]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/dmapool.c
xps: Transmit Packet Steering
[net-next-2.6.git] / mm / dmapool.c
CommitLineData
6182a094
MW
1/*
2 * DMA Pool allocator
3 *
4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
7 *
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
11 *
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
16 *
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
a35a3455
MW
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
6182a094 23 */
1da177e4
LT
24
25#include <linux/device.h>
1da177e4
LT
26#include <linux/dma-mapping.h>
27#include <linux/dmapool.h>
6182a094
MW
28#include <linux/kernel.h>
29#include <linux/list.h>
1da177e4 30#include <linux/module.h>
6182a094 31#include <linux/mutex.h>
c9cf5528 32#include <linux/poison.h>
e8edc6e0 33#include <linux/sched.h>
6182a094
MW
34#include <linux/slab.h>
35#include <linux/spinlock.h>
36#include <linux/string.h>
37#include <linux/types.h>
38#include <linux/wait.h>
1da177e4 39
b5ee5bef
AK
40#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
41#define DMAPOOL_DEBUG 1
42#endif
43
e87aa773
MW
44struct dma_pool { /* the pool */
45 struct list_head page_list;
46 spinlock_t lock;
e87aa773
MW
47 size_t size;
48 struct device *dev;
49 size_t allocation;
e34f44b3 50 size_t boundary;
e87aa773
MW
51 char name[32];
52 wait_queue_head_t waitq;
53 struct list_head pools;
1da177e4
LT
54};
55
e87aa773
MW
56struct dma_page { /* cacheable header for 'allocation' bytes */
57 struct list_head page_list;
58 void *vaddr;
59 dma_addr_t dma;
a35a3455
MW
60 unsigned int in_use;
61 unsigned int offset;
1da177e4
LT
62};
63
64#define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000)
1da177e4 65
e87aa773 66static DEFINE_MUTEX(pools_lock);
1da177e4
LT
67
68static ssize_t
e87aa773 69show_pools(struct device *dev, struct device_attribute *attr, char *buf)
1da177e4
LT
70{
71 unsigned temp;
72 unsigned size;
73 char *next;
74 struct dma_page *page;
75 struct dma_pool *pool;
76
77 next = buf;
78 size = PAGE_SIZE;
79
80 temp = scnprintf(next, size, "poolinfo - 0.1\n");
81 size -= temp;
82 next += temp;
83
b2366d68 84 mutex_lock(&pools_lock);
1da177e4
LT
85 list_for_each_entry(pool, &dev->dma_pools, pools) {
86 unsigned pages = 0;
87 unsigned blocks = 0;
88
c4956823 89 spin_lock_irq(&pool->lock);
1da177e4
LT
90 list_for_each_entry(page, &pool->page_list, page_list) {
91 pages++;
92 blocks += page->in_use;
93 }
c4956823 94 spin_unlock_irq(&pool->lock);
1da177e4
LT
95
96 /* per-pool info, no real statistics yet */
97 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
a35a3455
MW
98 pool->name, blocks,
99 pages * (pool->allocation / pool->size),
e87aa773 100 pool->size, pages);
1da177e4
LT
101 size -= temp;
102 next += temp;
103 }
b2366d68 104 mutex_unlock(&pools_lock);
1da177e4
LT
105
106 return PAGE_SIZE - size;
107}
e87aa773
MW
108
109static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
1da177e4
LT
110
111/**
112 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
113 * @name: name of pool, for diagnostics
114 * @dev: device that will be doing the DMA
115 * @size: size of the blocks in this pool.
116 * @align: alignment requirement for blocks; must be a power of two
e34f44b3 117 * @boundary: returned blocks won't cross this power of two boundary
1da177e4
LT
118 * Context: !in_interrupt()
119 *
120 * Returns a dma allocation pool with the requested characteristics, or
121 * null if one can't be created. Given one of these pools, dma_pool_alloc()
122 * may be used to allocate memory. Such memory will all have "consistent"
123 * DMA mappings, accessible by the device and its driver without using
124 * cache flushing primitives. The actual size of blocks allocated may be
125 * larger than requested because of alignment.
126 *
e34f44b3 127 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
1da177e4
LT
128 * cross that size boundary. This is useful for devices which have
129 * addressing restrictions on individual DMA transfers, such as not crossing
130 * boundaries of 4KBytes.
131 */
e87aa773 132struct dma_pool *dma_pool_create(const char *name, struct device *dev,
e34f44b3 133 size_t size, size_t align, size_t boundary)
1da177e4 134{
e87aa773 135 struct dma_pool *retval;
e34f44b3 136 size_t allocation;
1da177e4 137
399154be 138 if (align == 0) {
1da177e4 139 align = 1;
399154be 140 } else if (align & (align - 1)) {
1da177e4 141 return NULL;
1da177e4
LT
142 }
143
a35a3455 144 if (size == 0) {
399154be 145 return NULL;
a35a3455
MW
146 } else if (size < 4) {
147 size = 4;
148 }
399154be
MW
149
150 if ((size % align) != 0)
151 size = ALIGN(size, align);
152
e34f44b3
MW
153 allocation = max_t(size_t, size, PAGE_SIZE);
154
155 if (!boundary) {
156 boundary = allocation;
157 } else if ((boundary < size) || (boundary & (boundary - 1))) {
1da177e4 158 return NULL;
e34f44b3 159 }
1da177e4 160
e34f44b3
MW
161 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
162 if (!retval)
1da177e4
LT
163 return retval;
164
e34f44b3 165 strlcpy(retval->name, name, sizeof(retval->name));
1da177e4
LT
166
167 retval->dev = dev;
168
e87aa773
MW
169 INIT_LIST_HEAD(&retval->page_list);
170 spin_lock_init(&retval->lock);
1da177e4 171 retval->size = size;
e34f44b3 172 retval->boundary = boundary;
1da177e4 173 retval->allocation = allocation;
e87aa773 174 init_waitqueue_head(&retval->waitq);
1da177e4
LT
175
176 if (dev) {
141ecc53
CH
177 int ret;
178
b2366d68 179 mutex_lock(&pools_lock);
e87aa773
MW
180 if (list_empty(&dev->dma_pools))
181 ret = device_create_file(dev, &dev_attr_pools);
141ecc53
CH
182 else
183 ret = 0;
1da177e4 184 /* note: not currently insisting "name" be unique */
141ecc53 185 if (!ret)
e87aa773 186 list_add(&retval->pools, &dev->dma_pools);
141ecc53
CH
187 else {
188 kfree(retval);
189 retval = NULL;
190 }
b2366d68 191 mutex_unlock(&pools_lock);
1da177e4 192 } else
e87aa773 193 INIT_LIST_HEAD(&retval->pools);
1da177e4
LT
194
195 return retval;
196}
e87aa773 197EXPORT_SYMBOL(dma_pool_create);
1da177e4 198
a35a3455
MW
199static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
200{
201 unsigned int offset = 0;
e34f44b3 202 unsigned int next_boundary = pool->boundary;
a35a3455
MW
203
204 do {
205 unsigned int next = offset + pool->size;
e34f44b3
MW
206 if (unlikely((next + pool->size) >= next_boundary)) {
207 next = next_boundary;
208 next_boundary += pool->boundary;
209 }
a35a3455
MW
210 *(int *)(page->vaddr + offset) = next;
211 offset = next;
212 } while (offset < pool->allocation);
213}
214
e87aa773 215static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
1da177e4 216{
e87aa773 217 struct dma_page *page;
1da177e4 218
a35a3455 219 page = kmalloc(sizeof(*page), mem_flags);
1da177e4
LT
220 if (!page)
221 return NULL;
a35a3455 222 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
e87aa773 223 &page->dma, mem_flags);
1da177e4 224 if (page->vaddr) {
b5ee5bef 225#ifdef DMAPOOL_DEBUG
e87aa773 226 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
1da177e4 227#endif
a35a3455 228 pool_initialise_page(pool, page);
e87aa773 229 list_add(&page->page_list, &pool->page_list);
1da177e4 230 page->in_use = 0;
a35a3455 231 page->offset = 0;
1da177e4 232 } else {
e87aa773 233 kfree(page);
1da177e4
LT
234 page = NULL;
235 }
236 return page;
237}
238
a35a3455 239static inline int is_page_busy(struct dma_page *page)
1da177e4 240{
a35a3455 241 return page->in_use != 0;
1da177e4
LT
242}
243
e87aa773 244static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
1da177e4 245{
e87aa773 246 dma_addr_t dma = page->dma;
1da177e4 247
b5ee5bef 248#ifdef DMAPOOL_DEBUG
e87aa773 249 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
1da177e4 250#endif
e87aa773
MW
251 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
252 list_del(&page->page_list);
253 kfree(page);
1da177e4
LT
254}
255
1da177e4
LT
256/**
257 * dma_pool_destroy - destroys a pool of dma memory blocks.
258 * @pool: dma pool that will be destroyed
259 * Context: !in_interrupt()
260 *
261 * Caller guarantees that no more memory from the pool is in use,
262 * and that nothing will try to use the pool after this call.
263 */
e87aa773 264void dma_pool_destroy(struct dma_pool *pool)
1da177e4 265{
b2366d68 266 mutex_lock(&pools_lock);
e87aa773
MW
267 list_del(&pool->pools);
268 if (pool->dev && list_empty(&pool->dev->dma_pools))
269 device_remove_file(pool->dev, &dev_attr_pools);
b2366d68 270 mutex_unlock(&pools_lock);
1da177e4 271
e87aa773
MW
272 while (!list_empty(&pool->page_list)) {
273 struct dma_page *page;
274 page = list_entry(pool->page_list.next,
275 struct dma_page, page_list);
a35a3455 276 if (is_page_busy(page)) {
1da177e4 277 if (pool->dev)
e87aa773
MW
278 dev_err(pool->dev,
279 "dma_pool_destroy %s, %p busy\n",
1da177e4
LT
280 pool->name, page->vaddr);
281 else
e87aa773
MW
282 printk(KERN_ERR
283 "dma_pool_destroy %s, %p busy\n",
284 pool->name, page->vaddr);
1da177e4 285 /* leak the still-in-use consistent memory */
e87aa773
MW
286 list_del(&page->page_list);
287 kfree(page);
1da177e4 288 } else
e87aa773 289 pool_free_page(pool, page);
1da177e4
LT
290 }
291
e87aa773 292 kfree(pool);
1da177e4 293}
e87aa773 294EXPORT_SYMBOL(dma_pool_destroy);
1da177e4
LT
295
296/**
297 * dma_pool_alloc - get a block of consistent memory
298 * @pool: dma pool that will produce the block
299 * @mem_flags: GFP_* bitmask
300 * @handle: pointer to dma address of block
301 *
302 * This returns the kernel virtual address of a currently unused block,
303 * and reports its dma address through the handle.
6182a094 304 * If such a memory block can't be allocated, %NULL is returned.
1da177e4 305 */
e87aa773
MW
306void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
307 dma_addr_t *handle)
1da177e4 308{
e87aa773
MW
309 unsigned long flags;
310 struct dma_page *page;
e87aa773
MW
311 size_t offset;
312 void *retval;
313
ea05c844
DZ
314 might_sleep_if(mem_flags & __GFP_WAIT);
315
e87aa773 316 spin_lock_irqsave(&pool->lock, flags);
2cae367e 317 restart:
1da177e4 318 list_for_each_entry(page, &pool->page_list, page_list) {
a35a3455
MW
319 if (page->offset < pool->allocation)
320 goto ready;
1da177e4 321 }
e87aa773
MW
322 page = pool_alloc_page(pool, GFP_ATOMIC);
323 if (!page) {
1da177e4 324 if (mem_flags & __GFP_WAIT) {
e87aa773 325 DECLARE_WAITQUEUE(wait, current);
1da177e4 326
d9aacccf 327 __set_current_state(TASK_INTERRUPTIBLE);
2cae367e 328 __add_wait_queue(&pool->waitq, &wait);
e87aa773 329 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4 330
e87aa773 331 schedule_timeout(POOL_TIMEOUT_JIFFIES);
1da177e4 332
2cae367e
MW
333 spin_lock_irqsave(&pool->lock, flags);
334 __remove_wait_queue(&pool->waitq, &wait);
1da177e4
LT
335 goto restart;
336 }
337 retval = NULL;
338 goto done;
339 }
340
e87aa773 341 ready:
1da177e4 342 page->in_use++;
a35a3455
MW
343 offset = page->offset;
344 page->offset = *(int *)(page->vaddr + offset);
1da177e4
LT
345 retval = offset + page->vaddr;
346 *handle = offset + page->dma;
b5ee5bef 347#ifdef DMAPOOL_DEBUG
e87aa773 348 memset(retval, POOL_POISON_ALLOCATED, pool->size);
1da177e4 349#endif
e87aa773
MW
350 done:
351 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4
LT
352 return retval;
353}
e87aa773 354EXPORT_SYMBOL(dma_pool_alloc);
1da177e4 355
e87aa773 356static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
1da177e4 357{
e87aa773
MW
358 unsigned long flags;
359 struct dma_page *page;
1da177e4 360
e87aa773 361 spin_lock_irqsave(&pool->lock, flags);
1da177e4
LT
362 list_for_each_entry(page, &pool->page_list, page_list) {
363 if (dma < page->dma)
364 continue;
365 if (dma < (page->dma + pool->allocation))
366 goto done;
367 }
368 page = NULL;
e87aa773
MW
369 done:
370 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4
LT
371 return page;
372}
373
1da177e4
LT
374/**
375 * dma_pool_free - put block back into dma pool
376 * @pool: the dma pool holding the block
377 * @vaddr: virtual address of block
378 * @dma: dma address of block
379 *
380 * Caller promises neither device nor driver will again touch this block
381 * unless it is first re-allocated.
382 */
e87aa773 383void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
1da177e4 384{
e87aa773
MW
385 struct dma_page *page;
386 unsigned long flags;
a35a3455 387 unsigned int offset;
1da177e4 388
e87aa773
MW
389 page = pool_find_page(pool, dma);
390 if (!page) {
1da177e4 391 if (pool->dev)
e87aa773
MW
392 dev_err(pool->dev,
393 "dma_pool_free %s, %p/%lx (bad dma)\n",
394 pool->name, vaddr, (unsigned long)dma);
1da177e4 395 else
e87aa773
MW
396 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
397 pool->name, vaddr, (unsigned long)dma);
1da177e4
LT
398 return;
399 }
400
a35a3455 401 offset = vaddr - page->vaddr;
b5ee5bef 402#ifdef DMAPOOL_DEBUG
a35a3455 403 if ((dma - page->dma) != offset) {
1da177e4 404 if (pool->dev)
e87aa773
MW
405 dev_err(pool->dev,
406 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
407 pool->name, vaddr, (unsigned long long)dma);
1da177e4 408 else
e87aa773
MW
409 printk(KERN_ERR
410 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
411 pool->name, vaddr, (unsigned long long)dma);
1da177e4
LT
412 return;
413 }
a35a3455
MW
414 {
415 unsigned int chain = page->offset;
416 while (chain < pool->allocation) {
417 if (chain != offset) {
418 chain = *(int *)(page->vaddr + chain);
419 continue;
420 }
421 if (pool->dev)
422 dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
423 "already free\n", pool->name,
424 (unsigned long long)dma);
425 else
426 printk(KERN_ERR "dma_pool_free %s, dma %Lx "
427 "already free\n", pool->name,
428 (unsigned long long)dma);
429 return;
430 }
1da177e4 431 }
e87aa773 432 memset(vaddr, POOL_POISON_FREED, pool->size);
1da177e4
LT
433#endif
434
e87aa773 435 spin_lock_irqsave(&pool->lock, flags);
1da177e4 436 page->in_use--;
a35a3455
MW
437 *(int *)vaddr = page->offset;
438 page->offset = offset;
e87aa773 439 if (waitqueue_active(&pool->waitq))
2cae367e 440 wake_up_locked(&pool->waitq);
1da177e4
LT
441 /*
442 * Resist a temptation to do
a35a3455 443 * if (!is_page_busy(page)) pool_free_page(pool, page);
1da177e4
LT
444 * Better have a few empty pages hang around.
445 */
e87aa773 446 spin_unlock_irqrestore(&pool->lock, flags);
1da177e4 447}
e87aa773 448EXPORT_SYMBOL(dma_pool_free);
1da177e4 449
9ac7849e
TH
450/*
451 * Managed DMA pool
452 */
453static void dmam_pool_release(struct device *dev, void *res)
454{
455 struct dma_pool *pool = *(struct dma_pool **)res;
456
457 dma_pool_destroy(pool);
458}
459
460static int dmam_pool_match(struct device *dev, void *res, void *match_data)
461{
462 return *(struct dma_pool **)res == match_data;
463}
464
465/**
466 * dmam_pool_create - Managed dma_pool_create()
467 * @name: name of pool, for diagnostics
468 * @dev: device that will be doing the DMA
469 * @size: size of the blocks in this pool.
470 * @align: alignment requirement for blocks; must be a power of two
471 * @allocation: returned blocks won't cross this boundary (or zero)
472 *
473 * Managed dma_pool_create(). DMA pool created with this function is
474 * automatically destroyed on driver detach.
475 */
476struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
477 size_t size, size_t align, size_t allocation)
478{
479 struct dma_pool **ptr, *pool;
480
481 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
482 if (!ptr)
483 return NULL;
484
485 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
486 if (pool)
487 devres_add(dev, ptr);
488 else
489 devres_free(ptr);
490
491 return pool;
492}
e87aa773 493EXPORT_SYMBOL(dmam_pool_create);
9ac7849e
TH
494
495/**
496 * dmam_pool_destroy - Managed dma_pool_destroy()
497 * @pool: dma pool that will be destroyed
498 *
499 * Managed dma_pool_destroy().
500 */
501void dmam_pool_destroy(struct dma_pool *pool)
502{
503 struct device *dev = pool->dev;
504
505 dma_pool_destroy(pool);
506 WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
507}
e87aa773 508EXPORT_SYMBOL(dmam_pool_destroy);