when swap count is continued,
626 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 627 */
c475a8ab 628static inline int page_swapcount(struct page *page)
1da177e4 629{
c475a8ab
HD
630 int count = 0;
631 struct swap_info_struct *p;
1da177e4
LT
632 swp_entry_t entry;
633
4c21e2f2 634 entry.val = page_private(page);
1da177e4
LT
635 p = swap_info_get(entry);
636 if (p) {
355cfa73 637 count = swap_count(p->swap_map[swp_offset(entry)]);
5d337b91 638 spin_unlock(&swap_lock);
1da177e4 639 }
c475a8ab 640 return count;
1da177e4
LT
641}
642
643/*
7b1fe597
HD
644 * We can write to an anon page without COW if there are no other references
645 * to it. And as a side-effect, free up its swap: because the old content
646 * on disk will never be read, and seeking back there to write new content
647 * later would only waste time away from clustering.
1da177e4 648 */
7b1fe597 649int reuse_swap_page(struct page *page)
1da177e4 650{
c475a8ab
HD
651 int count;
652
51726b12 653 VM_BUG_ON(!PageLocked(page));
5ad64688
HD
654 if (unlikely(PageKsm(page)))
655 return 0;
c475a8ab 656 count = page_mapcount(page);
7b1fe597 657 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 658 count += page_swapcount(page);
7b1fe597
HD
659 if (count == 1 && !PageWriteback(page)) {
660 delete_from_swap_cache(page);
661 SetPageDirty(page);
662 }
663 }
5ad64688 664 return count <= 1;
1da177e4
LT
665}
666
667/*
a2c43eed
HD
668 * If swap is getting full, or if there are no more mappings of this page,
669 * then try_to_free_swap is called to free its swap space.
1da177e4 670 */
a2c43eed 671int try_to_free_swap(struct page *page)
1da177e4 672{
51726b12 673 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
674
675 if (!PageSwapCache(page))
676 return 0;
677 if (PageWriteback(page))
678 return 0;
a2c43eed 679 if (page_swapcount(page))
1da177e4
LT
680 return 0;
681
a2c43eed
HD
682 delete_from_swap_cache(page);
683 SetPageDirty(page);
684 return 1;
68a22394
RR
685}
686
1da177e4
LT
687/*
688 * Free the swap entry like above, but also try to
689 * free the page cache entry if it is the last user.
690 */
2509ef26 691int free_swap_and_cache(swp_entry_t entry)
1da177e4 692{
2509ef26 693 struct swap_info_struct *p;
1da177e4
LT
694 struct page *page = NULL;
695
a7420aa5 696 if (non_swap_entry(entry))
2509ef26 697 return 1;
0697212a 698
1da177e4
LT
699 p = swap_info_get(entry);
700 if (p) {
253d553b 701 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
93fac704 702 page = find_get_page(&swapper_space, entry.val);
8413ac9d 703 if (page && !trylock_page(page)) {
93fac704
NP
704 page_cache_release(page);
705 page = NULL;
706 }
707 }
5d337b91 708 spin_unlock(&swap_lock);
1da177e4
LT
709 }
710 if (page) {
a2c43eed
HD
711 /*
712 * Not mapped elsewhere, or swap space full? Free it!
713 * Also recheck PageSwapCache now page is locked (above).
714 */
93fac704 715 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 716 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
717 delete_from_swap_cache(page);
718 SetPageDirty(page);
719 }
720 unlock_page(page);
721 page_cache_release(page);
722 }
2509ef26 723 return p != NULL;
1da177e4
LT
724}
725
02491447
DN
726#ifdef CONFIG_CGROUP_MEM_RES_CTLR
727/**
728 * mem_cgroup_count_swap_user - count the user of a swap entry
729 * @ent: the swap entry to be checked
730 * @pagep: the pointer for the swap cache page of the entry to be stored
731 *
732 * Returns the number of the user of the swap entry. The number is valid only
733 * for swaps of anonymous pages.
734 * If the entry is found on swap cache, the page is stored to pagep with
735 * refcount of it being incremented.
736 */
737int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
738{
739 struct page *page;
740 struct swap_info_struct *p;
741 int count = 0;
742
743 page = find_get_page(&swapper_space, ent.val);
744 if (page)
745 count += page_mapcount(page);
746 p = swap_info_get(ent);
747 if (p) {
748 count += swap_count(p->swap_map[swp_offset(ent)]);
749 spin_unlock(&swap_lock);
750 }
751
752 *pagep = page;
753 return count;
754}
755#endif
756
b0cb1a19 757#ifdef CONFIG_HIBERNATION
f577eb30 758/*
915bae9e 759 * Find the swap type that corresponds to given device (if any).
f577eb30 760 *
915bae9e
RW
761 * @offset - number of the PAGE_SIZE-sized block of the device, starting
762 * from 0, in which the swap header is expected to be located.
763 *
764 * This is needed for the suspend to disk (aka swsusp).
f577eb30 765 */
7bf23687 766int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 767{
915bae9e 768 struct block_device *bdev = NULL;
efa90a98 769 int type;
f577eb30 770
915bae9e
RW
771 if (device)
772 bdev = bdget(device);
773
f577eb30 774 spin_lock(&swap_lock);
efa90a98
HD
775 for (type = 0; type < nr_swapfiles; type++) {
776 struct swap_info_struct *sis = swap_info[type];
f577eb30 777
915bae9e 778 if (!(sis->flags & SWP_WRITEOK))
f577eb30 779 continue;
b6b5bce3 780
915bae9e 781 if (!bdev) {
7bf23687 782 if (bdev_p)
dddac6a7 783 *bdev_p = bdgrab(sis->bdev);
7bf23687 784
6e1819d6 785 spin_unlock(&swap_lock);
efa90a98 786 return type;
6e1819d6 787 }
915bae9e 788 if (bdev == sis->bdev) {
9625a5f2 789 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 790
915bae9e 791 if (se->start_block == offset) {
7bf23687 792 if (bdev_p)
dddac6a7 793 *bdev_p = bdgrab(sis->bdev);
7bf23687 794
915bae9e
RW
795 spin_unlock(&swap_lock);
796 bdput(bdev);
efa90a98 797 return type;
915bae9e 798 }
f577eb30
RW
799 }
800 }
801 spin_unlock(&swap_lock);
915bae9e
RW
802 if (bdev)
803 bdput(bdev);
804
f577eb30
RW
805 return -ENODEV;
806}
807
73c34b6a
HD
808/*
809 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
810 * corresponding to given index in swap_info (swap type).
811 */
812sector_t swapdev_block(int type, pgoff_t offset)
813{
814 struct block_device *bdev;
815
816 if ((unsigned int)type >= nr_swapfiles)
817 return 0;
818 if (!(swap_info[type]->flags & SWP_WRITEOK))
819 return 0;
d4906e1a 820 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
821}
822
f577eb30
RW
823/*
824 * Return either the total number of swap pages of given type, or the number
825 * of free pages of that type (depending on @free)
826 *
827 * This is needed for software suspend
828 */
829unsigned int count_swap_pages(int type, int free)
830{
831 unsigned int n = 0;
832
efa90a98
HD
833 spin_lock(&swap_lock);
834 if ((unsigned int)type < nr_swapfiles) {
835 struct swap_info_struct *sis = swap_info[type];
836
837 if (sis->flags & SWP_WRITEOK) {
838 n = sis->pages;
f577eb30 839 if (free)
efa90a98 840 n -= sis->inuse_pages;
f577eb30 841 }
f577eb30 842 }
efa90a98 843 spin_unlock(&swap_lock);
f577eb30
RW
844 return n;
845}
73c34b6a 846#endif /* CONFIG_HIBERNATION */
f577eb30 847
1da177e4 848/*
72866f6f
HD
849 * No need to decide whether this PTE shares the swap entry with others,
850 * just let do_wp_page work it out if a write is requested later - to
851 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 852 */
044d66c1 853static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
854 unsigned long addr, swp_entry_t entry, struct page *page)
855{
7a81b88c 856 struct mem_cgroup *ptr = NULL;
044d66c1
HD
857 spinlock_t *ptl;
858 pte_t *pte;
859 int ret = 1;
860
85d9fc89 861 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
044d66c1 862 ret = -ENOMEM;
85d9fc89
KH
863 goto out_nolock;
864 }
044d66c1
HD
865
866 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
867 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
868 if (ret > 0)
7a81b88c 869 mem_cgroup_cancel_charge_swapin(ptr);
044d66c1
HD
870 ret = 0;
871 goto out;
872 }
8a9f3ccd 873
b084d435 874 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 875 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
876 get_page(page);
877 set_pte_at(vma->vm_mm, addr, pte,
878 pte_mkold(mk_pte(page, vma->vm_page_prot)));
879 page_add_anon_rmap(page, vma, addr);
7a81b88c 880 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4
LT
881 swap_free(entry);
882 /*
883 * Move the page to the active list so it is not
884 * immediately swapped out again after swapon.
885 */
886 activate_page(page);
044d66c1
HD
887out:
888 pte_unmap_unlock(pte, ptl);
85d9fc89 889out_nolock:
044d66c1 890 return ret;
1da177e4
LT
891}
892
893static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
894 unsigned long addr, unsigned long end,
895 swp_entry_t entry, struct page *page)
896{
1da177e4 897 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 898 pte_t *pte;
8a9f3ccd 899 int ret = 0;
1da177e4 900
044d66c1
HD
901 /*
902 * We don't actually need pte lock while scanning for swp_pte: since
903 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
904 * page table while we're scanning; though it could get zapped, and on
905 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
906 * of unmatched parts which look like swp_pte, so unuse_pte must
907 * recheck under pte lock. Scanning without pte lock lets it be
908 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
909 */
910 pte = pte_offset_map(pmd, addr);
1da177e4
LT
911 do {
912 /*
913 * swapoff spends a _lot_ of time in this loop!
914 * Test inline before going to call unuse_pte.
915 */
916 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
917 pte_unmap(pte);
918 ret = unuse_pte(vma, pmd, addr, entry, page);
919 if (ret)
920 goto out;
921 pte = pte_offset_map(pmd, addr);
1da177e4
LT
922 }
923 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
924 pte_unmap(pte - 1);
925out:
8a9f3ccd 926 return ret;
1da177e4
LT
927}
928
929static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
930 unsigned long addr, unsigned long end,
931 swp_entry_t entry, struct page *page)
932{
933 pmd_t *pmd;
934 unsigned long next;
8a9f3ccd 935 int ret;
1da177e4
LT
936
937 pmd = pmd_offset(pud, addr);
938 do {
939 next = pmd_addr_end(addr, end);
940 if (pmd_none_or_clear_bad(pmd))
941 continue;
8a9f3ccd
BS
942 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
943 if (ret)
944 return ret;
1da177e4
LT
945 } while (pmd++, addr = next, addr != end);
946 return 0;
947}
948
949static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
950 unsigned long addr, unsigned long end,
951 swp_entry_t entry, struct page *page)
952{
953 pud_t *pud;
954 unsigned long next;
8a9f3ccd 955 int ret;
1da177e4
LT
956
957 pud = pud_offset(pgd, addr);
958 do {
959 next = pud_addr_end(addr, end);
960 if (pud_none_or_clear_bad(pud))
961 continue;
8a9f3ccd
BS
962 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
963 if (ret)
964 return ret;
1da177e4
LT
965 } while (pud++, addr = next, addr != end);
966 return 0;
967}
968
969static int unuse_vma(struct vm_area_struct *vma,
970 swp_entry_t entry, struct page *page)
971{
972 pgd_t *pgd;
973 unsigned long addr, end, next;
8a9f3ccd 974 int ret;
1da177e4 975
3ca7b3c5 976 if (page_anon_vma(page)) {
1da177e4
LT
977 addr = page_address_in_vma(page, vma);
978 if (addr == -EFAULT)
979 return 0;
980 else
981 end = addr + PAGE_SIZE;
982 } else {
983 addr = vma->vm_start;
984 end = vma->vm_end;
985 }
986
987 pgd = pgd_offset(vma->vm_mm, addr);
988 do {
989 next = pgd_addr_end(addr, end);
990 if (pgd_none_or_clear_bad(pgd))
991 continue;
8a9f3ccd
BS
992 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
993 if (ret)
994 return ret;
1da177e4
LT
995 } while (pgd++, addr = next, addr != end);
996 return 0;
997}
998
999static int unuse_mm(struct mm_struct *mm,
1000 swp_entry_t entry, struct page *page)
1001{
1002 struct vm_area_struct *vma;
8a9f3ccd 1003 int ret = 0;
1da177e4
LT
1004
1005 if (!down_read_trylock(&mm->mmap_sem)) {
1006 /*
7d03431c
FLVC
1007 * Activate page so shrink_inactive_list is unlikely to unmap
1008 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1009 */
c475a8ab 1010 activate_page(page);
1da177e4
LT
1011 unlock_page(page);
1012 down_read(&mm->mmap_sem);
1013 lock_page(page);
1014 }
1da177e4 1015 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1016 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1017 break;
1018 }
1da177e4 1019 up_read(&mm->mmap_sem);
8a9f3ccd 1020 return (ret < 0)? ret: 0;
1da177e4
LT
1021}
1022
1023/*
1024 * Scan swap_map from current position to next entry still in use.
1025 * Recycle to start on reaching the end, returning 0 when empty.
1026 */
6eb396dc
HD
1027static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1028 unsigned int prev)
1da177e4 1029{
6eb396dc
HD
1030 unsigned int max = si->max;
1031 unsigned int i = prev;
8d69aaee 1032 unsigned char count;
1da177e4
LT
1033
1034 /*
5d337b91 1035 * No need for swap_lock here: we're just looking
1da177e4
LT
1036 * for whether an entry is in use, not modifying it; false
1037 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1038 * allocations from this area (while holding swap_lock).
1da177e4
LT
1039 */
1040 for (;;) {
1041 if (++i >= max) {
1042 if (!prev) {
1043 i = 0;
1044 break;
1045 }
1046 /*
1047 * No entries in use at top of swap_map,
1048 * loop back to start and recheck there.
1049 */
1050 max = prev + 1;
1051 prev = 0;
1052 i = 1;
1053 }
1054 count = si->swap_map[i];
355cfa73 1055 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1056 break;
1057 }
1058 return i;
1059}
1060
1061/*
1062 * We completely avoid races by reading each swap page in advance,
1063 * and then search for the process using it. All the necessary
1064 * page table adjustments can then be made atomically.
1065 */
1066static int try_to_unuse(unsigned int type)
1067{
efa90a98 1068 struct swap_info_struct *si = swap_info[type];
1da177e4 1069 struct mm_struct *start_mm;
8d69aaee
HD
1070 unsigned char *swap_map;
1071 unsigned char swcount;
1da177e4
LT
1072 struct page *page;
1073 swp_entry_t entry;
6eb396dc 1074 unsigned int i = 0;
1da177e4 1075 int retval = 0;
1da177e4
LT
1076
1077 /*
1078 * When searching mms for an entry, a good strategy is to
1079 * start at the first mm we freed the previous entry from
1080 * (though actually we don't notice whether we or coincidence
1081 * freed the entry). Initialize this start_mm with a hold.
1082 *
1083 * A simpler strategy would be to start at the last mm we
1084 * freed the previous entry from; but that would take less
1085 * advantage of mmlist ordering, which clusters forked mms
1086 * together, child after parent. If we race with dup_mmap(), we
1087 * prefer to resolve parent before child, lest we miss entries
1088 * duplicated after we scanned child: using last mm would invert
570a335b 1089 * that.
1da177e4
LT
1090 */
1091 start_mm = &init_mm;
1092 atomic_inc(&init_mm.mm_users);
1093
1094 /*
1095 * Keep on scanning until all entries have gone. Usually,
1096 * one pass through swap_map is enough, but not necessarily:
1097 * there are races when an instance of an entry might be missed.
1098 */
1099 while ((i = find_next_to_unuse(si, i)) != 0) {
1100 if (signal_pending(current)) {
1101 retval = -EINTR;
1102 break;
1103 }
1104
886bb7e9 1105 /*
1da177e4
LT
1106 * Get a page for the entry, using the existing swap
1107 * cache page if there is one. Otherwise, get a clean
886bb7e9 1108 * page and read the swap into it.
1da177e4
LT
1109 */
1110 swap_map = &si->swap_map[i];
1111 entry = swp_entry(type, i);
02098fea
HD
1112 page = read_swap_cache_async(entry,
1113 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1114 if (!page) {
1115 /*
1116 * Either swap_duplicate() failed because entry
1117 * has been freed independently, and will not be
1118 * reused since sys_swapoff() already disabled
1119 * allocation from here, or alloc_page() failed.
1120 */
1121 if (!*swap_map)
1122 continue;
1123 retval = -ENOMEM;
1124 break;
1125 }
1126
1127 /*
1128 * Don't hold on to start_mm if it looks like exiting.
1129 */
1130 if (atomic_read(&start_mm->mm_users) == 1) {
1131 mmput(start_mm);
1132 start_mm = &init_mm;
1133 atomic_inc(&init_mm.mm_users);
1134 }
1135
1136 /*
1137 * Wait for and lock page. When do_swap_page races with
1138 * try_to_unuse, do_swap_page can handle the fault much
1139 * faster than try_to_unuse can locate the entry. This
1140 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1141 * defer to do_swap_page in such a case - in some tests,
1142 * do_swap_page and try_to_unuse repeatedly compete.
1143 */
1144 wait_on_page_locked(page);
1145 wait_on_page_writeback(page);
1146 lock_page(page);
1147 wait_on_page_writeback(page);
1148
1149 /*
1150 * Remove all references to entry.
1da177e4 1151 */
1da177e4 1152 swcount = *swap_map;
aaa46865
HD
1153 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1154 retval = shmem_unuse(entry, page);
1155 /* page has already been unlocked and released */
1156 if (retval < 0)
1157 break;
1158 continue;
1da177e4 1159 }
aaa46865
HD
1160 if (swap_count(swcount) && start_mm != &init_mm)
1161 retval = unuse_mm(start_mm, entry, page);
1162
355cfa73 1163 if (swap_count(*swap_map)) {
1da177e4
LT
1164 int set_start_mm = (*swap_map >= swcount);
1165 struct list_head *p = &start_mm->mmlist;
1166 struct mm_struct *new_start_mm = start_mm;
1167 struct mm_struct *prev_mm = start_mm;
1168 struct mm_struct *mm;
1169
1170 atomic_inc(&new_start_mm->mm_users);
1171 atomic_inc(&prev_mm->mm_users);
1172 spin_lock(&mmlist_lock);
aaa46865 1173 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1174 (p = p->next) != &start_mm->mmlist) {
1175 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1176 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1177 continue;
1da177e4
LT
1178 spin_unlock(&mmlist_lock);
1179 mmput(prev_mm);
1180 prev_mm = mm;
1181
1182 cond_resched();
1183
1184 swcount = *swap_map;
355cfa73 1185 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1186 ;
aaa46865 1187 else if (mm == &init_mm)
1da177e4 1188 set_start_mm = 1;
aaa46865 1189 else
1da177e4 1190 retval = unuse_mm(mm, entry, page);
355cfa73 1191
32c5fc10 1192 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1193 mmput(new_start_mm);
1194 atomic_inc(&mm->mm_users);
1195 new_start_mm = mm;
1196 set_start_mm = 0;
1197 }
1198 spin_lock(&mmlist_lock);
1199 }
1200 spin_unlock(&mmlist_lock);
1201 mmput(prev_mm);
1202 mmput(start_mm);
1203 start_mm = new_start_mm;
1204 }
1205 if (retval) {
1206 unlock_page(page);
1207 page_cache_release(page);
1208 break;
1209 }
1210
1da177e4
LT
1211 /*
1212 * If a reference remains (rare), we would like to leave
1213 * the page in the swap cache; but try_to_unmap could
1214 * then re-duplicate the entry once we drop page lock,
1215 * so we might loop indefinitely; also, that page could
1216 * not be swapped out to other storage meanwhile. So:
1217 * delete from cache even if there's another reference,
1218 * after ensuring that the data has been saved to disk -
1219 * since if the reference remains (rarer), it will be
1220 * read from disk into another page. Splitting into two
1221 * pages would be incorrect if swap supported "shared
1222 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1223 *
1224 * Given how unuse_vma() targets one particular offset
1225 * in an anon_vma, once the anon_vma has been determined,
1226 * this splitting happens to be just what is needed to
1227 * handle where KSM pages have been swapped out: re-reading
1228 * is unnecessarily slow, but we can fix that later on.
1da177e4 1229 */
355cfa73
KH
1230 if (swap_count(*swap_map) &&
1231 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1232 struct writeback_control wbc = {
1233 .sync_mode = WB_SYNC_NONE,
1234 };
1235
1236 swap_writepage(page, &wbc);
1237 lock_page(page);
1238 wait_on_page_writeback(page);
1239 }
68bdc8d6
HD
1240
1241 /*
1242 * It is conceivable that a racing task removed this page from
1243 * swap cache just before we acquired the page lock at the top,
1244 * or while we dropped it in unuse_mm(). The page might even
1245 * be back in swap cache on another swap area: that we must not
1246 * delete, since it may not have been written out to swap yet.
1247 */
1248 if (PageSwapCache(page) &&
1249 likely(page_private(page) == entry.val))
2e0e26c7 1250 delete_from_swap_cache(page);
1da177e4
LT
1251
1252 /*
1253 * So we could skip searching mms once swap count went
1254 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1255 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1256 */
1257 SetPageDirty(page);
1258 unlock_page(page);
1259 page_cache_release(page);
1260
1261 /*
1262 * Make sure that we aren't completely killing
1263 * interactive performance.
1264 */
1265 cond_resched();
1266 }
1267
1268 mmput(start_mm);
1da177e4
LT
1269 return retval;
1270}
1271
1272/*
5d337b91
HD
1273 * After a successful try_to_unuse, if no swap is now in use, we know
1274 * we can empty the mmlist. swap_lock must be held on entry and exit.
1275 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1276 * added to the mmlist just after page_duplicate - before would be racy.
1277 */
1278static void drain_mmlist(void)
1279{
1280 struct list_head *p, *next;
efa90a98 1281 unsigned int type;
1da177e4 1282
efa90a98
HD
1283 for (type = 0; type < nr_swapfiles; type++)
1284 if (swap_info[type]->inuse_pages)
1da177e4
LT
1285 return;
1286 spin_lock(&mmlist_lock);
1287 list_for_each_safe(p, next, &init_mm.mmlist)
1288 list_del_init(p);
1289 spin_unlock(&mmlist_lock);
1290}
1291
1292/*
1293 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1294 * corresponds to page offset for the specified swap entry.
1295 * Note that the type of this function is sector_t, but it returns page offset
1296 * into the bdev, not sector offset.
1da177e4 1297 */
d4906e1a 1298static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1299{
f29ad6a9
HD
1300 struct swap_info_struct *sis;
1301 struct swap_extent *start_se;
1302 struct swap_extent *se;
1303 pgoff_t offset;
1304
efa90a98 1305 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1306 *bdev = sis->bdev;
1307
1308 offset = swp_offset(entry);
1309 start_se = sis->curr_swap_extent;
1310 se = start_se;
1da177e4
LT
1311
1312 for ( ; ; ) {
1313 struct list_head *lh;
1314
1315 if (se->start_page <= offset &&
1316 offset < (se->start_page + se->nr_pages)) {
1317 return se->start_block + (offset - se->start_page);
1318 }
11d31886 1319 lh = se->list.next;
1da177e4
LT
1320 se = list_entry(lh, struct swap_extent, list);
1321 sis->curr_swap_extent = se;
1322 BUG_ON(se == start_se); /* It *must* be present */
1323 }
1324}
1325
d4906e1a
LS
1326/*
1327 * Returns the page offset into bdev for the specified page's swap entry.
1328 */
1329sector_t map_swap_page(struct page *page, struct block_device **bdev)
1330{
1331 swp_entry_t entry;
1332 entry.val = page_private(page);
1333 return map_swap_entry(entry, bdev);
1334}
1335
1da177e4
LT
1336/*
1337 * Free all of a swapdev's extent information
1338 */
1339static void destroy_swap_extents(struct swap_info_struct *sis)
1340{
9625a5f2 1341 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1342 struct swap_extent *se;
1343
9625a5f2 1344 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1345 struct swap_extent, list);
1346 list_del(&se->list);
1347 kfree(se);
1348 }
1da177e4
LT
1349}
1350
1351/*
1352 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1353 * extent list. The extent list is kept sorted in page order.
1da177e4 1354 *
11d31886 1355 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1356 */
1357static int
1358add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1359 unsigned long nr_pages, sector_t start_block)
1360{
1361 struct swap_extent *se;
1362 struct swap_extent *new_se;
1363 struct list_head *lh;
1364
9625a5f2
HD
1365 if (start_page == 0) {
1366 se = &sis->first_swap_extent;
1367 sis->curr_swap_extent = se;
1368 se->start_page = 0;
1369 se->nr_pages = nr_pages;
1370 se->start_block = start_block;
1371 return 1;
1372 } else {
1373 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1374 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1375 BUG_ON(se->start_page + se->nr_pages != start_page);
1376 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1377 /* Merge it */
1378 se->nr_pages += nr_pages;
1379 return 0;
1380 }
1da177e4
LT
1381 }
1382
1383 /*
1384 * No merge. Insert a new extent, preserving ordering.
1385 */
1386 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1387 if (new_se == NULL)
1388 return -ENOMEM;
1389 new_se->start_page = start_page;
1390 new_se->nr_pages = nr_pages;
1391 new_se->start_block = start_block;
1392
9625a5f2 1393 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1394 return 1;
1da177e4
LT
1395}
1396
1397/*
1398 * A `swap extent' is a simple thing which maps a contiguous range of pages
1399 * onto a contiguous range of disk blocks. An ordered list of swap extents
1400 * is built at swapon time and is then used at swap_writepage/swap_readpage
1401 * time for locating where on disk a page belongs.
1402 *
1403 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1404 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1405 * swap files identically.
1406 *
1407 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1408 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1409 * swapfiles are handled *identically* after swapon time.
1410 *
1411 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1412 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1413 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1414 * requirements, they are simply tossed out - we will never use those blocks
1415 * for swapping.
1416 *
b0d9bcd4 1417 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1418 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1419 * which will scribble on the fs.
1420 *
1421 * The amount of disk space which a single swap extent represents varies.
1422 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1423 * extents in the list. To avoid much list walking, we cache the previous
1424 * search location in `curr_swap_extent', and start new searches from there.
1425 * This is extremely effective. The average number of iterations in
1426 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1427 */
53092a74 1428static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1429{
1430 struct inode *inode;
1431 unsigned blocks_per_page;
1432 unsigned long page_no;
1433 unsigned blkbits;
1434 sector_t probe_block;
1435 sector_t last_block;
53092a74
HD
1436 sector_t lowest_block = -1;
1437 sector_t highest_block = 0;
1438 int nr_extents = 0;
1da177e4
LT
1439 int ret;
1440
1441 inode = sis->swap_file->f_mapping->host;
1442 if (S_ISBLK(inode->i_mode)) {
1443 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1444 *span = sis->pages;
9625a5f2 1445 goto out;
1da177e4
LT
1446 }
1447
1448 blkbits = inode->i_blkbits;
1449 blocks_per_page = PAGE_SIZE >> blkbits;
1450
1451 /*
1452 * Map all the blocks into the extent list. This code doesn't try
1453 * to be very smart.
1454 */
1455 probe_block = 0;
1456 page_no = 0;
1457 last_block = i_size_read(inode) >> blkbits;
1458 while ((probe_block + blocks_per_page) <= last_block &&
1459 page_no < sis->max) {
1460 unsigned block_in_page;
1461 sector_t first_block;
1462
1463 first_block = bmap(inode, probe_block);
1464 if (first_block == 0)
1465 goto bad_bmap;
1466
1467 /*
1468 * It must be PAGE_SIZE aligned on-disk
1469 */
1470 if (first_block & (blocks_per_page - 1)) {
1471 probe_block++;
1472 goto reprobe;
1473 }
1474
1475 for (block_in_page = 1; block_in_page < blocks_per_page;
1476 block_in_page++) {
1477 sector_t block;
1478
1479 block = bmap(inode, probe_block + block_in_page);
1480 if (block == 0)
1481 goto bad_bmap;
1482 if (block != first_block + block_in_page) {
1483 /* Discontiguity */
1484 probe_block++;
1485 goto reprobe;
1486 }
1487 }
1488
53092a74
HD
1489 first_block >>= (PAGE_SHIFT - blkbits);
1490 if (page_no) { /* exclude the header page */
1491 if (first_block < lowest_block)
1492 lowest_block = first_block;
1493 if (first_block > highest_block)
1494 highest_block = first_block;
1495 }
1496
1da177e4
LT
1497 /*
1498 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1499 */
53092a74
HD
1500 ret = add_swap_extent(sis, page_no, 1, first_block);
1501 if (ret < 0)
1da177e4 1502 goto out;
53092a74 1503 nr_extents += ret;
1da177e4
LT
1504 page_no++;
1505 probe_block += blocks_per_page;
1506reprobe:
1507 continue;
1508 }
53092a74
HD
1509 ret = nr_extents;
1510 *span = 1 + highest_block - lowest_block;
1da177e4 1511 if (page_no == 0)
e2244ec2 1512 page_no = 1; /* force Empty message */
1da177e4 1513 sis->max = page_no;
e2244ec2 1514 sis->pages = page_no - 1;
1da177e4 1515 sis->highest_bit = page_no - 1;
9625a5f2
HD
1516out:
1517 return ret;
1da177e4
LT
1518bad_bmap:
1519 printk(KERN_ERR "swapon: swapfile has holes\n");
1520 ret = -EINVAL;
9625a5f2 1521 goto out;
1da177e4
LT
1522}
1523
c4ea37c2 1524SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1525{
73c34b6a 1526 struct swap_info_struct *p = NULL;
8d69aaee 1527 unsigned char *swap_map;
1da177e4
LT
1528 struct file *swap_file, *victim;
1529 struct address_space *mapping;
1530 struct inode *inode;
73c34b6a 1531 char *pathname;
1da177e4
LT
1532 int i, type, prev;
1533 int err;
886bb7e9 1534
1da177e4
LT
1535 if (!capable(CAP_SYS_ADMIN))
1536 return -EPERM;
1537
1538 pathname = getname(specialfile);
1539 err = PTR_ERR(pathname);
1540 if (IS_ERR(pathname))
1541 goto out;
1542
1543 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1544 putname(pathname);
1545 err = PTR_ERR(victim);
1546 if (IS_ERR(victim))
1547 goto out;
1548
1549 mapping = victim->f_mapping;
1550 prev = -1;
5d337b91 1551 spin_lock(&swap_lock);
efa90a98
HD
1552 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1553 p = swap_info[type];
22c6f8fd 1554 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1555 if (p->swap_file->f_mapping == mapping)
1556 break;
1557 }
1558 prev = type;
1559 }
1560 if (type < 0) {
1561 err = -EINVAL;
5d337b91 1562 spin_unlock(&swap_lock);
1da177e4
LT
1563 goto out_dput;
1564 }
1565 if (!security_vm_enough_memory(p->pages))
1566 vm_unacct_memory(p->pages);
1567 else {
1568 err = -ENOMEM;
5d337b91 1569 spin_unlock(&swap_lock);
1da177e4
LT
1570 goto out_dput;
1571 }
efa90a98 1572 if (prev < 0)
1da177e4 1573 swap_list.head = p->next;
efa90a98
HD
1574 else
1575 swap_info[prev]->next = p->next;
1da177e4
LT
1576 if (type == swap_list.next) {
1577 /* just pick something that's safe... */
1578 swap_list.next = swap_list.head;
1579 }
78ecba08 1580 if (p->prio < 0) {
efa90a98
HD
1581 for (i = p->next; i >= 0; i = swap_info[i]->next)
1582 swap_info[i]->prio = p->prio--;
78ecba08
HD
1583 least_priority++;
1584 }
1da177e4
LT
1585 nr_swap_pages -= p->pages;
1586 total_swap_pages -= p->pages;
1587 p->flags &= ~SWP_WRITEOK;
5d337b91 1588 spin_unlock(&swap_lock);
fb4f88dc 1589
35451bee 1590 current->flags |= PF_OOM_ORIGIN;
1da177e4 1591 err = try_to_unuse(type);
35451bee 1592 current->flags &= ~PF_OOM_ORIGIN;
1da177e4 1593
1da177e4
LT
1594 if (err) {
1595 /* re-insert swap space back into swap_list */
5d337b91 1596 spin_lock(&swap_lock);
78ecba08
HD
1597 if (p->prio < 0)
1598 p->prio = --least_priority;
1599 prev = -1;
efa90a98
HD
1600 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1601 if (p->prio >= swap_info[i]->prio)
1da177e4 1602 break;
78ecba08
HD
1603 prev = i;
1604 }
1da177e4
LT
1605 p->next = i;
1606 if (prev < 0)
efa90a98 1607 swap_list.head = swap_list.next = type;
1da177e4 1608 else
efa90a98 1609 swap_info[prev]->next = type;
1da177e4
LT
1610 nr_swap_pages += p->pages;
1611 total_swap_pages += p->pages;
1612 p->flags |= SWP_WRITEOK;
5d337b91 1613 spin_unlock(&swap_lock);
1da177e4
LT
1614 goto out_dput;
1615 }
52b7efdb
HD
1616
1617 /* wait for any unplug function to finish */
1618 down_write(&swap_unplug_sem);
1619 up_write(&swap_unplug_sem);
1620
5d337b91 1621 destroy_swap_extents(p);
570a335b
HD
1622 if (p->flags & SWP_CONTINUED)
1623 free_swap_count_continuations(p);
1624
fc0abb14 1625 mutex_lock(&swapon_mutex);
5d337b91
HD
1626 spin_lock(&swap_lock);
1627 drain_mmlist();
1628
52b7efdb 1629 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1630 p->highest_bit = 0; /* cuts scans short */
1631 while (p->flags >= SWP_SCANNING) {
5d337b91 1632 spin_unlock(&swap_lock);
13e4b57f 1633 schedule_timeout_uninterruptible(1);
5d337b91 1634 spin_lock(&swap_lock);
52b7efdb 1635 }
52b7efdb 1636
1da177e4
LT
1637 swap_file = p->swap_file;
1638 p->swap_file = NULL;
1639 p->max = 0;
1640 swap_map = p->swap_map;
1641 p->swap_map = NULL;
1642 p->flags = 0;
5d337b91 1643 spin_unlock(&swap_lock);
fc0abb14 1644 mutex_unlock(&swapon_mutex);
1da177e4 1645 vfree(swap_map);
27a7faa0
KH
1646 /* Destroy swap account informatin */
1647 swap_cgroup_swapoff(type);
1648
1da177e4
LT
1649 inode = mapping->host;
1650 if (S_ISBLK(inode->i_mode)) {
1651 struct block_device *bdev = I_BDEV(inode);
1652 set_blocksize(bdev, p->old_block_size);
1653 bd_release(bdev);
1654 } else {
1b1dcc1b 1655 mutex_lock(&inode->i_mutex);
1da177e4 1656 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1657 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1658 }
1659 filp_close(swap_file, NULL);
1660 err = 0;
1661
1662out_dput:
1663 filp_close(victim, NULL);
1664out:
1665 return err;
1666}
1667
1668#ifdef CONFIG_PROC_FS
1669/* iterator */
1670static void *swap_start(struct seq_file *swap, loff_t *pos)
1671{
efa90a98
HD
1672 struct swap_info_struct *si;
1673 int type;
1da177e4
LT
1674 loff_t l = *pos;
1675
fc0abb14 1676 mutex_lock(&swapon_mutex);
1da177e4 1677
881e4aab
SS
1678 if (!l)
1679 return SEQ_START_TOKEN;
1680
efa90a98
HD
1681 for (type = 0; type < nr_swapfiles; type++) {
1682 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1683 si = swap_info[type];
1684 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1685 continue;
881e4aab 1686 if (!--l)
efa90a98 1687 return si;
1da177e4
LT
1688 }
1689
1690 return NULL;
1691}
1692
1693static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1694{
efa90a98
HD
1695 struct swap_info_struct *si = v;
1696 int type;
1da177e4 1697
881e4aab 1698 if (v == SEQ_START_TOKEN)
efa90a98
HD
1699 type = 0;
1700 else
1701 type = si->type + 1;
881e4aab 1702
efa90a98
HD
1703 for (; type < nr_swapfiles; type++) {
1704 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1705 si = swap_info[type];
1706 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1707 continue;
1708 ++*pos;
efa90a98 1709 return si;
1da177e4
LT
1710 }
1711
1712 return NULL;
1713}
1714
1715static void swap_stop(struct seq_file *swap, void *v)
1716{
fc0abb14 1717 mutex_unlock(&swapon_mutex);
1da177e4
LT
1718}
1719
1720static int swap_show(struct seq_file *swap, void *v)
1721{
efa90a98 1722 struct swap_info_struct *si = v;
1da177e4
LT
1723 struct file *file;
1724 int len;
1725
efa90a98 1726 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1727 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1728 return 0;
1729 }
1da177e4 1730
efa90a98 1731 file = si->swap_file;
c32c2f63 1732 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1733 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1734 len < 40 ? 40 - len : 1, " ",
1735 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1736 "partition" : "file\t",
efa90a98
HD
1737 si->pages << (PAGE_SHIFT - 10),
1738 si->inuse_pages << (PAGE_SHIFT - 10),
1739 si->prio);
1da177e4
LT
1740 return 0;
1741}
1742
15ad7cdc 1743static const struct seq_operations swaps_op = {
1da177e4
LT
1744 .start = swap_start,
1745 .next = swap_next,
1746 .stop = swap_stop,
1747 .show = swap_show
1748};
1749
1750static int swaps_open(struct inode *inode, struct file *file)
1751{
1752 return seq_open(file, &swaps_op);
1753}
1754
15ad7cdc 1755static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1756 .open = swaps_open,
1757 .read = seq_read,
1758 .llseek = seq_lseek,
1759 .release = seq_release,
1760};
1761
1762static int __init procswaps_init(void)
1763{
3d71f86f 1764 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1765 return 0;
1766}
1767__initcall(procswaps_init);
1768#endif /* CONFIG_PROC_FS */
1769
1796316a
JB
1770#ifdef MAX_SWAPFILES_CHECK
1771static int __init max_swapfiles_check(void)
1772{
1773 MAX_SWAPFILES_CHECK();
1774 return 0;
1775}
1776late_initcall(max_swapfiles_check);
1777#endif
1778
1da177e4
LT
1779/*
1780 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1781 *
1782 * The swapon system call
1783 */
c4ea37c2 1784SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1da177e4 1785{
73c34b6a 1786 struct swap_info_struct *p;
1da177e4
LT
1787 char *name = NULL;
1788 struct block_device *bdev = NULL;
1789 struct file *swap_file = NULL;
1790 struct address_space *mapping;
1791 unsigned int type;
1792 int i, prev;
1793 int error;
ad2bd7e0
HD
1794 union swap_header *swap_header;
1795 unsigned int nr_good_pages;
6eb396dc 1796 int nr_extents = 0;
53092a74 1797 sector_t span;
ad2bd7e0 1798 unsigned long maxpages;
73fd8748 1799 unsigned long swapfilepages;
8d69aaee 1800 unsigned char *swap_map = NULL;
1da177e4
LT
1801 struct page *page = NULL;
1802 struct inode *inode = NULL;
1803 int did_down = 0;
1804
1805 if (!capable(CAP_SYS_ADMIN))
1806 return -EPERM;
efa90a98
HD
1807
1808 p = kzalloc(sizeof(*p), GFP_KERNEL);
1809 if (!p)
1810 return -ENOMEM;
1811
5d337b91 1812 spin_lock(&swap_lock);
efa90a98
HD
1813 for (type = 0; type < nr_swapfiles; type++) {
1814 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 1815 break;
efa90a98 1816 }
1da177e4 1817 error = -EPERM;
0697212a 1818 if (type >= MAX_SWAPFILES) {
5d337b91 1819 spin_unlock(&swap_lock);
efa90a98 1820 kfree(p);
1da177e4
LT
1821 goto out;
1822 }
efa90a98
HD
1823 if (type >= nr_swapfiles) {
1824 p->type = type;
1825 swap_info[type] = p;
1826 /*
1827 * Write swap_info[type] before nr_swapfiles, in case a
1828 * racing procfs swap_start() or swap_next() is reading them.
1829 * (We never shrink nr_swapfiles, we never free this entry.)
1830 */
1831 smp_wmb();
1832 nr_swapfiles++;
1833 } else {
1834 kfree(p);
1835 p = swap_info[type];
1836 /*
1837 * Do not memset this entry: a racing procfs swap_next()
1838 * would be relying on p->type to remain valid.
1839 */
1840 }
9625a5f2 1841 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 1842 p->flags = SWP_USED;
1da177e4 1843 p->next = -1;
5d337b91 1844 spin_unlock(&swap_lock);
efa90a98 1845
1da177e4
LT
1846 name = getname(specialfile);
1847 error = PTR_ERR(name);
1848 if (IS_ERR(name)) {
1849 name = NULL;
1850 goto bad_swap_2;
1851 }
1852 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1853 error = PTR_ERR(swap_file);
1854 if (IS_ERR(swap_file)) {
1855 swap_file = NULL;
1856 goto bad_swap_2;
1857 }
1858
1859 p->swap_file = swap_file;
1860 mapping = swap_file->f_mapping;
1861 inode = mapping->host;
1862
1863 error = -EBUSY;
1864 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 1865 struct swap_info_struct *q = swap_info[i];
1da177e4
LT
1866
1867 if (i == type || !q->swap_file)
1868 continue;
1869 if (mapping == q->swap_file->f_mapping)
1870 goto bad_swap;
1871 }
1872
1873 error = -EINVAL;
1874 if (S_ISBLK(inode->i_mode)) {
1875 bdev = I_BDEV(inode);
1876 error = bd_claim(bdev, sys_swapon);
1877 if (error < 0) {
1878 bdev = NULL;
f7b3a435 1879 error = -EINVAL;
1da177e4
LT
1880 goto bad_swap;
1881 }
1882 p->old_block_size = block_size(bdev);
1883 error = set_blocksize(bdev, PAGE_SIZE);
1884 if (error < 0)
1885 goto bad_swap;
1886 p->bdev = bdev;
b2725643 1887 p->flags |= SWP_BLKDEV;
1da177e4
LT
1888 } else if (S_ISREG(inode->i_mode)) {
1889 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1890 mutex_lock(&inode->i_mutex);
1da177e4
LT
1891 did_down = 1;
1892 if (IS_SWAPFILE(inode)) {
1893 error = -EBUSY;
1894 goto bad_swap;
1895 }
1896 } else {
1897 goto bad_swap;
1898 }
1899
73fd8748 1900 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1da177e4
LT
1901
1902 /*
1903 * Read the swap header.
1904 */
1905 if (!mapping->a_ops->readpage) {
1906 error = -EINVAL;
1907 goto bad_swap;
1908 }
090d2b18 1909 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1910 if (IS_ERR(page)) {
1911 error = PTR_ERR(page);
1912 goto bad_swap;
1913 }
81e33971 1914 swap_header = kmap(page);
1da177e4 1915
81e33971 1916 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
e97a3111 1917 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1918 error = -EINVAL;
1919 goto bad_swap;
1920 }
886bb7e9 1921
81e33971
HD
1922 /* swap partition endianess hack... */
1923 if (swab32(swap_header->info.version) == 1) {
1924 swab32s(&swap_header->info.version);
1925 swab32s(&swap_header->info.last_page);
1926 swab32s(&swap_header->info.nr_badpages);
1927 for (i = 0; i < swap_header->info.nr_badpages; i++)
1928 swab32s(&swap_header->info.badpages[i]);
1929 }
1930 /* Check the swap header's sub-version */
1931 if (swap_header->info.version != 1) {
1932 printk(KERN_WARNING
1933 "Unable to handle swap header version %d\n",
1934 swap_header->info.version);
1da177e4
LT
1935 error = -EINVAL;
1936 goto bad_swap;
81e33971 1937 }
1da177e4 1938
81e33971
HD
1939 p->lowest_bit = 1;
1940 p->cluster_next = 1;
efa90a98 1941 p->cluster_nr = 0;
52b7efdb 1942
81e33971
HD
1943 /*
1944 * Find out how many pages are allowed for a single swap
1945 * device. There are two limiting factors: 1) the number of
1946 * bits for the swap offset in the swp_entry_t type and
1947 * 2) the number of bits in the a swap pte as defined by
1948 * the different architectures. In order to find the
1949 * largest possible bit mask a swap entry with swap type 0
1950 * and swap offset ~0UL is created, encoded to a swap pte,
1951 * decoded to a swp_entry_t again and finally the swap
1952 * offset is extracted. This will mask all the bits from
1953 * the initial ~0UL mask that can't be encoded in either
1954 * the swp_entry_t or the architecture definition of a
1955 * swap pte.
1956 */
1957 maxpages = swp_offset(pte_to_swp_entry(
ad2bd7e0
HD
1958 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1959 if (maxpages > swap_header->info.last_page) {
1960 maxpages = swap_header->info.last_page + 1;
1961 /* p->max is an unsigned int: don't overflow it */
1962 if ((unsigned int)maxpages == 0)
1963 maxpages = UINT_MAX;
1964 }
81e33971 1965 p->highest_bit = maxpages - 1;
1da177e4 1966
81e33971
HD
1967 error = -EINVAL;
1968 if (!maxpages)
1969 goto bad_swap;
1970 if (swapfilepages && maxpages > swapfilepages) {
1971 printk(KERN_WARNING
1972 "Swap area shorter than signature indicates\n");
1973 goto bad_swap;
1974 }
1975 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1976 goto bad_swap;
1977 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1978 goto bad_swap;
cd105df4 1979
81e33971 1980 /* OK, set up the swap map and apply the bad block list */
8d69aaee 1981 swap_map = vmalloc(maxpages);
81e33971
HD
1982 if (!swap_map) {
1983 error = -ENOMEM;
1984 goto bad_swap;
1985 }
1da177e4 1986
8d69aaee 1987 memset(swap_map, 0, maxpages);
ad2bd7e0
HD
1988 nr_good_pages = maxpages - 1; /* omit header page */
1989
81e33971 1990 for (i = 0; i < swap_header->info.nr_badpages; i++) {
ad2bd7e0
HD
1991 unsigned int page_nr = swap_header->info.badpages[i];
1992 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
81e33971 1993 error = -EINVAL;
1da177e4 1994 goto bad_swap;
81e33971 1995 }
ad2bd7e0
HD
1996 if (page_nr < maxpages) {
1997 swap_map[page_nr] = SWAP_MAP_BAD;
1998 nr_good_pages--;
1999 }
1da177e4 2000 }
27a7faa0
KH
2001
2002 error = swap_cgroup_swapon(type, maxpages);
2003 if (error)
2004 goto bad_swap;
2005
e2244ec2 2006 if (nr_good_pages) {
78ecba08 2007 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
2008 p->max = maxpages;
2009 p->pages = nr_good_pages;
53092a74
HD
2010 nr_extents = setup_swap_extents(p, &span);
2011 if (nr_extents < 0) {
2012 error = nr_extents;
e2244ec2 2013 goto bad_swap;
53092a74 2014 }
e2244ec2
HD
2015 nr_good_pages = p->pages;
2016 }
1da177e4
LT
2017 if (!nr_good_pages) {
2018 printk(KERN_WARNING "Empty swap-file\n");
2019 error = -EINVAL;
2020 goto bad_swap;
2021 }
1da177e4 2022
3bd0f0c7
SJ
2023 if (p->bdev) {
2024 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2025 p->flags |= SWP_SOLIDSTATE;
2026 p->cluster_next = 1 + (random32() % p->highest_bit);
2027 }
2028 if (discard_swap(p) == 0)
2029 p->flags |= SWP_DISCARDABLE;
20137a49 2030 }
6a6ba831 2031
fc0abb14 2032 mutex_lock(&swapon_mutex);
5d337b91 2033 spin_lock(&swap_lock);
78ecba08
HD
2034 if (swap_flags & SWAP_FLAG_PREFER)
2035 p->prio =
2036 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2037 else
2038 p->prio = --least_priority;
2039 p->swap_map = swap_map;
22c6f8fd 2040 p->flags |= SWP_WRITEOK;
1da177e4
LT
2041 nr_swap_pages += nr_good_pages;
2042 total_swap_pages += nr_good_pages;
53092a74 2043
6eb396dc 2044 printk(KERN_INFO "Adding %uk swap on %s. "
20137a49 2045 "Priority:%d extents:%d across:%lluk %s%s\n",
53092a74 2046 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
6a6ba831 2047 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
20137a49
HD
2048 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2049 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1da177e4
LT
2050
2051 /* insert swap space into swap_list: */
2052 prev = -1;
efa90a98
HD
2053 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2054 if (p->prio >= swap_info[i]->prio)
1da177e4 2055 break;
1da177e4
LT
2056 prev = i;
2057 }
2058 p->next = i;
efa90a98
HD
2059 if (prev < 0)
2060 swap_list.head = swap_list.next = type;
2061 else
2062 swap_info[prev]->next = type;
5d337b91 2063 spin_unlock(&swap_lock);
fc0abb14 2064 mutex_unlock(&swapon_mutex);
1da177e4
LT
2065 error = 0;
2066 goto out;
2067bad_swap:
2068 if (bdev) {
2069 set_blocksize(bdev, p->old_block_size);
2070 bd_release(bdev);
2071 }
4cd3bb10 2072 destroy_swap_extents(p);
27a7faa0 2073 swap_cgroup_swapoff(type);
1da177e4 2074bad_swap_2:
5d337b91 2075 spin_lock(&swap_lock);
1da177e4 2076 p->swap_file = NULL;
1da177e4 2077 p->flags = 0;
5d337b91 2078 spin_unlock(&swap_lock);
1da177e4
LT
2079 vfree(swap_map);
2080 if (swap_file)
2081 filp_close(swap_file, NULL);
2082out:
2083 if (page && !IS_ERR(page)) {
2084 kunmap(page);
2085 page_cache_release(page);
2086 }
2087 if (name)
2088 putname(name);
2089 if (did_down) {
2090 if (!error)
2091 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 2092 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2093 }
2094 return error;
2095}
2096
2097void si_swapinfo(struct sysinfo *val)
2098{
efa90a98 2099 unsigned int type;
1da177e4
LT
2100 unsigned long nr_to_be_unused = 0;
2101
5d337b91 2102 spin_lock(&swap_lock);
efa90a98
HD
2103 for (type = 0; type < nr_swapfiles; type++) {
2104 struct swap_info_struct *si = swap_info[type];
2105
2106 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2107 nr_to_be_unused += si->inuse_pages;
1da177e4
LT
2108 }
2109 val->freeswap = nr_swap_pages + nr_to_be_unused;
2110 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2111 spin_unlock(&swap_lock);
1da177e4
LT
2112}
2113
2114/*
2115 * Verify that a swap entry is valid and increment its swap map count.
2116 *
355cfa73
KH
2117 * Returns error code in following case.
2118 * - success -> 0
2119 * - swp_entry is invalid -> EINVAL
2120 * - swp_entry is migration entry -> EINVAL
2121 * - swap-cache reference is requested but there is already one. -> EEXIST
2122 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2123 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2124 */
8d69aaee 2125static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2126{
73c34b6a 2127 struct swap_info_struct *p;
1da177e4 2128 unsigned long offset, type;
8d69aaee
HD
2129 unsigned char count;
2130 unsigned char has_cache;
253d553b 2131 int err = -EINVAL;
1da177e4 2132
a7420aa5 2133 if (non_swap_entry(entry))
253d553b 2134 goto out;
0697212a 2135
1da177e4
LT
2136 type = swp_type(entry);
2137 if (type >= nr_swapfiles)
2138 goto bad_file;
efa90a98 2139 p = swap_info[type];
1da177e4
LT
2140 offset = swp_offset(entry);
2141
5d337b91 2142 spin_lock(&swap_lock);
355cfa73
KH
2143 if (unlikely(offset >= p->max))
2144 goto unlock_out;
2145
253d553b
HD
2146 count = p->swap_map[offset];
2147 has_cache = count & SWAP_HAS_CACHE;
2148 count &= ~SWAP_HAS_CACHE;
2149 err = 0;
355cfa73 2150
253d553b 2151 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2152
2153 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2154 if (!has_cache && count)
2155 has_cache = SWAP_HAS_CACHE;
2156 else if (has_cache) /* someone else added cache */
2157 err = -EEXIST;
2158 else /* no users remaining */
2159 err = -ENOENT;
355cfa73
KH
2160
2161 } else if (count || has_cache) {
253d553b 2162
570a335b
HD
2163 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2164 count += usage;
2165 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2166 err = -EINVAL;
570a335b
HD
2167 else if (swap_count_continued(p, offset, count))
2168 count = COUNT_CONTINUED;
2169 else
2170 err = -ENOMEM;
355cfa73 2171 } else
253d553b
HD
2172 err = -ENOENT; /* unused swap entry */
2173
2174 p->swap_map[offset] = count | has_cache;
2175
355cfa73 2176unlock_out:
5d337b91 2177 spin_unlock(&swap_lock);
1da177e4 2178out:
253d553b 2179 return err;
1da177e4
LT
2180
2181bad_file:
2182 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2183 goto out;
2184}
253d553b 2185
aaa46865
HD
2186/*
2187 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2188 * (in which case its reference count is never incremented).
2189 */
2190void swap_shmem_alloc(swp_entry_t entry)
2191{
2192 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2193}
2194
355cfa73 2195/*
08259d58
HD
2196 * Increase reference count of swap entry by 1.
2197 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2198 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2199 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2200 * might occur if a page table entry has got corrupted.
355cfa73 2201 */
570a335b 2202int swap_duplicate(swp_entry_t entry)
355cfa73 2203{
570a335b
HD
2204 int err = 0;
2205
2206 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2207 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2208 return err;
355cfa73 2209}
1da177e4 2210
cb4b86ba 2211/*
355cfa73
KH
2212 * @entry: swap entry for which we allocate swap cache.
2213 *
73c34b6a 2214 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2215 * This can return error codes. Returns 0 at success.
2216 * -EBUSY means there is a swap cache.
2217 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2218 */
2219int swapcache_prepare(swp_entry_t entry)
2220{
253d553b 2221 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2222}
2223
1da177e4 2224/*
5d337b91 2225 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
2226 * reference on the swaphandle, it doesn't matter if it becomes unused.
2227 */
2228int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2229{
8952898b 2230 struct swap_info_struct *si;
3f9e7949 2231 int our_page_cluster = page_cluster;
8952898b
HD
2232 pgoff_t target, toff;
2233 pgoff_t base, end;
2234 int nr_pages = 0;
1da177e4 2235
3f9e7949 2236 if (!our_page_cluster) /* no readahead */
1da177e4 2237 return 0;
8952898b 2238
efa90a98 2239 si = swap_info[swp_type(entry)];
8952898b
HD
2240 target = swp_offset(entry);
2241 base = (target >> our_page_cluster) << our_page_cluster;
2242 end = base + (1 << our_page_cluster);
2243 if (!base) /* first page is swap header */
2244 base++;
1da177e4 2245
5d337b91 2246 spin_lock(&swap_lock);
8952898b
HD
2247 if (end > si->max) /* don't go beyond end of map */
2248 end = si->max;
2249
2250 /* Count contiguous allocated slots above our target */
2251 for (toff = target; ++toff < end; nr_pages++) {
2252 /* Don't read in free or bad pages */
2253 if (!si->swap_map[toff])
2254 break;
355cfa73 2255 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2256 break;
8952898b
HD
2257 }
2258 /* Count contiguous allocated slots below our target */
2259 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 2260 /* Don't read in free or bad pages */
8952898b 2261 if (!si->swap_map[toff])
1da177e4 2262 break;
355cfa73 2263 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2264 break;
8952898b 2265 }
5d337b91 2266 spin_unlock(&swap_lock);
8952898b
HD
2267
2268 /*
2269 * Indicate starting offset, and return number of pages to get:
2270 * if only 1, say 0, since there's then no readahead to be done.
2271 */
2272 *offset = ++toff;
2273 return nr_pages? ++nr_pages: 0;
1da177e4 2274}
570a335b
HD
2275
2276/*
2277 * add_swap_count_continuation - called when a swap count is duplicated
2278 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2279 * page of the original vmalloc'ed swap_map, to hold the continuation count
2280 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2281 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2282 *
2283 * These continuation pages are seldom referenced: the common paths all work
2284 * on the original swap_map, only referring to a continuation page when the
2285 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2286 *
2287 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2288 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2289 * can be called after dropping locks.
2290 */
2291int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2292{
2293 struct swap_info_struct *si;
2294 struct page *head;
2295 struct page *page;
2296 struct page *list_page;
2297 pgoff_t offset;
2298 unsigned char count;
2299
2300 /*
2301 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2302 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2303 */
2304 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2305
2306 si = swap_info_get(entry);
2307 if (!si) {
2308 /*
2309 * An acceptable race has occurred since the failing
2310 * __swap_duplicate(): the swap entry has been freed,
2311 * perhaps even the whole swap_map cleared for swapoff.
2312 */
2313 goto outer;
2314 }
2315
2316 offset = swp_offset(entry);
2317 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2318
2319 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2320 /*
2321 * The higher the swap count, the more likely it is that tasks
2322 * will race to add swap count continuation: we need to avoid
2323 * over-provisioning.
2324 */
2325 goto out;
2326 }
2327
2328 if (!page) {
2329 spin_unlock(&swap_lock);
2330 return -ENOMEM;
2331 }
2332
2333 /*
2334 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2335 * no architecture is using highmem pages for kernel pagetables: so it
2336 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2337 */
2338 head = vmalloc_to_page(si->swap_map + offset);
2339 offset &= ~PAGE_MASK;
2340
2341 /*
2342 * Page allocation does not initialize the page's lru field,
2343 * but it does always reset its private field.
2344 */
2345 if (!page_private(head)) {
2346 BUG_ON(count & COUNT_CONTINUED);
2347 INIT_LIST_HEAD(&head->lru);
2348 set_page_private(head, SWP_CONTINUED);
2349 si->flags |= SWP_CONTINUED;
2350 }
2351
2352 list_for_each_entry(list_page, &head->lru, lru) {
2353 unsigned char *map;
2354
2355 /*
2356 * If the previous map said no continuation, but we've found
2357 * a continuation page, free our allocation and use this one.
2358 */
2359 if (!(count & COUNT_CONTINUED))
2360 goto out;
2361
2362 map = kmap_atomic(list_page, KM_USER0) + offset;
2363 count = *map;
2364 kunmap_atomic(map, KM_USER0);
2365
2366 /*
2367 * If this continuation count now has some space in it,
2368 * free our allocation and use this one.
2369 */
2370 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2371 goto out;
2372 }
2373
2374 list_add_tail(&page->lru, &head->lru);
2375 page = NULL; /* now it's attached, don't free it */
2376out:
2377 spin_unlock(&swap_lock);
2378outer:
2379 if (page)
2380 __free_page(page);
2381 return 0;
2382}
2383
2384/*
2385 * swap_count_continued - when the original swap_map count is incremented
2386 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2387 * into, carry if so, or else fail until a new continuation page is allocated;
2388 * when the original swap_map count is decremented from 0 with continuation,
2389 * borrow from the continuation and report whether it still holds more.
2390 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2391 */
2392static bool swap_count_continued(struct swap_info_struct *si,
2393 pgoff_t offset, unsigned char count)
2394{
2395 struct page *head;
2396 struct page *page;
2397 unsigned char *map;
2398
2399 head = vmalloc_to_page(si->swap_map + offset);
2400 if (page_private(head) != SWP_CONTINUED) {
2401 BUG_ON(count & COUNT_CONTINUED);
2402 return false; /* need to add count continuation */
2403 }
2404
2405 offset &= ~PAGE_MASK;
2406 page = list_entry(head->lru.next, struct page, lru);
2407 map = kmap_atomic(page, KM_USER0) + offset;
2408
2409 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2410 goto init_map; /* jump over SWAP_CONT_MAX checks */
2411
2412 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2413 /*
2414 * Think of how you add 1 to 999
2415 */
2416 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2417 kunmap_atomic(map, KM_USER0);
2418 page = list_entry(page->lru.next, struct page, lru);
2419 BUG_ON(page == head);
2420 map = kmap_atomic(page, KM_USER0) + offset;
2421 }
2422 if (*map == SWAP_CONT_MAX) {
2423 kunmap_atomic(map, KM_USER0);
2424 page = list_entry(page->lru.next, struct page, lru);
2425 if (page == head)
2426 return false; /* add count continuation */
2427 map = kmap_atomic(page, KM_USER0) + offset;
2428init_map: *map = 0; /* we didn't zero the page */
2429 }
2430 *map += 1;
2431 kunmap_atomic(map, KM_USER0);
2432 page = list_entry(page->lru.prev, struct page, lru);
2433 while (page != head) {
2434 map = kmap_atomic(page, KM_USER0) + offset;
2435 *map = COUNT_CONTINUED;
2436 kunmap_atomic(map, KM_USER0);
2437 page = list_entry(page->lru.prev, struct page, lru);
2438 }
2439 return true; /* incremented */
2440
2441 } else { /* decrementing */
2442 /*
2443 * Think of how you subtract 1 from 1000
2444 */
2445 BUG_ON(count != COUNT_CONTINUED);
2446 while (*map == COUNT_CONTINUED) {
2447 kunmap_atomic(map, KM_USER0);
2448 page = list_entry(page->lru.next, struct page, lru);
2449 BUG_ON(page == head);
2450 map = kmap_atomic(page, KM_USER0) + offset;
2451 }
2452 BUG_ON(*map == 0);
2453 *map -= 1;
2454 if (*map == 0)
2455 count = 0;
2456 kunmap_atomic(map, KM_USER0);
2457 page = list_entry(page->lru.prev, struct page, lru);
2458 while (page != head) {
2459 map = kmap_atomic(page, KM_USER0) + offset;
2460 *map = SWAP_CONT_MAX | count;
2461 count = COUNT_CONTINUED;
2462 kunmap_atomic(map, KM_USER0);
2463 page = list_entry(page->lru.prev, struct page, lru);
2464 }
2465 return count == COUNT_CONTINUED;
2466 }
2467}
2468
2469/*
2470 * free_swap_count_continuations - swapoff free all the continuation pages
2471 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2472 */
2473static void free_swap_count_continuations(struct swap_info_struct *si)
2474{
2475 pgoff_t offset;
2476
2477 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2478 struct page *head;
2479 head = vmalloc_to_page(si->swap_map + offset);
2480 if (page_private(head)) {
2481 struct list_head *this, *next;
2482 list_for_each_safe(this, next, &head->lru) {
2483 struct page *page;
2484 page = list_entry(this, struct page, lru);
2485 list_del(this);
2486 __free_page(page);
2487 }
2488 }
2489 }
2490}