]> bbs.cooldavid.org Git - net-next-2.6.git/blame - lib/decompress_bunzip2.c
xps: Transmit Packet Steering
[net-next-2.6.git] / lib / decompress_bunzip2.c
CommitLineData
bc22c17e
AK
1/* vi: set sw = 4 ts = 4: */
2/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
3
4 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
5 which also acknowledges contributions by Mike Burrows, David Wheeler,
6 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
7 Robert Sedgewick, and Jon L. Bentley.
8
9 This code is licensed under the LGPLv2:
10 LGPL (http://www.gnu.org/copyleft/lgpl.html
11*/
12
13/*
14 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org).
15
16 More efficient reading of Huffman codes, a streamlined read_bunzip()
17 function, and various other tweaks. In (limited) tests, approximately
18 20% faster than bzcat on x86 and about 10% faster on arm.
19
20 Note that about 2/3 of the time is spent in read_unzip() reversing
21 the Burrows-Wheeler transformation. Much of that time is delay
22 resulting from cache misses.
23
24 I would ask that anyone benefiting from this work, especially those
25 using it in commercial products, consider making a donation to my local
26 non-profit hospice organization in the name of the woman I loved, who
27 passed away Feb. 12, 2003.
28
29 In memory of Toni W. Hagan
30
31 Hospice of Acadiana, Inc.
32 2600 Johnston St., Suite 200
33 Lafayette, LA 70503-3240
34
35 Phone (337) 232-1234 or 1-800-738-2226
36 Fax (337) 232-1297
37
38 http://www.hospiceacadiana.com/
39
40 Manuel
41 */
42
43/*
44 Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu)
45*/
46
47
b1af4315
PL
48#ifdef STATIC
49#define PREBOOT
50#else
bc22c17e 51#include <linux/decompress/bunzip2.h>
9e5cf0ca 52#include <linux/slab.h>
b1af4315 53#endif /* STATIC */
bc22c17e
AK
54
55#include <linux/decompress/mm.h>
56
57#ifndef INT_MAX
58#define INT_MAX 0x7fffffff
59#endif
60
61/* Constants for Huffman coding */
62#define MAX_GROUPS 6
63#define GROUP_SIZE 50 /* 64 would have been more efficient */
64#define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */
65#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
66#define SYMBOL_RUNA 0
67#define SYMBOL_RUNB 1
68
69/* Status return values */
70#define RETVAL_OK 0
71#define RETVAL_LAST_BLOCK (-1)
72#define RETVAL_NOT_BZIP_DATA (-2)
73#define RETVAL_UNEXPECTED_INPUT_EOF (-3)
74#define RETVAL_UNEXPECTED_OUTPUT_EOF (-4)
75#define RETVAL_DATA_ERROR (-5)
76#define RETVAL_OUT_OF_MEMORY (-6)
77#define RETVAL_OBSOLETE_INPUT (-7)
78
79/* Other housekeeping constants */
80#define BZIP2_IOBUF_SIZE 4096
81
82/* This is what we know about each Huffman coding group */
83struct group_data {
84 /* We have an extra slot at the end of limit[] for a sentinal value. */
85 int limit[MAX_HUFCODE_BITS+1];
86 int base[MAX_HUFCODE_BITS];
87 int permute[MAX_SYMBOLS];
88 int minLen, maxLen;
89};
90
91/* Structure holding all the housekeeping data, including IO buffers and
92 memory that persists between calls to bunzip */
93struct bunzip_data {
94 /* State for interrupting output loop */
95 int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
96 /* I/O tracking data (file handles, buffers, positions, etc.) */
97 int (*fill)(void*, unsigned int);
98 int inbufCount, inbufPos /*, outbufPos*/;
99 unsigned char *inbuf /*,*outbuf*/;
100 unsigned int inbufBitCount, inbufBits;
101 /* The CRC values stored in the block header and calculated from the
102 data */
103 unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC;
104 /* Intermediate buffer and its size (in bytes) */
105 unsigned int *dbuf, dbufSize;
106 /* These things are a bit too big to go on the stack */
107 unsigned char selectors[32768]; /* nSelectors = 15 bits */
108 struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */
109 int io_error; /* non-zero if we have IO error */
dd21e9bd
PB
110 int byteCount[256];
111 unsigned char symToByte[256], mtfSymbol[256];
bc22c17e
AK
112};
113
114
115/* Return the next nnn bits of input. All reads from the compressed input
116 are done through this function. All reads are big endian */
117static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted)
118{
119 unsigned int bits = 0;
120
121 /* If we need to get more data from the byte buffer, do so.
122 (Loop getting one byte at a time to enforce endianness and avoid
123 unaligned access.) */
124 while (bd->inbufBitCount < bits_wanted) {
125 /* If we need to read more data from file into byte buffer, do
126 so */
127 if (bd->inbufPos == bd->inbufCount) {
128 if (bd->io_error)
129 return 0;
130 bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE);
131 if (bd->inbufCount <= 0) {
132 bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF;
133 return 0;
134 }
135 bd->inbufPos = 0;
136 }
137 /* Avoid 32-bit overflow (dump bit buffer to top of output) */
138 if (bd->inbufBitCount >= 24) {
139 bits = bd->inbufBits&((1 << bd->inbufBitCount)-1);
140 bits_wanted -= bd->inbufBitCount;
141 bits <<= bits_wanted;
142 bd->inbufBitCount = 0;
143 }
144 /* Grab next 8 bits of input from buffer. */
145 bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
146 bd->inbufBitCount += 8;
147 }
148 /* Calculate result */
149 bd->inbufBitCount -= bits_wanted;
150 bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1);
151
152 return bits;
153}
154
155/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
156
157static int INIT get_next_block(struct bunzip_data *bd)
158{
159 struct group_data *hufGroup = NULL;
160 int *base = NULL;
161 int *limit = NULL;
162 int dbufCount, nextSym, dbufSize, groupCount, selector,
dd21e9bd
PB
163 i, j, k, t, runPos, symCount, symTotal, nSelectors, *byteCount;
164 unsigned char uc, *symToByte, *mtfSymbol, *selectors;
bc22c17e
AK
165 unsigned int *dbuf, origPtr;
166
167 dbuf = bd->dbuf;
168 dbufSize = bd->dbufSize;
169 selectors = bd->selectors;
dd21e9bd
PB
170 byteCount = bd->byteCount;
171 symToByte = bd->symToByte;
172 mtfSymbol = bd->mtfSymbol;
bc22c17e
AK
173
174 /* Read in header signature and CRC, then validate signature.
175 (last block signature means CRC is for whole file, return now) */
176 i = get_bits(bd, 24);
177 j = get_bits(bd, 24);
178 bd->headerCRC = get_bits(bd, 32);
179 if ((i == 0x177245) && (j == 0x385090))
180 return RETVAL_LAST_BLOCK;
181 if ((i != 0x314159) || (j != 0x265359))
182 return RETVAL_NOT_BZIP_DATA;
183 /* We can add support for blockRandomised if anybody complains.
184 There was some code for this in busybox 1.0.0-pre3, but nobody ever
185 noticed that it didn't actually work. */
186 if (get_bits(bd, 1))
187 return RETVAL_OBSOLETE_INPUT;
188 origPtr = get_bits(bd, 24);
189 if (origPtr > dbufSize)
190 return RETVAL_DATA_ERROR;
191 /* mapping table: if some byte values are never used (encoding things
192 like ascii text), the compression code removes the gaps to have fewer
193 symbols to deal with, and writes a sparse bitfield indicating which
194 values were present. We make a translation table to convert the
195 symbols back to the corresponding bytes. */
196 t = get_bits(bd, 16);
197 symTotal = 0;
198 for (i = 0; i < 16; i++) {
199 if (t&(1 << (15-i))) {
200 k = get_bits(bd, 16);
201 for (j = 0; j < 16; j++)
202 if (k&(1 << (15-j)))
203 symToByte[symTotal++] = (16*i)+j;
204 }
205 }
206 /* How many different Huffman coding groups does this block use? */
207 groupCount = get_bits(bd, 3);
208 if (groupCount < 2 || groupCount > MAX_GROUPS)
209 return RETVAL_DATA_ERROR;
210 /* nSelectors: Every GROUP_SIZE many symbols we select a new
211 Huffman coding group. Read in the group selector list,
212 which is stored as MTF encoded bit runs. (MTF = Move To
213 Front, as each value is used it's moved to the start of the
214 list.) */
215 nSelectors = get_bits(bd, 15);
216 if (!nSelectors)
217 return RETVAL_DATA_ERROR;
218 for (i = 0; i < groupCount; i++)
219 mtfSymbol[i] = i;
220 for (i = 0; i < nSelectors; i++) {
221 /* Get next value */
222 for (j = 0; get_bits(bd, 1); j++)
223 if (j >= groupCount)
224 return RETVAL_DATA_ERROR;
225 /* Decode MTF to get the next selector */
226 uc = mtfSymbol[j];
227 for (; j; j--)
228 mtfSymbol[j] = mtfSymbol[j-1];
229 mtfSymbol[0] = selectors[i] = uc;
230 }
231 /* Read the Huffman coding tables for each group, which code
232 for symTotal literal symbols, plus two run symbols (RUNA,
233 RUNB) */
234 symCount = symTotal+2;
235 for (j = 0; j < groupCount; j++) {
236 unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
237 int minLen, maxLen, pp;
238 /* Read Huffman code lengths for each symbol. They're
239 stored in a way similar to mtf; record a starting
240 value for the first symbol, and an offset from the
241 previous value for everys symbol after that.
242 (Subtracting 1 before the loop and then adding it
243 back at the end is an optimization that makes the
244 test inside the loop simpler: symbol length 0
245 becomes negative, so an unsigned inequality catches
246 it.) */
247 t = get_bits(bd, 5)-1;
248 for (i = 0; i < symCount; i++) {
249 for (;;) {
250 if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
251 return RETVAL_DATA_ERROR;
252
253 /* If first bit is 0, stop. Else
254 second bit indicates whether to
255 increment or decrement the value.
256 Optimization: grab 2 bits and unget
257 the second if the first was 0. */
258
259 k = get_bits(bd, 2);
260 if (k < 2) {
261 bd->inbufBitCount++;
262 break;
263 }
264 /* Add one if second bit 1, else
265 * subtract 1. Avoids if/else */
266 t += (((k+1)&2)-1);
267 }
268 /* Correct for the initial -1, to get the
269 * final symbol length */
270 length[i] = t+1;
271 }
272 /* Find largest and smallest lengths in this group */
273 minLen = maxLen = length[0];
274
275 for (i = 1; i < symCount; i++) {
276 if (length[i] > maxLen)
277 maxLen = length[i];
278 else if (length[i] < minLen)
279 minLen = length[i];
280 }
281
282 /* Calculate permute[], base[], and limit[] tables from
283 * length[].
284 *
285 * permute[] is the lookup table for converting
286 * Huffman coded symbols into decoded symbols. base[]
287 * is the amount to subtract from the value of a
288 * Huffman symbol of a given length when using
289 * permute[].
290 *
291 * limit[] indicates the largest numerical value a
292 * symbol with a given number of bits can have. This
293 * is how the Huffman codes can vary in length: each
294 * code with a value > limit[length] needs another
295 * bit.
296 */
297 hufGroup = bd->groups+j;
298 hufGroup->minLen = minLen;
299 hufGroup->maxLen = maxLen;
300 /* Note that minLen can't be smaller than 1, so we
301 adjust the base and limit array pointers so we're
302 not always wasting the first entry. We do this
303 again when using them (during symbol decoding).*/
304 base = hufGroup->base-1;
305 limit = hufGroup->limit-1;
af901ca1 306 /* Calculate permute[]. Concurrently, initialize
bc22c17e
AK
307 * temp[] and limit[]. */
308 pp = 0;
309 for (i = minLen; i <= maxLen; i++) {
310 temp[i] = limit[i] = 0;
311 for (t = 0; t < symCount; t++)
312 if (length[t] == i)
313 hufGroup->permute[pp++] = t;
314 }
315 /* Count symbols coded for at each bit length */
316 for (i = 0; i < symCount; i++)
317 temp[length[i]]++;
318 /* Calculate limit[] (the largest symbol-coding value
319 *at each bit length, which is (previous limit <<
320 *1)+symbols at this level), and base[] (number of
321 *symbols to ignore at each bit length, which is limit
322 *minus the cumulative count of symbols coded for
323 *already). */
324 pp = t = 0;
325 for (i = minLen; i < maxLen; i++) {
326 pp += temp[i];
327 /* We read the largest possible symbol size
328 and then unget bits after determining how
329 many we need, and those extra bits could be
330 set to anything. (They're noise from
331 future symbols.) At each level we're
332 really only interested in the first few
333 bits, so here we set all the trailing
334 to-be-ignored bits to 1 so they don't
335 affect the value > limit[length]
336 comparison. */
337 limit[i] = (pp << (maxLen - i)) - 1;
338 pp <<= 1;
339 base[i+1] = pp-(t += temp[i]);
340 }
341 limit[maxLen+1] = INT_MAX; /* Sentinal value for
342 * reading next sym. */
343 limit[maxLen] = pp+temp[maxLen]-1;
344 base[minLen] = 0;
345 }
346 /* We've finished reading and digesting the block header. Now
347 read this block's Huffman coded symbols from the file and
348 undo the Huffman coding and run length encoding, saving the
349 result into dbuf[dbufCount++] = uc */
350
351 /* Initialize symbol occurrence counters and symbol Move To
352 * Front table */
353 for (i = 0; i < 256; i++) {
354 byteCount[i] = 0;
355 mtfSymbol[i] = (unsigned char)i;
356 }
357 /* Loop through compressed symbols. */
358 runPos = dbufCount = symCount = selector = 0;
359 for (;;) {
360 /* Determine which Huffman coding group to use. */
361 if (!(symCount--)) {
362 symCount = GROUP_SIZE-1;
363 if (selector >= nSelectors)
364 return RETVAL_DATA_ERROR;
365 hufGroup = bd->groups+selectors[selector++];
366 base = hufGroup->base-1;
367 limit = hufGroup->limit-1;
368 }
369 /* Read next Huffman-coded symbol. */
370 /* Note: It is far cheaper to read maxLen bits and
371 back up than it is to read minLen bits and then an
372 additional bit at a time, testing as we go.
373 Because there is a trailing last block (with file
374 CRC), there is no danger of the overread causing an
375 unexpected EOF for a valid compressed file. As a
376 further optimization, we do the read inline
377 (falling back to a call to get_bits if the buffer
378 runs dry). The following (up to got_huff_bits:) is
379 equivalent to j = get_bits(bd, hufGroup->maxLen);
380 */
381 while (bd->inbufBitCount < hufGroup->maxLen) {
382 if (bd->inbufPos == bd->inbufCount) {
383 j = get_bits(bd, hufGroup->maxLen);
384 goto got_huff_bits;
385 }
386 bd->inbufBits =
387 (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
388 bd->inbufBitCount += 8;
389 };
390 bd->inbufBitCount -= hufGroup->maxLen;
391 j = (bd->inbufBits >> bd->inbufBitCount)&
392 ((1 << hufGroup->maxLen)-1);
393got_huff_bits:
394 /* Figure how how many bits are in next symbol and
395 * unget extras */
396 i = hufGroup->minLen;
397 while (j > limit[i])
398 ++i;
399 bd->inbufBitCount += (hufGroup->maxLen - i);
400 /* Huffman decode value to get nextSym (with bounds checking) */
401 if ((i > hufGroup->maxLen)
402 || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i]))
403 >= MAX_SYMBOLS))
404 return RETVAL_DATA_ERROR;
405 nextSym = hufGroup->permute[j];
406 /* We have now decoded the symbol, which indicates
407 either a new literal byte, or a repeated run of the
408 most recent literal byte. First, check if nextSym
409 indicates a repeated run, and if so loop collecting
410 how many times to repeat the last literal. */
411 if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
412 /* If this is the start of a new run, zero out
413 * counter */
414 if (!runPos) {
415 runPos = 1;
416 t = 0;
417 }
418 /* Neat trick that saves 1 symbol: instead of
419 or-ing 0 or 1 at each bit position, add 1
420 or 2 instead. For example, 1011 is 1 << 0
421 + 1 << 1 + 2 << 2. 1010 is 2 << 0 + 2 << 1
422 + 1 << 2. You can make any bit pattern
423 that way using 1 less symbol than the basic
424 or 0/1 method (except all bits 0, which
425 would use no symbols, but a run of length 0
426 doesn't mean anything in this context).
427 Thus space is saved. */
428 t += (runPos << nextSym);
429 /* +runPos if RUNA; +2*runPos if RUNB */
430
431 runPos <<= 1;
432 continue;
433 }
434 /* When we hit the first non-run symbol after a run,
435 we now know how many times to repeat the last
436 literal, so append that many copies to our buffer
437 of decoded symbols (dbuf) now. (The last literal
438 used is the one at the head of the mtfSymbol
439 array.) */
440 if (runPos) {
441 runPos = 0;
442 if (dbufCount+t >= dbufSize)
443 return RETVAL_DATA_ERROR;
444
445 uc = symToByte[mtfSymbol[0]];
446 byteCount[uc] += t;
447 while (t--)
448 dbuf[dbufCount++] = uc;
449 }
450 /* Is this the terminating symbol? */
451 if (nextSym > symTotal)
452 break;
453 /* At this point, nextSym indicates a new literal
454 character. Subtract one to get the position in the
455 MTF array at which this literal is currently to be
456 found. (Note that the result can't be -1 or 0,
457 because 0 and 1 are RUNA and RUNB. But another
458 instance of the first symbol in the mtf array,
459 position 0, would have been handled as part of a
460 run above. Therefore 1 unused mtf position minus 2
461 non-literal nextSym values equals -1.) */
462 if (dbufCount >= dbufSize)
463 return RETVAL_DATA_ERROR;
464 i = nextSym - 1;
465 uc = mtfSymbol[i];
466 /* Adjust the MTF array. Since we typically expect to
467 *move only a small number of symbols, and are bound
468 *by 256 in any case, using memmove here would
469 *typically be bigger and slower due to function call
470 *overhead and other assorted setup costs. */
471 do {
472 mtfSymbol[i] = mtfSymbol[i-1];
473 } while (--i);
474 mtfSymbol[0] = uc;
475 uc = symToByte[uc];
476 /* We have our literal byte. Save it into dbuf. */
477 byteCount[uc]++;
478 dbuf[dbufCount++] = (unsigned int)uc;
479 }
480 /* At this point, we've read all the Huffman-coded symbols
481 (and repeated runs) for this block from the input stream,
482 and decoded them into the intermediate buffer. There are
483 dbufCount many decoded bytes in dbuf[]. Now undo the
484 Burrows-Wheeler transform on dbuf. See
485 http://dogma.net/markn/articles/bwt/bwt.htm
486 */
487 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
488 j = 0;
489 for (i = 0; i < 256; i++) {
490 k = j+byteCount[i];
491 byteCount[i] = j;
492 j = k;
493 }
494 /* Figure out what order dbuf would be in if we sorted it. */
495 for (i = 0; i < dbufCount; i++) {
496 uc = (unsigned char)(dbuf[i] & 0xff);
497 dbuf[byteCount[uc]] |= (i << 8);
498 byteCount[uc]++;
499 }
500 /* Decode first byte by hand to initialize "previous" byte.
501 Note that it doesn't get output, and if the first three
502 characters are identical it doesn't qualify as a run (hence
503 writeRunCountdown = 5). */
504 if (dbufCount) {
505 if (origPtr >= dbufCount)
506 return RETVAL_DATA_ERROR;
507 bd->writePos = dbuf[origPtr];
508 bd->writeCurrent = (unsigned char)(bd->writePos&0xff);
509 bd->writePos >>= 8;
510 bd->writeRunCountdown = 5;
511 }
512 bd->writeCount = dbufCount;
513
514 return RETVAL_OK;
515}
516
517/* Undo burrows-wheeler transform on intermediate buffer to produce output.
518 If start_bunzip was initialized with out_fd =-1, then up to len bytes of
519 data are written to outbuf. Return value is number of bytes written or
520 error (all errors are negative numbers). If out_fd!=-1, outbuf and len
521 are ignored, data is written to out_fd and return is RETVAL_OK or error.
522*/
523
524static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len)
525{
526 const unsigned int *dbuf;
527 int pos, xcurrent, previous, gotcount;
528
529 /* If last read was short due to end of file, return last block now */
530 if (bd->writeCount < 0)
531 return bd->writeCount;
532
533 gotcount = 0;
534 dbuf = bd->dbuf;
535 pos = bd->writePos;
536 xcurrent = bd->writeCurrent;
537
538 /* We will always have pending decoded data to write into the output
539 buffer unless this is the very first call (in which case we haven't
540 Huffman-decoded a block into the intermediate buffer yet). */
541
542 if (bd->writeCopies) {
543 /* Inside the loop, writeCopies means extra copies (beyond 1) */
544 --bd->writeCopies;
545 /* Loop outputting bytes */
546 for (;;) {
547 /* If the output buffer is full, snapshot
548 * state and return */
549 if (gotcount >= len) {
550 bd->writePos = pos;
551 bd->writeCurrent = xcurrent;
552 bd->writeCopies++;
553 return len;
554 }
555 /* Write next byte into output buffer, updating CRC */
556 outbuf[gotcount++] = xcurrent;
557 bd->writeCRC = (((bd->writeCRC) << 8)
558 ^bd->crc32Table[((bd->writeCRC) >> 24)
559 ^xcurrent]);
560 /* Loop now if we're outputting multiple
561 * copies of this byte */
562 if (bd->writeCopies) {
563 --bd->writeCopies;
564 continue;
565 }
566decode_next_byte:
567 if (!bd->writeCount--)
568 break;
569 /* Follow sequence vector to undo
570 * Burrows-Wheeler transform */
571 previous = xcurrent;
572 pos = dbuf[pos];
573 xcurrent = pos&0xff;
574 pos >>= 8;
575 /* After 3 consecutive copies of the same
576 byte, the 4th is a repeat count. We count
577 down from 4 instead *of counting up because
578 testing for non-zero is faster */
579 if (--bd->writeRunCountdown) {
580 if (xcurrent != previous)
581 bd->writeRunCountdown = 4;
582 } else {
583 /* We have a repeated run, this byte
584 * indicates the count */
585 bd->writeCopies = xcurrent;
586 xcurrent = previous;
587 bd->writeRunCountdown = 5;
588 /* Sometimes there are just 3 bytes
589 * (run length 0) */
590 if (!bd->writeCopies)
591 goto decode_next_byte;
592 /* Subtract the 1 copy we'd output
593 * anyway to get extras */
594 --bd->writeCopies;
595 }
596 }
597 /* Decompression of this block completed successfully */
598 bd->writeCRC = ~bd->writeCRC;
599 bd->totalCRC = ((bd->totalCRC << 1) |
600 (bd->totalCRC >> 31)) ^ bd->writeCRC;
601 /* If this block had a CRC error, force file level CRC error. */
602 if (bd->writeCRC != bd->headerCRC) {
603 bd->totalCRC = bd->headerCRC+1;
604 return RETVAL_LAST_BLOCK;
605 }
606 }
607
608 /* Refill the intermediate buffer by Huffman-decoding next
609 * block of input */
610 /* (previous is just a convenient unused temp variable here) */
611 previous = get_next_block(bd);
612 if (previous) {
613 bd->writeCount = previous;
614 return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
615 }
616 bd->writeCRC = 0xffffffffUL;
617 pos = bd->writePos;
618 xcurrent = bd->writeCurrent;
619 goto decode_next_byte;
620}
621
622static int INIT nofill(void *buf, unsigned int len)
623{
624 return -1;
625}
626
627/* Allocate the structure, read file header. If in_fd ==-1, inbuf must contain
628 a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are
629 ignored, and data is read from file handle into temporary buffer. */
630static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, int len,
631 int (*fill)(void*, unsigned int))
632{
633 struct bunzip_data *bd;
634 unsigned int i, j, c;
635 const unsigned int BZh0 =
636 (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16)
637 +(((unsigned int)'h') << 8)+(unsigned int)'0';
638
639 /* Figure out how much data to allocate */
640 i = sizeof(struct bunzip_data);
641
642 /* Allocate bunzip_data. Most fields initialize to zero. */
643 bd = *bdp = malloc(i);
d4529862
PL
644 if (!bd)
645 return RETVAL_OUT_OF_MEMORY;
bc22c17e
AK
646 memset(bd, 0, sizeof(struct bunzip_data));
647 /* Setup input buffer */
648 bd->inbuf = inbuf;
649 bd->inbufCount = len;
650 if (fill != NULL)
651 bd->fill = fill;
652 else
653 bd->fill = nofill;
654
655 /* Init the CRC32 table (big endian) */
656 for (i = 0; i < 256; i++) {
657 c = i << 24;
658 for (j = 8; j; j--)
659 c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1);
660 bd->crc32Table[i] = c;
661 }
662
663 /* Ensure that file starts with "BZh['1'-'9']." */
664 i = get_bits(bd, 32);
665 if (((unsigned int)(i-BZh0-1)) >= 9)
666 return RETVAL_NOT_BZIP_DATA;
667
668 /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
669 uncompressed data. Allocate intermediate buffer for block. */
670 bd->dbufSize = 100000*(i-BZh0);
671
672 bd->dbuf = large_malloc(bd->dbufSize * sizeof(int));
d4529862
PL
673 if (!bd->dbuf)
674 return RETVAL_OUT_OF_MEMORY;
bc22c17e
AK
675 return RETVAL_OK;
676}
677
678/* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip2 data,
679 not end of file.) */
680STATIC int INIT bunzip2(unsigned char *buf, int len,
681 int(*fill)(void*, unsigned int),
682 int(*flush)(void*, unsigned int),
683 unsigned char *outbuf,
684 int *pos,
685 void(*error_fn)(char *x))
686{
687 struct bunzip_data *bd;
688 int i = -1;
689 unsigned char *inbuf;
690
691 set_error_fn(error_fn);
692 if (flush)
693 outbuf = malloc(BZIP2_IOBUF_SIZE);
b1af4315 694
bc22c17e
AK
695 if (!outbuf) {
696 error("Could not allocate output bufer");
d4529862 697 return RETVAL_OUT_OF_MEMORY;
bc22c17e
AK
698 }
699 if (buf)
700 inbuf = buf;
701 else
702 inbuf = malloc(BZIP2_IOBUF_SIZE);
703 if (!inbuf) {
704 error("Could not allocate input bufer");
d4529862 705 i = RETVAL_OUT_OF_MEMORY;
bc22c17e
AK
706 goto exit_0;
707 }
708 i = start_bunzip(&bd, inbuf, len, fill);
709 if (!i) {
710 for (;;) {
711 i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE);
712 if (i <= 0)
713 break;
714 if (!flush)
715 outbuf += i;
716 else
717 if (i != flush(outbuf, i)) {
718 i = RETVAL_UNEXPECTED_OUTPUT_EOF;
719 break;
720 }
721 }
722 }
723 /* Check CRC and release memory */
724 if (i == RETVAL_LAST_BLOCK) {
725 if (bd->headerCRC != bd->totalCRC)
726 error("Data integrity error when decompressing.");
727 else
728 i = RETVAL_OK;
729 } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
730 error("Compressed file ends unexpectedly");
731 }
d4529862
PL
732 if (!bd)
733 goto exit_1;
bc22c17e
AK
734 if (bd->dbuf)
735 large_free(bd->dbuf);
736 if (pos)
737 *pos = bd->inbufPos;
738 free(bd);
d4529862 739exit_1:
bc22c17e
AK
740 if (!buf)
741 free(inbuf);
742exit_0:
743 if (flush)
744 free(outbuf);
745 return i;
746}
747
b1af4315
PL
748#ifdef PREBOOT
749STATIC int INIT decompress(unsigned char *buf, int len,
750 int(*fill)(void*, unsigned int),
751 int(*flush)(void*, unsigned int),
752 unsigned char *outbuf,
753 int *pos,
754 void(*error_fn)(char *x))
755{
756 return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error_fn);
757}
758#endif