]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/shmem.c
tmpfs: make tmpfs scalable with percpu_counter for used blocks
[net-next-2.6.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
0edd73b3
HD
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
853ac43a
MM
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
1da177e4
LT
20 * This file is released under the GPL.
21 */
22
853ac43a
MM
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
caefba17 27#include <linux/pagemap.h>
853ac43a
MM
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
7e496299 31#include <linux/percpu_counter.h>
853ac43a
MM
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
1da177e4
LT
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
39f0247d 43#include <linux/xattr.h>
a5694255 44#include <linux/exportfs.h>
1c7c474c 45#include <linux/posix_acl.h>
39f0247d 46#include <linux/generic_acl.h>
1da177e4 47#include <linux/mman.h>
1da177e4
LT
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
1da177e4 52#include <linux/writeback.h>
1da177e4
LT
53#include <linux/blkdev.h>
54#include <linux/security.h>
55#include <linux/swapops.h>
56#include <linux/mempolicy.h>
57#include <linux/namei.h>
b00dc3ad 58#include <linux/ctype.h>
304dbdb7 59#include <linux/migrate.h>
c1f60a5a 60#include <linux/highmem.h>
680d794b 61#include <linux/seq_file.h>
92562927 62#include <linux/magic.h>
304dbdb7 63
1da177e4
LT
64#include <asm/uaccess.h>
65#include <asm/div64.h>
66#include <asm/pgtable.h>
67
caefba17
HD
68/*
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71 *
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76 *
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79 */
1da177e4 80#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61609d01 81#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
1da177e4 82
caefba17
HD
83#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
1da177e4 85
caefba17
HD
86#define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87#define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
90#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93#define SHMEM_PAGEIN VM_READ
94#define SHMEM_TRUNCATE VM_WRITE
95
96/* Definition to limit shmem_truncate's steps between cond_rescheds */
97#define LATENCY_LIMIT 64
98
99/* Pretend that each entry is of this size in directory's i_size */
100#define BOGO_DIRENT_SIZE 20
101
1da177e4
LT
102/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
103enum sgp_type {
1da177e4
LT
104 SGP_READ, /* don't exceed i_size, don't allocate page */
105 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 106 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1da177e4
LT
107 SGP_WRITE, /* may exceed i_size, may allocate page */
108};
109
b76db735 110#ifdef CONFIG_TMPFS
680d794b 111static unsigned long shmem_default_max_blocks(void)
112{
113 return totalram_pages / 2;
114}
115
116static unsigned long shmem_default_max_inodes(void)
117{
118 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119}
b76db735 120#endif
680d794b 121
1da177e4
LT
122static int shmem_getpage(struct inode *inode, unsigned long idx,
123 struct page **pagep, enum sgp_type sgp, int *type);
124
6daa0e28 125static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
1da177e4
LT
126{
127 /*
128 * The above definition of ENTRIES_PER_PAGE, and the use of
129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 * might be reconsidered if it ever diverges from PAGE_SIZE.
769848c0 131 *
e12ba74d 132 * Mobility flags are masked out as swap vectors cannot move
1da177e4 133 */
e12ba74d 134 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
769848c0 135 PAGE_CACHE_SHIFT-PAGE_SHIFT);
1da177e4
LT
136}
137
138static inline void shmem_dir_free(struct page *page)
139{
140 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
141}
142
143static struct page **shmem_dir_map(struct page *page)
144{
145 return (struct page **)kmap_atomic(page, KM_USER0);
146}
147
148static inline void shmem_dir_unmap(struct page **dir)
149{
150 kunmap_atomic(dir, KM_USER0);
151}
152
153static swp_entry_t *shmem_swp_map(struct page *page)
154{
155 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
156}
157
158static inline void shmem_swp_balance_unmap(void)
159{
160 /*
161 * When passing a pointer to an i_direct entry, to code which
162 * also handles indirect entries and so will shmem_swp_unmap,
163 * we must arrange for the preempt count to remain in balance.
164 * What kmap_atomic of a lowmem page does depends on config
165 * and architecture, so pretend to kmap_atomic some lowmem page.
166 */
167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
168}
169
170static inline void shmem_swp_unmap(swp_entry_t *entry)
171{
172 kunmap_atomic(entry, KM_USER1);
173}
174
175static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
176{
177 return sb->s_fs_info;
178}
179
180/*
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
185 */
186static inline int shmem_acct_size(unsigned long flags, loff_t size)
187{
0b0a0806
HD
188 return (flags & VM_NORESERVE) ?
189 0 : security_vm_enough_memory_kern(VM_ACCT(size));
1da177e4
LT
190}
191
192static inline void shmem_unacct_size(unsigned long flags, loff_t size)
193{
0b0a0806 194 if (!(flags & VM_NORESERVE))
1da177e4
LT
195 vm_unacct_memory(VM_ACCT(size));
196}
197
198/*
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
203 */
204static inline int shmem_acct_block(unsigned long flags)
205{
0b0a0806
HD
206 return (flags & VM_NORESERVE) ?
207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
208}
209
210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211{
0b0a0806 212 if (flags & VM_NORESERVE)
1da177e4
LT
213 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
214}
215
759b9775 216static const struct super_operations shmem_ops;
f5e54d6e 217static const struct address_space_operations shmem_aops;
15ad7cdc 218static const struct file_operations shmem_file_operations;
92e1d5be
AV
219static const struct inode_operations shmem_inode_operations;
220static const struct inode_operations shmem_dir_inode_operations;
221static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 222static const struct vm_operations_struct shmem_vm_ops;
1da177e4 223
6c231b7b 224static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 225 .ra_pages = 0, /* No readahead */
4f98a2fe 226 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
227 .unplug_io_fn = default_unplug_io_fn,
228};
229
230static LIST_HEAD(shmem_swaplist);
cb5f7b9a 231static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4
LT
232
233static void shmem_free_blocks(struct inode *inode, long pages)
234{
235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
0edd73b3 236 if (sbinfo->max_blocks) {
7e496299
TC
237 percpu_counter_add(&sbinfo->used_blocks, -pages);
238 spin_lock(&inode->i_lock);
1da177e4 239 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
7e496299 240 spin_unlock(&inode->i_lock);
1da177e4
LT
241 }
242}
243
5b04c689
PE
244static int shmem_reserve_inode(struct super_block *sb)
245{
246 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247 if (sbinfo->max_inodes) {
248 spin_lock(&sbinfo->stat_lock);
249 if (!sbinfo->free_inodes) {
250 spin_unlock(&sbinfo->stat_lock);
251 return -ENOSPC;
252 }
253 sbinfo->free_inodes--;
254 spin_unlock(&sbinfo->stat_lock);
255 }
256 return 0;
257}
258
259static void shmem_free_inode(struct super_block *sb)
260{
261 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
262 if (sbinfo->max_inodes) {
263 spin_lock(&sbinfo->stat_lock);
264 sbinfo->free_inodes++;
265 spin_unlock(&sbinfo->stat_lock);
266 }
267}
268
46711810 269/**
1da177e4 270 * shmem_recalc_inode - recalculate the size of an inode
1da177e4
LT
271 * @inode: inode to recalc
272 *
273 * We have to calculate the free blocks since the mm can drop
274 * undirtied hole pages behind our back.
275 *
276 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
278 *
279 * It has to be called with the spinlock held.
280 */
281static void shmem_recalc_inode(struct inode *inode)
282{
283 struct shmem_inode_info *info = SHMEM_I(inode);
284 long freed;
285
286 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
287 if (freed > 0) {
288 info->alloced -= freed;
289 shmem_unacct_blocks(info->flags, freed);
290 shmem_free_blocks(inode, freed);
291 }
292}
293
46711810 294/**
1da177e4 295 * shmem_swp_entry - find the swap vector position in the info structure
1da177e4
LT
296 * @info: info structure for the inode
297 * @index: index of the page to find
298 * @page: optional page to add to the structure. Has to be preset to
299 * all zeros
300 *
301 * If there is no space allocated yet it will return NULL when
302 * page is NULL, else it will use the page for the needed block,
303 * setting it to NULL on return to indicate that it has been used.
304 *
305 * The swap vector is organized the following way:
306 *
307 * There are SHMEM_NR_DIRECT entries directly stored in the
308 * shmem_inode_info structure. So small files do not need an addional
309 * allocation.
310 *
311 * For pages with index > SHMEM_NR_DIRECT there is the pointer
312 * i_indirect which points to a page which holds in the first half
313 * doubly indirect blocks, in the second half triple indirect blocks:
314 *
315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
316 * following layout (for SHMEM_NR_DIRECT == 16):
317 *
318 * i_indirect -> dir --> 16-19
319 * | +-> 20-23
320 * |
321 * +-->dir2 --> 24-27
322 * | +-> 28-31
323 * | +-> 32-35
324 * | +-> 36-39
325 * |
326 * +-->dir3 --> 40-43
327 * +-> 44-47
328 * +-> 48-51
329 * +-> 52-55
330 */
331static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
332{
333 unsigned long offset;
334 struct page **dir;
335 struct page *subdir;
336
337 if (index < SHMEM_NR_DIRECT) {
338 shmem_swp_balance_unmap();
339 return info->i_direct+index;
340 }
341 if (!info->i_indirect) {
342 if (page) {
343 info->i_indirect = *page;
344 *page = NULL;
345 }
346 return NULL; /* need another page */
347 }
348
349 index -= SHMEM_NR_DIRECT;
350 offset = index % ENTRIES_PER_PAGE;
351 index /= ENTRIES_PER_PAGE;
352 dir = shmem_dir_map(info->i_indirect);
353
354 if (index >= ENTRIES_PER_PAGE/2) {
355 index -= ENTRIES_PER_PAGE/2;
356 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
357 index %= ENTRIES_PER_PAGE;
358 subdir = *dir;
359 if (!subdir) {
360 if (page) {
361 *dir = *page;
362 *page = NULL;
363 }
364 shmem_dir_unmap(dir);
365 return NULL; /* need another page */
366 }
367 shmem_dir_unmap(dir);
368 dir = shmem_dir_map(subdir);
369 }
370
371 dir += index;
372 subdir = *dir;
373 if (!subdir) {
374 if (!page || !(subdir = *page)) {
375 shmem_dir_unmap(dir);
376 return NULL; /* need a page */
377 }
378 *dir = subdir;
379 *page = NULL;
380 }
381 shmem_dir_unmap(dir);
382 return shmem_swp_map(subdir) + offset;
383}
384
385static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
386{
387 long incdec = value? 1: -1;
388
389 entry->val = value;
390 info->swapped += incdec;
4c21e2f2
HD
391 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
392 struct page *page = kmap_atomic_to_page(entry);
393 set_page_private(page, page_private(page) + incdec);
394 }
1da177e4
LT
395}
396
46711810 397/**
1da177e4 398 * shmem_swp_alloc - get the position of the swap entry for the page.
1da177e4
LT
399 * @info: info structure for the inode
400 * @index: index of the page to find
401 * @sgp: check and recheck i_size? skip allocation?
46711810
RD
402 *
403 * If the entry does not exist, allocate it.
1da177e4
LT
404 */
405static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
406{
407 struct inode *inode = &info->vfs_inode;
408 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
409 struct page *page = NULL;
410 swp_entry_t *entry;
411
412 if (sgp != SGP_WRITE &&
413 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
414 return ERR_PTR(-EINVAL);
415
416 while (!(entry = shmem_swp_entry(info, index, &page))) {
417 if (sgp == SGP_READ)
418 return shmem_swp_map(ZERO_PAGE(0));
419 /*
7e496299 420 * Test used_blocks against 1 less max_blocks, since we have 1 data
1da177e4
LT
421 * page (and perhaps indirect index pages) yet to allocate:
422 * a waste to allocate index if we cannot allocate data.
423 */
0edd73b3 424 if (sbinfo->max_blocks) {
7e496299 425 if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0)
1da177e4 426 return ERR_PTR(-ENOSPC);
7e496299
TC
427 percpu_counter_inc(&sbinfo->used_blocks);
428 spin_lock(&inode->i_lock);
1da177e4 429 inode->i_blocks += BLOCKS_PER_PAGE;
7e496299 430 spin_unlock(&inode->i_lock);
1da177e4
LT
431 }
432
433 spin_unlock(&info->lock);
769848c0 434 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
1da177e4
LT
435 spin_lock(&info->lock);
436
437 if (!page) {
438 shmem_free_blocks(inode, 1);
439 return ERR_PTR(-ENOMEM);
440 }
441 if (sgp != SGP_WRITE &&
442 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
443 entry = ERR_PTR(-EINVAL);
444 break;
445 }
446 if (info->next_index <= index)
447 info->next_index = index + 1;
448 }
449 if (page) {
450 /* another task gave its page, or truncated the file */
451 shmem_free_blocks(inode, 1);
452 shmem_dir_free(page);
453 }
454 if (info->next_index <= index && !IS_ERR(entry))
455 info->next_index = index + 1;
456 return entry;
457}
458
46711810 459/**
1da177e4 460 * shmem_free_swp - free some swap entries in a directory
1ae70006
HD
461 * @dir: pointer to the directory
462 * @edir: pointer after last entry of the directory
463 * @punch_lock: pointer to spinlock when needed for the holepunch case
1da177e4 464 */
1ae70006
HD
465static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
466 spinlock_t *punch_lock)
1da177e4 467{
1ae70006 468 spinlock_t *punch_unlock = NULL;
1da177e4
LT
469 swp_entry_t *ptr;
470 int freed = 0;
471
472 for (ptr = dir; ptr < edir; ptr++) {
473 if (ptr->val) {
1ae70006
HD
474 if (unlikely(punch_lock)) {
475 punch_unlock = punch_lock;
476 punch_lock = NULL;
477 spin_lock(punch_unlock);
478 if (!ptr->val)
479 continue;
480 }
1da177e4
LT
481 free_swap_and_cache(*ptr);
482 *ptr = (swp_entry_t){0};
483 freed++;
484 }
485 }
1ae70006
HD
486 if (punch_unlock)
487 spin_unlock(punch_unlock);
1da177e4
LT
488 return freed;
489}
490
1ae70006
HD
491static int shmem_map_and_free_swp(struct page *subdir, int offset,
492 int limit, struct page ***dir, spinlock_t *punch_lock)
1da177e4
LT
493{
494 swp_entry_t *ptr;
495 int freed = 0;
496
497 ptr = shmem_swp_map(subdir);
498 for (; offset < limit; offset += LATENCY_LIMIT) {
499 int size = limit - offset;
500 if (size > LATENCY_LIMIT)
501 size = LATENCY_LIMIT;
1ae70006
HD
502 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
503 punch_lock);
1da177e4
LT
504 if (need_resched()) {
505 shmem_swp_unmap(ptr);
506 if (*dir) {
507 shmem_dir_unmap(*dir);
508 *dir = NULL;
509 }
510 cond_resched();
511 ptr = shmem_swp_map(subdir);
512 }
513 }
514 shmem_swp_unmap(ptr);
515 return freed;
516}
517
518static void shmem_free_pages(struct list_head *next)
519{
520 struct page *page;
521 int freed = 0;
522
523 do {
524 page = container_of(next, struct page, lru);
525 next = next->next;
526 shmem_dir_free(page);
527 freed++;
528 if (freed >= LATENCY_LIMIT) {
529 cond_resched();
530 freed = 0;
531 }
532 } while (next);
533}
534
f6b3ec23 535static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
1da177e4
LT
536{
537 struct shmem_inode_info *info = SHMEM_I(inode);
538 unsigned long idx;
539 unsigned long size;
540 unsigned long limit;
541 unsigned long stage;
542 unsigned long diroff;
543 struct page **dir;
544 struct page *topdir;
545 struct page *middir;
546 struct page *subdir;
547 swp_entry_t *ptr;
548 LIST_HEAD(pages_to_free);
549 long nr_pages_to_free = 0;
550 long nr_swaps_freed = 0;
551 int offset;
552 int freed;
a2646d1e 553 int punch_hole;
1ae70006
HD
554 spinlock_t *needs_lock;
555 spinlock_t *punch_lock;
a2646d1e 556 unsigned long upper_limit;
1da177e4
LT
557
558 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
f6b3ec23 559 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
560 if (idx >= info->next_index)
561 return;
562
563 spin_lock(&info->lock);
564 info->flags |= SHMEM_TRUNCATE;
f6b3ec23
BP
565 if (likely(end == (loff_t) -1)) {
566 limit = info->next_index;
a2646d1e 567 upper_limit = SHMEM_MAX_INDEX;
f6b3ec23 568 info->next_index = idx;
1ae70006 569 needs_lock = NULL;
a2646d1e 570 punch_hole = 0;
f6b3ec23 571 } else {
a2646d1e
HD
572 if (end + 1 >= inode->i_size) { /* we may free a little more */
573 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
574 PAGE_CACHE_SHIFT;
575 upper_limit = SHMEM_MAX_INDEX;
576 } else {
577 limit = (end + 1) >> PAGE_CACHE_SHIFT;
578 upper_limit = limit;
579 }
1ae70006 580 needs_lock = &info->lock;
f6b3ec23
BP
581 punch_hole = 1;
582 }
583
1da177e4 584 topdir = info->i_indirect;
f6b3ec23 585 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
1da177e4
LT
586 info->i_indirect = NULL;
587 nr_pages_to_free++;
588 list_add(&topdir->lru, &pages_to_free);
589 }
590 spin_unlock(&info->lock);
591
592 if (info->swapped && idx < SHMEM_NR_DIRECT) {
593 ptr = info->i_direct;
594 size = limit;
595 if (size > SHMEM_NR_DIRECT)
596 size = SHMEM_NR_DIRECT;
1ae70006 597 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
1da177e4 598 }
92a3d03a
BP
599
600 /*
601 * If there are no indirect blocks or we are punching a hole
602 * below indirect blocks, nothing to be done.
603 */
a2646d1e 604 if (!topdir || limit <= SHMEM_NR_DIRECT)
1da177e4
LT
605 goto done2;
606
1ae70006
HD
607 /*
608 * The truncation case has already dropped info->lock, and we're safe
609 * because i_size and next_index have already been lowered, preventing
610 * access beyond. But in the punch_hole case, we still need to take
611 * the lock when updating the swap directory, because there might be
612 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
613 * shmem_writepage. However, whenever we find we can remove a whole
614 * directory page (not at the misaligned start or end of the range),
615 * we first NULLify its pointer in the level above, and then have no
616 * need to take the lock when updating its contents: needs_lock and
617 * punch_lock (either pointing to info->lock or NULL) manage this.
618 */
619
a2646d1e 620 upper_limit -= SHMEM_NR_DIRECT;
1da177e4
LT
621 limit -= SHMEM_NR_DIRECT;
622 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
623 offset = idx % ENTRIES_PER_PAGE;
624 idx -= offset;
625
626 dir = shmem_dir_map(topdir);
627 stage = ENTRIES_PER_PAGEPAGE/2;
628 if (idx < ENTRIES_PER_PAGEPAGE/2) {
629 middir = topdir;
630 diroff = idx/ENTRIES_PER_PAGE;
631 } else {
632 dir += ENTRIES_PER_PAGE/2;
633 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
634 while (stage <= idx)
635 stage += ENTRIES_PER_PAGEPAGE;
636 middir = *dir;
637 if (*dir) {
638 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
639 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
a2646d1e 640 if (!diroff && !offset && upper_limit >= stage) {
1ae70006
HD
641 if (needs_lock) {
642 spin_lock(needs_lock);
643 *dir = NULL;
644 spin_unlock(needs_lock);
645 needs_lock = NULL;
646 } else
647 *dir = NULL;
1da177e4
LT
648 nr_pages_to_free++;
649 list_add(&middir->lru, &pages_to_free);
650 }
651 shmem_dir_unmap(dir);
652 dir = shmem_dir_map(middir);
653 } else {
654 diroff = 0;
655 offset = 0;
656 idx = stage;
657 }
658 }
659
660 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
661 if (unlikely(idx == stage)) {
662 shmem_dir_unmap(dir);
663 dir = shmem_dir_map(topdir) +
664 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
665 while (!*dir) {
666 dir++;
667 idx += ENTRIES_PER_PAGEPAGE;
668 if (idx >= limit)
669 goto done1;
670 }
671 stage = idx + ENTRIES_PER_PAGEPAGE;
672 middir = *dir;
1ae70006
HD
673 if (punch_hole)
674 needs_lock = &info->lock;
a2646d1e 675 if (upper_limit >= stage) {
1ae70006
HD
676 if (needs_lock) {
677 spin_lock(needs_lock);
678 *dir = NULL;
679 spin_unlock(needs_lock);
680 needs_lock = NULL;
681 } else
682 *dir = NULL;
a2646d1e
HD
683 nr_pages_to_free++;
684 list_add(&middir->lru, &pages_to_free);
685 }
1da177e4
LT
686 shmem_dir_unmap(dir);
687 cond_resched();
688 dir = shmem_dir_map(middir);
689 diroff = 0;
690 }
1ae70006 691 punch_lock = needs_lock;
1da177e4 692 subdir = dir[diroff];
1ae70006
HD
693 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
694 if (needs_lock) {
695 spin_lock(needs_lock);
696 dir[diroff] = NULL;
697 spin_unlock(needs_lock);
698 punch_lock = NULL;
699 } else
700 dir[diroff] = NULL;
701 nr_pages_to_free++;
702 list_add(&subdir->lru, &pages_to_free);
703 }
704 if (subdir && page_private(subdir) /* has swap entries */) {
1da177e4
LT
705 size = limit - idx;
706 if (size > ENTRIES_PER_PAGE)
707 size = ENTRIES_PER_PAGE;
708 freed = shmem_map_and_free_swp(subdir,
1ae70006 709 offset, size, &dir, punch_lock);
1da177e4
LT
710 if (!dir)
711 dir = shmem_dir_map(middir);
712 nr_swaps_freed += freed;
1ae70006 713 if (offset || punch_lock) {
1da177e4 714 spin_lock(&info->lock);
1ae70006
HD
715 set_page_private(subdir,
716 page_private(subdir) - freed);
1da177e4 717 spin_unlock(&info->lock);
1ae70006
HD
718 } else
719 BUG_ON(page_private(subdir) != freed);
1da177e4 720 }
1ae70006 721 offset = 0;
1da177e4
LT
722 }
723done1:
724 shmem_dir_unmap(dir);
725done2:
726 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
727 /*
728 * Call truncate_inode_pages again: racing shmem_unuse_inode
3889e6e7 729 * may have swizzled a page in from swap since
730 * truncate_pagecache or generic_delete_inode did it, before we
731 * lowered next_index. Also, though shmem_getpage checks
732 * i_size before adding to cache, no recheck after: so fix the
733 * narrow window there too.
16a10019
HD
734 *
735 * Recalling truncate_inode_pages_range and unmap_mapping_range
736 * every time for punch_hole (which never got a chance to clear
737 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738 * yet hardly ever necessary: try to optimize them out later.
1da177e4 739 */
f6b3ec23 740 truncate_inode_pages_range(inode->i_mapping, start, end);
16a10019
HD
741 if (punch_hole)
742 unmap_mapping_range(inode->i_mapping, start,
743 end - start, 1);
1da177e4
LT
744 }
745
746 spin_lock(&info->lock);
747 info->flags &= ~SHMEM_TRUNCATE;
748 info->swapped -= nr_swaps_freed;
749 if (nr_pages_to_free)
750 shmem_free_blocks(inode, nr_pages_to_free);
751 shmem_recalc_inode(inode);
752 spin_unlock(&info->lock);
753
754 /*
755 * Empty swap vector directory pages to be freed?
756 */
757 if (!list_empty(&pages_to_free)) {
758 pages_to_free.prev->next = NULL;
759 shmem_free_pages(pages_to_free.next);
760 }
761}
762
763static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
764{
765 struct inode *inode = dentry->d_inode;
af5a30d8 766 loff_t newsize = attr->ia_size;
1da177e4
LT
767 int error;
768
af5a30d8
NP
769 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
770 && newsize != inode->i_size) {
3889e6e7 771 struct page *page = NULL;
772
773 if (newsize < inode->i_size) {
1da177e4
LT
774 /*
775 * If truncating down to a partial page, then
776 * if that page is already allocated, hold it
777 * in memory until the truncation is over, so
778 * truncate_partial_page cannnot miss it were
779 * it assigned to swap.
780 */
3889e6e7 781 if (newsize & (PAGE_CACHE_SIZE-1)) {
1da177e4 782 (void) shmem_getpage(inode,
3889e6e7 783 newsize >> PAGE_CACHE_SHIFT,
1da177e4 784 &page, SGP_READ, NULL);
d3602444
HD
785 if (page)
786 unlock_page(page);
1da177e4
LT
787 }
788 /*
789 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
790 * detect if any pages might have been added to cache
791 * after truncate_inode_pages. But we needn't bother
792 * if it's being fully truncated to zero-length: the
793 * nrpages check is efficient enough in that case.
794 */
3889e6e7 795 if (newsize) {
1da177e4
LT
796 struct shmem_inode_info *info = SHMEM_I(inode);
797 spin_lock(&info->lock);
798 info->flags &= ~SHMEM_PAGEIN;
799 spin_unlock(&info->lock);
800 }
801 }
3889e6e7 802
803 error = simple_setsize(inode, newsize);
804 if (page)
805 page_cache_release(page);
806 if (error)
807 return error;
808 shmem_truncate_range(inode, newsize, (loff_t)-1);
1da177e4
LT
809 }
810
811 error = inode_change_ok(inode, attr);
812 if (!error)
3889e6e7 813 generic_setattr(inode, attr);
39f0247d
AG
814#ifdef CONFIG_TMPFS_POSIX_ACL
815 if (!error && (attr->ia_valid & ATTR_MODE))
1c7c474c 816 error = generic_acl_chmod(inode);
39f0247d 817#endif
1da177e4
LT
818 return error;
819}
820
821static void shmem_delete_inode(struct inode *inode)
822{
1da177e4
LT
823 struct shmem_inode_info *info = SHMEM_I(inode);
824
3889e6e7 825 if (inode->i_mapping->a_ops == &shmem_aops) {
fef26658 826 truncate_inode_pages(inode->i_mapping, 0);
1da177e4
LT
827 shmem_unacct_size(info->flags, inode->i_size);
828 inode->i_size = 0;
3889e6e7 829 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 830 if (!list_empty(&info->swaplist)) {
cb5f7b9a 831 mutex_lock(&shmem_swaplist_mutex);
1da177e4 832 list_del_init(&info->swaplist);
cb5f7b9a 833 mutex_unlock(&shmem_swaplist_mutex);
1da177e4
LT
834 }
835 }
0edd73b3 836 BUG_ON(inode->i_blocks);
5b04c689 837 shmem_free_inode(inode->i_sb);
1da177e4
LT
838 clear_inode(inode);
839}
840
841static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
842{
843 swp_entry_t *ptr;
844
845 for (ptr = dir; ptr < edir; ptr++) {
846 if (ptr->val == entry.val)
847 return ptr - dir;
848 }
849 return -1;
850}
851
852static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
853{
854 struct inode *inode;
855 unsigned long idx;
856 unsigned long size;
857 unsigned long limit;
858 unsigned long stage;
859 struct page **dir;
860 struct page *subdir;
861 swp_entry_t *ptr;
862 int offset;
d9fe526a 863 int error;
1da177e4
LT
864
865 idx = 0;
866 ptr = info->i_direct;
867 spin_lock(&info->lock);
1b1b32f2
HD
868 if (!info->swapped) {
869 list_del_init(&info->swaplist);
870 goto lost2;
871 }
1da177e4
LT
872 limit = info->next_index;
873 size = limit;
874 if (size > SHMEM_NR_DIRECT)
875 size = SHMEM_NR_DIRECT;
876 offset = shmem_find_swp(entry, ptr, ptr+size);
2e0e26c7 877 if (offset >= 0)
1da177e4 878 goto found;
1da177e4
LT
879 if (!info->i_indirect)
880 goto lost2;
881
882 dir = shmem_dir_map(info->i_indirect);
883 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
884
885 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
886 if (unlikely(idx == stage)) {
887 shmem_dir_unmap(dir-1);
cb5f7b9a
HD
888 if (cond_resched_lock(&info->lock)) {
889 /* check it has not been truncated */
890 if (limit > info->next_index) {
891 limit = info->next_index;
892 if (idx >= limit)
893 goto lost2;
894 }
895 }
1da177e4
LT
896 dir = shmem_dir_map(info->i_indirect) +
897 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
898 while (!*dir) {
899 dir++;
900 idx += ENTRIES_PER_PAGEPAGE;
901 if (idx >= limit)
902 goto lost1;
903 }
904 stage = idx + ENTRIES_PER_PAGEPAGE;
905 subdir = *dir;
906 shmem_dir_unmap(dir);
907 dir = shmem_dir_map(subdir);
908 }
909 subdir = *dir;
4c21e2f2 910 if (subdir && page_private(subdir)) {
1da177e4
LT
911 ptr = shmem_swp_map(subdir);
912 size = limit - idx;
913 if (size > ENTRIES_PER_PAGE)
914 size = ENTRIES_PER_PAGE;
915 offset = shmem_find_swp(entry, ptr, ptr+size);
2e0e26c7 916 shmem_swp_unmap(ptr);
1da177e4
LT
917 if (offset >= 0) {
918 shmem_dir_unmap(dir);
919 goto found;
920 }
1da177e4
LT
921 }
922 }
923lost1:
924 shmem_dir_unmap(dir-1);
925lost2:
926 spin_unlock(&info->lock);
927 return 0;
928found:
929 idx += offset;
2e0e26c7
HD
930 inode = igrab(&info->vfs_inode);
931 spin_unlock(&info->lock);
932
1b1b32f2
HD
933 /*
934 * Move _head_ to start search for next from here.
935 * But be careful: shmem_delete_inode checks list_empty without taking
936 * mutex, and there's an instant in list_move_tail when info->swaplist
937 * would appear empty, if it were the only one on shmem_swaplist. We
938 * could avoid doing it if inode NULL; or use this minor optimization.
939 */
940 if (shmem_swaplist.next != &info->swaplist)
941 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7
HD
942 mutex_unlock(&shmem_swaplist_mutex);
943
944 error = 1;
945 if (!inode)
946 goto out;
d13d1443 947 /*
b5a84319
KH
948 * Charge page using GFP_KERNEL while we can wait.
949 * Charged back to the user(not to caller) when swap account is used.
950 * add_to_page_cache() will be called with GFP_NOWAIT.
d13d1443 951 */
82369553 952 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
b409f9fc
HD
953 if (error)
954 goto out;
82369553 955 error = radix_tree_preload(GFP_KERNEL);
69029cd5
KH
956 if (error) {
957 mem_cgroup_uncharge_cache_page(page);
958 goto out;
959 }
b409f9fc 960 error = 1;
2e0e26c7
HD
961
962 spin_lock(&info->lock);
963 ptr = shmem_swp_entry(info, idx, NULL);
69029cd5 964 if (ptr && ptr->val == entry.val) {
e286781d 965 error = add_to_page_cache_locked(page, inode->i_mapping,
b409f9fc 966 idx, GFP_NOWAIT);
69029cd5
KH
967 /* does mem_cgroup_uncharge_cache_page on error */
968 } else /* we must compensate for our precharge above */
969 mem_cgroup_uncharge_cache_page(page);
970
d9fe526a
HD
971 if (error == -EEXIST) {
972 struct page *filepage = find_get_page(inode->i_mapping, idx);
2e0e26c7 973 error = 1;
d9fe526a
HD
974 if (filepage) {
975 /*
976 * There might be a more uptodate page coming down
977 * from a stacked writepage: forget our swappage if so.
978 */
979 if (PageUptodate(filepage))
980 error = 0;
981 page_cache_release(filepage);
982 }
983 }
984 if (!error) {
73b1262f
HD
985 delete_from_swap_cache(page);
986 set_page_dirty(page);
1da177e4 987 info->flags |= SHMEM_PAGEIN;
2e0e26c7
HD
988 shmem_swp_set(info, ptr, 0);
989 swap_free(entry);
990 error = 1; /* not an error, but entry was found */
1da177e4 991 }
2e0e26c7
HD
992 if (ptr)
993 shmem_swp_unmap(ptr);
1da177e4 994 spin_unlock(&info->lock);
b409f9fc 995 radix_tree_preload_end();
2e0e26c7
HD
996out:
997 unlock_page(page);
998 page_cache_release(page);
999 iput(inode); /* allows for NULL */
1000 return error;
1da177e4
LT
1001}
1002
1003/*
1004 * shmem_unuse() search for an eventually swapped out shmem page.
1005 */
1006int shmem_unuse(swp_entry_t entry, struct page *page)
1007{
1008 struct list_head *p, *next;
1009 struct shmem_inode_info *info;
1010 int found = 0;
1011
cb5f7b9a 1012 mutex_lock(&shmem_swaplist_mutex);
1da177e4
LT
1013 list_for_each_safe(p, next, &shmem_swaplist) {
1014 info = list_entry(p, struct shmem_inode_info, swaplist);
1b1b32f2 1015 found = shmem_unuse_inode(info, entry, page);
cb5f7b9a 1016 cond_resched();
2e0e26c7
HD
1017 if (found)
1018 goto out;
1da177e4 1019 }
cb5f7b9a 1020 mutex_unlock(&shmem_swaplist_mutex);
aaa46865
HD
1021 /*
1022 * Can some race bring us here? We've been holding page lock,
1023 * so I think not; but would rather try again later than BUG()
1024 */
1025 unlock_page(page);
1026 page_cache_release(page);
1027out:
1028 return (found < 0) ? found : 0;
1da177e4
LT
1029}
1030
1031/*
1032 * Move the page from the page cache to the swap cache.
1033 */
1034static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1035{
1036 struct shmem_inode_info *info;
1037 swp_entry_t *entry, swap;
1038 struct address_space *mapping;
1039 unsigned long index;
1040 struct inode *inode;
1041
1042 BUG_ON(!PageLocked(page));
1da177e4
LT
1043 mapping = page->mapping;
1044 index = page->index;
1045 inode = mapping->host;
1046 info = SHMEM_I(inode);
1047 if (info->flags & VM_LOCKED)
1048 goto redirty;
d9fe526a 1049 if (!total_swap_pages)
1da177e4
LT
1050 goto redirty;
1051
d9fe526a
HD
1052 /*
1053 * shmem_backing_dev_info's capabilities prevent regular writeback or
1054 * sync from ever calling shmem_writepage; but a stacking filesystem
1055 * may use the ->writepage of its underlying filesystem, in which case
1056 * tmpfs should write out to swap only in response to memory pressure,
5b0830cb
JA
1057 * and not for the writeback threads or sync. However, in those cases,
1058 * we do still want to check if there's a redundant swappage to be
1059 * discarded.
d9fe526a
HD
1060 */
1061 if (wbc->for_reclaim)
1062 swap = get_swap_page();
1063 else
1064 swap.val = 0;
1065
1da177e4 1066 spin_lock(&info->lock);
1da177e4
LT
1067 if (index >= info->next_index) {
1068 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1069 goto unlock;
1070 }
1071 entry = shmem_swp_entry(info, index, NULL);
d9fe526a
HD
1072 if (entry->val) {
1073 /*
1074 * The more uptodate page coming down from a stacked
1075 * writepage should replace our old swappage.
1076 */
1077 free_swap_and_cache(*entry);
1078 shmem_swp_set(info, entry, 0);
1079 }
1080 shmem_recalc_inode(inode);
1da177e4 1081
d9fe526a 1082 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
73b1262f 1083 remove_from_page_cache(page);
1da177e4
LT
1084 shmem_swp_set(info, entry, swap.val);
1085 shmem_swp_unmap(entry);
1b1b32f2
HD
1086 if (list_empty(&info->swaplist))
1087 inode = igrab(inode);
1088 else
1089 inode = NULL;
1da177e4 1090 spin_unlock(&info->lock);
aaa46865 1091 swap_shmem_alloc(swap);
d9fe526a 1092 BUG_ON(page_mapped(page));
73b1262f 1093 page_cache_release(page); /* pagecache ref */
9fab5619 1094 swap_writepage(page, wbc);
1b1b32f2
HD
1095 if (inode) {
1096 mutex_lock(&shmem_swaplist_mutex);
1097 /* move instead of add in case we're racing */
1098 list_move_tail(&info->swaplist, &shmem_swaplist);
1099 mutex_unlock(&shmem_swaplist_mutex);
1100 iput(inode);
1101 }
1da177e4
LT
1102 return 0;
1103 }
1104
1105 shmem_swp_unmap(entry);
1106unlock:
1107 spin_unlock(&info->lock);
2ca4532a
DN
1108 /*
1109 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1110 * clear SWAP_HAS_CACHE flag.
1111 */
cb4b86ba 1112 swapcache_free(swap, NULL);
1da177e4
LT
1113redirty:
1114 set_page_dirty(page);
d9fe526a
HD
1115 if (wbc->for_reclaim)
1116 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1117 unlock_page(page);
1118 return 0;
1da177e4
LT
1119}
1120
1121#ifdef CONFIG_NUMA
680d794b 1122#ifdef CONFIG_TMPFS
71fe804b 1123static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1124{
095f1fc4 1125 char buffer[64];
680d794b 1126
71fe804b 1127 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1128 return; /* show nothing */
680d794b 1129
71fe804b 1130 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
095f1fc4
LS
1131
1132 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1133}
71fe804b
LS
1134
1135static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1136{
1137 struct mempolicy *mpol = NULL;
1138 if (sbinfo->mpol) {
1139 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1140 mpol = sbinfo->mpol;
1141 mpol_get(mpol);
1142 spin_unlock(&sbinfo->stat_lock);
1143 }
1144 return mpol;
1145}
680d794b 1146#endif /* CONFIG_TMPFS */
1147
02098fea
HD
1148static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1149 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1150{
52cd3b07 1151 struct mempolicy mpol, *spol;
1da177e4 1152 struct vm_area_struct pvma;
c4cc6d07 1153 struct page *page;
1da177e4 1154
52cd3b07
LS
1155 spol = mpol_cond_copy(&mpol,
1156 mpol_shared_policy_lookup(&info->policy, idx));
1157
1da177e4 1158 /* Create a pseudo vma that just contains the policy */
c4cc6d07 1159 pvma.vm_start = 0;
1da177e4 1160 pvma.vm_pgoff = idx;
c4cc6d07 1161 pvma.vm_ops = NULL;
52cd3b07 1162 pvma.vm_policy = spol;
02098fea 1163 page = swapin_readahead(entry, gfp, &pvma, 0);
1da177e4
LT
1164 return page;
1165}
1166
02098fea
HD
1167static struct page *shmem_alloc_page(gfp_t gfp,
1168 struct shmem_inode_info *info, unsigned long idx)
1da177e4
LT
1169{
1170 struct vm_area_struct pvma;
1da177e4 1171
c4cc6d07
HD
1172 /* Create a pseudo vma that just contains the policy */
1173 pvma.vm_start = 0;
1da177e4 1174 pvma.vm_pgoff = idx;
c4cc6d07
HD
1175 pvma.vm_ops = NULL;
1176 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
52cd3b07
LS
1177
1178 /*
1179 * alloc_page_vma() will drop the shared policy reference
1180 */
1181 return alloc_page_vma(gfp, &pvma, 0);
1da177e4 1182}
680d794b 1183#else /* !CONFIG_NUMA */
1184#ifdef CONFIG_TMPFS
71fe804b 1185static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
680d794b 1186{
1187}
1188#endif /* CONFIG_TMPFS */
1189
02098fea
HD
1190static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1191 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1192{
02098fea 1193 return swapin_readahead(entry, gfp, NULL, 0);
1da177e4
LT
1194}
1195
02098fea
HD
1196static inline struct page *shmem_alloc_page(gfp_t gfp,
1197 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1198{
e84e2e13 1199 return alloc_page(gfp);
1da177e4 1200}
680d794b 1201#endif /* CONFIG_NUMA */
1da177e4 1202
71fe804b
LS
1203#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1204static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1205{
1206 return NULL;
1207}
1208#endif
1209
1da177e4
LT
1210/*
1211 * shmem_getpage - either get the page from swap or allocate a new one
1212 *
1213 * If we allocate a new one we do not mark it dirty. That's up to the
1214 * vm. If we swap it in we mark it dirty since we also free the swap
1215 * entry since a page cannot live in both the swap and page cache
1216 */
1217static int shmem_getpage(struct inode *inode, unsigned long idx,
1218 struct page **pagep, enum sgp_type sgp, int *type)
1219{
1220 struct address_space *mapping = inode->i_mapping;
1221 struct shmem_inode_info *info = SHMEM_I(inode);
1222 struct shmem_sb_info *sbinfo;
1223 struct page *filepage = *pagep;
1224 struct page *swappage;
1225 swp_entry_t *entry;
1226 swp_entry_t swap;
02098fea 1227 gfp_t gfp;
1da177e4
LT
1228 int error;
1229
1230 if (idx >= SHMEM_MAX_INDEX)
1231 return -EFBIG;
54cb8821
NP
1232
1233 if (type)
83c54070 1234 *type = 0;
54cb8821 1235
1da177e4
LT
1236 /*
1237 * Normally, filepage is NULL on entry, and either found
1238 * uptodate immediately, or allocated and zeroed, or read
1239 * in under swappage, which is then assigned to filepage.
5402b976 1240 * But shmem_readpage (required for splice) passes in a locked
ae976416
HD
1241 * filepage, which may be found not uptodate by other callers
1242 * too, and may need to be copied from the swappage read in.
1da177e4
LT
1243 */
1244repeat:
1245 if (!filepage)
1246 filepage = find_lock_page(mapping, idx);
1247 if (filepage && PageUptodate(filepage))
1248 goto done;
1249 error = 0;
02098fea 1250 gfp = mapping_gfp_mask(mapping);
b409f9fc
HD
1251 if (!filepage) {
1252 /*
1253 * Try to preload while we can wait, to not make a habit of
1254 * draining atomic reserves; but don't latch on to this cpu.
1255 */
1256 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1257 if (error)
1258 goto failed;
1259 radix_tree_preload_end();
1260 }
1da177e4
LT
1261
1262 spin_lock(&info->lock);
1263 shmem_recalc_inode(inode);
1264 entry = shmem_swp_alloc(info, idx, sgp);
1265 if (IS_ERR(entry)) {
1266 spin_unlock(&info->lock);
1267 error = PTR_ERR(entry);
1268 goto failed;
1269 }
1270 swap = *entry;
1271
1272 if (swap.val) {
1273 /* Look it up and read it in.. */
1274 swappage = lookup_swap_cache(swap);
1275 if (!swappage) {
1276 shmem_swp_unmap(entry);
1da177e4 1277 /* here we actually do the io */
83c54070 1278 if (type && !(*type & VM_FAULT_MAJOR)) {
f8891e5e 1279 __count_vm_event(PGMAJFAULT);
83c54070 1280 *type |= VM_FAULT_MAJOR;
1da177e4 1281 }
f8891e5e 1282 spin_unlock(&info->lock);
02098fea 1283 swappage = shmem_swapin(swap, gfp, info, idx);
1da177e4
LT
1284 if (!swappage) {
1285 spin_lock(&info->lock);
1286 entry = shmem_swp_alloc(info, idx, sgp);
1287 if (IS_ERR(entry))
1288 error = PTR_ERR(entry);
1289 else {
1290 if (entry->val == swap.val)
1291 error = -ENOMEM;
1292 shmem_swp_unmap(entry);
1293 }
1294 spin_unlock(&info->lock);
1295 if (error)
1296 goto failed;
1297 goto repeat;
1298 }
1299 wait_on_page_locked(swappage);
1300 page_cache_release(swappage);
1301 goto repeat;
1302 }
1303
1304 /* We have to do this with page locked to prevent races */
529ae9aa 1305 if (!trylock_page(swappage)) {
1da177e4
LT
1306 shmem_swp_unmap(entry);
1307 spin_unlock(&info->lock);
1308 wait_on_page_locked(swappage);
1309 page_cache_release(swappage);
1310 goto repeat;
1311 }
1312 if (PageWriteback(swappage)) {
1313 shmem_swp_unmap(entry);
1314 spin_unlock(&info->lock);
1315 wait_on_page_writeback(swappage);
1316 unlock_page(swappage);
1317 page_cache_release(swappage);
1318 goto repeat;
1319 }
1320 if (!PageUptodate(swappage)) {
1321 shmem_swp_unmap(entry);
1322 spin_unlock(&info->lock);
1323 unlock_page(swappage);
1324 page_cache_release(swappage);
1325 error = -EIO;
1326 goto failed;
1327 }
1328
1329 if (filepage) {
1330 shmem_swp_set(info, entry, 0);
1331 shmem_swp_unmap(entry);
1332 delete_from_swap_cache(swappage);
1333 spin_unlock(&info->lock);
1334 copy_highpage(filepage, swappage);
1335 unlock_page(swappage);
1336 page_cache_release(swappage);
1337 flush_dcache_page(filepage);
1338 SetPageUptodate(filepage);
1339 set_page_dirty(filepage);
1340 swap_free(swap);
e286781d
NP
1341 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1342 idx, GFP_NOWAIT))) {
1da177e4
LT
1343 info->flags |= SHMEM_PAGEIN;
1344 shmem_swp_set(info, entry, 0);
1345 shmem_swp_unmap(entry);
73b1262f 1346 delete_from_swap_cache(swappage);
1da177e4
LT
1347 spin_unlock(&info->lock);
1348 filepage = swappage;
73b1262f 1349 set_page_dirty(filepage);
1da177e4
LT
1350 swap_free(swap);
1351 } else {
1352 shmem_swp_unmap(entry);
1353 spin_unlock(&info->lock);
82369553 1354 if (error == -ENOMEM) {
ae3abae6
DN
1355 /*
1356 * reclaim from proper memory cgroup and
1357 * call memcg's OOM if needed.
1358 */
1359 error = mem_cgroup_shmem_charge_fallback(
1360 swappage,
b5a84319 1361 current->mm,
c9b0ed51 1362 gfp);
b5a84319
KH
1363 if (error) {
1364 unlock_page(swappage);
1365 page_cache_release(swappage);
82369553 1366 goto failed;
b5a84319 1367 }
82369553 1368 }
b5a84319
KH
1369 unlock_page(swappage);
1370 page_cache_release(swappage);
1da177e4
LT
1371 goto repeat;
1372 }
1373 } else if (sgp == SGP_READ && !filepage) {
1374 shmem_swp_unmap(entry);
1375 filepage = find_get_page(mapping, idx);
1376 if (filepage &&
529ae9aa 1377 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1da177e4
LT
1378 spin_unlock(&info->lock);
1379 wait_on_page_locked(filepage);
1380 page_cache_release(filepage);
1381 filepage = NULL;
1382 goto repeat;
1383 }
1384 spin_unlock(&info->lock);
1385 } else {
1386 shmem_swp_unmap(entry);
1387 sbinfo = SHMEM_SB(inode->i_sb);
0edd73b3 1388 if (sbinfo->max_blocks) {
7e496299 1389 if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) ||
1da177e4 1390 shmem_acct_block(info->flags)) {
1da177e4
LT
1391 spin_unlock(&info->lock);
1392 error = -ENOSPC;
1393 goto failed;
1394 }
7e496299
TC
1395 percpu_counter_inc(&sbinfo->used_blocks);
1396 spin_lock(&inode->i_lock);
1da177e4 1397 inode->i_blocks += BLOCKS_PER_PAGE;
7e496299 1398 spin_unlock(&inode->i_lock);
1da177e4
LT
1399 } else if (shmem_acct_block(info->flags)) {
1400 spin_unlock(&info->lock);
1401 error = -ENOSPC;
1402 goto failed;
1403 }
1404
1405 if (!filepage) {
69029cd5
KH
1406 int ret;
1407
1da177e4 1408 spin_unlock(&info->lock);
02098fea 1409 filepage = shmem_alloc_page(gfp, info, idx);
1da177e4
LT
1410 if (!filepage) {
1411 shmem_unacct_blocks(info->flags, 1);
1412 shmem_free_blocks(inode, 1);
1413 error = -ENOMEM;
1414 goto failed;
1415 }
b2e18538 1416 SetPageSwapBacked(filepage);
1da177e4 1417
82369553
HD
1418 /* Precharge page while we can wait, compensate after */
1419 error = mem_cgroup_cache_charge(filepage, current->mm,
2c26fdd7 1420 GFP_KERNEL);
82369553
HD
1421 if (error) {
1422 page_cache_release(filepage);
1423 shmem_unacct_blocks(info->flags, 1);
1424 shmem_free_blocks(inode, 1);
1425 filepage = NULL;
1426 goto failed;
1427 }
1428
1da177e4
LT
1429 spin_lock(&info->lock);
1430 entry = shmem_swp_alloc(info, idx, sgp);
1431 if (IS_ERR(entry))
1432 error = PTR_ERR(entry);
1433 else {
1434 swap = *entry;
1435 shmem_swp_unmap(entry);
1436 }
69029cd5
KH
1437 ret = error || swap.val;
1438 if (ret)
1439 mem_cgroup_uncharge_cache_page(filepage);
1440 else
1441 ret = add_to_page_cache_lru(filepage, mapping,
1442 idx, GFP_NOWAIT);
1443 /*
1444 * At add_to_page_cache_lru() failure, uncharge will
1445 * be done automatically.
1446 */
1447 if (ret) {
1da177e4
LT
1448 spin_unlock(&info->lock);
1449 page_cache_release(filepage);
1450 shmem_unacct_blocks(info->flags, 1);
1451 shmem_free_blocks(inode, 1);
1452 filepage = NULL;
1453 if (error)
1454 goto failed;
1455 goto repeat;
1456 }
1457 info->flags |= SHMEM_PAGEIN;
1458 }
1459
1460 info->alloced++;
1461 spin_unlock(&info->lock);
e84e2e13 1462 clear_highpage(filepage);
1da177e4
LT
1463 flush_dcache_page(filepage);
1464 SetPageUptodate(filepage);
a0ee5ec5
HD
1465 if (sgp == SGP_DIRTY)
1466 set_page_dirty(filepage);
1da177e4
LT
1467 }
1468done:
d3602444 1469 *pagep = filepage;
1da177e4
LT
1470 return 0;
1471
1472failed:
1473 if (*pagep != filepage) {
1474 unlock_page(filepage);
1475 page_cache_release(filepage);
1476 }
1477 return error;
1478}
1479
d0217ac0 1480static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1481{
d3ac7f89 1482 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1da177e4 1483 int error;
d0217ac0 1484 int ret;
1da177e4 1485
d0217ac0
NP
1486 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1487 return VM_FAULT_SIGBUS;
d00806b1 1488
27d54b39 1489 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1490 if (error)
1491 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1da177e4 1492
83c54070 1493 return ret | VM_FAULT_LOCKED;
1da177e4
LT
1494}
1495
1da177e4 1496#ifdef CONFIG_NUMA
d8dc74f2 1497static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1da177e4 1498{
d3ac7f89 1499 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1da177e4
LT
1500 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1501}
1502
d8dc74f2
AB
1503static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1504 unsigned long addr)
1da177e4 1505{
d3ac7f89 1506 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1da177e4
LT
1507 unsigned long idx;
1508
1509 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1510 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1511}
1512#endif
1513
1514int shmem_lock(struct file *file, int lock, struct user_struct *user)
1515{
d3ac7f89 1516 struct inode *inode = file->f_path.dentry->d_inode;
1da177e4
LT
1517 struct shmem_inode_info *info = SHMEM_I(inode);
1518 int retval = -ENOMEM;
1519
1520 spin_lock(&info->lock);
1521 if (lock && !(info->flags & VM_LOCKED)) {
1522 if (!user_shm_lock(inode->i_size, user))
1523 goto out_nomem;
1524 info->flags |= VM_LOCKED;
89e004ea 1525 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1526 }
1527 if (!lock && (info->flags & VM_LOCKED) && user) {
1528 user_shm_unlock(inode->i_size, user);
1529 info->flags &= ~VM_LOCKED;
89e004ea
LS
1530 mapping_clear_unevictable(file->f_mapping);
1531 scan_mapping_unevictable_pages(file->f_mapping);
1da177e4
LT
1532 }
1533 retval = 0;
89e004ea 1534
1da177e4
LT
1535out_nomem:
1536 spin_unlock(&info->lock);
1537 return retval;
1538}
1539
9b83a6a8 1540static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1541{
1542 file_accessed(file);
1543 vma->vm_ops = &shmem_vm_ops;
d0217ac0 1544 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1545 return 0;
1546}
1547
454abafe
DM
1548static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1549 int mode, dev_t dev, unsigned long flags)
1da177e4
LT
1550{
1551 struct inode *inode;
1552 struct shmem_inode_info *info;
1553 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1554
5b04c689
PE
1555 if (shmem_reserve_inode(sb))
1556 return NULL;
1da177e4
LT
1557
1558 inode = new_inode(sb);
1559 if (inode) {
454abafe 1560 inode_init_owner(inode, dir, mode);
1da177e4 1561 inode->i_blocks = 0;
1da177e4
LT
1562 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1563 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1564 inode->i_generation = get_seconds();
1da177e4
LT
1565 info = SHMEM_I(inode);
1566 memset(info, 0, (char *)inode - (char *)info);
1567 spin_lock_init(&info->lock);
0b0a0806 1568 info->flags = flags & VM_NORESERVE;
1da177e4 1569 INIT_LIST_HEAD(&info->swaplist);
72c04902 1570 cache_no_acl(inode);
1da177e4
LT
1571
1572 switch (mode & S_IFMT) {
1573 default:
39f0247d 1574 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1575 init_special_inode(inode, mode, dev);
1576 break;
1577 case S_IFREG:
14fcc23f 1578 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1579 inode->i_op = &shmem_inode_operations;
1580 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1581 mpol_shared_policy_init(&info->policy,
1582 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1583 break;
1584 case S_IFDIR:
d8c76e6f 1585 inc_nlink(inode);
1da177e4
LT
1586 /* Some things misbehave if size == 0 on a directory */
1587 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1588 inode->i_op = &shmem_dir_inode_operations;
1589 inode->i_fop = &simple_dir_operations;
1590 break;
1591 case S_IFLNK:
1592 /*
1593 * Must not load anything in the rbtree,
1594 * mpol_free_shared_policy will not be called.
1595 */
71fe804b 1596 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1597 break;
1598 }
5b04c689
PE
1599 } else
1600 shmem_free_inode(sb);
1da177e4
LT
1601 return inode;
1602}
1603
1604#ifdef CONFIG_TMPFS
92e1d5be
AV
1605static const struct inode_operations shmem_symlink_inode_operations;
1606static const struct inode_operations shmem_symlink_inline_operations;
1da177e4
LT
1607
1608/*
800d15a5 1609 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
ae976416
HD
1610 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1611 * below the loop driver, in the generic fashion that many filesystems support.
1da177e4 1612 */
ae976416
HD
1613static int shmem_readpage(struct file *file, struct page *page)
1614{
1615 struct inode *inode = page->mapping->host;
1616 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1617 unlock_page(page);
1618 return error;
1619}
1620
1da177e4 1621static int
800d15a5
NP
1622shmem_write_begin(struct file *file, struct address_space *mapping,
1623 loff_t pos, unsigned len, unsigned flags,
1624 struct page **pagep, void **fsdata)
1da177e4 1625{
800d15a5
NP
1626 struct inode *inode = mapping->host;
1627 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1628 *pagep = NULL;
1629 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1630}
1631
1632static int
1633shmem_write_end(struct file *file, struct address_space *mapping,
1634 loff_t pos, unsigned len, unsigned copied,
1635 struct page *page, void *fsdata)
1636{
1637 struct inode *inode = mapping->host;
1638
d3602444
HD
1639 if (pos + copied > inode->i_size)
1640 i_size_write(inode, pos + copied);
1641
800d15a5 1642 set_page_dirty(page);
6746aff7 1643 unlock_page(page);
800d15a5
NP
1644 page_cache_release(page);
1645
800d15a5 1646 return copied;
1da177e4
LT
1647}
1648
1da177e4
LT
1649static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1650{
d3ac7f89 1651 struct inode *inode = filp->f_path.dentry->d_inode;
1da177e4
LT
1652 struct address_space *mapping = inode->i_mapping;
1653 unsigned long index, offset;
a0ee5ec5
HD
1654 enum sgp_type sgp = SGP_READ;
1655
1656 /*
1657 * Might this read be for a stacking filesystem? Then when reading
1658 * holes of a sparse file, we actually need to allocate those pages,
1659 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1660 */
1661 if (segment_eq(get_fs(), KERNEL_DS))
1662 sgp = SGP_DIRTY;
1da177e4
LT
1663
1664 index = *ppos >> PAGE_CACHE_SHIFT;
1665 offset = *ppos & ~PAGE_CACHE_MASK;
1666
1667 for (;;) {
1668 struct page *page = NULL;
1669 unsigned long end_index, nr, ret;
1670 loff_t i_size = i_size_read(inode);
1671
1672 end_index = i_size >> PAGE_CACHE_SHIFT;
1673 if (index > end_index)
1674 break;
1675 if (index == end_index) {
1676 nr = i_size & ~PAGE_CACHE_MASK;
1677 if (nr <= offset)
1678 break;
1679 }
1680
a0ee5ec5 1681 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1da177e4
LT
1682 if (desc->error) {
1683 if (desc->error == -EINVAL)
1684 desc->error = 0;
1685 break;
1686 }
d3602444
HD
1687 if (page)
1688 unlock_page(page);
1da177e4
LT
1689
1690 /*
1691 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1692 * are called without i_mutex protection against truncate
1da177e4
LT
1693 */
1694 nr = PAGE_CACHE_SIZE;
1695 i_size = i_size_read(inode);
1696 end_index = i_size >> PAGE_CACHE_SHIFT;
1697 if (index == end_index) {
1698 nr = i_size & ~PAGE_CACHE_MASK;
1699 if (nr <= offset) {
1700 if (page)
1701 page_cache_release(page);
1702 break;
1703 }
1704 }
1705 nr -= offset;
1706
1707 if (page) {
1708 /*
1709 * If users can be writing to this page using arbitrary
1710 * virtual addresses, take care about potential aliasing
1711 * before reading the page on the kernel side.
1712 */
1713 if (mapping_writably_mapped(mapping))
1714 flush_dcache_page(page);
1715 /*
1716 * Mark the page accessed if we read the beginning.
1717 */
1718 if (!offset)
1719 mark_page_accessed(page);
b5810039 1720 } else {
1da177e4 1721 page = ZERO_PAGE(0);
b5810039
NP
1722 page_cache_get(page);
1723 }
1da177e4
LT
1724
1725 /*
1726 * Ok, we have the page, and it's up-to-date, so
1727 * now we can copy it to user space...
1728 *
1729 * The actor routine returns how many bytes were actually used..
1730 * NOTE! This may not be the same as how much of a user buffer
1731 * we filled up (we may be padding etc), so we can only update
1732 * "pos" here (the actor routine has to update the user buffer
1733 * pointers and the remaining count).
1734 */
1735 ret = actor(desc, page, offset, nr);
1736 offset += ret;
1737 index += offset >> PAGE_CACHE_SHIFT;
1738 offset &= ~PAGE_CACHE_MASK;
1739
1740 page_cache_release(page);
1741 if (ret != nr || !desc->count)
1742 break;
1743
1744 cond_resched();
1745 }
1746
1747 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1748 file_accessed(filp);
1749}
1750
bcd78e49
HD
1751static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1752 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1753{
1754 struct file *filp = iocb->ki_filp;
1755 ssize_t retval;
1756 unsigned long seg;
1757 size_t count;
1758 loff_t *ppos = &iocb->ki_pos;
1759
1760 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1761 if (retval)
1762 return retval;
1763
1764 for (seg = 0; seg < nr_segs; seg++) {
1765 read_descriptor_t desc;
1766
1767 desc.written = 0;
1768 desc.arg.buf = iov[seg].iov_base;
1769 desc.count = iov[seg].iov_len;
1770 if (desc.count == 0)
1771 continue;
1772 desc.error = 0;
1773 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1774 retval += desc.written;
1775 if (desc.error) {
1776 retval = retval ?: desc.error;
1777 break;
1778 }
1779 if (desc.count > 0)
1780 break;
1781 }
1782 return retval;
1da177e4
LT
1783}
1784
726c3342 1785static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1786{
726c3342 1787 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1788
1789 buf->f_type = TMPFS_MAGIC;
1790 buf->f_bsize = PAGE_CACHE_SIZE;
1791 buf->f_namelen = NAME_MAX;
0edd73b3 1792 if (sbinfo->max_blocks) {
1da177e4 1793 buf->f_blocks = sbinfo->max_blocks;
7e496299
TC
1794 buf->f_bavail = buf->f_bfree =
1795 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1796 }
1797 if (sbinfo->max_inodes) {
1da177e4
LT
1798 buf->f_files = sbinfo->max_inodes;
1799 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1800 }
1801 /* else leave those fields 0 like simple_statfs */
1802 return 0;
1803}
1804
1805/*
1806 * File creation. Allocate an inode, and we're done..
1807 */
1808static int
1809shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1810{
0b0a0806 1811 struct inode *inode;
1da177e4
LT
1812 int error = -ENOSPC;
1813
454abafe 1814 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1815 if (inode) {
570bc1c2
SS
1816 error = security_inode_init_security(inode, dir, NULL, NULL,
1817 NULL);
1818 if (error) {
1819 if (error != -EOPNOTSUPP) {
1820 iput(inode);
1821 return error;
1822 }
39f0247d 1823 }
1c7c474c
CH
1824#ifdef CONFIG_TMPFS_POSIX_ACL
1825 error = generic_acl_init(inode, dir);
39f0247d
AG
1826 if (error) {
1827 iput(inode);
1828 return error;
570bc1c2 1829 }
718deb6b
AV
1830#else
1831 error = 0;
1c7c474c 1832#endif
1da177e4
LT
1833 dir->i_size += BOGO_DIRENT_SIZE;
1834 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1835 d_instantiate(dentry, inode);
1836 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1837 }
1838 return error;
1839}
1840
1841static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1842{
1843 int error;
1844
1845 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1846 return error;
d8c76e6f 1847 inc_nlink(dir);
1da177e4
LT
1848 return 0;
1849}
1850
1851static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1852 struct nameidata *nd)
1853{
1854 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1855}
1856
1857/*
1858 * Link a file..
1859 */
1860static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1861{
1862 struct inode *inode = old_dentry->d_inode;
5b04c689 1863 int ret;
1da177e4
LT
1864
1865 /*
1866 * No ordinary (disk based) filesystem counts links as inodes;
1867 * but each new link needs a new dentry, pinning lowmem, and
1868 * tmpfs dentries cannot be pruned until they are unlinked.
1869 */
5b04c689
PE
1870 ret = shmem_reserve_inode(inode->i_sb);
1871 if (ret)
1872 goto out;
1da177e4
LT
1873
1874 dir->i_size += BOGO_DIRENT_SIZE;
1875 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 1876 inc_nlink(inode);
1da177e4
LT
1877 atomic_inc(&inode->i_count); /* New dentry reference */
1878 dget(dentry); /* Extra pinning count for the created dentry */
1879 d_instantiate(dentry, inode);
5b04c689
PE
1880out:
1881 return ret;
1da177e4
LT
1882}
1883
1884static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1885{
1886 struct inode *inode = dentry->d_inode;
1887
5b04c689
PE
1888 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1889 shmem_free_inode(inode->i_sb);
1da177e4
LT
1890
1891 dir->i_size -= BOGO_DIRENT_SIZE;
1892 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 1893 drop_nlink(inode);
1da177e4
LT
1894 dput(dentry); /* Undo the count from "create" - this does all the work */
1895 return 0;
1896}
1897
1898static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1899{
1900 if (!simple_empty(dentry))
1901 return -ENOTEMPTY;
1902
9a53c3a7
DH
1903 drop_nlink(dentry->d_inode);
1904 drop_nlink(dir);
1da177e4
LT
1905 return shmem_unlink(dir, dentry);
1906}
1907
1908/*
1909 * The VFS layer already does all the dentry stuff for rename,
1910 * we just have to decrement the usage count for the target if
1911 * it exists so that the VFS layer correctly free's it when it
1912 * gets overwritten.
1913 */
1914static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1915{
1916 struct inode *inode = old_dentry->d_inode;
1917 int they_are_dirs = S_ISDIR(inode->i_mode);
1918
1919 if (!simple_empty(new_dentry))
1920 return -ENOTEMPTY;
1921
1922 if (new_dentry->d_inode) {
1923 (void) shmem_unlink(new_dir, new_dentry);
1924 if (they_are_dirs)
9a53c3a7 1925 drop_nlink(old_dir);
1da177e4 1926 } else if (they_are_dirs) {
9a53c3a7 1927 drop_nlink(old_dir);
d8c76e6f 1928 inc_nlink(new_dir);
1da177e4
LT
1929 }
1930
1931 old_dir->i_size -= BOGO_DIRENT_SIZE;
1932 new_dir->i_size += BOGO_DIRENT_SIZE;
1933 old_dir->i_ctime = old_dir->i_mtime =
1934 new_dir->i_ctime = new_dir->i_mtime =
1935 inode->i_ctime = CURRENT_TIME;
1936 return 0;
1937}
1938
1939static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1940{
1941 int error;
1942 int len;
1943 struct inode *inode;
1944 struct page *page = NULL;
1945 char *kaddr;
1946 struct shmem_inode_info *info;
1947
1948 len = strlen(symname) + 1;
1949 if (len > PAGE_CACHE_SIZE)
1950 return -ENAMETOOLONG;
1951
454abafe 1952 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
1953 if (!inode)
1954 return -ENOSPC;
1955
570bc1c2
SS
1956 error = security_inode_init_security(inode, dir, NULL, NULL,
1957 NULL);
1958 if (error) {
1959 if (error != -EOPNOTSUPP) {
1960 iput(inode);
1961 return error;
1962 }
1963 error = 0;
1964 }
1965
1da177e4
LT
1966 info = SHMEM_I(inode);
1967 inode->i_size = len-1;
1968 if (len <= (char *)inode - (char *)info) {
1969 /* do it inline */
1970 memcpy(info, symname, len);
1971 inode->i_op = &shmem_symlink_inline_operations;
1972 } else {
1973 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1974 if (error) {
1975 iput(inode);
1976 return error;
1977 }
14fcc23f 1978 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1979 inode->i_op = &shmem_symlink_inode_operations;
1980 kaddr = kmap_atomic(page, KM_USER0);
1981 memcpy(kaddr, symname, len);
1982 kunmap_atomic(kaddr, KM_USER0);
1983 set_page_dirty(page);
6746aff7 1984 unlock_page(page);
1da177e4
LT
1985 page_cache_release(page);
1986 }
1da177e4
LT
1987 dir->i_size += BOGO_DIRENT_SIZE;
1988 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1989 d_instantiate(dentry, inode);
1990 dget(dentry);
1991 return 0;
1992}
1993
cc314eef 1994static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
1995{
1996 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
cc314eef 1997 return NULL;
1da177e4
LT
1998}
1999
cc314eef 2000static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2001{
2002 struct page *page = NULL;
2003 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2004 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
d3602444
HD
2005 if (page)
2006 unlock_page(page);
cc314eef 2007 return page;
1da177e4
LT
2008}
2009
cc314eef 2010static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2011{
2012 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2013 struct page *page = cookie;
1da177e4
LT
2014 kunmap(page);
2015 mark_page_accessed(page);
2016 page_cache_release(page);
1da177e4
LT
2017 }
2018}
2019
92e1d5be 2020static const struct inode_operations shmem_symlink_inline_operations = {
1da177e4
LT
2021 .readlink = generic_readlink,
2022 .follow_link = shmem_follow_link_inline,
1da177e4
LT
2023};
2024
92e1d5be 2025static const struct inode_operations shmem_symlink_inode_operations = {
1da177e4
LT
2026 .readlink = generic_readlink,
2027 .follow_link = shmem_follow_link,
2028 .put_link = shmem_put_link,
1da177e4
LT
2029};
2030
39f0247d 2031#ifdef CONFIG_TMPFS_POSIX_ACL
46711810 2032/*
39f0247d
AG
2033 * Superblocks without xattr inode operations will get security.* xattr
2034 * support from the VFS "for free". As soon as we have any other xattrs
2035 * like ACLs, we also need to implement the security.* handlers at
2036 * filesystem level, though.
2037 */
2038
431547b3 2039static size_t shmem_xattr_security_list(struct dentry *dentry, char *list,
39f0247d 2040 size_t list_len, const char *name,
431547b3 2041 size_t name_len, int handler_flags)
39f0247d 2042{
431547b3 2043 return security_inode_listsecurity(dentry->d_inode, list, list_len);
39f0247d
AG
2044}
2045
431547b3
CH
2046static int shmem_xattr_security_get(struct dentry *dentry, const char *name,
2047 void *buffer, size_t size, int handler_flags)
39f0247d
AG
2048{
2049 if (strcmp(name, "") == 0)
2050 return -EINVAL;
431547b3 2051 return xattr_getsecurity(dentry->d_inode, name, buffer, size);
39f0247d
AG
2052}
2053
431547b3
CH
2054static int shmem_xattr_security_set(struct dentry *dentry, const char *name,
2055 const void *value, size_t size, int flags, int handler_flags)
39f0247d
AG
2056{
2057 if (strcmp(name, "") == 0)
2058 return -EINVAL;
431547b3
CH
2059 return security_inode_setsecurity(dentry->d_inode, name, value,
2060 size, flags);
39f0247d
AG
2061}
2062
bb435453 2063static const struct xattr_handler shmem_xattr_security_handler = {
39f0247d
AG
2064 .prefix = XATTR_SECURITY_PREFIX,
2065 .list = shmem_xattr_security_list,
2066 .get = shmem_xattr_security_get,
2067 .set = shmem_xattr_security_set,
2068};
2069
bb435453 2070static const struct xattr_handler *shmem_xattr_handlers[] = {
1c7c474c
CH
2071 &generic_acl_access_handler,
2072 &generic_acl_default_handler,
39f0247d
AG
2073 &shmem_xattr_security_handler,
2074 NULL
2075};
2076#endif
2077
91828a40
DG
2078static struct dentry *shmem_get_parent(struct dentry *child)
2079{
2080 return ERR_PTR(-ESTALE);
2081}
2082
2083static int shmem_match(struct inode *ino, void *vfh)
2084{
2085 __u32 *fh = vfh;
2086 __u64 inum = fh[2];
2087 inum = (inum << 32) | fh[1];
2088 return ino->i_ino == inum && fh[0] == ino->i_generation;
2089}
2090
480b116c
CH
2091static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2092 struct fid *fid, int fh_len, int fh_type)
91828a40 2093{
91828a40 2094 struct inode *inode;
480b116c
CH
2095 struct dentry *dentry = NULL;
2096 u64 inum = fid->raw[2];
2097 inum = (inum << 32) | fid->raw[1];
2098
2099 if (fh_len < 3)
2100 return NULL;
91828a40 2101
480b116c
CH
2102 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2103 shmem_match, fid->raw);
91828a40 2104 if (inode) {
480b116c 2105 dentry = d_find_alias(inode);
91828a40
DG
2106 iput(inode);
2107 }
2108
480b116c 2109 return dentry;
91828a40
DG
2110}
2111
2112static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2113 int connectable)
2114{
2115 struct inode *inode = dentry->d_inode;
2116
2117 if (*len < 3)
2118 return 255;
2119
2120 if (hlist_unhashed(&inode->i_hash)) {
2121 /* Unfortunately insert_inode_hash is not idempotent,
2122 * so as we hash inodes here rather than at creation
2123 * time, we need a lock to ensure we only try
2124 * to do it once
2125 */
2126 static DEFINE_SPINLOCK(lock);
2127 spin_lock(&lock);
2128 if (hlist_unhashed(&inode->i_hash))
2129 __insert_inode_hash(inode,
2130 inode->i_ino + inode->i_generation);
2131 spin_unlock(&lock);
2132 }
2133
2134 fh[0] = inode->i_generation;
2135 fh[1] = inode->i_ino;
2136 fh[2] = ((__u64)inode->i_ino) >> 32;
2137
2138 *len = 3;
2139 return 1;
2140}
2141
39655164 2142static const struct export_operations shmem_export_ops = {
91828a40 2143 .get_parent = shmem_get_parent,
91828a40 2144 .encode_fh = shmem_encode_fh,
480b116c 2145 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2146};
2147
680d794b 2148static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2149 bool remount)
1da177e4
LT
2150{
2151 char *this_char, *value, *rest;
2152
b00dc3ad
HD
2153 while (options != NULL) {
2154 this_char = options;
2155 for (;;) {
2156 /*
2157 * NUL-terminate this option: unfortunately,
2158 * mount options form a comma-separated list,
2159 * but mpol's nodelist may also contain commas.
2160 */
2161 options = strchr(options, ',');
2162 if (options == NULL)
2163 break;
2164 options++;
2165 if (!isdigit(*options)) {
2166 options[-1] = '\0';
2167 break;
2168 }
2169 }
1da177e4
LT
2170 if (!*this_char)
2171 continue;
2172 if ((value = strchr(this_char,'=')) != NULL) {
2173 *value++ = 0;
2174 } else {
2175 printk(KERN_ERR
2176 "tmpfs: No value for mount option '%s'\n",
2177 this_char);
2178 return 1;
2179 }
2180
2181 if (!strcmp(this_char,"size")) {
2182 unsigned long long size;
2183 size = memparse(value,&rest);
2184 if (*rest == '%') {
2185 size <<= PAGE_SHIFT;
2186 size *= totalram_pages;
2187 do_div(size, 100);
2188 rest++;
2189 }
2190 if (*rest)
2191 goto bad_val;
680d794b 2192 sbinfo->max_blocks =
2193 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2194 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2195 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2196 if (*rest)
2197 goto bad_val;
2198 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2199 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2200 if (*rest)
2201 goto bad_val;
2202 } else if (!strcmp(this_char,"mode")) {
680d794b 2203 if (remount)
1da177e4 2204 continue;
680d794b 2205 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2206 if (*rest)
2207 goto bad_val;
2208 } else if (!strcmp(this_char,"uid")) {
680d794b 2209 if (remount)
1da177e4 2210 continue;
680d794b 2211 sbinfo->uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2212 if (*rest)
2213 goto bad_val;
2214 } else if (!strcmp(this_char,"gid")) {
680d794b 2215 if (remount)
1da177e4 2216 continue;
680d794b 2217 sbinfo->gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2218 if (*rest)
2219 goto bad_val;
7339ff83 2220 } else if (!strcmp(this_char,"mpol")) {
71fe804b 2221 if (mpol_parse_str(value, &sbinfo->mpol, 1))
7339ff83 2222 goto bad_val;
1da177e4
LT
2223 } else {
2224 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2225 this_char);
2226 return 1;
2227 }
2228 }
2229 return 0;
2230
2231bad_val:
2232 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2233 value, this_char);
2234 return 1;
2235
2236}
2237
2238static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2239{
2240 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2241 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2242 unsigned long inodes;
2243 int error = -EINVAL;
2244
680d794b 2245 if (shmem_parse_options(data, &config, true))
0edd73b3 2246 return error;
1da177e4 2247
0edd73b3 2248 spin_lock(&sbinfo->stat_lock);
0edd73b3 2249 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2250 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2251 goto out;
680d794b 2252 if (config.max_inodes < inodes)
0edd73b3
HD
2253 goto out;
2254 /*
2255 * Those tests also disallow limited->unlimited while any are in
2256 * use, so i_blocks will always be zero when max_blocks is zero;
2257 * but we must separately disallow unlimited->limited, because
2258 * in that case we have no record of how much is already in use.
2259 */
680d794b 2260 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2261 goto out;
680d794b 2262 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2263 goto out;
2264
2265 error = 0;
680d794b 2266 sbinfo->max_blocks = config.max_blocks;
680d794b 2267 sbinfo->max_inodes = config.max_inodes;
2268 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b
LS
2269
2270 mpol_put(sbinfo->mpol);
2271 sbinfo->mpol = config.mpol; /* transfers initial ref */
0edd73b3
HD
2272out:
2273 spin_unlock(&sbinfo->stat_lock);
2274 return error;
1da177e4 2275}
680d794b 2276
2277static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2278{
2279 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2280
2281 if (sbinfo->max_blocks != shmem_default_max_blocks())
2282 seq_printf(seq, ",size=%luk",
2283 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2284 if (sbinfo->max_inodes != shmem_default_max_inodes())
2285 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2286 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2287 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2288 if (sbinfo->uid != 0)
2289 seq_printf(seq, ",uid=%u", sbinfo->uid);
2290 if (sbinfo->gid != 0)
2291 seq_printf(seq, ",gid=%u", sbinfo->gid);
71fe804b 2292 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 2293 return 0;
2294}
2295#endif /* CONFIG_TMPFS */
1da177e4
LT
2296
2297static void shmem_put_super(struct super_block *sb)
2298{
2299 kfree(sb->s_fs_info);
2300 sb->s_fs_info = NULL;
2301}
2302
2b2af54a 2303int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2304{
2305 struct inode *inode;
2306 struct dentry *root;
0edd73b3 2307 struct shmem_sb_info *sbinfo;
680d794b 2308 int err = -ENOMEM;
2309
2310 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2311 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 2312 L1_CACHE_BYTES), GFP_KERNEL);
2313 if (!sbinfo)
2314 return -ENOMEM;
2315
680d794b 2316 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2317 sbinfo->uid = current_fsuid();
2318 sbinfo->gid = current_fsgid();
680d794b 2319 sb->s_fs_info = sbinfo;
1da177e4 2320
0edd73b3 2321#ifdef CONFIG_TMPFS
1da177e4
LT
2322 /*
2323 * Per default we only allow half of the physical ram per
2324 * tmpfs instance, limiting inodes to one per page of lowmem;
2325 * but the internal instance is left unlimited.
2326 */
2327 if (!(sb->s_flags & MS_NOUSER)) {
680d794b 2328 sbinfo->max_blocks = shmem_default_max_blocks();
2329 sbinfo->max_inodes = shmem_default_max_inodes();
2330 if (shmem_parse_options(data, sbinfo, false)) {
2331 err = -EINVAL;
2332 goto failed;
2333 }
1da177e4 2334 }
91828a40 2335 sb->s_export_op = &shmem_export_ops;
1da177e4
LT
2336#else
2337 sb->s_flags |= MS_NOUSER;
2338#endif
2339
0edd73b3 2340 spin_lock_init(&sbinfo->stat_lock);
7e496299 2341 percpu_counter_init(&sbinfo->used_blocks, 0);
680d794b 2342 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2343
1da177e4
LT
2344 sb->s_maxbytes = SHMEM_MAX_BYTES;
2345 sb->s_blocksize = PAGE_CACHE_SIZE;
2346 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2347 sb->s_magic = TMPFS_MAGIC;
2348 sb->s_op = &shmem_ops;
cfd95a9c 2349 sb->s_time_gran = 1;
39f0247d
AG
2350#ifdef CONFIG_TMPFS_POSIX_ACL
2351 sb->s_xattr = shmem_xattr_handlers;
2352 sb->s_flags |= MS_POSIXACL;
2353#endif
0edd73b3 2354
454abafe 2355 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2356 if (!inode)
2357 goto failed;
680d794b 2358 inode->i_uid = sbinfo->uid;
2359 inode->i_gid = sbinfo->gid;
1da177e4
LT
2360 root = d_alloc_root(inode);
2361 if (!root)
2362 goto failed_iput;
2363 sb->s_root = root;
2364 return 0;
2365
2366failed_iput:
2367 iput(inode);
2368failed:
2369 shmem_put_super(sb);
2370 return err;
2371}
2372
fcc234f8 2373static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2374
2375static struct inode *shmem_alloc_inode(struct super_block *sb)
2376{
2377 struct shmem_inode_info *p;
e94b1766 2378 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
1da177e4
LT
2379 if (!p)
2380 return NULL;
2381 return &p->vfs_inode;
2382}
2383
2384static void shmem_destroy_inode(struct inode *inode)
2385{
2386 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2387 /* only struct inode is valid if it's an inline symlink */
2388 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2389 }
2390 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2391}
2392
51cc5068 2393static void init_once(void *foo)
1da177e4
LT
2394{
2395 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2396
a35afb83 2397 inode_init_once(&p->vfs_inode);
1da177e4
LT
2398}
2399
2400static int init_inodecache(void)
2401{
2402 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2403 sizeof(struct shmem_inode_info),
040b5c6f 2404 0, SLAB_PANIC, init_once);
1da177e4
LT
2405 return 0;
2406}
2407
2408static void destroy_inodecache(void)
2409{
1a1d92c1 2410 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2411}
2412
f5e54d6e 2413static const struct address_space_operations shmem_aops = {
1da177e4 2414 .writepage = shmem_writepage,
76719325 2415 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2416#ifdef CONFIG_TMPFS
ae976416 2417 .readpage = shmem_readpage,
800d15a5
NP
2418 .write_begin = shmem_write_begin,
2419 .write_end = shmem_write_end,
1da177e4 2420#endif
304dbdb7 2421 .migratepage = migrate_page,
aa261f54 2422 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2423};
2424
15ad7cdc 2425static const struct file_operations shmem_file_operations = {
1da177e4
LT
2426 .mmap = shmem_mmap,
2427#ifdef CONFIG_TMPFS
2428 .llseek = generic_file_llseek,
bcd78e49 2429 .read = do_sync_read,
5402b976 2430 .write = do_sync_write,
bcd78e49 2431 .aio_read = shmem_file_aio_read,
5402b976 2432 .aio_write = generic_file_aio_write,
1b061d92 2433 .fsync = noop_fsync,
ae976416
HD
2434 .splice_read = generic_file_splice_read,
2435 .splice_write = generic_file_splice_write,
1da177e4
LT
2436#endif
2437};
2438
92e1d5be 2439static const struct inode_operations shmem_inode_operations = {
1da177e4 2440 .setattr = shmem_notify_change,
f6b3ec23 2441 .truncate_range = shmem_truncate_range,
39f0247d
AG
2442#ifdef CONFIG_TMPFS_POSIX_ACL
2443 .setxattr = generic_setxattr,
2444 .getxattr = generic_getxattr,
2445 .listxattr = generic_listxattr,
2446 .removexattr = generic_removexattr,
1c7c474c 2447 .check_acl = generic_check_acl,
39f0247d
AG
2448#endif
2449
1da177e4
LT
2450};
2451
92e1d5be 2452static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2453#ifdef CONFIG_TMPFS
2454 .create = shmem_create,
2455 .lookup = simple_lookup,
2456 .link = shmem_link,
2457 .unlink = shmem_unlink,
2458 .symlink = shmem_symlink,
2459 .mkdir = shmem_mkdir,
2460 .rmdir = shmem_rmdir,
2461 .mknod = shmem_mknod,
2462 .rename = shmem_rename,
1da177e4 2463#endif
39f0247d
AG
2464#ifdef CONFIG_TMPFS_POSIX_ACL
2465 .setattr = shmem_notify_change,
2466 .setxattr = generic_setxattr,
2467 .getxattr = generic_getxattr,
2468 .listxattr = generic_listxattr,
2469 .removexattr = generic_removexattr,
1c7c474c 2470 .check_acl = generic_check_acl,
39f0247d
AG
2471#endif
2472};
2473
92e1d5be 2474static const struct inode_operations shmem_special_inode_operations = {
39f0247d
AG
2475#ifdef CONFIG_TMPFS_POSIX_ACL
2476 .setattr = shmem_notify_change,
2477 .setxattr = generic_setxattr,
2478 .getxattr = generic_getxattr,
2479 .listxattr = generic_listxattr,
2480 .removexattr = generic_removexattr,
1c7c474c 2481 .check_acl = generic_check_acl,
39f0247d 2482#endif
1da177e4
LT
2483};
2484
759b9775 2485static const struct super_operations shmem_ops = {
1da177e4
LT
2486 .alloc_inode = shmem_alloc_inode,
2487 .destroy_inode = shmem_destroy_inode,
2488#ifdef CONFIG_TMPFS
2489 .statfs = shmem_statfs,
2490 .remount_fs = shmem_remount_fs,
680d794b 2491 .show_options = shmem_show_options,
1da177e4
LT
2492#endif
2493 .delete_inode = shmem_delete_inode,
2494 .drop_inode = generic_delete_inode,
2495 .put_super = shmem_put_super,
2496};
2497
f0f37e2f 2498static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2499 .fault = shmem_fault,
1da177e4
LT
2500#ifdef CONFIG_NUMA
2501 .set_policy = shmem_set_policy,
2502 .get_policy = shmem_get_policy,
2503#endif
2504};
2505
2506
454e2398
DH
2507static int shmem_get_sb(struct file_system_type *fs_type,
2508 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
1da177e4 2509{
454e2398 2510 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
1da177e4
LT
2511}
2512
2513static struct file_system_type tmpfs_fs_type = {
2514 .owner = THIS_MODULE,
2515 .name = "tmpfs",
2516 .get_sb = shmem_get_sb,
2517 .kill_sb = kill_litter_super,
2518};
1da177e4 2519
2b2af54a 2520int __init init_tmpfs(void)
1da177e4
LT
2521{
2522 int error;
2523
e0bf68dd
PZ
2524 error = bdi_init(&shmem_backing_dev_info);
2525 if (error)
2526 goto out4;
2527
1da177e4
LT
2528 error = init_inodecache();
2529 if (error)
2530 goto out3;
2531
2532 error = register_filesystem(&tmpfs_fs_type);
2533 if (error) {
2534 printk(KERN_ERR "Could not register tmpfs\n");
2535 goto out2;
2536 }
95dc112a 2537
1f5ce9e9 2538 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
1da177e4
LT
2539 tmpfs_fs_type.name, NULL);
2540 if (IS_ERR(shm_mnt)) {
2541 error = PTR_ERR(shm_mnt);
2542 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2543 goto out1;
2544 }
2545 return 0;
2546
2547out1:
2548 unregister_filesystem(&tmpfs_fs_type);
2549out2:
2550 destroy_inodecache();
2551out3:
e0bf68dd
PZ
2552 bdi_destroy(&shmem_backing_dev_info);
2553out4:
1da177e4
LT
2554 shm_mnt = ERR_PTR(error);
2555 return error;
2556}
853ac43a 2557
87946a72
DN
2558#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2559/**
2560 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2561 * @inode: the inode to be searched
2562 * @pgoff: the offset to be searched
2563 * @pagep: the pointer for the found page to be stored
2564 * @ent: the pointer for the found swap entry to be stored
2565 *
2566 * If a page is found, refcount of it is incremented. Callers should handle
2567 * these refcount.
2568 */
2569void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2570 struct page **pagep, swp_entry_t *ent)
2571{
2572 swp_entry_t entry = { .val = 0 }, *ptr;
2573 struct page *page = NULL;
2574 struct shmem_inode_info *info = SHMEM_I(inode);
2575
2576 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2577 goto out;
2578
2579 spin_lock(&info->lock);
2580 ptr = shmem_swp_entry(info, pgoff, NULL);
2581#ifdef CONFIG_SWAP
2582 if (ptr && ptr->val) {
2583 entry.val = ptr->val;
2584 page = find_get_page(&swapper_space, entry.val);
2585 } else
2586#endif
2587 page = find_get_page(inode->i_mapping, pgoff);
2588 if (ptr)
2589 shmem_swp_unmap(ptr);
2590 spin_unlock(&info->lock);
2591out:
2592 *pagep = page;
2593 *ent = entry;
2594}
2595#endif
2596
853ac43a
MM
2597#else /* !CONFIG_SHMEM */
2598
2599/*
2600 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2601 *
2602 * This is intended for small system where the benefits of the full
2603 * shmem code (swap-backed and resource-limited) are outweighed by
2604 * their complexity. On systems without swap this code should be
2605 * effectively equivalent, but much lighter weight.
2606 */
2607
2608#include <linux/ramfs.h>
2609
2610static struct file_system_type tmpfs_fs_type = {
2611 .name = "tmpfs",
2612 .get_sb = ramfs_get_sb,
2613 .kill_sb = kill_litter_super,
2614};
2615
2b2af54a 2616int __init init_tmpfs(void)
853ac43a
MM
2617{
2618 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2619
2620 shm_mnt = kern_mount(&tmpfs_fs_type);
2621 BUG_ON(IS_ERR(shm_mnt));
2622
2623 return 0;
2624}
2625
2626int shmem_unuse(swp_entry_t entry, struct page *page)
2627{
2628 return 0;
2629}
2630
3f96b79a
HD
2631int shmem_lock(struct file *file, int lock, struct user_struct *user)
2632{
2633 return 0;
2634}
2635
87946a72
DN
2636#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2637/**
2638 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2639 * @inode: the inode to be searched
2640 * @pgoff: the offset to be searched
2641 * @pagep: the pointer for the found page to be stored
2642 * @ent: the pointer for the found swap entry to be stored
2643 *
2644 * If a page is found, refcount of it is incremented. Callers should handle
2645 * these refcount.
2646 */
2647void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2648 struct page **pagep, swp_entry_t *ent)
2649{
2650 struct page *page = NULL;
2651
2652 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2653 goto out;
2654 page = find_get_page(inode->i_mapping, pgoff);
2655out:
2656 *pagep = page;
2657 *ent = (swp_entry_t){ .val = 0 };
2658}
2659#endif
2660
0b0a0806
HD
2661#define shmem_vm_ops generic_file_vm_ops
2662#define shmem_file_operations ramfs_file_operations
454abafe 2663#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2664#define shmem_acct_size(flags, size) 0
2665#define shmem_unacct_size(flags, size) do {} while (0)
caefba17 2666#define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
853ac43a
MM
2667
2668#endif /* CONFIG_SHMEM */
2669
2670/* common code */
1da177e4 2671
46711810 2672/**
1da177e4 2673 * shmem_file_setup - get an unlinked file living in tmpfs
1da177e4
LT
2674 * @name: name for dentry (to be seen in /proc/<pid>/maps
2675 * @size: size to be set for the file
0b0a0806 2676 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
1da177e4 2677 */
168f5ac6 2678struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
1da177e4
LT
2679{
2680 int error;
2681 struct file *file;
2682 struct inode *inode;
2c48b9c4
AV
2683 struct path path;
2684 struct dentry *root;
1da177e4
LT
2685 struct qstr this;
2686
2687 if (IS_ERR(shm_mnt))
2688 return (void *)shm_mnt;
2689
2690 if (size < 0 || size > SHMEM_MAX_BYTES)
2691 return ERR_PTR(-EINVAL);
2692
2693 if (shmem_acct_size(flags, size))
2694 return ERR_PTR(-ENOMEM);
2695
2696 error = -ENOMEM;
2697 this.name = name;
2698 this.len = strlen(name);
2699 this.hash = 0; /* will go */
2700 root = shm_mnt->mnt_root;
2c48b9c4
AV
2701 path.dentry = d_alloc(root, &this);
2702 if (!path.dentry)
1da177e4 2703 goto put_memory;
2c48b9c4 2704 path.mnt = mntget(shm_mnt);
1da177e4 2705
1da177e4 2706 error = -ENOSPC;
454abafe 2707 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2708 if (!inode)
4b42af81 2709 goto put_dentry;
1da177e4 2710
2c48b9c4 2711 d_instantiate(path.dentry, inode);
1da177e4
LT
2712 inode->i_size = size;
2713 inode->i_nlink = 0; /* It is unlinked */
853ac43a
MM
2714#ifndef CONFIG_MMU
2715 error = ramfs_nommu_expand_for_mapping(inode, size);
2716 if (error)
4b42af81 2717 goto put_dentry;
853ac43a 2718#endif
4b42af81
AV
2719
2720 error = -ENFILE;
2c48b9c4 2721 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81
AV
2722 &shmem_file_operations);
2723 if (!file)
2724 goto put_dentry;
2725
1da177e4
LT
2726 return file;
2727
1da177e4 2728put_dentry:
2c48b9c4 2729 path_put(&path);
1da177e4
LT
2730put_memory:
2731 shmem_unacct_size(flags, size);
2732 return ERR_PTR(error);
2733}
395e0ddc 2734EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 2735
46711810 2736/**
1da177e4 2737 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
2738 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2739 */
2740int shmem_zero_setup(struct vm_area_struct *vma)
2741{
2742 struct file *file;
2743 loff_t size = vma->vm_end - vma->vm_start;
2744
2745 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2746 if (IS_ERR(file))
2747 return PTR_ERR(file);
2748
2749 if (vma->vm_file)
2750 fput(vma->vm_file);
2751 vma->vm_file = file;
2752 vma->vm_ops = &shmem_vm_ops;
2753 return 0;
2754}