]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/time.c
introduce explicit signed/unsigned 64bit divide
[net-next-2.6.git] / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
6fa6c3b1 14 * Created file with time related functions from sched.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
2c622148 33#include <linux/clocksource.h>
1da177e4 34#include <linux/errno.h>
1da177e4
LT
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
1aeb272c 38#include <linux/slab.h>
1da177e4
LT
39
40#include <asm/uaccess.h>
41#include <asm/unistd.h>
42
bdc80787
PA
43#include "timeconst.h"
44
6fa6c3b1 45/*
1da177e4
LT
46 * The timezone where the local system is located. Used as a default by some
47 * programs who obtain this value by using gettimeofday.
48 */
49struct timezone sys_tz;
50
51EXPORT_SYMBOL(sys_tz);
52
53#ifdef __ARCH_WANT_SYS_TIME
54
55/*
56 * sys_time() can be implemented in user-level using
57 * sys_gettimeofday(). Is this for backwards compatibility? If so,
58 * why not move it into the appropriate arch directory (for those
59 * architectures that need it).
60 */
61asmlinkage long sys_time(time_t __user * tloc)
62{
f20bf612 63 time_t i = get_seconds();
1da177e4
LT
64
65 if (tloc) {
20082208 66 if (put_user(i,tloc))
1da177e4
LT
67 i = -EFAULT;
68 }
69 return i;
70}
71
72/*
73 * sys_stime() can be implemented in user-level using
74 * sys_settimeofday(). Is this for backwards compatibility? If so,
75 * why not move it into the appropriate arch directory (for those
76 * architectures that need it).
77 */
6fa6c3b1 78
1da177e4
LT
79asmlinkage long sys_stime(time_t __user *tptr)
80{
81 struct timespec tv;
82 int err;
83
84 if (get_user(tv.tv_sec, tptr))
85 return -EFAULT;
86
87 tv.tv_nsec = 0;
88
89 err = security_settime(&tv, NULL);
90 if (err)
91 return err;
92
93 do_settimeofday(&tv);
94 return 0;
95}
96
97#endif /* __ARCH_WANT_SYS_TIME */
98
bdc80787
PA
99asmlinkage long sys_gettimeofday(struct timeval __user *tv,
100 struct timezone __user *tz)
1da177e4
LT
101{
102 if (likely(tv != NULL)) {
103 struct timeval ktv;
104 do_gettimeofday(&ktv);
105 if (copy_to_user(tv, &ktv, sizeof(ktv)))
106 return -EFAULT;
107 }
108 if (unlikely(tz != NULL)) {
109 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
110 return -EFAULT;
111 }
112 return 0;
113}
114
115/*
116 * Adjust the time obtained from the CMOS to be UTC time instead of
117 * local time.
6fa6c3b1 118 *
1da177e4
LT
119 * This is ugly, but preferable to the alternatives. Otherwise we
120 * would either need to write a program to do it in /etc/rc (and risk
6fa6c3b1 121 * confusion if the program gets run more than once; it would also be
1da177e4
LT
122 * hard to make the program warp the clock precisely n hours) or
123 * compile in the timezone information into the kernel. Bad, bad....
124 *
bdc80787 125 * - TYT, 1992-01-01
1da177e4
LT
126 *
127 * The best thing to do is to keep the CMOS clock in universal time (UTC)
128 * as real UNIX machines always do it. This avoids all headaches about
129 * daylight saving times and warping kernel clocks.
130 */
77933d72 131static inline void warp_clock(void)
1da177e4
LT
132{
133 write_seqlock_irq(&xtime_lock);
134 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
135 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
1001d0a9 136 update_xtime_cache(0);
1da177e4
LT
137 write_sequnlock_irq(&xtime_lock);
138 clock_was_set();
139}
140
141/*
142 * In case for some reason the CMOS clock has not already been running
143 * in UTC, but in some local time: The first time we set the timezone,
144 * we will warp the clock so that it is ticking UTC time instead of
145 * local time. Presumably, if someone is setting the timezone then we
146 * are running in an environment where the programs understand about
147 * timezones. This should be done at boot time in the /etc/rc script,
148 * as soon as possible, so that the clock can be set right. Otherwise,
149 * various programs will get confused when the clock gets warped.
150 */
151
152int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
153{
154 static int firsttime = 1;
155 int error = 0;
156
951069e3 157 if (tv && !timespec_valid(tv))
718bcceb
TG
158 return -EINVAL;
159
1da177e4
LT
160 error = security_settime(tv, tz);
161 if (error)
162 return error;
163
164 if (tz) {
165 /* SMP safe, global irq locking makes it work. */
166 sys_tz = *tz;
2c622148 167 update_vsyscall_tz();
1da177e4
LT
168 if (firsttime) {
169 firsttime = 0;
170 if (!tv)
171 warp_clock();
172 }
173 }
174 if (tv)
175 {
176 /* SMP safe, again the code in arch/foo/time.c should
177 * globally block out interrupts when it runs.
178 */
179 return do_settimeofday(tv);
180 }
181 return 0;
182}
183
184asmlinkage long sys_settimeofday(struct timeval __user *tv,
185 struct timezone __user *tz)
186{
187 struct timeval user_tv;
188 struct timespec new_ts;
189 struct timezone new_tz;
190
191 if (tv) {
192 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
193 return -EFAULT;
194 new_ts.tv_sec = user_tv.tv_sec;
195 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
196 }
197 if (tz) {
198 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
199 return -EFAULT;
200 }
201
202 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
203}
204
1da177e4
LT
205asmlinkage long sys_adjtimex(struct timex __user *txc_p)
206{
207 struct timex txc; /* Local copy of parameter */
208 int ret;
209
210 /* Copy the user data space into the kernel copy
211 * structure. But bear in mind that the structures
212 * may change
213 */
214 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
215 return -EFAULT;
216 ret = do_adjtimex(&txc);
217 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
218}
219
1da177e4
LT
220/**
221 * current_fs_time - Return FS time
222 * @sb: Superblock.
223 *
8ba8e95e 224 * Return the current time truncated to the time granularity supported by
1da177e4
LT
225 * the fs.
226 */
227struct timespec current_fs_time(struct super_block *sb)
228{
229 struct timespec now = current_kernel_time();
230 return timespec_trunc(now, sb->s_time_gran);
231}
232EXPORT_SYMBOL(current_fs_time);
233
753e9c5c
ED
234/*
235 * Convert jiffies to milliseconds and back.
236 *
237 * Avoid unnecessary multiplications/divisions in the
238 * two most common HZ cases:
239 */
240unsigned int inline jiffies_to_msecs(const unsigned long j)
241{
242#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
243 return (MSEC_PER_SEC / HZ) * j;
244#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
245 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
246#else
bdc80787
PA
247# if BITS_PER_LONG == 32
248 return ((u64)HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
249# else
250 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
251# endif
753e9c5c
ED
252#endif
253}
254EXPORT_SYMBOL(jiffies_to_msecs);
255
256unsigned int inline jiffies_to_usecs(const unsigned long j)
257{
258#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
259 return (USEC_PER_SEC / HZ) * j;
260#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
261 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
262#else
bdc80787
PA
263# if BITS_PER_LONG == 32
264 return ((u64)HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
265# else
266 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
267# endif
753e9c5c
ED
268#endif
269}
270EXPORT_SYMBOL(jiffies_to_usecs);
271
1da177e4 272/**
8ba8e95e 273 * timespec_trunc - Truncate timespec to a granularity
1da177e4 274 * @t: Timespec
8ba8e95e 275 * @gran: Granularity in ns.
1da177e4 276 *
8ba8e95e 277 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
278 * Always rounds down.
279 *
280 * This function should be only used for timestamps returned by
281 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
3eb05676 282 * it doesn't handle the better resolution of the latter.
1da177e4
LT
283 */
284struct timespec timespec_trunc(struct timespec t, unsigned gran)
285{
286 /*
287 * Division is pretty slow so avoid it for common cases.
288 * Currently current_kernel_time() never returns better than
289 * jiffies resolution. Exploit that.
290 */
291 if (gran <= jiffies_to_usecs(1) * 1000) {
292 /* nothing */
293 } else if (gran == 1000000000) {
294 t.tv_nsec = 0;
295 } else {
296 t.tv_nsec -= t.tv_nsec % gran;
297 }
298 return t;
299}
300EXPORT_SYMBOL(timespec_trunc);
301
cf3c769b 302#ifndef CONFIG_GENERIC_TIME
1da177e4
LT
303/*
304 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
305 * and therefore only yields usec accuracy
306 */
307void getnstimeofday(struct timespec *tv)
308{
309 struct timeval x;
310
311 do_gettimeofday(&x);
312 tv->tv_sec = x.tv_sec;
313 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
314}
c6ecf7ed 315EXPORT_SYMBOL_GPL(getnstimeofday);
1da177e4
LT
316#endif
317
753be622
TG
318/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
319 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
320 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
321 *
322 * [For the Julian calendar (which was used in Russia before 1917,
323 * Britain & colonies before 1752, anywhere else before 1582,
324 * and is still in use by some communities) leave out the
325 * -year/100+year/400 terms, and add 10.]
326 *
327 * This algorithm was first published by Gauss (I think).
328 *
329 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
3eb05676 330 * machines where long is 32-bit! (However, as time_t is signed, we
753be622
TG
331 * will already get problems at other places on 2038-01-19 03:14:08)
332 */
333unsigned long
f4818900
IM
334mktime(const unsigned int year0, const unsigned int mon0,
335 const unsigned int day, const unsigned int hour,
336 const unsigned int min, const unsigned int sec)
753be622 337{
f4818900
IM
338 unsigned int mon = mon0, year = year0;
339
340 /* 1..12 -> 11,12,1..10 */
341 if (0 >= (int) (mon -= 2)) {
342 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
343 year -= 1;
344 }
345
346 return ((((unsigned long)
347 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
348 year*365 - 719499
349 )*24 + hour /* now have hours */
350 )*60 + min /* now have minutes */
351 )*60 + sec; /* finally seconds */
352}
353
199e7056
AM
354EXPORT_SYMBOL(mktime);
355
753be622
TG
356/**
357 * set_normalized_timespec - set timespec sec and nsec parts and normalize
358 *
359 * @ts: pointer to timespec variable to be set
360 * @sec: seconds to set
361 * @nsec: nanoseconds to set
362 *
363 * Set seconds and nanoseconds field of a timespec variable and
364 * normalize to the timespec storage format
365 *
366 * Note: The tv_nsec part is always in the range of
bdc80787 367 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
368 * For negative values only the tv_sec field is negative !
369 */
f4818900 370void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
753be622
TG
371{
372 while (nsec >= NSEC_PER_SEC) {
373 nsec -= NSEC_PER_SEC;
374 ++sec;
375 }
376 while (nsec < 0) {
377 nsec += NSEC_PER_SEC;
378 --sec;
379 }
380 ts->tv_sec = sec;
381 ts->tv_nsec = nsec;
382}
7c3f944e 383EXPORT_SYMBOL(set_normalized_timespec);
753be622 384
f8f46da3
TG
385/**
386 * ns_to_timespec - Convert nanoseconds to timespec
387 * @nsec: the nanoseconds value to be converted
388 *
389 * Returns the timespec representation of the nsec parameter.
390 */
df869b63 391struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
392{
393 struct timespec ts;
394
88fc3897
GA
395 if (!nsec)
396 return (struct timespec) {0, 0};
397
398 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
399 if (unlikely(nsec < 0))
400 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
f8f46da3
TG
401
402 return ts;
403}
85795d64 404EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
405
406/**
407 * ns_to_timeval - Convert nanoseconds to timeval
408 * @nsec: the nanoseconds value to be converted
409 *
410 * Returns the timeval representation of the nsec parameter.
411 */
df869b63 412struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
413{
414 struct timespec ts = ns_to_timespec(nsec);
415 struct timeval tv;
416
417 tv.tv_sec = ts.tv_sec;
418 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
419
420 return tv;
421}
b7aa0bf7 422EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 423
41cf5445
IM
424/*
425 * When we convert to jiffies then we interpret incoming values
426 * the following way:
427 *
428 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
429 *
430 * - 'too large' values [that would result in larger than
431 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
432 *
433 * - all other values are converted to jiffies by either multiplying
434 * the input value by a factor or dividing it with a factor
435 *
436 * We must also be careful about 32-bit overflows.
437 */
8b9365d7
IM
438unsigned long msecs_to_jiffies(const unsigned int m)
439{
41cf5445
IM
440 /*
441 * Negative value, means infinite timeout:
442 */
443 if ((int)m < 0)
8b9365d7 444 return MAX_JIFFY_OFFSET;
41cf5445 445
8b9365d7 446#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
447 /*
448 * HZ is equal to or smaller than 1000, and 1000 is a nice
449 * round multiple of HZ, divide with the factor between them,
450 * but round upwards:
451 */
8b9365d7
IM
452 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
453#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
454 /*
455 * HZ is larger than 1000, and HZ is a nice round multiple of
456 * 1000 - simply multiply with the factor between them.
457 *
458 * But first make sure the multiplication result cannot
459 * overflow:
460 */
461 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
462 return MAX_JIFFY_OFFSET;
463
8b9365d7
IM
464 return m * (HZ / MSEC_PER_SEC);
465#else
41cf5445
IM
466 /*
467 * Generic case - multiply, round and divide. But first
468 * check that if we are doing a net multiplication, that
bdc80787 469 * we wouldn't overflow:
41cf5445
IM
470 */
471 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
472 return MAX_JIFFY_OFFSET;
473
bdc80787
PA
474 return ((u64)MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
475 >> MSEC_TO_HZ_SHR32;
8b9365d7
IM
476#endif
477}
478EXPORT_SYMBOL(msecs_to_jiffies);
479
480unsigned long usecs_to_jiffies(const unsigned int u)
481{
482 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
483 return MAX_JIFFY_OFFSET;
484#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
485 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
486#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
487 return u * (HZ / USEC_PER_SEC);
488#else
bdc80787
PA
489 return ((u64)USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
490 >> USEC_TO_HZ_SHR32;
8b9365d7
IM
491#endif
492}
493EXPORT_SYMBOL(usecs_to_jiffies);
494
495/*
496 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
497 * that a remainder subtract here would not do the right thing as the
498 * resolution values don't fall on second boundries. I.e. the line:
499 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
500 *
501 * Rather, we just shift the bits off the right.
502 *
503 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
504 * value to a scaled second value.
505 */
506unsigned long
507timespec_to_jiffies(const struct timespec *value)
508{
509 unsigned long sec = value->tv_sec;
510 long nsec = value->tv_nsec + TICK_NSEC - 1;
511
512 if (sec >= MAX_SEC_IN_JIFFIES){
513 sec = MAX_SEC_IN_JIFFIES;
514 nsec = 0;
515 }
516 return (((u64)sec * SEC_CONVERSION) +
517 (((u64)nsec * NSEC_CONVERSION) >>
518 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
519
520}
521EXPORT_SYMBOL(timespec_to_jiffies);
522
523void
524jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
525{
526 /*
527 * Convert jiffies to nanoseconds and separate with
528 * one divide.
529 */
530 u64 nsec = (u64)jiffies * TICK_NSEC;
531 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
532}
533EXPORT_SYMBOL(jiffies_to_timespec);
534
535/* Same for "timeval"
536 *
537 * Well, almost. The problem here is that the real system resolution is
538 * in nanoseconds and the value being converted is in micro seconds.
539 * Also for some machines (those that use HZ = 1024, in-particular),
540 * there is a LARGE error in the tick size in microseconds.
541
542 * The solution we use is to do the rounding AFTER we convert the
543 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
544 * Instruction wise, this should cost only an additional add with carry
545 * instruction above the way it was done above.
546 */
547unsigned long
548timeval_to_jiffies(const struct timeval *value)
549{
550 unsigned long sec = value->tv_sec;
551 long usec = value->tv_usec;
552
553 if (sec >= MAX_SEC_IN_JIFFIES){
554 sec = MAX_SEC_IN_JIFFIES;
555 usec = 0;
556 }
557 return (((u64)sec * SEC_CONVERSION) +
558 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
559 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
560}
456a09dc 561EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
562
563void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
564{
565 /*
566 * Convert jiffies to nanoseconds and separate with
567 * one divide.
568 */
569 u64 nsec = (u64)jiffies * TICK_NSEC;
570 long tv_usec;
571
572 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
573 tv_usec /= NSEC_PER_USEC;
574 value->tv_usec = tv_usec;
575}
456a09dc 576EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
577
578/*
579 * Convert jiffies/jiffies_64 to clock_t and back.
580 */
581clock_t jiffies_to_clock_t(long x)
582{
583#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
584# if HZ < USER_HZ
585 return x * (USER_HZ / HZ);
586# else
8b9365d7 587 return x / (HZ / USER_HZ);
6ffc787a 588# endif
8b9365d7
IM
589#else
590 u64 tmp = (u64)x * TICK_NSEC;
591 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
592 return (long)tmp;
593#endif
594}
595EXPORT_SYMBOL(jiffies_to_clock_t);
596
597unsigned long clock_t_to_jiffies(unsigned long x)
598{
599#if (HZ % USER_HZ)==0
600 if (x >= ~0UL / (HZ / USER_HZ))
601 return ~0UL;
602 return x * (HZ / USER_HZ);
603#else
604 u64 jif;
605
606 /* Don't worry about loss of precision here .. */
607 if (x >= ~0UL / HZ * USER_HZ)
608 return ~0UL;
609
610 /* .. but do try to contain it here */
611 jif = x * (u64) HZ;
612 do_div(jif, USER_HZ);
613 return jif;
614#endif
615}
616EXPORT_SYMBOL(clock_t_to_jiffies);
617
618u64 jiffies_64_to_clock_t(u64 x)
619{
620#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
621# if HZ < USER_HZ
622 x *= USER_HZ;
623 do_div(x, HZ);
ec03d707 624# elif HZ > USER_HZ
8b9365d7 625 do_div(x, HZ / USER_HZ);
ec03d707
AM
626# else
627 /* Nothing to do */
6ffc787a 628# endif
8b9365d7
IM
629#else
630 /*
631 * There are better ways that don't overflow early,
632 * but even this doesn't overflow in hundreds of years
633 * in 64 bits, so..
634 */
635 x *= TICK_NSEC;
636 do_div(x, (NSEC_PER_SEC / USER_HZ));
637#endif
638 return x;
639}
8b9365d7
IM
640EXPORT_SYMBOL(jiffies_64_to_clock_t);
641
642u64 nsec_to_clock_t(u64 x)
643{
644#if (NSEC_PER_SEC % USER_HZ) == 0
645 do_div(x, (NSEC_PER_SEC / USER_HZ));
646#elif (USER_HZ % 512) == 0
647 x *= USER_HZ/512;
648 do_div(x, (NSEC_PER_SEC / 512));
649#else
650 /*
651 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
652 * overflow after 64.99 years.
653 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
654 */
655 x *= 9;
656 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
657 USER_HZ));
658#endif
659 return x;
660}
661
1da177e4
LT
662#if (BITS_PER_LONG < 64)
663u64 get_jiffies_64(void)
664{
665 unsigned long seq;
666 u64 ret;
667
668 do {
669 seq = read_seqbegin(&xtime_lock);
670 ret = jiffies_64;
671 } while (read_seqretry(&xtime_lock, seq));
672 return ret;
673}
1da177e4
LT
674EXPORT_SYMBOL(get_jiffies_64);
675#endif
676
677EXPORT_SYMBOL(jiffies);