]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/readahead.c
readahead: enforce full readahead size on async mmap readahead
[net-next-2.6.git] / mm / readahead.c
CommitLineData
1da177e4
LT
1/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
e1f8e874 6 * 09Apr2002 Andrew Morton
1da177e4
LT
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/blkdev.h>
15#include <linux/backing-dev.h>
8bde37f0 16#include <linux/task_io_accounting_ops.h>
1da177e4 17#include <linux/pagevec.h>
f5ff8422 18#include <linux/pagemap.h>
1da177e4 19
1da177e4
LT
20/*
21 * Initialise a struct file's readahead state. Assumes that the caller has
22 * memset *ra to zero.
23 */
24void
25file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
26{
27 ra->ra_pages = mapping->backing_dev_info->ra_pages;
f4e6b498 28 ra->prev_pos = -1;
1da177e4 29}
d41cc702 30EXPORT_SYMBOL_GPL(file_ra_state_init);
1da177e4 31
1da177e4
LT
32#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
33
03fb3d2a
DH
34/*
35 * see if a page needs releasing upon read_cache_pages() failure
266cf658
DH
36 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
37 * before calling, such as the NFS fs marking pages that are cached locally
38 * on disk, thus we need to give the fs a chance to clean up in the event of
39 * an error
03fb3d2a
DH
40 */
41static void read_cache_pages_invalidate_page(struct address_space *mapping,
42 struct page *page)
43{
266cf658 44 if (page_has_private(page)) {
03fb3d2a
DH
45 if (!trylock_page(page))
46 BUG();
47 page->mapping = mapping;
48 do_invalidatepage(page, 0);
49 page->mapping = NULL;
50 unlock_page(page);
51 }
52 page_cache_release(page);
53}
54
55/*
56 * release a list of pages, invalidating them first if need be
57 */
58static void read_cache_pages_invalidate_pages(struct address_space *mapping,
59 struct list_head *pages)
60{
61 struct page *victim;
62
63 while (!list_empty(pages)) {
64 victim = list_to_page(pages);
65 list_del(&victim->lru);
66 read_cache_pages_invalidate_page(mapping, victim);
67 }
68}
69
1da177e4 70/**
bd40cdda 71 * read_cache_pages - populate an address space with some pages & start reads against them
1da177e4
LT
72 * @mapping: the address_space
73 * @pages: The address of a list_head which contains the target pages. These
74 * pages have their ->index populated and are otherwise uninitialised.
75 * @filler: callback routine for filling a single page.
76 * @data: private data for the callback routine.
77 *
78 * Hides the details of the LRU cache etc from the filesystems.
79 */
80int read_cache_pages(struct address_space *mapping, struct list_head *pages,
81 int (*filler)(void *, struct page *), void *data)
82{
83 struct page *page;
1da177e4
LT
84 int ret = 0;
85
1da177e4
LT
86 while (!list_empty(pages)) {
87 page = list_to_page(pages);
88 list_del(&page->lru);
eb2be189
NP
89 if (add_to_page_cache_lru(page, mapping,
90 page->index, GFP_KERNEL)) {
03fb3d2a 91 read_cache_pages_invalidate_page(mapping, page);
1da177e4
LT
92 continue;
93 }
eb2be189
NP
94 page_cache_release(page);
95
1da177e4 96 ret = filler(data, page);
eb2be189 97 if (unlikely(ret)) {
03fb3d2a 98 read_cache_pages_invalidate_pages(mapping, pages);
1da177e4
LT
99 break;
100 }
8bde37f0 101 task_io_account_read(PAGE_CACHE_SIZE);
1da177e4 102 }
1da177e4
LT
103 return ret;
104}
105
106EXPORT_SYMBOL(read_cache_pages);
107
108static int read_pages(struct address_space *mapping, struct file *filp,
109 struct list_head *pages, unsigned nr_pages)
110{
111 unsigned page_idx;
994fc28c 112 int ret;
1da177e4
LT
113
114 if (mapping->a_ops->readpages) {
115 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
029e332e
OH
116 /* Clean up the remaining pages */
117 put_pages_list(pages);
1da177e4
LT
118 goto out;
119 }
120
1da177e4
LT
121 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
122 struct page *page = list_to_page(pages);
123 list_del(&page->lru);
eb2be189 124 if (!add_to_page_cache_lru(page, mapping,
1da177e4 125 page->index, GFP_KERNEL)) {
9f1a3cfc 126 mapping->a_ops->readpage(filp, page);
eb2be189
NP
127 }
128 page_cache_release(page);
1da177e4 129 }
994fc28c 130 ret = 0;
1da177e4
LT
131out:
132 return ret;
133}
134
1da177e4
LT
135/*
136 * do_page_cache_readahead actually reads a chunk of disk. It allocates all
137 * the pages first, then submits them all for I/O. This avoids the very bad
138 * behaviour which would occur if page allocations are causing VM writeback.
139 * We really don't want to intermingle reads and writes like that.
140 *
141 * Returns the number of pages requested, or the maximum amount of I/O allowed.
142 *
143 * do_page_cache_readahead() returns -1 if it encountered request queue
144 * congestion.
145 */
146static int
147__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
46fc3e7b
FW
148 pgoff_t offset, unsigned long nr_to_read,
149 unsigned long lookahead_size)
1da177e4
LT
150{
151 struct inode *inode = mapping->host;
152 struct page *page;
153 unsigned long end_index; /* The last page we want to read */
154 LIST_HEAD(page_pool);
155 int page_idx;
156 int ret = 0;
157 loff_t isize = i_size_read(inode);
158
159 if (isize == 0)
160 goto out;
161
46fc3e7b 162 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
1da177e4
LT
163
164 /*
165 * Preallocate as many pages as we will need.
166 */
1da177e4 167 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
7361f4d8 168 pgoff_t page_offset = offset + page_idx;
c743d96b 169
1da177e4
LT
170 if (page_offset > end_index)
171 break;
172
00128188 173 rcu_read_lock();
1da177e4 174 page = radix_tree_lookup(&mapping->page_tree, page_offset);
00128188 175 rcu_read_unlock();
1da177e4
LT
176 if (page)
177 continue;
178
1da177e4 179 page = page_cache_alloc_cold(mapping);
1da177e4
LT
180 if (!page)
181 break;
182 page->index = page_offset;
183 list_add(&page->lru, &page_pool);
46fc3e7b
FW
184 if (page_idx == nr_to_read - lookahead_size)
185 SetPageReadahead(page);
1da177e4
LT
186 ret++;
187 }
1da177e4
LT
188
189 /*
190 * Now start the IO. We ignore I/O errors - if the page is not
191 * uptodate then the caller will launch readpage again, and
192 * will then handle the error.
193 */
194 if (ret)
195 read_pages(mapping, filp, &page_pool, ret);
196 BUG_ON(!list_empty(&page_pool));
197out:
198 return ret;
199}
200
201/*
202 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
203 * memory at once.
204 */
205int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 206 pgoff_t offset, unsigned long nr_to_read)
1da177e4
LT
207{
208 int ret = 0;
209
210 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
211 return -EINVAL;
212
f7e839dd 213 nr_to_read = max_sane_readahead(nr_to_read);
1da177e4
LT
214 while (nr_to_read) {
215 int err;
216
217 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
218
219 if (this_chunk > nr_to_read)
220 this_chunk = nr_to_read;
221 err = __do_page_cache_readahead(mapping, filp,
46fc3e7b 222 offset, this_chunk, 0);
1da177e4
LT
223 if (err < 0) {
224 ret = err;
225 break;
226 }
227 ret += err;
228 offset += this_chunk;
229 nr_to_read -= this_chunk;
230 }
231 return ret;
232}
233
1da177e4
LT
234/*
235 * This version skips the IO if the queue is read-congested, and will tell the
236 * block layer to abandon the readahead if request allocation would block.
237 *
238 * force_page_cache_readahead() will ignore queue congestion and will block on
239 * request queues.
240 */
241int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 242 pgoff_t offset, unsigned long nr_to_read)
1da177e4
LT
243{
244 if (bdi_read_congested(mapping->backing_dev_info))
245 return -1;
246
46fc3e7b 247 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
1da177e4
LT
248}
249
1da177e4
LT
250/*
251 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
252 * sensible upper limit.
253 */
254unsigned long max_sane_readahead(unsigned long nr)
255{
4f98a2fe 256 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
05a0416b 257 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
1da177e4 258}
5ce1110b
FW
259
260/*
261 * Submit IO for the read-ahead request in file_ra_state.
262 */
f9acc8c7 263static unsigned long ra_submit(struct file_ra_state *ra,
5ce1110b
FW
264 struct address_space *mapping, struct file *filp)
265{
5ce1110b
FW
266 int actual;
267
5ce1110b 268 actual = __do_page_cache_readahead(mapping, filp,
f9acc8c7 269 ra->start, ra->size, ra->async_size);
5ce1110b
FW
270
271 return actual;
272}
122a21d1 273
c743d96b
FW
274/*
275 * Set the initial window size, round to next power of 2 and square
276 * for small size, x 4 for medium, and x 2 for large
277 * for 128k (32 page) max ra
278 * 1-8 page = 32k initial, > 8 page = 128k initial
279 */
280static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
281{
282 unsigned long newsize = roundup_pow_of_two(size);
283
284 if (newsize <= max / 32)
285 newsize = newsize * 4;
286 else if (newsize <= max / 4)
287 newsize = newsize * 2;
288 else
289 newsize = max;
290
291 return newsize;
292}
293
122a21d1
FW
294/*
295 * Get the previous window size, ramp it up, and
296 * return it as the new window size.
297 */
c743d96b 298static unsigned long get_next_ra_size(struct file_ra_state *ra,
122a21d1
FW
299 unsigned long max)
300{
f9acc8c7 301 unsigned long cur = ra->size;
122a21d1
FW
302 unsigned long newsize;
303
304 if (cur < max / 16)
c743d96b 305 newsize = 4 * cur;
122a21d1 306 else
c743d96b 307 newsize = 2 * cur;
122a21d1
FW
308
309 return min(newsize, max);
310}
311
312/*
313 * On-demand readahead design.
314 *
315 * The fields in struct file_ra_state represent the most-recently-executed
316 * readahead attempt:
317 *
f9acc8c7
FW
318 * |<----- async_size ---------|
319 * |------------------- size -------------------->|
320 * |==================#===========================|
321 * ^start ^page marked with PG_readahead
122a21d1
FW
322 *
323 * To overlap application thinking time and disk I/O time, we do
324 * `readahead pipelining': Do not wait until the application consumed all
325 * readahead pages and stalled on the missing page at readahead_index;
f9acc8c7
FW
326 * Instead, submit an asynchronous readahead I/O as soon as there are
327 * only async_size pages left in the readahead window. Normally async_size
328 * will be equal to size, for maximum pipelining.
122a21d1
FW
329 *
330 * In interleaved sequential reads, concurrent streams on the same fd can
331 * be invalidating each other's readahead state. So we flag the new readahead
f9acc8c7 332 * page at (start+size-async_size) with PG_readahead, and use it as readahead
122a21d1
FW
333 * indicator. The flag won't be set on already cached pages, to avoid the
334 * readahead-for-nothing fuss, saving pointless page cache lookups.
335 *
f4e6b498 336 * prev_pos tracks the last visited byte in the _previous_ read request.
122a21d1
FW
337 * It should be maintained by the caller, and will be used for detecting
338 * small random reads. Note that the readahead algorithm checks loosely
339 * for sequential patterns. Hence interleaved reads might be served as
340 * sequential ones.
341 *
342 * There is a special-case: if the first page which the application tries to
343 * read happens to be the first page of the file, it is assumed that a linear
344 * read is about to happen and the window is immediately set to the initial size
345 * based on I/O request size and the max_readahead.
346 *
347 * The code ramps up the readahead size aggressively at first, but slow down as
348 * it approaches max_readhead.
349 */
350
351/*
352 * A minimal readahead algorithm for trivial sequential/random reads.
353 */
354static unsigned long
355ondemand_readahead(struct address_space *mapping,
356 struct file_ra_state *ra, struct file *filp,
cf914a7d 357 bool hit_readahead_marker, pgoff_t offset,
122a21d1
FW
358 unsigned long req_size)
359{
fc31d16a 360 unsigned long max = max_sane_readahead(ra->ra_pages);
f4e6b498
FW
361 pgoff_t prev_offset;
362 int sequential;
122a21d1
FW
363
364 /*
f9acc8c7 365 * It's the expected callback offset, assume sequential access.
122a21d1
FW
366 * Ramp up sizes, and push forward the readahead window.
367 */
f9acc8c7
FW
368 if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
369 offset == (ra->start + ra->size))) {
370 ra->start += ra->size;
371 ra->size = get_next_ra_size(ra, max);
372 ra->async_size = ra->size;
373 goto readit;
122a21d1
FW
374 }
375
f4e6b498
FW
376 prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
377 sequential = offset - prev_offset <= 1UL || req_size > max;
378
122a21d1
FW
379 /*
380 * Standalone, small read.
381 * Read as is, and do not pollute the readahead state.
382 */
cf914a7d 383 if (!hit_readahead_marker && !sequential) {
122a21d1
FW
384 return __do_page_cache_readahead(mapping, filp,
385 offset, req_size, 0);
386 }
387
6b10c6c9
FW
388 /*
389 * Hit a marked page without valid readahead state.
390 * E.g. interleaved reads.
391 * Query the pagecache for async_size, which normally equals to
392 * readahead size. Ramp it up and use it as the new readahead size.
393 */
394 if (hit_readahead_marker) {
395 pgoff_t start;
396
30002ed2 397 rcu_read_lock();
caca7cb7 398 start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
30002ed2 399 rcu_read_unlock();
6b10c6c9
FW
400
401 if (!start || start - offset > max)
402 return 0;
403
404 ra->start = start;
405 ra->size = start - offset; /* old async_size */
160334a0 406 ra->size += req_size;
6b10c6c9
FW
407 ra->size = get_next_ra_size(ra, max);
408 ra->async_size = ra->size;
409 goto readit;
410 }
411
122a21d1
FW
412 /*
413 * It may be one of
414 * - first read on start of file
415 * - sequential cache miss
416 * - oversize random read
417 * Start readahead for it.
418 */
f9acc8c7
FW
419 ra->start = offset;
420 ra->size = get_init_ra_size(req_size, max);
421 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
122a21d1 422
f9acc8c7 423readit:
51daa88e
WF
424 /*
425 * Will this read hit the readahead marker made by itself?
426 * If so, trigger the readahead marker hit now, and merge
427 * the resulted next readahead window into the current one.
428 */
429 if (offset == ra->start && ra->size == ra->async_size) {
430 ra->async_size = get_next_ra_size(ra, max);
431 ra->size += ra->async_size;
432 }
433
122a21d1
FW
434 return ra_submit(ra, mapping, filp);
435}
436
437/**
cf914a7d 438 * page_cache_sync_readahead - generic file readahead
122a21d1
FW
439 * @mapping: address_space which holds the pagecache and I/O vectors
440 * @ra: file_ra_state which holds the readahead state
441 * @filp: passed on to ->readpage() and ->readpages()
cf914a7d 442 * @offset: start offset into @mapping, in pagecache page-sized units
122a21d1 443 * @req_size: hint: total size of the read which the caller is performing in
cf914a7d 444 * pagecache pages
122a21d1 445 *
cf914a7d
RR
446 * page_cache_sync_readahead() should be called when a cache miss happened:
447 * it will submit the read. The readahead logic may decide to piggyback more
448 * pages onto the read request if access patterns suggest it will improve
449 * performance.
122a21d1 450 */
cf914a7d
RR
451void page_cache_sync_readahead(struct address_space *mapping,
452 struct file_ra_state *ra, struct file *filp,
453 pgoff_t offset, unsigned long req_size)
122a21d1
FW
454{
455 /* no read-ahead */
456 if (!ra->ra_pages)
cf914a7d
RR
457 return;
458
459 /* do read-ahead */
460 ondemand_readahead(mapping, ra, filp, false, offset, req_size);
461}
462EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
463
464/**
465 * page_cache_async_readahead - file readahead for marked pages
466 * @mapping: address_space which holds the pagecache and I/O vectors
467 * @ra: file_ra_state which holds the readahead state
468 * @filp: passed on to ->readpage() and ->readpages()
469 * @page: the page at @offset which has the PG_readahead flag set
470 * @offset: start offset into @mapping, in pagecache page-sized units
471 * @req_size: hint: total size of the read which the caller is performing in
472 * pagecache pages
473 *
474 * page_cache_async_ondemand() should be called when a page is used which
f7850d93 475 * has the PG_readahead flag; this is a marker to suggest that the application
cf914a7d 476 * has used up enough of the readahead window that we should start pulling in
f7850d93
RD
477 * more pages.
478 */
cf914a7d
RR
479void
480page_cache_async_readahead(struct address_space *mapping,
481 struct file_ra_state *ra, struct file *filp,
482 struct page *page, pgoff_t offset,
483 unsigned long req_size)
484{
485 /* no read-ahead */
486 if (!ra->ra_pages)
487 return;
488
489 /*
490 * Same bit is used for PG_readahead and PG_reclaim.
491 */
492 if (PageWriteback(page))
493 return;
494
495 ClearPageReadahead(page);
496
497 /*
498 * Defer asynchronous read-ahead on IO congestion.
499 */
500 if (bdi_read_congested(mapping->backing_dev_info))
501 return;
122a21d1
FW
502
503 /* do read-ahead */
cf914a7d 504 ondemand_readahead(mapping, ra, filp, true, offset, req_size);
122a21d1 505}
cf914a7d 506EXPORT_SYMBOL_GPL(page_cache_async_readahead);