]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page-writeback.c
mm: fix fatal kernel-doc error
[net-next-2.6.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
1da177e4
LT
39/*
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
42 */
43static long ratelimit_pages = 32;
44
1da177e4
LT
45/*
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
3a2e9a5a 48 * It should be somewhat larger than dirtied pages to ensure that reasonably
1da177e4
LT
49 * large amounts of I/O are submitted.
50 */
3a2e9a5a 51static inline long sync_writeback_pages(unsigned long dirtied)
1da177e4 52{
3a2e9a5a
WF
53 if (dirtied < ratelimit_pages)
54 dirtied = ratelimit_pages;
55
56 return dirtied + dirtied / 2;
1da177e4
LT
57}
58
59/* The following parameters are exported via /proc/sys/vm */
60
61/*
5b0830cb 62 * Start background writeback (via writeback threads) at this percentage
1da177e4 63 */
1b5e62b4 64int dirty_background_ratio = 10;
1da177e4 65
2da02997
DR
66/*
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
69 */
70unsigned long dirty_background_bytes;
71
195cf453
BG
72/*
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
75 */
76int vm_highmem_is_dirtyable;
77
1da177e4
LT
78/*
79 * The generator of dirty data starts writeback at this percentage
80 */
1b5e62b4 81int vm_dirty_ratio = 20;
1da177e4 82
2da02997
DR
83/*
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
86 */
87unsigned long vm_dirty_bytes;
88
1da177e4 89/*
704503d8 90 * The interval between `kupdate'-style writebacks
1da177e4 91 */
22ef37ee 92unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
93
94/*
704503d8 95 * The longest time for which data is allowed to remain dirty
1da177e4 96 */
22ef37ee 97unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
98
99/*
100 * Flag that makes the machine dump writes/reads and block dirtyings.
101 */
102int block_dump;
103
104/*
ed5b43f1
BS
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
107 */
108int laptop_mode;
109
110EXPORT_SYMBOL(laptop_mode);
111
112/* End of sysctl-exported parameters */
113
114
04fbfdc1
PZ
115/*
116 * Scale the writeback cache size proportional to the relative writeout speeds.
117 *
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
121 * share.
122 *
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
125 *
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
129 *
130 */
131static struct prop_descriptor vm_completions;
3e26c149 132static struct prop_descriptor vm_dirties;
04fbfdc1 133
04fbfdc1
PZ
134/*
135 * couple the period to the dirty_ratio:
136 *
137 * period/2 ~ roundup_pow_of_two(dirty limit)
138 */
139static int calc_period_shift(void)
140{
141 unsigned long dirty_total;
142
2da02997
DR
143 if (vm_dirty_bytes)
144 dirty_total = vm_dirty_bytes / PAGE_SIZE;
145 else
146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147 100;
04fbfdc1
PZ
148 return 2 + ilog2(dirty_total - 1);
149}
150
151/*
2da02997 152 * update the period when the dirty threshold changes.
04fbfdc1 153 */
2da02997
DR
154static void update_completion_period(void)
155{
156 int shift = calc_period_shift();
157 prop_change_shift(&vm_completions, shift);
158 prop_change_shift(&vm_dirties, shift);
159}
160
161int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 162 void __user *buffer, size_t *lenp,
2da02997
DR
163 loff_t *ppos)
164{
165 int ret;
166
8d65af78 167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
168 if (ret == 0 && write)
169 dirty_background_bytes = 0;
170 return ret;
171}
172
173int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 174 void __user *buffer, size_t *lenp,
2da02997
DR
175 loff_t *ppos)
176{
177 int ret;
178
8d65af78 179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
180 if (ret == 0 && write)
181 dirty_background_ratio = 0;
182 return ret;
183}
184
04fbfdc1 185int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 186 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
187 loff_t *ppos)
188{
189 int old_ratio = vm_dirty_ratio;
2da02997
DR
190 int ret;
191
8d65af78 192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
194 update_completion_period();
195 vm_dirty_bytes = 0;
196 }
197 return ret;
198}
199
200
201int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 202 void __user *buffer, size_t *lenp,
2da02997
DR
203 loff_t *ppos)
204{
fc3501d4 205 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
206 int ret;
207
8d65af78 208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210 update_completion_period();
211 vm_dirty_ratio = 0;
04fbfdc1
PZ
212 }
213 return ret;
214}
215
216/*
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
219 */
220static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221{
a42dde04
PZ
222 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 bdi->max_prop_frac);
04fbfdc1
PZ
224}
225
dd5656e5
MS
226void bdi_writeout_inc(struct backing_dev_info *bdi)
227{
228 unsigned long flags;
229
230 local_irq_save(flags);
231 __bdi_writeout_inc(bdi);
232 local_irq_restore(flags);
233}
234EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
1cf6e7d8 236void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
237{
238 prop_inc_single(&vm_dirties, &tsk->dirties);
239}
240
04fbfdc1
PZ
241/*
242 * Obtain an accurate fraction of the BDI's portion.
243 */
244static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245 long *numerator, long *denominator)
246{
247 if (bdi_cap_writeback_dirty(bdi)) {
248 prop_fraction_percpu(&vm_completions, &bdi->completions,
249 numerator, denominator);
250 } else {
251 *numerator = 0;
252 *denominator = 1;
253 }
254}
255
256/*
257 * Clip the earned share of dirty pages to that which is actually available.
258 * This avoids exceeding the total dirty_limit when the floating averages
259 * fluctuate too quickly.
260 */
dcf975d5
HS
261static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
262 unsigned long dirty, unsigned long *pbdi_dirty)
04fbfdc1 263{
dcf975d5 264 unsigned long avail_dirty;
04fbfdc1 265
dcf975d5 266 avail_dirty = global_page_state(NR_FILE_DIRTY) +
04fbfdc1 267 global_page_state(NR_WRITEBACK) +
fc3ba692 268 global_page_state(NR_UNSTABLE_NFS) +
dcf975d5 269 global_page_state(NR_WRITEBACK_TEMP);
04fbfdc1 270
dcf975d5
HS
271 if (avail_dirty < dirty)
272 avail_dirty = dirty - avail_dirty;
273 else
04fbfdc1
PZ
274 avail_dirty = 0;
275
276 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
277 bdi_stat(bdi, BDI_WRITEBACK);
278
279 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
280}
281
3e26c149
PZ
282static inline void task_dirties_fraction(struct task_struct *tsk,
283 long *numerator, long *denominator)
284{
285 prop_fraction_single(&vm_dirties, &tsk->dirties,
286 numerator, denominator);
287}
288
289/*
290 * scale the dirty limit
291 *
292 * task specific dirty limit:
293 *
294 * dirty -= (dirty/8) * p_{t}
295 */
dcf975d5 296static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
3e26c149
PZ
297{
298 long numerator, denominator;
dcf975d5 299 unsigned long dirty = *pdirty;
3e26c149
PZ
300 u64 inv = dirty >> 3;
301
302 task_dirties_fraction(tsk, &numerator, &denominator);
303 inv *= numerator;
304 do_div(inv, denominator);
305
306 dirty -= inv;
307 if (dirty < *pdirty/2)
308 dirty = *pdirty/2;
309
310 *pdirty = dirty;
311}
312
189d3c4a
PZ
313/*
314 *
315 */
189d3c4a
PZ
316static unsigned int bdi_min_ratio;
317
318int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
319{
320 int ret = 0;
189d3c4a 321
cfc4ba53 322 spin_lock_bh(&bdi_lock);
a42dde04 323 if (min_ratio > bdi->max_ratio) {
189d3c4a 324 ret = -EINVAL;
a42dde04
PZ
325 } else {
326 min_ratio -= bdi->min_ratio;
327 if (bdi_min_ratio + min_ratio < 100) {
328 bdi_min_ratio += min_ratio;
329 bdi->min_ratio += min_ratio;
330 } else {
331 ret = -EINVAL;
332 }
333 }
cfc4ba53 334 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
335
336 return ret;
337}
338
339int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
340{
a42dde04
PZ
341 int ret = 0;
342
343 if (max_ratio > 100)
344 return -EINVAL;
345
cfc4ba53 346 spin_lock_bh(&bdi_lock);
a42dde04
PZ
347 if (bdi->min_ratio > max_ratio) {
348 ret = -EINVAL;
349 } else {
350 bdi->max_ratio = max_ratio;
351 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
352 }
cfc4ba53 353 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
354
355 return ret;
356}
a42dde04 357EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 358
1da177e4
LT
359/*
360 * Work out the current dirty-memory clamping and background writeout
361 * thresholds.
362 *
363 * The main aim here is to lower them aggressively if there is a lot of mapped
364 * memory around. To avoid stressing page reclaim with lots of unreclaimable
365 * pages. It is better to clamp down on writers than to start swapping, and
366 * performing lots of scanning.
367 *
368 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
369 *
370 * We don't permit the clamping level to fall below 5% - that is getting rather
371 * excessive.
372 *
373 * We make sure that the background writeout level is below the adjusted
374 * clamping level.
375 */
1b424464
CL
376
377static unsigned long highmem_dirtyable_memory(unsigned long total)
378{
379#ifdef CONFIG_HIGHMEM
380 int node;
381 unsigned long x = 0;
382
37b07e41 383 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
384 struct zone *z =
385 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
386
adea02a1
WF
387 x += zone_page_state(z, NR_FREE_PAGES) +
388 zone_reclaimable_pages(z);
1b424464
CL
389 }
390 /*
391 * Make sure that the number of highmem pages is never larger
392 * than the number of the total dirtyable memory. This can only
393 * occur in very strange VM situations but we want to make sure
394 * that this does not occur.
395 */
396 return min(x, total);
397#else
398 return 0;
399#endif
400}
401
3eefae99
SR
402/**
403 * determine_dirtyable_memory - amount of memory that may be used
404 *
405 * Returns the numebr of pages that can currently be freed and used
406 * by the kernel for direct mappings.
407 */
408unsigned long determine_dirtyable_memory(void)
1b424464
CL
409{
410 unsigned long x;
411
adea02a1 412 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
413
414 if (!vm_highmem_is_dirtyable)
415 x -= highmem_dirtyable_memory(x);
416
1b424464
CL
417 return x + 1; /* Ensure that we never return 0 */
418}
419
cf0ca9fe 420void
364aeb28
DR
421get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
422 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
1da177e4 423{
364aeb28
DR
424 unsigned long background;
425 unsigned long dirty;
1b424464 426 unsigned long available_memory = determine_dirtyable_memory();
1da177e4
LT
427 struct task_struct *tsk;
428
2da02997
DR
429 if (vm_dirty_bytes)
430 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
431 else {
432 int dirty_ratio;
433
434 dirty_ratio = vm_dirty_ratio;
435 if (dirty_ratio < 5)
436 dirty_ratio = 5;
437 dirty = (dirty_ratio * available_memory) / 100;
438 }
1da177e4 439
2da02997
DR
440 if (dirty_background_bytes)
441 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
442 else
443 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 444
2da02997
DR
445 if (background >= dirty)
446 background = dirty / 2;
1da177e4
LT
447 tsk = current;
448 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
449 background += background / 4;
450 dirty += dirty / 4;
451 }
452 *pbackground = background;
453 *pdirty = dirty;
04fbfdc1
PZ
454
455 if (bdi) {
189d3c4a 456 u64 bdi_dirty;
04fbfdc1
PZ
457 long numerator, denominator;
458
459 /*
460 * Calculate this BDI's share of the dirty ratio.
461 */
462 bdi_writeout_fraction(bdi, &numerator, &denominator);
463
189d3c4a 464 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
04fbfdc1
PZ
465 bdi_dirty *= numerator;
466 do_div(bdi_dirty, denominator);
189d3c4a 467 bdi_dirty += (dirty * bdi->min_ratio) / 100;
a42dde04
PZ
468 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
469 bdi_dirty = dirty * bdi->max_ratio / 100;
04fbfdc1
PZ
470
471 *pbdi_dirty = bdi_dirty;
472 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
3e26c149 473 task_dirty_limit(current, pbdi_dirty);
04fbfdc1 474 }
1da177e4
LT
475}
476
477/*
478 * balance_dirty_pages() must be called by processes which are generating dirty
479 * data. It looks at the number of dirty pages in the machine and will force
480 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
5b0830cb
JA
481 * If we're over `background_thresh' then the writeback threads are woken to
482 * perform some writeout.
1da177e4 483 */
3a2e9a5a
WF
484static void balance_dirty_pages(struct address_space *mapping,
485 unsigned long write_chunk)
1da177e4 486{
5fce25a9
PZ
487 long nr_reclaimable, bdi_nr_reclaimable;
488 long nr_writeback, bdi_nr_writeback;
364aeb28
DR
489 unsigned long background_thresh;
490 unsigned long dirty_thresh;
491 unsigned long bdi_thresh;
1da177e4 492 unsigned long pages_written = 0;
87c6a9b2 493 unsigned long pause = 1;
1da177e4
LT
494
495 struct backing_dev_info *bdi = mapping->backing_dev_info;
496
497 for (;;) {
498 struct writeback_control wbc = {
1da177e4
LT
499 .sync_mode = WB_SYNC_NONE,
500 .older_than_this = NULL,
501 .nr_to_write = write_chunk,
111ebb6e 502 .range_cyclic = 1,
1da177e4
LT
503 };
504
04fbfdc1
PZ
505 get_dirty_limits(&background_thresh, &dirty_thresh,
506 &bdi_thresh, bdi);
5fce25a9
PZ
507
508 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
509 global_page_state(NR_UNSTABLE_NFS);
510 nr_writeback = global_page_state(NR_WRITEBACK);
511
04fbfdc1
PZ
512 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
513 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
5fce25a9 514
04fbfdc1
PZ
515 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
516 break;
1da177e4 517
5fce25a9
PZ
518 /*
519 * Throttle it only when the background writeback cannot
520 * catch-up. This avoids (excessively) small writeouts
521 * when the bdi limits are ramping up.
522 */
523 if (nr_reclaimable + nr_writeback <
524 (background_thresh + dirty_thresh) / 2)
525 break;
526
04fbfdc1
PZ
527 if (!bdi->dirty_exceeded)
528 bdi->dirty_exceeded = 1;
1da177e4
LT
529
530 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
531 * Unstable writes are a feature of certain networked
532 * filesystems (i.e. NFS) in which data may have been
533 * written to the server's write cache, but has not yet
534 * been flushed to permanent storage.
d7831a0b
RK
535 * Only move pages to writeback if this bdi is over its
536 * threshold otherwise wait until the disk writes catch
537 * up.
1da177e4 538 */
028c2dd1 539 trace_wbc_balance_dirty_start(&wbc, bdi);
d7831a0b 540 if (bdi_nr_reclaimable > bdi_thresh) {
9c3a8ee8 541 writeback_inodes_wb(&bdi->wb, &wbc);
1da177e4 542 pages_written += write_chunk - wbc.nr_to_write;
04fbfdc1
PZ
543 get_dirty_limits(&background_thresh, &dirty_thresh,
544 &bdi_thresh, bdi);
028c2dd1 545 trace_wbc_balance_dirty_written(&wbc, bdi);
04fbfdc1
PZ
546 }
547
548 /*
549 * In order to avoid the stacked BDI deadlock we need
550 * to ensure we accurately count the 'dirty' pages when
551 * the threshold is low.
552 *
553 * Otherwise it would be possible to get thresh+n pages
554 * reported dirty, even though there are thresh-m pages
555 * actually dirty; with m+n sitting in the percpu
556 * deltas.
557 */
558 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
559 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
560 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
561 } else if (bdi_nr_reclaimable) {
562 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
563 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
1da177e4 564 }
04fbfdc1
PZ
565
566 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
567 break;
568 if (pages_written >= write_chunk)
569 break; /* We've done our duty */
570
028c2dd1 571 trace_wbc_balance_dirty_wait(&wbc, bdi);
d25105e8
WF
572 __set_current_state(TASK_INTERRUPTIBLE);
573 io_schedule_timeout(pause);
87c6a9b2
JA
574
575 /*
576 * Increase the delay for each loop, up to our previous
577 * default of taking a 100ms nap.
578 */
579 pause <<= 1;
580 if (pause > HZ / 10)
581 pause = HZ / 10;
1da177e4
LT
582 }
583
04fbfdc1
PZ
584 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
585 bdi->dirty_exceeded)
586 bdi->dirty_exceeded = 0;
1da177e4
LT
587
588 if (writeback_in_progress(bdi))
5b0830cb 589 return;
1da177e4
LT
590
591 /*
592 * In laptop mode, we wait until hitting the higher threshold before
593 * starting background writeout, and then write out all the way down
594 * to the lower threshold. So slow writers cause minimal disk activity.
595 *
596 * In normal mode, we start background writeout at the lower
597 * background_thresh, to keep the amount of dirty memory low.
598 */
599 if ((laptop_mode && pages_written) ||
d3ddec76
WF
600 (!laptop_mode && ((global_page_state(NR_FILE_DIRTY)
601 + global_page_state(NR_UNSTABLE_NFS))
b6e51316 602 > background_thresh)))
c5444198 603 bdi_start_background_writeback(bdi);
1da177e4
LT
604}
605
a200ee18 606void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 607{
a200ee18 608 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
609 struct address_space *mapping = page_mapping(page);
610
611 if (mapping)
612 balance_dirty_pages_ratelimited(mapping);
613 }
614}
615
245b2e70
TH
616static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
617
1da177e4 618/**
fa5a734e 619 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 620 * @mapping: address_space which was dirtied
a580290c 621 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
622 *
623 * Processes which are dirtying memory should call in here once for each page
624 * which was newly dirtied. The function will periodically check the system's
625 * dirty state and will initiate writeback if needed.
626 *
627 * On really big machines, get_writeback_state is expensive, so try to avoid
628 * calling it too often (ratelimiting). But once we're over the dirty memory
629 * limit we decrease the ratelimiting by a lot, to prevent individual processes
630 * from overshooting the limit by (ratelimit_pages) each.
631 */
fa5a734e
AM
632void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
633 unsigned long nr_pages_dirtied)
1da177e4 634{
fa5a734e
AM
635 unsigned long ratelimit;
636 unsigned long *p;
1da177e4
LT
637
638 ratelimit = ratelimit_pages;
04fbfdc1 639 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
640 ratelimit = 8;
641
642 /*
643 * Check the rate limiting. Also, we do not want to throttle real-time
644 * tasks in balance_dirty_pages(). Period.
645 */
fa5a734e 646 preempt_disable();
245b2e70 647 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
648 *p += nr_pages_dirtied;
649 if (unlikely(*p >= ratelimit)) {
3a2e9a5a 650 ratelimit = sync_writeback_pages(*p);
fa5a734e
AM
651 *p = 0;
652 preempt_enable();
3a2e9a5a 653 balance_dirty_pages(mapping, ratelimit);
1da177e4
LT
654 return;
655 }
fa5a734e 656 preempt_enable();
1da177e4 657}
fa5a734e 658EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 659
232ea4d6 660void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 661{
364aeb28
DR
662 unsigned long background_thresh;
663 unsigned long dirty_thresh;
1da177e4
LT
664
665 for ( ; ; ) {
04fbfdc1 666 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
1da177e4
LT
667
668 /*
669 * Boost the allowable dirty threshold a bit for page
670 * allocators so they don't get DoS'ed by heavy writers
671 */
672 dirty_thresh += dirty_thresh / 10; /* wheeee... */
673
c24f21bd
CL
674 if (global_page_state(NR_UNSTABLE_NFS) +
675 global_page_state(NR_WRITEBACK) <= dirty_thresh)
676 break;
8aa7e847 677 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
678
679 /*
680 * The caller might hold locks which can prevent IO completion
681 * or progress in the filesystem. So we cannot just sit here
682 * waiting for IO to complete.
683 */
684 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
685 break;
1da177e4
LT
686 }
687}
688
1da177e4
LT
689/*
690 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
691 */
692int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 693 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 694{
8d65af78 695 proc_dointvec(table, write, buffer, length, ppos);
6423104b 696 bdi_arm_supers_timer();
1da177e4
LT
697 return 0;
698}
699
c2c4986e 700#ifdef CONFIG_BLOCK
31373d09 701void laptop_mode_timer_fn(unsigned long data)
1da177e4 702{
31373d09
MG
703 struct request_queue *q = (struct request_queue *)data;
704 int nr_pages = global_page_state(NR_FILE_DIRTY) +
705 global_page_state(NR_UNSTABLE_NFS);
1da177e4 706
31373d09
MG
707 /*
708 * We want to write everything out, not just down to the dirty
709 * threshold
710 */
31373d09 711 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 712 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
713}
714
715/*
716 * We've spun up the disk and we're in laptop mode: schedule writeback
717 * of all dirty data a few seconds from now. If the flush is already scheduled
718 * then push it back - the user is still using the disk.
719 */
31373d09 720void laptop_io_completion(struct backing_dev_info *info)
1da177e4 721{
31373d09 722 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
723}
724
725/*
726 * We're in laptop mode and we've just synced. The sync's writes will have
727 * caused another writeback to be scheduled by laptop_io_completion.
728 * Nothing needs to be written back anymore, so we unschedule the writeback.
729 */
730void laptop_sync_completion(void)
731{
31373d09
MG
732 struct backing_dev_info *bdi;
733
734 rcu_read_lock();
735
736 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
737 del_timer(&bdi->laptop_mode_wb_timer);
738
739 rcu_read_unlock();
1da177e4 740}
c2c4986e 741#endif
1da177e4
LT
742
743/*
744 * If ratelimit_pages is too high then we can get into dirty-data overload
745 * if a large number of processes all perform writes at the same time.
746 * If it is too low then SMP machines will call the (expensive)
747 * get_writeback_state too often.
748 *
749 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
750 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
751 * thresholds before writeback cuts in.
752 *
753 * But the limit should not be set too high. Because it also controls the
754 * amount of memory which the balance_dirty_pages() caller has to write back.
755 * If this is too large then the caller will block on the IO queue all the
756 * time. So limit it to four megabytes - the balance_dirty_pages() caller
757 * will write six megabyte chunks, max.
758 */
759
2d1d43f6 760void writeback_set_ratelimit(void)
1da177e4 761{
40c99aae 762 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
763 if (ratelimit_pages < 16)
764 ratelimit_pages = 16;
765 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
766 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
767}
768
26c2143b 769static int __cpuinit
1da177e4
LT
770ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
771{
2d1d43f6 772 writeback_set_ratelimit();
aa0f0303 773 return NOTIFY_DONE;
1da177e4
LT
774}
775
74b85f37 776static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
777 .notifier_call = ratelimit_handler,
778 .next = NULL,
779};
780
781/*
dc6e29da
LT
782 * Called early on to tune the page writeback dirty limits.
783 *
784 * We used to scale dirty pages according to how total memory
785 * related to pages that could be allocated for buffers (by
786 * comparing nr_free_buffer_pages() to vm_total_pages.
787 *
788 * However, that was when we used "dirty_ratio" to scale with
789 * all memory, and we don't do that any more. "dirty_ratio"
790 * is now applied to total non-HIGHPAGE memory (by subtracting
791 * totalhigh_pages from vm_total_pages), and as such we can't
792 * get into the old insane situation any more where we had
793 * large amounts of dirty pages compared to a small amount of
794 * non-HIGHMEM memory.
795 *
796 * But we might still want to scale the dirty_ratio by how
797 * much memory the box has..
1da177e4
LT
798 */
799void __init page_writeback_init(void)
800{
04fbfdc1
PZ
801 int shift;
802
2d1d43f6 803 writeback_set_ratelimit();
1da177e4 804 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
805
806 shift = calc_period_shift();
807 prop_descriptor_init(&vm_completions, shift);
3e26c149 808 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
809}
810
f446daae
JK
811/**
812 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
813 * @mapping: address space structure to write
814 * @start: starting page index
815 * @end: ending page index (inclusive)
816 *
817 * This function scans the page range from @start to @end (inclusive) and tags
818 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
819 * that write_cache_pages (or whoever calls this function) will then use
820 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
821 * used to avoid livelocking of writeback by a process steadily creating new
822 * dirty pages in the file (thus it is important for this function to be quick
823 * so that it can tag pages faster than a dirtying process can create them).
824 */
825/*
826 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
827 */
f446daae
JK
828void tag_pages_for_writeback(struct address_space *mapping,
829 pgoff_t start, pgoff_t end)
830{
3c111a07 831#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
832 unsigned long tagged;
833
834 do {
835 spin_lock_irq(&mapping->tree_lock);
836 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
837 &start, end, WRITEBACK_TAG_BATCH,
838 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
839 spin_unlock_irq(&mapping->tree_lock);
840 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
841 cond_resched();
842 } while (tagged >= WRITEBACK_TAG_BATCH);
843}
844EXPORT_SYMBOL(tag_pages_for_writeback);
845
811d736f 846/**
0ea97180 847 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
848 * @mapping: address space structure to write
849 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
850 * @writepage: function called for each page
851 * @data: data passed to writepage function
811d736f 852 *
0ea97180 853 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
854 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
855 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
856 * and msync() need to guarantee that all the data which was dirty at the time
857 * the call was made get new I/O started against them. If wbc->sync_mode is
858 * WB_SYNC_ALL then we were called for data integrity and we must wait for
859 * existing IO to complete.
f446daae
JK
860 *
861 * To avoid livelocks (when other process dirties new pages), we first tag
862 * pages which should be written back with TOWRITE tag and only then start
863 * writing them. For data-integrity sync we have to be careful so that we do
864 * not miss some pages (e.g., because some other process has cleared TOWRITE
865 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
866 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 867 */
0ea97180
MS
868int write_cache_pages(struct address_space *mapping,
869 struct writeback_control *wbc, writepage_t writepage,
870 void *data)
811d736f 871{
811d736f
DH
872 int ret = 0;
873 int done = 0;
811d736f
DH
874 struct pagevec pvec;
875 int nr_pages;
31a12666 876 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
877 pgoff_t index;
878 pgoff_t end; /* Inclusive */
bd19e012 879 pgoff_t done_index;
31a12666 880 int cycled;
811d736f 881 int range_whole = 0;
f446daae 882 int tag;
811d736f 883
811d736f
DH
884 pagevec_init(&pvec, 0);
885 if (wbc->range_cyclic) {
31a12666
NP
886 writeback_index = mapping->writeback_index; /* prev offset */
887 index = writeback_index;
888 if (index == 0)
889 cycled = 1;
890 else
891 cycled = 0;
811d736f
DH
892 end = -1;
893 } else {
894 index = wbc->range_start >> PAGE_CACHE_SHIFT;
895 end = wbc->range_end >> PAGE_CACHE_SHIFT;
896 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
897 range_whole = 1;
31a12666 898 cycled = 1; /* ignore range_cyclic tests */
811d736f 899 }
f446daae
JK
900 if (wbc->sync_mode == WB_SYNC_ALL)
901 tag = PAGECACHE_TAG_TOWRITE;
902 else
903 tag = PAGECACHE_TAG_DIRTY;
811d736f 904retry:
f446daae
JK
905 if (wbc->sync_mode == WB_SYNC_ALL)
906 tag_pages_for_writeback(mapping, index, end);
bd19e012 907 done_index = index;
5a3d5c98
NP
908 while (!done && (index <= end)) {
909 int i;
910
f446daae 911 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
912 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
913 if (nr_pages == 0)
914 break;
811d736f 915
811d736f
DH
916 for (i = 0; i < nr_pages; i++) {
917 struct page *page = pvec.pages[i];
918
919 /*
d5482cdf
NP
920 * At this point, the page may be truncated or
921 * invalidated (changing page->mapping to NULL), or
922 * even swizzled back from swapper_space to tmpfs file
923 * mapping. However, page->index will not change
924 * because we have a reference on the page.
811d736f 925 */
d5482cdf
NP
926 if (page->index > end) {
927 /*
928 * can't be range_cyclic (1st pass) because
929 * end == -1 in that case.
930 */
931 done = 1;
932 break;
933 }
934
935 done_index = page->index + 1;
936
811d736f
DH
937 lock_page(page);
938
5a3d5c98
NP
939 /*
940 * Page truncated or invalidated. We can freely skip it
941 * then, even for data integrity operations: the page
942 * has disappeared concurrently, so there could be no
943 * real expectation of this data interity operation
944 * even if there is now a new, dirty page at the same
945 * pagecache address.
946 */
811d736f 947 if (unlikely(page->mapping != mapping)) {
5a3d5c98 948continue_unlock:
811d736f
DH
949 unlock_page(page);
950 continue;
951 }
952
515f4a03
NP
953 if (!PageDirty(page)) {
954 /* someone wrote it for us */
955 goto continue_unlock;
956 }
957
958 if (PageWriteback(page)) {
959 if (wbc->sync_mode != WB_SYNC_NONE)
960 wait_on_page_writeback(page);
961 else
962 goto continue_unlock;
963 }
811d736f 964
515f4a03
NP
965 BUG_ON(PageWriteback(page));
966 if (!clear_page_dirty_for_io(page))
5a3d5c98 967 goto continue_unlock;
811d736f 968
9e094383 969 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 970 ret = (*writepage)(page, wbc, data);
00266770
NP
971 if (unlikely(ret)) {
972 if (ret == AOP_WRITEPAGE_ACTIVATE) {
973 unlock_page(page);
974 ret = 0;
975 } else {
976 /*
977 * done_index is set past this page,
978 * so media errors will not choke
979 * background writeout for the entire
980 * file. This has consequences for
981 * range_cyclic semantics (ie. it may
982 * not be suitable for data integrity
983 * writeout).
984 */
985 done = 1;
986 break;
987 }
0b564927 988 }
00266770 989
0b564927
DC
990 if (wbc->nr_to_write > 0) {
991 if (--wbc->nr_to_write == 0 &&
89e12190
FC
992 wbc->sync_mode == WB_SYNC_NONE) {
993 /*
994 * We stop writing back only if we are
995 * not doing integrity sync. In case of
996 * integrity sync we have to keep going
997 * because someone may be concurrently
998 * dirtying pages, and we might have
999 * synced a lot of newly appeared dirty
1000 * pages, but have not synced all of the
1001 * old dirty pages.
1002 */
1003 done = 1;
1004 break;
1005 }
05fe478d 1006 }
811d736f
DH
1007 }
1008 pagevec_release(&pvec);
1009 cond_resched();
1010 }
3a4c6800 1011 if (!cycled && !done) {
811d736f 1012 /*
31a12666 1013 * range_cyclic:
811d736f
DH
1014 * We hit the last page and there is more work to be done: wrap
1015 * back to the start of the file
1016 */
31a12666 1017 cycled = 1;
811d736f 1018 index = 0;
31a12666 1019 end = writeback_index - 1;
811d736f
DH
1020 goto retry;
1021 }
0b564927
DC
1022 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1023 mapping->writeback_index = done_index;
06d6cf69 1024
811d736f
DH
1025 return ret;
1026}
0ea97180
MS
1027EXPORT_SYMBOL(write_cache_pages);
1028
1029/*
1030 * Function used by generic_writepages to call the real writepage
1031 * function and set the mapping flags on error
1032 */
1033static int __writepage(struct page *page, struct writeback_control *wbc,
1034 void *data)
1035{
1036 struct address_space *mapping = data;
1037 int ret = mapping->a_ops->writepage(page, wbc);
1038 mapping_set_error(mapping, ret);
1039 return ret;
1040}
1041
1042/**
1043 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1044 * @mapping: address space structure to write
1045 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1046 *
1047 * This is a library function, which implements the writepages()
1048 * address_space_operation.
1049 */
1050int generic_writepages(struct address_space *mapping,
1051 struct writeback_control *wbc)
1052{
1053 /* deal with chardevs and other special file */
1054 if (!mapping->a_ops->writepage)
1055 return 0;
1056
1057 return write_cache_pages(mapping, wbc, __writepage, mapping);
1058}
811d736f
DH
1059
1060EXPORT_SYMBOL(generic_writepages);
1061
1da177e4
LT
1062int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1063{
22905f77
AM
1064 int ret;
1065
1da177e4
LT
1066 if (wbc->nr_to_write <= 0)
1067 return 0;
1068 if (mapping->a_ops->writepages)
d08b3851 1069 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1070 else
1071 ret = generic_writepages(mapping, wbc);
22905f77 1072 return ret;
1da177e4
LT
1073}
1074
1075/**
1076 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1077 * @page: the page to write
1078 * @wait: if true, wait on writeout
1da177e4
LT
1079 *
1080 * The page must be locked by the caller and will be unlocked upon return.
1081 *
1082 * write_one_page() returns a negative error code if I/O failed.
1083 */
1084int write_one_page(struct page *page, int wait)
1085{
1086 struct address_space *mapping = page->mapping;
1087 int ret = 0;
1088 struct writeback_control wbc = {
1089 .sync_mode = WB_SYNC_ALL,
1090 .nr_to_write = 1,
1091 };
1092
1093 BUG_ON(!PageLocked(page));
1094
1095 if (wait)
1096 wait_on_page_writeback(page);
1097
1098 if (clear_page_dirty_for_io(page)) {
1099 page_cache_get(page);
1100 ret = mapping->a_ops->writepage(page, &wbc);
1101 if (ret == 0 && wait) {
1102 wait_on_page_writeback(page);
1103 if (PageError(page))
1104 ret = -EIO;
1105 }
1106 page_cache_release(page);
1107 } else {
1108 unlock_page(page);
1109 }
1110 return ret;
1111}
1112EXPORT_SYMBOL(write_one_page);
1113
76719325
KC
1114/*
1115 * For address_spaces which do not use buffers nor write back.
1116 */
1117int __set_page_dirty_no_writeback(struct page *page)
1118{
1119 if (!PageDirty(page))
1120 SetPageDirty(page);
1121 return 0;
1122}
1123
e3a7cca1
ES
1124/*
1125 * Helper function for set_page_dirty family.
1126 * NOTE: This relies on being atomic wrt interrupts.
1127 */
1128void account_page_dirtied(struct page *page, struct address_space *mapping)
1129{
1130 if (mapping_cap_account_dirty(mapping)) {
1131 __inc_zone_page_state(page, NR_FILE_DIRTY);
1132 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1133 task_dirty_inc(current);
1134 task_io_account_write(PAGE_CACHE_SIZE);
1135 }
1136}
1137
1da177e4
LT
1138/*
1139 * For address_spaces which do not use buffers. Just tag the page as dirty in
1140 * its radix tree.
1141 *
1142 * This is also used when a single buffer is being dirtied: we want to set the
1143 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1144 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1145 *
1146 * Most callers have locked the page, which pins the address_space in memory.
1147 * But zap_pte_range() does not lock the page, however in that case the
1148 * mapping is pinned by the vma's ->vm_file reference.
1149 *
1150 * We take care to handle the case where the page was truncated from the
183ff22b 1151 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1152 */
1153int __set_page_dirty_nobuffers(struct page *page)
1154{
1da177e4
LT
1155 if (!TestSetPageDirty(page)) {
1156 struct address_space *mapping = page_mapping(page);
1157 struct address_space *mapping2;
1158
8c08540f
AM
1159 if (!mapping)
1160 return 1;
1161
19fd6231 1162 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1163 mapping2 = page_mapping(page);
1164 if (mapping2) { /* Race with truncate? */
1165 BUG_ON(mapping2 != mapping);
787d2214 1166 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1167 account_page_dirtied(page, mapping);
8c08540f
AM
1168 radix_tree_tag_set(&mapping->page_tree,
1169 page_index(page), PAGECACHE_TAG_DIRTY);
1170 }
19fd6231 1171 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1172 if (mapping->host) {
1173 /* !PageAnon && !swapper_space */
1174 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1175 }
4741c9fd 1176 return 1;
1da177e4 1177 }
4741c9fd 1178 return 0;
1da177e4
LT
1179}
1180EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1181
1182/*
1183 * When a writepage implementation decides that it doesn't want to write this
1184 * page for some reason, it should redirty the locked page via
1185 * redirty_page_for_writepage() and it should then unlock the page and return 0
1186 */
1187int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1188{
1189 wbc->pages_skipped++;
1190 return __set_page_dirty_nobuffers(page);
1191}
1192EXPORT_SYMBOL(redirty_page_for_writepage);
1193
1194/*
6746aff7
WF
1195 * Dirty a page.
1196 *
1197 * For pages with a mapping this should be done under the page lock
1198 * for the benefit of asynchronous memory errors who prefer a consistent
1199 * dirty state. This rule can be broken in some special cases,
1200 * but should be better not to.
1201 *
1da177e4
LT
1202 * If the mapping doesn't provide a set_page_dirty a_op, then
1203 * just fall through and assume that it wants buffer_heads.
1204 */
1cf6e7d8 1205int set_page_dirty(struct page *page)
1da177e4
LT
1206{
1207 struct address_space *mapping = page_mapping(page);
1208
1209 if (likely(mapping)) {
1210 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
9361401e
DH
1211#ifdef CONFIG_BLOCK
1212 if (!spd)
1213 spd = __set_page_dirty_buffers;
1214#endif
1215 return (*spd)(page);
1da177e4 1216 }
4741c9fd
AM
1217 if (!PageDirty(page)) {
1218 if (!TestSetPageDirty(page))
1219 return 1;
1220 }
1da177e4
LT
1221 return 0;
1222}
1223EXPORT_SYMBOL(set_page_dirty);
1224
1225/*
1226 * set_page_dirty() is racy if the caller has no reference against
1227 * page->mapping->host, and if the page is unlocked. This is because another
1228 * CPU could truncate the page off the mapping and then free the mapping.
1229 *
1230 * Usually, the page _is_ locked, or the caller is a user-space process which
1231 * holds a reference on the inode by having an open file.
1232 *
1233 * In other cases, the page should be locked before running set_page_dirty().
1234 */
1235int set_page_dirty_lock(struct page *page)
1236{
1237 int ret;
1238
db37648c 1239 lock_page_nosync(page);
1da177e4
LT
1240 ret = set_page_dirty(page);
1241 unlock_page(page);
1242 return ret;
1243}
1244EXPORT_SYMBOL(set_page_dirty_lock);
1245
1da177e4
LT
1246/*
1247 * Clear a page's dirty flag, while caring for dirty memory accounting.
1248 * Returns true if the page was previously dirty.
1249 *
1250 * This is for preparing to put the page under writeout. We leave the page
1251 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1252 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1253 * implementation will run either set_page_writeback() or set_page_dirty(),
1254 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1255 * back into sync.
1256 *
1257 * This incoherency between the page's dirty flag and radix-tree tag is
1258 * unfortunate, but it only exists while the page is locked.
1259 */
1260int clear_page_dirty_for_io(struct page *page)
1261{
1262 struct address_space *mapping = page_mapping(page);
1263
79352894
NP
1264 BUG_ON(!PageLocked(page));
1265
fe3cba17 1266 ClearPageReclaim(page);
7658cc28
LT
1267 if (mapping && mapping_cap_account_dirty(mapping)) {
1268 /*
1269 * Yes, Virginia, this is indeed insane.
1270 *
1271 * We use this sequence to make sure that
1272 * (a) we account for dirty stats properly
1273 * (b) we tell the low-level filesystem to
1274 * mark the whole page dirty if it was
1275 * dirty in a pagetable. Only to then
1276 * (c) clean the page again and return 1 to
1277 * cause the writeback.
1278 *
1279 * This way we avoid all nasty races with the
1280 * dirty bit in multiple places and clearing
1281 * them concurrently from different threads.
1282 *
1283 * Note! Normally the "set_page_dirty(page)"
1284 * has no effect on the actual dirty bit - since
1285 * that will already usually be set. But we
1286 * need the side effects, and it can help us
1287 * avoid races.
1288 *
1289 * We basically use the page "master dirty bit"
1290 * as a serialization point for all the different
1291 * threads doing their things.
7658cc28
LT
1292 */
1293 if (page_mkclean(page))
1294 set_page_dirty(page);
79352894
NP
1295 /*
1296 * We carefully synchronise fault handlers against
1297 * installing a dirty pte and marking the page dirty
1298 * at this point. We do this by having them hold the
1299 * page lock at some point after installing their
1300 * pte, but before marking the page dirty.
1301 * Pages are always locked coming in here, so we get
1302 * the desired exclusion. See mm/memory.c:do_wp_page()
1303 * for more comments.
1304 */
7658cc28 1305 if (TestClearPageDirty(page)) {
8c08540f 1306 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1307 dec_bdi_stat(mapping->backing_dev_info,
1308 BDI_RECLAIMABLE);
7658cc28 1309 return 1;
1da177e4 1310 }
7658cc28 1311 return 0;
1da177e4 1312 }
7658cc28 1313 return TestClearPageDirty(page);
1da177e4 1314}
58bb01a9 1315EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1316
1317int test_clear_page_writeback(struct page *page)
1318{
1319 struct address_space *mapping = page_mapping(page);
1320 int ret;
1321
1322 if (mapping) {
69cb51d1 1323 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1324 unsigned long flags;
1325
19fd6231 1326 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1327 ret = TestClearPageWriteback(page);
69cb51d1 1328 if (ret) {
1da177e4
LT
1329 radix_tree_tag_clear(&mapping->page_tree,
1330 page_index(page),
1331 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1332 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1333 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1334 __bdi_writeout_inc(bdi);
1335 }
69cb51d1 1336 }
19fd6231 1337 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1338 } else {
1339 ret = TestClearPageWriteback(page);
1340 }
d688abf5
AM
1341 if (ret)
1342 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1343 return ret;
1344}
1345
1346int test_set_page_writeback(struct page *page)
1347{
1348 struct address_space *mapping = page_mapping(page);
1349 int ret;
1350
1351 if (mapping) {
69cb51d1 1352 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1353 unsigned long flags;
1354
19fd6231 1355 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1356 ret = TestSetPageWriteback(page);
69cb51d1 1357 if (!ret) {
1da177e4
LT
1358 radix_tree_tag_set(&mapping->page_tree,
1359 page_index(page),
1360 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1361 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1362 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1363 }
1da177e4
LT
1364 if (!PageDirty(page))
1365 radix_tree_tag_clear(&mapping->page_tree,
1366 page_index(page),
1367 PAGECACHE_TAG_DIRTY);
f446daae
JK
1368 radix_tree_tag_clear(&mapping->page_tree,
1369 page_index(page),
1370 PAGECACHE_TAG_TOWRITE);
19fd6231 1371 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1372 } else {
1373 ret = TestSetPageWriteback(page);
1374 }
d688abf5
AM
1375 if (!ret)
1376 inc_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1377 return ret;
1378
1379}
1380EXPORT_SYMBOL(test_set_page_writeback);
1381
1382/*
00128188 1383 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1384 * passed tag.
1385 */
1386int mapping_tagged(struct address_space *mapping, int tag)
1387{
1da177e4 1388 int ret;
00128188 1389 rcu_read_lock();
1da177e4 1390 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1391 rcu_read_unlock();
1da177e4
LT
1392 return ret;
1393}
1394EXPORT_SYMBOL(mapping_tagged);