]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memory-failure.c
HWPOISON, hugetlb: soft offlining for hugepage
[net-next-2.6.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a 2bit ECC memory or cache
11 * failure.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronous to other VM
15 * users, because memory failures could happen anytime and anywhere,
16 * possibly violating some of their assumptions. This is why this code
17 * has to be extremely careful. Generally it tries to use normal locking
18 * rules, as in get the standard locks, even if that means the
19 * error handling takes potentially a long time.
20 *
21 * The operation to map back from RMAP chains to processes has to walk
22 * the complete process list and has non linear complexity with the number
23 * mappings. In short it can be quite slow. But since memory corruptions
24 * are rare we hope to get away with this.
25 */
26
27/*
28 * Notebook:
29 * - hugetlb needs more code
30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31 * - pass bad pages to kdump next kernel
32 */
33#define DEBUG 1 /* remove me in 2.6.34 */
34#include <linux/kernel.h>
35#include <linux/mm.h>
36#include <linux/page-flags.h>
478c5ffc 37#include <linux/kernel-page-flags.h>
6a46079c 38#include <linux/sched.h>
01e00f88 39#include <linux/ksm.h>
6a46079c
AK
40#include <linux/rmap.h>
41#include <linux/pagemap.h>
42#include <linux/swap.h>
43#include <linux/backing-dev.h>
facb6011
AK
44#include <linux/migrate.h>
45#include <linux/page-isolation.h>
46#include <linux/suspend.h>
5a0e3ad6 47#include <linux/slab.h>
bf998156 48#include <linux/swapops.h>
7af446a8 49#include <linux/hugetlb.h>
6a46079c
AK
50#include "internal.h"
51
52int sysctl_memory_failure_early_kill __read_mostly = 0;
53
54int sysctl_memory_failure_recovery __read_mostly = 1;
55
56atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
57
27df5068
AK
58#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
59
1bfe5feb 60u32 hwpoison_filter_enable = 0;
7c116f2b
WF
61u32 hwpoison_filter_dev_major = ~0U;
62u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
63u64 hwpoison_filter_flags_mask;
64u64 hwpoison_filter_flags_value;
1bfe5feb 65EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
66EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
67EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
68EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
69EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
70
71static int hwpoison_filter_dev(struct page *p)
72{
73 struct address_space *mapping;
74 dev_t dev;
75
76 if (hwpoison_filter_dev_major == ~0U &&
77 hwpoison_filter_dev_minor == ~0U)
78 return 0;
79
80 /*
81 * page_mapping() does not accept slab page
82 */
83 if (PageSlab(p))
84 return -EINVAL;
85
86 mapping = page_mapping(p);
87 if (mapping == NULL || mapping->host == NULL)
88 return -EINVAL;
89
90 dev = mapping->host->i_sb->s_dev;
91 if (hwpoison_filter_dev_major != ~0U &&
92 hwpoison_filter_dev_major != MAJOR(dev))
93 return -EINVAL;
94 if (hwpoison_filter_dev_minor != ~0U &&
95 hwpoison_filter_dev_minor != MINOR(dev))
96 return -EINVAL;
97
98 return 0;
99}
100
478c5ffc
WF
101static int hwpoison_filter_flags(struct page *p)
102{
103 if (!hwpoison_filter_flags_mask)
104 return 0;
105
106 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
107 hwpoison_filter_flags_value)
108 return 0;
109 else
110 return -EINVAL;
111}
112
4fd466eb
AK
113/*
114 * This allows stress tests to limit test scope to a collection of tasks
115 * by putting them under some memcg. This prevents killing unrelated/important
116 * processes such as /sbin/init. Note that the target task may share clean
117 * pages with init (eg. libc text), which is harmless. If the target task
118 * share _dirty_ pages with another task B, the test scheme must make sure B
119 * is also included in the memcg. At last, due to race conditions this filter
120 * can only guarantee that the page either belongs to the memcg tasks, or is
121 * a freed page.
122 */
123#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
124u64 hwpoison_filter_memcg;
125EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
126static int hwpoison_filter_task(struct page *p)
127{
128 struct mem_cgroup *mem;
129 struct cgroup_subsys_state *css;
130 unsigned long ino;
131
132 if (!hwpoison_filter_memcg)
133 return 0;
134
135 mem = try_get_mem_cgroup_from_page(p);
136 if (!mem)
137 return -EINVAL;
138
139 css = mem_cgroup_css(mem);
140 /* root_mem_cgroup has NULL dentries */
141 if (!css->cgroup->dentry)
142 return -EINVAL;
143
144 ino = css->cgroup->dentry->d_inode->i_ino;
145 css_put(css);
146
147 if (ino != hwpoison_filter_memcg)
148 return -EINVAL;
149
150 return 0;
151}
152#else
153static int hwpoison_filter_task(struct page *p) { return 0; }
154#endif
155
7c116f2b
WF
156int hwpoison_filter(struct page *p)
157{
1bfe5feb
HL
158 if (!hwpoison_filter_enable)
159 return 0;
160
7c116f2b
WF
161 if (hwpoison_filter_dev(p))
162 return -EINVAL;
163
478c5ffc
WF
164 if (hwpoison_filter_flags(p))
165 return -EINVAL;
166
4fd466eb
AK
167 if (hwpoison_filter_task(p))
168 return -EINVAL;
169
7c116f2b
WF
170 return 0;
171}
27df5068
AK
172#else
173int hwpoison_filter(struct page *p)
174{
175 return 0;
176}
177#endif
178
7c116f2b
WF
179EXPORT_SYMBOL_GPL(hwpoison_filter);
180
6a46079c
AK
181/*
182 * Send all the processes who have the page mapped an ``action optional''
183 * signal.
184 */
185static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
0d9ee6a2 186 unsigned long pfn, struct page *page)
6a46079c
AK
187{
188 struct siginfo si;
189 int ret;
190
191 printk(KERN_ERR
192 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
193 pfn, t->comm, t->pid);
194 si.si_signo = SIGBUS;
195 si.si_errno = 0;
196 si.si_code = BUS_MCEERR_AO;
197 si.si_addr = (void *)addr;
198#ifdef __ARCH_SI_TRAPNO
199 si.si_trapno = trapno;
200#endif
0d9ee6a2 201 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
6a46079c
AK
202 /*
203 * Don't use force here, it's convenient if the signal
204 * can be temporarily blocked.
205 * This could cause a loop when the user sets SIGBUS
206 * to SIG_IGN, but hopefully noone will do that?
207 */
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
209 if (ret < 0)
210 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
211 t->comm, t->pid, ret);
212 return ret;
213}
214
588f9ce6
AK
215/*
216 * When a unknown page type is encountered drain as many buffers as possible
217 * in the hope to turn the page into a LRU or free page, which we can handle.
218 */
facb6011 219void shake_page(struct page *p, int access)
588f9ce6
AK
220{
221 if (!PageSlab(p)) {
222 lru_add_drain_all();
223 if (PageLRU(p))
224 return;
225 drain_all_pages();
226 if (PageLRU(p) || is_free_buddy_page(p))
227 return;
228 }
facb6011 229
588f9ce6 230 /*
facb6011
AK
231 * Only all shrink_slab here (which would also
232 * shrink other caches) if access is not potentially fatal.
588f9ce6 233 */
facb6011
AK
234 if (access) {
235 int nr;
236 do {
237 nr = shrink_slab(1000, GFP_KERNEL, 1000);
47f43e7e 238 if (page_count(p) == 1)
facb6011
AK
239 break;
240 } while (nr > 10);
241 }
588f9ce6
AK
242}
243EXPORT_SYMBOL_GPL(shake_page);
244
6a46079c
AK
245/*
246 * Kill all processes that have a poisoned page mapped and then isolate
247 * the page.
248 *
249 * General strategy:
250 * Find all processes having the page mapped and kill them.
251 * But we keep a page reference around so that the page is not
252 * actually freed yet.
253 * Then stash the page away
254 *
255 * There's no convenient way to get back to mapped processes
256 * from the VMAs. So do a brute-force search over all
257 * running processes.
258 *
259 * Remember that machine checks are not common (or rather
260 * if they are common you have other problems), so this shouldn't
261 * be a performance issue.
262 *
263 * Also there are some races possible while we get from the
264 * error detection to actually handle it.
265 */
266
267struct to_kill {
268 struct list_head nd;
269 struct task_struct *tsk;
270 unsigned long addr;
271 unsigned addr_valid:1;
272};
273
274/*
275 * Failure handling: if we can't find or can't kill a process there's
276 * not much we can do. We just print a message and ignore otherwise.
277 */
278
279/*
280 * Schedule a process for later kill.
281 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
282 * TBD would GFP_NOIO be enough?
283 */
284static void add_to_kill(struct task_struct *tsk, struct page *p,
285 struct vm_area_struct *vma,
286 struct list_head *to_kill,
287 struct to_kill **tkc)
288{
289 struct to_kill *tk;
290
291 if (*tkc) {
292 tk = *tkc;
293 *tkc = NULL;
294 } else {
295 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
296 if (!tk) {
297 printk(KERN_ERR
298 "MCE: Out of memory while machine check handling\n");
299 return;
300 }
301 }
302 tk->addr = page_address_in_vma(p, vma);
303 tk->addr_valid = 1;
304
305 /*
306 * In theory we don't have to kill when the page was
307 * munmaped. But it could be also a mremap. Since that's
308 * likely very rare kill anyways just out of paranoia, but use
309 * a SIGKILL because the error is not contained anymore.
310 */
311 if (tk->addr == -EFAULT) {
312 pr_debug("MCE: Unable to find user space address %lx in %s\n",
313 page_to_pfn(p), tsk->comm);
314 tk->addr_valid = 0;
315 }
316 get_task_struct(tsk);
317 tk->tsk = tsk;
318 list_add_tail(&tk->nd, to_kill);
319}
320
321/*
322 * Kill the processes that have been collected earlier.
323 *
324 * Only do anything when DOIT is set, otherwise just free the list
325 * (this is used for clean pages which do not need killing)
326 * Also when FAIL is set do a force kill because something went
327 * wrong earlier.
328 */
329static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
0d9ee6a2 330 int fail, struct page *page, unsigned long pfn)
6a46079c
AK
331{
332 struct to_kill *tk, *next;
333
334 list_for_each_entry_safe (tk, next, to_kill, nd) {
335 if (doit) {
336 /*
af901ca1 337 * In case something went wrong with munmapping
6a46079c
AK
338 * make sure the process doesn't catch the
339 * signal and then access the memory. Just kill it.
6a46079c
AK
340 */
341 if (fail || tk->addr_valid == 0) {
342 printk(KERN_ERR
343 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
344 pfn, tk->tsk->comm, tk->tsk->pid);
345 force_sig(SIGKILL, tk->tsk);
346 }
347
348 /*
349 * In theory the process could have mapped
350 * something else on the address in-between. We could
351 * check for that, but we need to tell the
352 * process anyways.
353 */
354 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
0d9ee6a2 355 pfn, page) < 0)
6a46079c
AK
356 printk(KERN_ERR
357 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
358 pfn, tk->tsk->comm, tk->tsk->pid);
359 }
360 put_task_struct(tk->tsk);
361 kfree(tk);
362 }
363}
364
365static int task_early_kill(struct task_struct *tsk)
366{
367 if (!tsk->mm)
368 return 0;
369 if (tsk->flags & PF_MCE_PROCESS)
370 return !!(tsk->flags & PF_MCE_EARLY);
371 return sysctl_memory_failure_early_kill;
372}
373
374/*
375 * Collect processes when the error hit an anonymous page.
376 */
377static void collect_procs_anon(struct page *page, struct list_head *to_kill,
378 struct to_kill **tkc)
379{
380 struct vm_area_struct *vma;
381 struct task_struct *tsk;
382 struct anon_vma *av;
383
384 read_lock(&tasklist_lock);
385 av = page_lock_anon_vma(page);
386 if (av == NULL) /* Not actually mapped anymore */
387 goto out;
388 for_each_process (tsk) {
5beb4930
RR
389 struct anon_vma_chain *vmac;
390
6a46079c
AK
391 if (!task_early_kill(tsk))
392 continue;
5beb4930
RR
393 list_for_each_entry(vmac, &av->head, same_anon_vma) {
394 vma = vmac->vma;
6a46079c
AK
395 if (!page_mapped_in_vma(page, vma))
396 continue;
397 if (vma->vm_mm == tsk->mm)
398 add_to_kill(tsk, page, vma, to_kill, tkc);
399 }
400 }
401 page_unlock_anon_vma(av);
402out:
403 read_unlock(&tasklist_lock);
404}
405
406/*
407 * Collect processes when the error hit a file mapped page.
408 */
409static void collect_procs_file(struct page *page, struct list_head *to_kill,
410 struct to_kill **tkc)
411{
412 struct vm_area_struct *vma;
413 struct task_struct *tsk;
414 struct prio_tree_iter iter;
415 struct address_space *mapping = page->mapping;
416
417 /*
418 * A note on the locking order between the two locks.
419 * We don't rely on this particular order.
420 * If you have some other code that needs a different order
421 * feel free to switch them around. Or add a reverse link
422 * from mm_struct to task_struct, then this could be all
423 * done without taking tasklist_lock and looping over all tasks.
424 */
425
426 read_lock(&tasklist_lock);
427 spin_lock(&mapping->i_mmap_lock);
428 for_each_process(tsk) {
429 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
430
431 if (!task_early_kill(tsk))
432 continue;
433
434 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
435 pgoff) {
436 /*
437 * Send early kill signal to tasks where a vma covers
438 * the page but the corrupted page is not necessarily
439 * mapped it in its pte.
440 * Assume applications who requested early kill want
441 * to be informed of all such data corruptions.
442 */
443 if (vma->vm_mm == tsk->mm)
444 add_to_kill(tsk, page, vma, to_kill, tkc);
445 }
446 }
447 spin_unlock(&mapping->i_mmap_lock);
448 read_unlock(&tasklist_lock);
449}
450
451/*
452 * Collect the processes who have the corrupted page mapped to kill.
453 * This is done in two steps for locking reasons.
454 * First preallocate one tokill structure outside the spin locks,
455 * so that we can kill at least one process reasonably reliable.
456 */
457static void collect_procs(struct page *page, struct list_head *tokill)
458{
459 struct to_kill *tk;
460
461 if (!page->mapping)
462 return;
463
464 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
465 if (!tk)
466 return;
467 if (PageAnon(page))
468 collect_procs_anon(page, tokill, &tk);
469 else
470 collect_procs_file(page, tokill, &tk);
471 kfree(tk);
472}
473
474/*
475 * Error handlers for various types of pages.
476 */
477
478enum outcome {
d95ea51e
WF
479 IGNORED, /* Error: cannot be handled */
480 FAILED, /* Error: handling failed */
6a46079c 481 DELAYED, /* Will be handled later */
6a46079c
AK
482 RECOVERED, /* Successfully recovered */
483};
484
485static const char *action_name[] = {
d95ea51e 486 [IGNORED] = "Ignored",
6a46079c
AK
487 [FAILED] = "Failed",
488 [DELAYED] = "Delayed",
6a46079c
AK
489 [RECOVERED] = "Recovered",
490};
491
dc2a1cbf
WF
492/*
493 * XXX: It is possible that a page is isolated from LRU cache,
494 * and then kept in swap cache or failed to remove from page cache.
495 * The page count will stop it from being freed by unpoison.
496 * Stress tests should be aware of this memory leak problem.
497 */
498static int delete_from_lru_cache(struct page *p)
499{
500 if (!isolate_lru_page(p)) {
501 /*
502 * Clear sensible page flags, so that the buddy system won't
503 * complain when the page is unpoison-and-freed.
504 */
505 ClearPageActive(p);
506 ClearPageUnevictable(p);
507 /*
508 * drop the page count elevated by isolate_lru_page()
509 */
510 page_cache_release(p);
511 return 0;
512 }
513 return -EIO;
514}
515
6a46079c
AK
516/*
517 * Error hit kernel page.
518 * Do nothing, try to be lucky and not touch this instead. For a few cases we
519 * could be more sophisticated.
520 */
521static int me_kernel(struct page *p, unsigned long pfn)
6a46079c
AK
522{
523 return IGNORED;
524}
525
526/*
527 * Page in unknown state. Do nothing.
528 */
529static int me_unknown(struct page *p, unsigned long pfn)
530{
531 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
532 return FAILED;
533}
534
6a46079c
AK
535/*
536 * Clean (or cleaned) page cache page.
537 */
538static int me_pagecache_clean(struct page *p, unsigned long pfn)
539{
540 int err;
541 int ret = FAILED;
542 struct address_space *mapping;
543
dc2a1cbf
WF
544 delete_from_lru_cache(p);
545
6a46079c
AK
546 /*
547 * For anonymous pages we're done the only reference left
548 * should be the one m_f() holds.
549 */
550 if (PageAnon(p))
551 return RECOVERED;
552
553 /*
554 * Now truncate the page in the page cache. This is really
555 * more like a "temporary hole punch"
556 * Don't do this for block devices when someone else
557 * has a reference, because it could be file system metadata
558 * and that's not safe to truncate.
559 */
560 mapping = page_mapping(p);
561 if (!mapping) {
562 /*
563 * Page has been teared down in the meanwhile
564 */
565 return FAILED;
566 }
567
568 /*
569 * Truncation is a bit tricky. Enable it per file system for now.
570 *
571 * Open: to take i_mutex or not for this? Right now we don't.
572 */
573 if (mapping->a_ops->error_remove_page) {
574 err = mapping->a_ops->error_remove_page(mapping, p);
575 if (err != 0) {
576 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
577 pfn, err);
578 } else if (page_has_private(p) &&
579 !try_to_release_page(p, GFP_NOIO)) {
580 pr_debug("MCE %#lx: failed to release buffers\n", pfn);
581 } else {
582 ret = RECOVERED;
583 }
584 } else {
585 /*
586 * If the file system doesn't support it just invalidate
587 * This fails on dirty or anything with private pages
588 */
589 if (invalidate_inode_page(p))
590 ret = RECOVERED;
591 else
592 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
593 pfn);
594 }
595 return ret;
596}
597
598/*
599 * Dirty cache page page
600 * Issues: when the error hit a hole page the error is not properly
601 * propagated.
602 */
603static int me_pagecache_dirty(struct page *p, unsigned long pfn)
604{
605 struct address_space *mapping = page_mapping(p);
606
607 SetPageError(p);
608 /* TBD: print more information about the file. */
609 if (mapping) {
610 /*
611 * IO error will be reported by write(), fsync(), etc.
612 * who check the mapping.
613 * This way the application knows that something went
614 * wrong with its dirty file data.
615 *
616 * There's one open issue:
617 *
618 * The EIO will be only reported on the next IO
619 * operation and then cleared through the IO map.
620 * Normally Linux has two mechanisms to pass IO error
621 * first through the AS_EIO flag in the address space
622 * and then through the PageError flag in the page.
623 * Since we drop pages on memory failure handling the
624 * only mechanism open to use is through AS_AIO.
625 *
626 * This has the disadvantage that it gets cleared on
627 * the first operation that returns an error, while
628 * the PageError bit is more sticky and only cleared
629 * when the page is reread or dropped. If an
630 * application assumes it will always get error on
631 * fsync, but does other operations on the fd before
632 * and the page is dropped inbetween then the error
633 * will not be properly reported.
634 *
635 * This can already happen even without hwpoisoned
636 * pages: first on metadata IO errors (which only
637 * report through AS_EIO) or when the page is dropped
638 * at the wrong time.
639 *
640 * So right now we assume that the application DTRT on
641 * the first EIO, but we're not worse than other parts
642 * of the kernel.
643 */
644 mapping_set_error(mapping, EIO);
645 }
646
647 return me_pagecache_clean(p, pfn);
648}
649
650/*
651 * Clean and dirty swap cache.
652 *
653 * Dirty swap cache page is tricky to handle. The page could live both in page
654 * cache and swap cache(ie. page is freshly swapped in). So it could be
655 * referenced concurrently by 2 types of PTEs:
656 * normal PTEs and swap PTEs. We try to handle them consistently by calling
657 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
658 * and then
659 * - clear dirty bit to prevent IO
660 * - remove from LRU
661 * - but keep in the swap cache, so that when we return to it on
662 * a later page fault, we know the application is accessing
663 * corrupted data and shall be killed (we installed simple
664 * interception code in do_swap_page to catch it).
665 *
666 * Clean swap cache pages can be directly isolated. A later page fault will
667 * bring in the known good data from disk.
668 */
669static int me_swapcache_dirty(struct page *p, unsigned long pfn)
670{
6a46079c
AK
671 ClearPageDirty(p);
672 /* Trigger EIO in shmem: */
673 ClearPageUptodate(p);
674
dc2a1cbf
WF
675 if (!delete_from_lru_cache(p))
676 return DELAYED;
677 else
678 return FAILED;
6a46079c
AK
679}
680
681static int me_swapcache_clean(struct page *p, unsigned long pfn)
682{
6a46079c 683 delete_from_swap_cache(p);
e43c3afb 684
dc2a1cbf
WF
685 if (!delete_from_lru_cache(p))
686 return RECOVERED;
687 else
688 return FAILED;
6a46079c
AK
689}
690
691/*
692 * Huge pages. Needs work.
693 * Issues:
93f70f90
NH
694 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
695 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
696 */
697static int me_huge_page(struct page *p, unsigned long pfn)
698{
6de2b1aa 699 int res = 0;
93f70f90
NH
700 struct page *hpage = compound_head(p);
701 /*
702 * We can safely recover from error on free or reserved (i.e.
703 * not in-use) hugepage by dequeuing it from freelist.
704 * To check whether a hugepage is in-use or not, we can't use
705 * page->lru because it can be used in other hugepage operations,
706 * such as __unmap_hugepage_range() and gather_surplus_pages().
707 * So instead we use page_mapping() and PageAnon().
708 * We assume that this function is called with page lock held,
709 * so there is no race between isolation and mapping/unmapping.
710 */
711 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
712 res = dequeue_hwpoisoned_huge_page(hpage);
713 if (!res)
714 return RECOVERED;
93f70f90
NH
715 }
716 return DELAYED;
6a46079c
AK
717}
718
719/*
720 * Various page states we can handle.
721 *
722 * A page state is defined by its current page->flags bits.
723 * The table matches them in order and calls the right handler.
724 *
725 * This is quite tricky because we can access page at any time
726 * in its live cycle, so all accesses have to be extremly careful.
727 *
728 * This is not complete. More states could be added.
729 * For any missing state don't attempt recovery.
730 */
731
732#define dirty (1UL << PG_dirty)
733#define sc (1UL << PG_swapcache)
734#define unevict (1UL << PG_unevictable)
735#define mlock (1UL << PG_mlocked)
736#define writeback (1UL << PG_writeback)
737#define lru (1UL << PG_lru)
738#define swapbacked (1UL << PG_swapbacked)
739#define head (1UL << PG_head)
740#define tail (1UL << PG_tail)
741#define compound (1UL << PG_compound)
742#define slab (1UL << PG_slab)
6a46079c
AK
743#define reserved (1UL << PG_reserved)
744
745static struct page_state {
746 unsigned long mask;
747 unsigned long res;
748 char *msg;
749 int (*action)(struct page *p, unsigned long pfn);
750} error_states[] = {
d95ea51e 751 { reserved, reserved, "reserved kernel", me_kernel },
95d01fc6
WF
752 /*
753 * free pages are specially detected outside this table:
754 * PG_buddy pages only make a small fraction of all free pages.
755 */
6a46079c
AK
756
757 /*
758 * Could in theory check if slab page is free or if we can drop
759 * currently unused objects without touching them. But just
760 * treat it as standard kernel for now.
761 */
762 { slab, slab, "kernel slab", me_kernel },
763
764#ifdef CONFIG_PAGEFLAGS_EXTENDED
765 { head, head, "huge", me_huge_page },
766 { tail, tail, "huge", me_huge_page },
767#else
768 { compound, compound, "huge", me_huge_page },
769#endif
770
771 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
772 { sc|dirty, sc, "swapcache", me_swapcache_clean },
773
774 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
775 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
776
6a46079c
AK
777 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
778 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
6a46079c
AK
779
780 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
781 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
6a46079c
AK
782
783 /*
784 * Catchall entry: must be at end.
785 */
786 { 0, 0, "unknown page state", me_unknown },
787};
788
2326c467
AK
789#undef dirty
790#undef sc
791#undef unevict
792#undef mlock
793#undef writeback
794#undef lru
795#undef swapbacked
796#undef head
797#undef tail
798#undef compound
799#undef slab
800#undef reserved
801
6a46079c
AK
802static void action_result(unsigned long pfn, char *msg, int result)
803{
a7560fc8 804 struct page *page = pfn_to_page(pfn);
6a46079c
AK
805
806 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
807 pfn,
a7560fc8 808 PageDirty(page) ? "dirty " : "",
6a46079c
AK
809 msg, action_name[result]);
810}
811
812static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 813 unsigned long pfn)
6a46079c
AK
814{
815 int result;
7456b040 816 int count;
6a46079c
AK
817
818 result = ps->action(p, pfn);
819 action_result(pfn, ps->msg, result);
7456b040 820
bd1ce5f9 821 count = page_count(p) - 1;
138ce286
WF
822 if (ps->action == me_swapcache_dirty && result == DELAYED)
823 count--;
824 if (count != 0) {
6a46079c
AK
825 printk(KERN_ERR
826 "MCE %#lx: %s page still referenced by %d users\n",
7456b040 827 pfn, ps->msg, count);
138ce286
WF
828 result = FAILED;
829 }
6a46079c
AK
830
831 /* Could do more checks here if page looks ok */
832 /*
833 * Could adjust zone counters here to correct for the missing page.
834 */
835
138ce286 836 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
6a46079c
AK
837}
838
839#define N_UNMAP_TRIES 5
840
841/*
842 * Do all that is necessary to remove user space mappings. Unmap
843 * the pages and send SIGBUS to the processes if the data was dirty.
844 */
1668bfd5 845static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
6a46079c
AK
846 int trapno)
847{
848 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
849 struct address_space *mapping;
850 LIST_HEAD(tokill);
851 int ret;
852 int i;
853 int kill = 1;
7af446a8 854 struct page *hpage = compound_head(p);
6a46079c 855
1668bfd5
WF
856 if (PageReserved(p) || PageSlab(p))
857 return SWAP_SUCCESS;
6a46079c 858
6a46079c
AK
859 /*
860 * This check implies we don't kill processes if their pages
861 * are in the swap cache early. Those are always late kills.
862 */
7af446a8 863 if (!page_mapped(hpage))
1668bfd5
WF
864 return SWAP_SUCCESS;
865
7af446a8 866 if (PageKsm(p))
1668bfd5 867 return SWAP_FAIL;
6a46079c
AK
868
869 if (PageSwapCache(p)) {
870 printk(KERN_ERR
871 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
872 ttu |= TTU_IGNORE_HWPOISON;
873 }
874
875 /*
876 * Propagate the dirty bit from PTEs to struct page first, because we
877 * need this to decide if we should kill or just drop the page.
db0480b3
WF
878 * XXX: the dirty test could be racy: set_page_dirty() may not always
879 * be called inside page lock (it's recommended but not enforced).
6a46079c 880 */
7af446a8
NH
881 mapping = page_mapping(hpage);
882 if (!PageDirty(hpage) && mapping &&
883 mapping_cap_writeback_dirty(mapping)) {
884 if (page_mkclean(hpage)) {
885 SetPageDirty(hpage);
6a46079c
AK
886 } else {
887 kill = 0;
888 ttu |= TTU_IGNORE_HWPOISON;
889 printk(KERN_INFO
890 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
891 pfn);
892 }
893 }
894
895 /*
896 * First collect all the processes that have the page
897 * mapped in dirty form. This has to be done before try_to_unmap,
898 * because ttu takes the rmap data structures down.
899 *
900 * Error handling: We ignore errors here because
901 * there's nothing that can be done.
902 */
903 if (kill)
7af446a8 904 collect_procs(hpage, &tokill);
6a46079c
AK
905
906 /*
907 * try_to_unmap can fail temporarily due to races.
908 * Try a few times (RED-PEN better strategy?)
909 */
910 for (i = 0; i < N_UNMAP_TRIES; i++) {
7af446a8 911 ret = try_to_unmap(hpage, ttu);
6a46079c
AK
912 if (ret == SWAP_SUCCESS)
913 break;
914 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
915 }
916
917 if (ret != SWAP_SUCCESS)
918 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
7af446a8 919 pfn, page_mapcount(hpage));
6a46079c
AK
920
921 /*
922 * Now that the dirty bit has been propagated to the
923 * struct page and all unmaps done we can decide if
924 * killing is needed or not. Only kill when the page
925 * was dirty, otherwise the tokill list is merely
926 * freed. When there was a problem unmapping earlier
927 * use a more force-full uncatchable kill to prevent
928 * any accesses to the poisoned memory.
929 */
7af446a8 930 kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
0d9ee6a2 931 ret != SWAP_SUCCESS, p, pfn);
1668bfd5
WF
932
933 return ret;
6a46079c
AK
934}
935
7013febc
NH
936static void set_page_hwpoison_huge_page(struct page *hpage)
937{
938 int i;
939 int nr_pages = 1 << compound_order(hpage);
940 for (i = 0; i < nr_pages; i++)
941 SetPageHWPoison(hpage + i);
942}
943
944static void clear_page_hwpoison_huge_page(struct page *hpage)
945{
946 int i;
947 int nr_pages = 1 << compound_order(hpage);
948 for (i = 0; i < nr_pages; i++)
949 ClearPageHWPoison(hpage + i);
950}
951
82ba011b 952int __memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
953{
954 struct page_state *ps;
955 struct page *p;
7af446a8 956 struct page *hpage;
6a46079c 957 int res;
c9fbdd5f 958 unsigned int nr_pages;
6a46079c
AK
959
960 if (!sysctl_memory_failure_recovery)
961 panic("Memory failure from trap %d on page %lx", trapno, pfn);
962
963 if (!pfn_valid(pfn)) {
a7560fc8
WF
964 printk(KERN_ERR
965 "MCE %#lx: memory outside kernel control\n",
966 pfn);
967 return -ENXIO;
6a46079c
AK
968 }
969
970 p = pfn_to_page(pfn);
7af446a8 971 hpage = compound_head(p);
6a46079c 972 if (TestSetPageHWPoison(p)) {
d95ea51e 973 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
974 return 0;
975 }
976
c9fbdd5f
NH
977 nr_pages = 1 << compound_order(hpage);
978 atomic_long_add(nr_pages, &mce_bad_pages);
6a46079c
AK
979
980 /*
981 * We need/can do nothing about count=0 pages.
982 * 1) it's a free page, and therefore in safe hand:
983 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
984 * 2) it's a free hugepage, which is also safe:
985 * an affected hugepage will be dequeued from hugepage freelist,
986 * so there's no concern about reusing it ever after.
987 * 3) it's part of a non-compound high order page.
6a46079c
AK
988 * Implies some kernel user: cannot stop them from
989 * R/W the page; let's pray that the page has been
990 * used and will be freed some time later.
991 * In fact it's dangerous to directly bump up page count from 0,
992 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
993 */
82ba011b 994 if (!(flags & MF_COUNT_INCREASED) &&
7af446a8 995 !get_page_unless_zero(hpage)) {
8d22ba1b
WF
996 if (is_free_buddy_page(p)) {
997 action_result(pfn, "free buddy", DELAYED);
998 return 0;
8c6c2ecb
NH
999 } else if (PageHuge(hpage)) {
1000 /*
1001 * Check "just unpoisoned", "filter hit", and
1002 * "race with other subpage."
1003 */
1004 lock_page_nosync(hpage);
1005 if (!PageHWPoison(hpage)
1006 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1007 || (p != hpage && TestSetPageHWPoison(hpage))) {
1008 atomic_long_sub(nr_pages, &mce_bad_pages);
1009 return 0;
1010 }
1011 set_page_hwpoison_huge_page(hpage);
1012 res = dequeue_hwpoisoned_huge_page(hpage);
1013 action_result(pfn, "free huge",
1014 res ? IGNORED : DELAYED);
1015 unlock_page(hpage);
1016 return res;
8d22ba1b
WF
1017 } else {
1018 action_result(pfn, "high order kernel", IGNORED);
1019 return -EBUSY;
1020 }
6a46079c
AK
1021 }
1022
e43c3afb
WF
1023 /*
1024 * We ignore non-LRU pages for good reasons.
1025 * - PG_locked is only well defined for LRU pages and a few others
1026 * - to avoid races with __set_page_locked()
1027 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1028 * The check (unnecessarily) ignores LRU pages being isolated and
1029 * walked by the page reclaim code, however that's not a big loss.
1030 */
7af446a8 1031 if (!PageLRU(p) && !PageHuge(p))
facb6011 1032 shake_page(p, 0);
7af446a8 1033 if (!PageLRU(p) && !PageHuge(p)) {
0474a60e
AK
1034 /*
1035 * shake_page could have turned it free.
1036 */
1037 if (is_free_buddy_page(p)) {
1038 action_result(pfn, "free buddy, 2nd try", DELAYED);
1039 return 0;
1040 }
e43c3afb
WF
1041 action_result(pfn, "non LRU", IGNORED);
1042 put_page(p);
1043 return -EBUSY;
1044 }
e43c3afb 1045
6a46079c
AK
1046 /*
1047 * Lock the page and wait for writeback to finish.
1048 * It's very difficult to mess with pages currently under IO
1049 * and in many cases impossible, so we just avoid it here.
1050 */
7af446a8 1051 lock_page_nosync(hpage);
847ce401
WF
1052
1053 /*
1054 * unpoison always clear PG_hwpoison inside page lock
1055 */
1056 if (!PageHWPoison(p)) {
d95ea51e 1057 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
847ce401
WF
1058 res = 0;
1059 goto out;
1060 }
7c116f2b
WF
1061 if (hwpoison_filter(p)) {
1062 if (TestClearPageHWPoison(p))
c9fbdd5f 1063 atomic_long_sub(nr_pages, &mce_bad_pages);
7af446a8
NH
1064 unlock_page(hpage);
1065 put_page(hpage);
7c116f2b
WF
1066 return 0;
1067 }
847ce401 1068
7013febc
NH
1069 /*
1070 * For error on the tail page, we should set PG_hwpoison
1071 * on the head page to show that the hugepage is hwpoisoned
1072 */
1073 if (PageTail(p) && TestSetPageHWPoison(hpage)) {
1074 action_result(pfn, "hugepage already hardware poisoned",
1075 IGNORED);
1076 unlock_page(hpage);
1077 put_page(hpage);
1078 return 0;
1079 }
1080 /*
1081 * Set PG_hwpoison on all pages in an error hugepage,
1082 * because containment is done in hugepage unit for now.
1083 * Since we have done TestSetPageHWPoison() for the head page with
1084 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1085 */
1086 if (PageHuge(p))
1087 set_page_hwpoison_huge_page(hpage);
1088
6a46079c
AK
1089 wait_on_page_writeback(p);
1090
1091 /*
1092 * Now take care of user space mappings.
1668bfd5 1093 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
6a46079c 1094 */
1668bfd5
WF
1095 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1096 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1097 res = -EBUSY;
1098 goto out;
1099 }
6a46079c
AK
1100
1101 /*
1102 * Torn down by someone else?
1103 */
dc2a1cbf 1104 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
6a46079c 1105 action_result(pfn, "already truncated LRU", IGNORED);
d95ea51e 1106 res = -EBUSY;
6a46079c
AK
1107 goto out;
1108 }
1109
1110 res = -EBUSY;
1111 for (ps = error_states;; ps++) {
dc2a1cbf 1112 if ((p->flags & ps->mask) == ps->res) {
bd1ce5f9 1113 res = page_action(ps, p, pfn);
6a46079c
AK
1114 break;
1115 }
1116 }
1117out:
7af446a8 1118 unlock_page(hpage);
6a46079c
AK
1119 return res;
1120}
1121EXPORT_SYMBOL_GPL(__memory_failure);
1122
1123/**
1124 * memory_failure - Handle memory failure of a page.
1125 * @pfn: Page Number of the corrupted page
1126 * @trapno: Trap number reported in the signal to user space.
1127 *
1128 * This function is called by the low level machine check code
1129 * of an architecture when it detects hardware memory corruption
1130 * of a page. It tries its best to recover, which includes
1131 * dropping pages, killing processes etc.
1132 *
1133 * The function is primarily of use for corruptions that
1134 * happen outside the current execution context (e.g. when
1135 * detected by a background scrubber)
1136 *
1137 * Must run in process context (e.g. a work queue) with interrupts
1138 * enabled and no spinlocks hold.
1139 */
1140void memory_failure(unsigned long pfn, int trapno)
1141{
1142 __memory_failure(pfn, trapno, 0);
1143}
847ce401
WF
1144
1145/**
1146 * unpoison_memory - Unpoison a previously poisoned page
1147 * @pfn: Page number of the to be unpoisoned page
1148 *
1149 * Software-unpoison a page that has been poisoned by
1150 * memory_failure() earlier.
1151 *
1152 * This is only done on the software-level, so it only works
1153 * for linux injected failures, not real hardware failures
1154 *
1155 * Returns 0 for success, otherwise -errno.
1156 */
1157int unpoison_memory(unsigned long pfn)
1158{
1159 struct page *page;
1160 struct page *p;
1161 int freeit = 0;
c9fbdd5f 1162 unsigned int nr_pages;
847ce401
WF
1163
1164 if (!pfn_valid(pfn))
1165 return -ENXIO;
1166
1167 p = pfn_to_page(pfn);
1168 page = compound_head(p);
1169
1170 if (!PageHWPoison(p)) {
1171 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1172 return 0;
1173 }
1174
c9fbdd5f
NH
1175 nr_pages = 1 << compound_order(page);
1176
847ce401 1177 if (!get_page_unless_zero(page)) {
8c6c2ecb
NH
1178 /*
1179 * Since HWPoisoned hugepage should have non-zero refcount,
1180 * race between memory failure and unpoison seems to happen.
1181 * In such case unpoison fails and memory failure runs
1182 * to the end.
1183 */
1184 if (PageHuge(page)) {
1185 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1186 return 0;
1187 }
847ce401 1188 if (TestClearPageHWPoison(p))
c9fbdd5f 1189 atomic_long_sub(nr_pages, &mce_bad_pages);
847ce401
WF
1190 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1191 return 0;
1192 }
1193
1194 lock_page_nosync(page);
1195 /*
1196 * This test is racy because PG_hwpoison is set outside of page lock.
1197 * That's acceptable because that won't trigger kernel panic. Instead,
1198 * the PG_hwpoison page will be caught and isolated on the entrance to
1199 * the free buddy page pool.
1200 */
c9fbdd5f 1201 if (TestClearPageHWPoison(page)) {
847ce401 1202 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
c9fbdd5f 1203 atomic_long_sub(nr_pages, &mce_bad_pages);
847ce401
WF
1204 freeit = 1;
1205 }
7013febc
NH
1206 if (PageHuge(p))
1207 clear_page_hwpoison_huge_page(page);
847ce401
WF
1208 unlock_page(page);
1209
1210 put_page(page);
1211 if (freeit)
1212 put_page(page);
1213
1214 return 0;
1215}
1216EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1217
1218static struct page *new_page(struct page *p, unsigned long private, int **x)
1219{
12686d15 1220 int nid = page_to_nid(p);
d950b958
NH
1221 if (PageHuge(p))
1222 return alloc_huge_page_node(page_hstate(compound_head(p)),
1223 nid);
1224 else
1225 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1226}
1227
1228/*
1229 * Safely get reference count of an arbitrary page.
1230 * Returns 0 for a free page, -EIO for a zero refcount page
1231 * that is not free, and 1 for any other page type.
1232 * For 1 the page is returned with increased page count, otherwise not.
1233 */
1234static int get_any_page(struct page *p, unsigned long pfn, int flags)
1235{
1236 int ret;
1237
1238 if (flags & MF_COUNT_INCREASED)
1239 return 1;
1240
1241 /*
1242 * The lock_system_sleep prevents a race with memory hotplug,
1243 * because the isolation assumes there's only a single user.
1244 * This is a big hammer, a better would be nicer.
1245 */
1246 lock_system_sleep();
1247
1248 /*
1249 * Isolate the page, so that it doesn't get reallocated if it
1250 * was free.
1251 */
1252 set_migratetype_isolate(p);
d950b958
NH
1253 /*
1254 * When the target page is a free hugepage, just remove it
1255 * from free hugepage list.
1256 */
facb6011 1257 if (!get_page_unless_zero(compound_head(p))) {
d950b958
NH
1258 if (PageHuge(p)) {
1259 pr_debug("get_any_page: %#lx free huge page\n", pfn);
1260 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1261 } else if (is_free_buddy_page(p)) {
facb6011
AK
1262 pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1263 /* Set hwpoison bit while page is still isolated */
1264 SetPageHWPoison(p);
1265 ret = 0;
1266 } else {
1267 pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1268 pfn, p->flags);
1269 ret = -EIO;
1270 }
1271 } else {
1272 /* Not a free page */
1273 ret = 1;
1274 }
1275 unset_migratetype_isolate(p);
1276 unlock_system_sleep();
1277 return ret;
1278}
1279
d950b958
NH
1280static int soft_offline_huge_page(struct page *page, int flags)
1281{
1282 int ret;
1283 unsigned long pfn = page_to_pfn(page);
1284 struct page *hpage = compound_head(page);
1285 LIST_HEAD(pagelist);
1286
1287 ret = get_any_page(page, pfn, flags);
1288 if (ret < 0)
1289 return ret;
1290 if (ret == 0)
1291 goto done;
1292
1293 if (PageHWPoison(hpage)) {
1294 put_page(hpage);
1295 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1296 return -EBUSY;
1297 }
1298
1299 /* Keep page count to indicate a given hugepage is isolated. */
1300
1301 list_add(&hpage->lru, &pagelist);
1302 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1303 if (ret) {
1304 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1305 pfn, ret, page->flags);
1306 if (ret > 0)
1307 ret = -EIO;
1308 return ret;
1309 }
1310done:
1311 if (!PageHWPoison(hpage))
1312 atomic_long_add(1 << compound_order(hpage), &mce_bad_pages);
1313 set_page_hwpoison_huge_page(hpage);
1314 dequeue_hwpoisoned_huge_page(hpage);
1315 /* keep elevated page count for bad page */
1316 return ret;
1317}
1318
facb6011
AK
1319/**
1320 * soft_offline_page - Soft offline a page.
1321 * @page: page to offline
1322 * @flags: flags. Same as memory_failure().
1323 *
1324 * Returns 0 on success, otherwise negated errno.
1325 *
1326 * Soft offline a page, by migration or invalidation,
1327 * without killing anything. This is for the case when
1328 * a page is not corrupted yet (so it's still valid to access),
1329 * but has had a number of corrected errors and is better taken
1330 * out.
1331 *
1332 * The actual policy on when to do that is maintained by
1333 * user space.
1334 *
1335 * This should never impact any application or cause data loss,
1336 * however it might take some time.
1337 *
1338 * This is not a 100% solution for all memory, but tries to be
1339 * ``good enough'' for the majority of memory.
1340 */
1341int soft_offline_page(struct page *page, int flags)
1342{
1343 int ret;
1344 unsigned long pfn = page_to_pfn(page);
1345
d950b958
NH
1346 if (PageHuge(page))
1347 return soft_offline_huge_page(page, flags);
1348
facb6011
AK
1349 ret = get_any_page(page, pfn, flags);
1350 if (ret < 0)
1351 return ret;
1352 if (ret == 0)
1353 goto done;
1354
1355 /*
1356 * Page cache page we can handle?
1357 */
1358 if (!PageLRU(page)) {
1359 /*
1360 * Try to free it.
1361 */
1362 put_page(page);
1363 shake_page(page, 1);
1364
1365 /*
1366 * Did it turn free?
1367 */
1368 ret = get_any_page(page, pfn, 0);
1369 if (ret < 0)
1370 return ret;
1371 if (ret == 0)
1372 goto done;
1373 }
1374 if (!PageLRU(page)) {
1375 pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1376 pfn, page->flags);
1377 return -EIO;
1378 }
1379
1380 lock_page(page);
1381 wait_on_page_writeback(page);
1382
1383 /*
1384 * Synchronized using the page lock with memory_failure()
1385 */
1386 if (PageHWPoison(page)) {
1387 unlock_page(page);
1388 put_page(page);
1389 pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1390 return -EBUSY;
1391 }
1392
1393 /*
1394 * Try to invalidate first. This should work for
1395 * non dirty unmapped page cache pages.
1396 */
1397 ret = invalidate_inode_page(page);
1398 unlock_page(page);
1399
1400 /*
1401 * Drop count because page migration doesn't like raised
1402 * counts. The page could get re-allocated, but if it becomes
1403 * LRU the isolation will just fail.
1404 * RED-PEN would be better to keep it isolated here, but we
1405 * would need to fix isolation locking first.
1406 */
1407 put_page(page);
1408 if (ret == 1) {
1409 ret = 0;
1410 pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1411 goto done;
1412 }
1413
1414 /*
1415 * Simple invalidation didn't work.
1416 * Try to migrate to a new page instead. migrate.c
1417 * handles a large number of cases for us.
1418 */
1419 ret = isolate_lru_page(page);
1420 if (!ret) {
1421 LIST_HEAD(pagelist);
1422
1423 list_add(&page->lru, &pagelist);
1424 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1425 if (ret) {
1426 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1427 pfn, ret, page->flags);
1428 if (ret > 0)
1429 ret = -EIO;
1430 }
1431 } else {
1432 pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1433 pfn, ret, page_count(page), page->flags);
1434 }
1435 if (ret)
1436 return ret;
1437
1438done:
1439 atomic_long_add(1, &mce_bad_pages);
1440 SetPageHWPoison(page);
1441 /* keep elevated page count for bad page */
1442 return ret;
1443}
bf998156 1444
bbeb3406
HY
1445/*
1446 * The caller must hold current->mm->mmap_sem in read mode.
1447 */
bf998156
HY
1448int is_hwpoison_address(unsigned long addr)
1449{
1450 pgd_t *pgdp;
1451 pud_t pud, *pudp;
1452 pmd_t pmd, *pmdp;
1453 pte_t pte, *ptep;
1454 swp_entry_t entry;
1455
1456 pgdp = pgd_offset(current->mm, addr);
1457 if (!pgd_present(*pgdp))
1458 return 0;
1459 pudp = pud_offset(pgdp, addr);
1460 pud = *pudp;
1461 if (!pud_present(pud) || pud_large(pud))
1462 return 0;
1463 pmdp = pmd_offset(pudp, addr);
1464 pmd = *pmdp;
1465 if (!pmd_present(pmd) || pmd_large(pmd))
1466 return 0;
1467 ptep = pte_offset_map(pmdp, addr);
1468 pte = *ptep;
1469 pte_unmap(ptep);
1470 if (!is_swap_pte(pte))
1471 return 0;
1472 entry = pte_to_swp_entry(pte);
1473 return is_hwpoison_entry(entry);
1474}
1475EXPORT_SYMBOL_GPL(is_hwpoison_address);