]> bbs.cooldavid.org Git - net-next-2.6.git/blame - lib/idr.c
MN10300: Give correct size when reserving interrupt vector table
[net-next-2.6.git] / lib / idr.c
CommitLineData
1da177e4
LT
1/*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
3219b3b7
ND
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
e15ae2dd 11 * Small id to pointer translation service.
1da177e4 12 *
e15ae2dd 13 * It uses a radix tree like structure as a sparse array indexed
1da177e4 14 * by the id to obtain the pointer. The bitmap makes allocating
e15ae2dd 15 * a new id quick.
1da177e4
LT
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
e15ae2dd 22 * You can release ids at any time. When all ids are released, most of
1da177e4 23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
e15ae2dd 24 * don't need to go to the memory "store" during an id allocate, just
1da177e4
LT
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29#ifndef TEST // to test in user space...
30#include <linux/slab.h>
31#include <linux/init.h>
32#include <linux/module.h>
33#endif
5806f07c 34#include <linux/err.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/idr.h>
37
e18b890b 38static struct kmem_cache *idr_layer_cache;
1da177e4 39
4ae53789 40static struct idr_layer *get_from_free_list(struct idr *idp)
1da177e4
LT
41{
42 struct idr_layer *p;
c259cc28 43 unsigned long flags;
1da177e4 44
c259cc28 45 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
46 if ((p = idp->id_free)) {
47 idp->id_free = p->ary[0];
48 idp->id_free_cnt--;
49 p->ary[0] = NULL;
50 }
c259cc28 51 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
52 return(p);
53}
54
cf481c20
ND
55static void idr_layer_rcu_free(struct rcu_head *head)
56{
57 struct idr_layer *layer;
58
59 layer = container_of(head, struct idr_layer, rcu_head);
60 kmem_cache_free(idr_layer_cache, layer);
61}
62
63static inline void free_layer(struct idr_layer *p)
64{
65 call_rcu(&p->rcu_head, idr_layer_rcu_free);
66}
67
1eec0056 68/* only called when idp->lock is held */
4ae53789 69static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
1eec0056
SR
70{
71 p->ary[0] = idp->id_free;
72 idp->id_free = p;
73 idp->id_free_cnt++;
74}
75
4ae53789 76static void move_to_free_list(struct idr *idp, struct idr_layer *p)
1da177e4 77{
c259cc28
RD
78 unsigned long flags;
79
1da177e4
LT
80 /*
81 * Depends on the return element being zeroed.
82 */
c259cc28 83 spin_lock_irqsave(&idp->lock, flags);
4ae53789 84 __move_to_free_list(idp, p);
c259cc28 85 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
86}
87
e33ac8bd
TH
88static void idr_mark_full(struct idr_layer **pa, int id)
89{
90 struct idr_layer *p = pa[0];
91 int l = 0;
92
93 __set_bit(id & IDR_MASK, &p->bitmap);
94 /*
95 * If this layer is full mark the bit in the layer above to
96 * show that this part of the radix tree is full. This may
97 * complete the layer above and require walking up the radix
98 * tree.
99 */
100 while (p->bitmap == IDR_FULL) {
101 if (!(p = pa[++l]))
102 break;
103 id = id >> IDR_BITS;
104 __set_bit((id & IDR_MASK), &p->bitmap);
105 }
106}
107
1da177e4
LT
108/**
109 * idr_pre_get - reserver resources for idr allocation
110 * @idp: idr handle
111 * @gfp_mask: memory allocation flags
112 *
113 * This function should be called prior to locking and calling the
3219b3b7 114 * idr_get_new* functions. It preallocates enough memory to satisfy
1da177e4
LT
115 * the worst possible allocation.
116 *
117 * If the system is REALLY out of memory this function returns 0,
118 * otherwise 1.
119 */
fd4f2df2 120int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
1da177e4
LT
121{
122 while (idp->id_free_cnt < IDR_FREE_MAX) {
123 struct idr_layer *new;
124 new = kmem_cache_alloc(idr_layer_cache, gfp_mask);
e15ae2dd 125 if (new == NULL)
1da177e4 126 return (0);
4ae53789 127 move_to_free_list(idp, new);
1da177e4
LT
128 }
129 return 1;
130}
131EXPORT_SYMBOL(idr_pre_get);
132
e33ac8bd 133static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
1da177e4
LT
134{
135 int n, m, sh;
136 struct idr_layer *p, *new;
7aae6dd8 137 int l, id, oid;
5ba25331 138 unsigned long bm;
1da177e4
LT
139
140 id = *starting_id;
7aae6dd8 141 restart:
1da177e4
LT
142 p = idp->top;
143 l = idp->layers;
144 pa[l--] = NULL;
145 while (1) {
146 /*
147 * We run around this while until we reach the leaf node...
148 */
149 n = (id >> (IDR_BITS*l)) & IDR_MASK;
150 bm = ~p->bitmap;
151 m = find_next_bit(&bm, IDR_SIZE, n);
152 if (m == IDR_SIZE) {
153 /* no space available go back to previous layer. */
154 l++;
7aae6dd8 155 oid = id;
e15ae2dd 156 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
7aae6dd8
TH
157
158 /* if already at the top layer, we need to grow */
1da177e4
LT
159 if (!(p = pa[l])) {
160 *starting_id = id;
944ca05c 161 return IDR_NEED_TO_GROW;
1da177e4 162 }
7aae6dd8
TH
163
164 /* If we need to go up one layer, continue the
165 * loop; otherwise, restart from the top.
166 */
167 sh = IDR_BITS * (l + 1);
168 if (oid >> sh == id >> sh)
169 continue;
170 else
171 goto restart;
1da177e4
LT
172 }
173 if (m != n) {
174 sh = IDR_BITS*l;
175 id = ((id >> sh) ^ n ^ m) << sh;
176 }
177 if ((id >= MAX_ID_BIT) || (id < 0))
944ca05c 178 return IDR_NOMORE_SPACE;
1da177e4
LT
179 if (l == 0)
180 break;
181 /*
182 * Create the layer below if it is missing.
183 */
184 if (!p->ary[m]) {
4ae53789
ND
185 new = get_from_free_list(idp);
186 if (!new)
1da177e4 187 return -1;
6ff2d39b 188 new->layer = l-1;
3219b3b7 189 rcu_assign_pointer(p->ary[m], new);
1da177e4
LT
190 p->count++;
191 }
192 pa[l--] = p;
193 p = p->ary[m];
194 }
e33ac8bd
TH
195
196 pa[l] = p;
197 return id;
1da177e4
LT
198}
199
e33ac8bd
TH
200static int idr_get_empty_slot(struct idr *idp, int starting_id,
201 struct idr_layer **pa)
1da177e4
LT
202{
203 struct idr_layer *p, *new;
204 int layers, v, id;
c259cc28 205 unsigned long flags;
e15ae2dd 206
1da177e4
LT
207 id = starting_id;
208build_up:
209 p = idp->top;
210 layers = idp->layers;
211 if (unlikely(!p)) {
4ae53789 212 if (!(p = get_from_free_list(idp)))
1da177e4 213 return -1;
6ff2d39b 214 p->layer = 0;
1da177e4
LT
215 layers = 1;
216 }
217 /*
218 * Add a new layer to the top of the tree if the requested
219 * id is larger than the currently allocated space.
220 */
589777ea 221 while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
1da177e4
LT
222 layers++;
223 if (!p->count)
224 continue;
4ae53789 225 if (!(new = get_from_free_list(idp))) {
1da177e4
LT
226 /*
227 * The allocation failed. If we built part of
228 * the structure tear it down.
229 */
c259cc28 230 spin_lock_irqsave(&idp->lock, flags);
1da177e4
LT
231 for (new = p; p && p != idp->top; new = p) {
232 p = p->ary[0];
233 new->ary[0] = NULL;
234 new->bitmap = new->count = 0;
4ae53789 235 __move_to_free_list(idp, new);
1da177e4 236 }
c259cc28 237 spin_unlock_irqrestore(&idp->lock, flags);
1da177e4
LT
238 return -1;
239 }
240 new->ary[0] = p;
241 new->count = 1;
6ff2d39b 242 new->layer = layers-1;
1da177e4
LT
243 if (p->bitmap == IDR_FULL)
244 __set_bit(0, &new->bitmap);
245 p = new;
246 }
3219b3b7 247 rcu_assign_pointer(idp->top, p);
1da177e4 248 idp->layers = layers;
e33ac8bd 249 v = sub_alloc(idp, &id, pa);
944ca05c 250 if (v == IDR_NEED_TO_GROW)
1da177e4
LT
251 goto build_up;
252 return(v);
253}
254
e33ac8bd
TH
255static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
256{
257 struct idr_layer *pa[MAX_LEVEL];
258 int id;
259
260 id = idr_get_empty_slot(idp, starting_id, pa);
261 if (id >= 0) {
262 /*
263 * Successfully found an empty slot. Install the user
264 * pointer and mark the slot full.
265 */
3219b3b7
ND
266 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
267 (struct idr_layer *)ptr);
e33ac8bd
TH
268 pa[0]->count++;
269 idr_mark_full(pa, id);
270 }
271
272 return id;
273}
274
1da177e4 275/**
7c657f2f 276 * idr_get_new_above - allocate new idr entry above or equal to a start id
1da177e4
LT
277 * @idp: idr handle
278 * @ptr: pointer you want associated with the ide
279 * @start_id: id to start search at
280 * @id: pointer to the allocated handle
281 *
282 * This is the allocate id function. It should be called with any
283 * required locks.
284 *
285 * If memory is required, it will return -EAGAIN, you should unlock
286 * and go back to the idr_pre_get() call. If the idr is full, it will
287 * return -ENOSPC.
288 *
289 * @id returns a value in the range 0 ... 0x7fffffff
290 */
291int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
292{
293 int rv;
e15ae2dd 294
1da177e4
LT
295 rv = idr_get_new_above_int(idp, ptr, starting_id);
296 /*
297 * This is a cheap hack until the IDR code can be fixed to
298 * return proper error values.
299 */
944ca05c
ND
300 if (rv < 0)
301 return _idr_rc_to_errno(rv);
1da177e4
LT
302 *id = rv;
303 return 0;
304}
305EXPORT_SYMBOL(idr_get_new_above);
306
307/**
308 * idr_get_new - allocate new idr entry
309 * @idp: idr handle
310 * @ptr: pointer you want associated with the ide
311 * @id: pointer to the allocated handle
312 *
313 * This is the allocate id function. It should be called with any
314 * required locks.
315 *
316 * If memory is required, it will return -EAGAIN, you should unlock
317 * and go back to the idr_pre_get() call. If the idr is full, it will
318 * return -ENOSPC.
319 *
320 * @id returns a value in the range 0 ... 0x7fffffff
321 */
322int idr_get_new(struct idr *idp, void *ptr, int *id)
323{
324 int rv;
e15ae2dd 325
1da177e4
LT
326 rv = idr_get_new_above_int(idp, ptr, 0);
327 /*
328 * This is a cheap hack until the IDR code can be fixed to
329 * return proper error values.
330 */
944ca05c
ND
331 if (rv < 0)
332 return _idr_rc_to_errno(rv);
1da177e4
LT
333 *id = rv;
334 return 0;
335}
336EXPORT_SYMBOL(idr_get_new);
337
338static void idr_remove_warning(int id)
339{
f098ad65
ND
340 printk(KERN_WARNING
341 "idr_remove called for id=%d which is not allocated.\n", id);
1da177e4
LT
342 dump_stack();
343}
344
345static void sub_remove(struct idr *idp, int shift, int id)
346{
347 struct idr_layer *p = idp->top;
348 struct idr_layer **pa[MAX_LEVEL];
349 struct idr_layer ***paa = &pa[0];
cf481c20 350 struct idr_layer *to_free;
1da177e4
LT
351 int n;
352
353 *paa = NULL;
354 *++paa = &idp->top;
355
356 while ((shift > 0) && p) {
357 n = (id >> shift) & IDR_MASK;
358 __clear_bit(n, &p->bitmap);
359 *++paa = &p->ary[n];
360 p = p->ary[n];
361 shift -= IDR_BITS;
362 }
363 n = id & IDR_MASK;
364 if (likely(p != NULL && test_bit(n, &p->bitmap))){
365 __clear_bit(n, &p->bitmap);
cf481c20
ND
366 rcu_assign_pointer(p->ary[n], NULL);
367 to_free = NULL;
1da177e4 368 while(*paa && ! --((**paa)->count)){
cf481c20
ND
369 if (to_free)
370 free_layer(to_free);
371 to_free = **paa;
1da177e4
LT
372 **paa-- = NULL;
373 }
e15ae2dd 374 if (!*paa)
1da177e4 375 idp->layers = 0;
cf481c20
ND
376 if (to_free)
377 free_layer(to_free);
e15ae2dd 378 } else
1da177e4 379 idr_remove_warning(id);
1da177e4
LT
380}
381
382/**
383 * idr_remove - remove the given id and free it's slot
72fd4a35
RD
384 * @idp: idr handle
385 * @id: unique key
1da177e4
LT
386 */
387void idr_remove(struct idr *idp, int id)
388{
389 struct idr_layer *p;
cf481c20 390 struct idr_layer *to_free;
1da177e4
LT
391
392 /* Mask off upper bits we don't use for the search. */
393 id &= MAX_ID_MASK;
394
395 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
e15ae2dd 396 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
cf481c20
ND
397 idp->top->ary[0]) {
398 /*
399 * Single child at leftmost slot: we can shrink the tree.
400 * This level is not needed anymore since when layers are
401 * inserted, they are inserted at the top of the existing
402 * tree.
403 */
404 to_free = idp->top;
1da177e4 405 p = idp->top->ary[0];
cf481c20 406 rcu_assign_pointer(idp->top, p);
1da177e4 407 --idp->layers;
cf481c20
ND
408 to_free->bitmap = to_free->count = 0;
409 free_layer(to_free);
1da177e4
LT
410 }
411 while (idp->id_free_cnt >= IDR_FREE_MAX) {
4ae53789 412 p = get_from_free_list(idp);
cf481c20
ND
413 /*
414 * Note: we don't call the rcu callback here, since the only
415 * layers that fall into the freelist are those that have been
416 * preallocated.
417 */
1da177e4 418 kmem_cache_free(idr_layer_cache, p);
1da177e4 419 }
af8e2a4c 420 return;
1da177e4
LT
421}
422EXPORT_SYMBOL(idr_remove);
423
23936cc0
KH
424/**
425 * idr_remove_all - remove all ids from the given idr tree
426 * @idp: idr handle
427 *
428 * idr_destroy() only frees up unused, cached idp_layers, but this
429 * function will remove all id mappings and leave all idp_layers
430 * unused.
431 *
432 * A typical clean-up sequence for objects stored in an idr tree, will
433 * use idr_for_each() to free all objects, if necessay, then
434 * idr_remove_all() to remove all ids, and idr_destroy() to free
435 * up the cached idr_layers.
436 */
437void idr_remove_all(struct idr *idp)
438{
6ace06dc 439 int n, id, max;
23936cc0
KH
440 struct idr_layer *p;
441 struct idr_layer *pa[MAX_LEVEL];
442 struct idr_layer **paa = &pa[0];
443
444 n = idp->layers * IDR_BITS;
445 p = idp->top;
446 max = 1 << n;
447
448 id = 0;
6ace06dc 449 while (id < max) {
23936cc0
KH
450 while (n > IDR_BITS && p) {
451 n -= IDR_BITS;
452 *paa++ = p;
453 p = p->ary[(id >> n) & IDR_MASK];
454 }
455
456 id += 1 << n;
457 while (n < fls(id)) {
cf481c20
ND
458 if (p)
459 free_layer(p);
23936cc0
KH
460 n += IDR_BITS;
461 p = *--paa;
462 }
463 }
cf481c20 464 rcu_assign_pointer(idp->top, NULL);
23936cc0
KH
465 idp->layers = 0;
466}
467EXPORT_SYMBOL(idr_remove_all);
468
8d3b3591
AM
469/**
470 * idr_destroy - release all cached layers within an idr tree
471 * idp: idr handle
472 */
473void idr_destroy(struct idr *idp)
474{
475 while (idp->id_free_cnt) {
4ae53789 476 struct idr_layer *p = get_from_free_list(idp);
8d3b3591
AM
477 kmem_cache_free(idr_layer_cache, p);
478 }
479}
480EXPORT_SYMBOL(idr_destroy);
481
1da177e4
LT
482/**
483 * idr_find - return pointer for given id
484 * @idp: idr handle
485 * @id: lookup key
486 *
487 * Return the pointer given the id it has been registered with. A %NULL
488 * return indicates that @id is not valid or you passed %NULL in
489 * idr_get_new().
490 *
f9c46d6e
ND
491 * This function can be called under rcu_read_lock(), given that the leaf
492 * pointers lifetimes are correctly managed.
1da177e4
LT
493 */
494void *idr_find(struct idr *idp, int id)
495{
496 int n;
497 struct idr_layer *p;
498
f9c46d6e 499 p = rcu_dereference(idp->top);
6ff2d39b
MS
500 if (!p)
501 return NULL;
502 n = (p->layer+1) * IDR_BITS;
1da177e4
LT
503
504 /* Mask off upper bits we don't use for the search. */
505 id &= MAX_ID_MASK;
506
507 if (id >= (1 << n))
508 return NULL;
6ff2d39b 509 BUG_ON(n == 0);
1da177e4
LT
510
511 while (n > 0 && p) {
512 n -= IDR_BITS;
6ff2d39b 513 BUG_ON(n != p->layer*IDR_BITS);
f9c46d6e 514 p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
1da177e4
LT
515 }
516 return((void *)p);
517}
518EXPORT_SYMBOL(idr_find);
519
96d7fa42
KH
520/**
521 * idr_for_each - iterate through all stored pointers
522 * @idp: idr handle
523 * @fn: function to be called for each pointer
524 * @data: data passed back to callback function
525 *
526 * Iterate over the pointers registered with the given idr. The
527 * callback function will be called for each pointer currently
528 * registered, passing the id, the pointer and the data pointer passed
529 * to this function. It is not safe to modify the idr tree while in
530 * the callback, so functions such as idr_get_new and idr_remove are
531 * not allowed.
532 *
533 * We check the return of @fn each time. If it returns anything other
534 * than 0, we break out and return that value.
535 *
536 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
537 */
538int idr_for_each(struct idr *idp,
539 int (*fn)(int id, void *p, void *data), void *data)
540{
541 int n, id, max, error = 0;
542 struct idr_layer *p;
543 struct idr_layer *pa[MAX_LEVEL];
544 struct idr_layer **paa = &pa[0];
545
546 n = idp->layers * IDR_BITS;
f9c46d6e 547 p = rcu_dereference(idp->top);
96d7fa42
KH
548 max = 1 << n;
549
550 id = 0;
551 while (id < max) {
552 while (n > 0 && p) {
553 n -= IDR_BITS;
554 *paa++ = p;
f9c46d6e 555 p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
96d7fa42
KH
556 }
557
558 if (p) {
559 error = fn(id, (void *)p, data);
560 if (error)
561 break;
562 }
563
564 id += 1 << n;
565 while (n < fls(id)) {
566 n += IDR_BITS;
567 p = *--paa;
568 }
569 }
570
571 return error;
572}
573EXPORT_SYMBOL(idr_for_each);
574
5806f07c
JM
575/**
576 * idr_replace - replace pointer for given id
577 * @idp: idr handle
578 * @ptr: pointer you want associated with the id
579 * @id: lookup key
580 *
581 * Replace the pointer registered with an id and return the old value.
582 * A -ENOENT return indicates that @id was not found.
583 * A -EINVAL return indicates that @id was not within valid constraints.
584 *
cf481c20 585 * The caller must serialize with writers.
5806f07c
JM
586 */
587void *idr_replace(struct idr *idp, void *ptr, int id)
588{
589 int n;
590 struct idr_layer *p, *old_p;
591
5806f07c 592 p = idp->top;
6ff2d39b
MS
593 if (!p)
594 return ERR_PTR(-EINVAL);
595
596 n = (p->layer+1) * IDR_BITS;
5806f07c
JM
597
598 id &= MAX_ID_MASK;
599
600 if (id >= (1 << n))
601 return ERR_PTR(-EINVAL);
602
603 n -= IDR_BITS;
604 while ((n > 0) && p) {
605 p = p->ary[(id >> n) & IDR_MASK];
606 n -= IDR_BITS;
607 }
608
609 n = id & IDR_MASK;
610 if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
611 return ERR_PTR(-ENOENT);
612
613 old_p = p->ary[n];
cf481c20 614 rcu_assign_pointer(p->ary[n], ptr);
5806f07c
JM
615
616 return old_p;
617}
618EXPORT_SYMBOL(idr_replace);
619
51cc5068 620static void idr_cache_ctor(void *idr_layer)
1da177e4
LT
621{
622 memset(idr_layer, 0, sizeof(struct idr_layer));
623}
624
199f0ca5 625void __init idr_init_cache(void)
1da177e4 626{
199f0ca5
AM
627 idr_layer_cache = kmem_cache_create("idr_layer_cache",
628 sizeof(struct idr_layer), 0, SLAB_PANIC,
629 idr_cache_ctor);
1da177e4
LT
630}
631
632/**
633 * idr_init - initialize idr handle
634 * @idp: idr handle
635 *
636 * This function is use to set up the handle (@idp) that you will pass
637 * to the rest of the functions.
638 */
639void idr_init(struct idr *idp)
640{
1da177e4
LT
641 memset(idp, 0, sizeof(struct idr));
642 spin_lock_init(&idp->lock);
643}
644EXPORT_SYMBOL(idr_init);
72dba584
TH
645
646
647/*
648 * IDA - IDR based ID allocator
649 *
650 * this is id allocator without id -> pointer translation. Memory
651 * usage is much lower than full blown idr because each id only
652 * occupies a bit. ida uses a custom leaf node which contains
653 * IDA_BITMAP_BITS slots.
654 *
655 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
656 */
657
658static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
659{
660 unsigned long flags;
661
662 if (!ida->free_bitmap) {
663 spin_lock_irqsave(&ida->idr.lock, flags);
664 if (!ida->free_bitmap) {
665 ida->free_bitmap = bitmap;
666 bitmap = NULL;
667 }
668 spin_unlock_irqrestore(&ida->idr.lock, flags);
669 }
670
671 kfree(bitmap);
672}
673
674/**
675 * ida_pre_get - reserve resources for ida allocation
676 * @ida: ida handle
677 * @gfp_mask: memory allocation flag
678 *
679 * This function should be called prior to locking and calling the
680 * following function. It preallocates enough memory to satisfy the
681 * worst possible allocation.
682 *
683 * If the system is REALLY out of memory this function returns 0,
684 * otherwise 1.
685 */
686int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
687{
688 /* allocate idr_layers */
689 if (!idr_pre_get(&ida->idr, gfp_mask))
690 return 0;
691
692 /* allocate free_bitmap */
693 if (!ida->free_bitmap) {
694 struct ida_bitmap *bitmap;
695
696 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
697 if (!bitmap)
698 return 0;
699
700 free_bitmap(ida, bitmap);
701 }
702
703 return 1;
704}
705EXPORT_SYMBOL(ida_pre_get);
706
707/**
708 * ida_get_new_above - allocate new ID above or equal to a start id
709 * @ida: ida handle
710 * @staring_id: id to start search at
711 * @p_id: pointer to the allocated handle
712 *
713 * Allocate new ID above or equal to @ida. It should be called with
714 * any required locks.
715 *
716 * If memory is required, it will return -EAGAIN, you should unlock
717 * and go back to the ida_pre_get() call. If the ida is full, it will
718 * return -ENOSPC.
719 *
720 * @p_id returns a value in the range 0 ... 0x7fffffff.
721 */
722int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
723{
724 struct idr_layer *pa[MAX_LEVEL];
725 struct ida_bitmap *bitmap;
726 unsigned long flags;
727 int idr_id = starting_id / IDA_BITMAP_BITS;
728 int offset = starting_id % IDA_BITMAP_BITS;
729 int t, id;
730
731 restart:
732 /* get vacant slot */
733 t = idr_get_empty_slot(&ida->idr, idr_id, pa);
944ca05c
ND
734 if (t < 0)
735 return _idr_rc_to_errno(t);
72dba584
TH
736
737 if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
738 return -ENOSPC;
739
740 if (t != idr_id)
741 offset = 0;
742 idr_id = t;
743
744 /* if bitmap isn't there, create a new one */
745 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
746 if (!bitmap) {
747 spin_lock_irqsave(&ida->idr.lock, flags);
748 bitmap = ida->free_bitmap;
749 ida->free_bitmap = NULL;
750 spin_unlock_irqrestore(&ida->idr.lock, flags);
751
752 if (!bitmap)
753 return -EAGAIN;
754
755 memset(bitmap, 0, sizeof(struct ida_bitmap));
3219b3b7
ND
756 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
757 (void *)bitmap);
72dba584
TH
758 pa[0]->count++;
759 }
760
761 /* lookup for empty slot */
762 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
763 if (t == IDA_BITMAP_BITS) {
764 /* no empty slot after offset, continue to the next chunk */
765 idr_id++;
766 offset = 0;
767 goto restart;
768 }
769
770 id = idr_id * IDA_BITMAP_BITS + t;
771 if (id >= MAX_ID_BIT)
772 return -ENOSPC;
773
774 __set_bit(t, bitmap->bitmap);
775 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
776 idr_mark_full(pa, idr_id);
777
778 *p_id = id;
779
780 /* Each leaf node can handle nearly a thousand slots and the
781 * whole idea of ida is to have small memory foot print.
782 * Throw away extra resources one by one after each successful
783 * allocation.
784 */
785 if (ida->idr.id_free_cnt || ida->free_bitmap) {
4ae53789 786 struct idr_layer *p = get_from_free_list(&ida->idr);
72dba584
TH
787 if (p)
788 kmem_cache_free(idr_layer_cache, p);
789 }
790
791 return 0;
792}
793EXPORT_SYMBOL(ida_get_new_above);
794
795/**
796 * ida_get_new - allocate new ID
797 * @ida: idr handle
798 * @p_id: pointer to the allocated handle
799 *
800 * Allocate new ID. It should be called with any required locks.
801 *
802 * If memory is required, it will return -EAGAIN, you should unlock
803 * and go back to the idr_pre_get() call. If the idr is full, it will
804 * return -ENOSPC.
805 *
806 * @id returns a value in the range 0 ... 0x7fffffff.
807 */
808int ida_get_new(struct ida *ida, int *p_id)
809{
810 return ida_get_new_above(ida, 0, p_id);
811}
812EXPORT_SYMBOL(ida_get_new);
813
814/**
815 * ida_remove - remove the given ID
816 * @ida: ida handle
817 * @id: ID to free
818 */
819void ida_remove(struct ida *ida, int id)
820{
821 struct idr_layer *p = ida->idr.top;
822 int shift = (ida->idr.layers - 1) * IDR_BITS;
823 int idr_id = id / IDA_BITMAP_BITS;
824 int offset = id % IDA_BITMAP_BITS;
825 int n;
826 struct ida_bitmap *bitmap;
827
828 /* clear full bits while looking up the leaf idr_layer */
829 while ((shift > 0) && p) {
830 n = (idr_id >> shift) & IDR_MASK;
831 __clear_bit(n, &p->bitmap);
832 p = p->ary[n];
833 shift -= IDR_BITS;
834 }
835
836 if (p == NULL)
837 goto err;
838
839 n = idr_id & IDR_MASK;
840 __clear_bit(n, &p->bitmap);
841
842 bitmap = (void *)p->ary[n];
843 if (!test_bit(offset, bitmap->bitmap))
844 goto err;
845
846 /* update bitmap and remove it if empty */
847 __clear_bit(offset, bitmap->bitmap);
848 if (--bitmap->nr_busy == 0) {
849 __set_bit(n, &p->bitmap); /* to please idr_remove() */
850 idr_remove(&ida->idr, idr_id);
851 free_bitmap(ida, bitmap);
852 }
853
854 return;
855
856 err:
857 printk(KERN_WARNING
858 "ida_remove called for id=%d which is not allocated.\n", id);
859}
860EXPORT_SYMBOL(ida_remove);
861
862/**
863 * ida_destroy - release all cached layers within an ida tree
864 * ida: ida handle
865 */
866void ida_destroy(struct ida *ida)
867{
868 idr_destroy(&ida->idr);
869 kfree(ida->free_bitmap);
870}
871EXPORT_SYMBOL(ida_destroy);
872
873/**
874 * ida_init - initialize ida handle
875 * @ida: ida handle
876 *
877 * This function is use to set up the handle (@ida) that you will pass
878 * to the rest of the functions.
879 */
880void ida_init(struct ida *ida)
881{
882 memset(ida, 0, sizeof(struct ida));
883 idr_init(&ida->idr);
884
885}
886EXPORT_SYMBOL(ida_init);