]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sys.c
rlimits: selinux, do rlimits changes under task_lock
[net-next-2.6.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/notifier.h>
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
5a0e3ad6 39#include <linux/gfp.h>
1da177e4
LT
40
41#include <linux/compat.h>
42#include <linux/syscalls.h>
00d7c05a 43#include <linux/kprobes.h>
acce292c 44#include <linux/user_namespace.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/io.h>
48#include <asm/unistd.h>
49
50#ifndef SET_UNALIGN_CTL
51# define SET_UNALIGN_CTL(a,b) (-EINVAL)
52#endif
53#ifndef GET_UNALIGN_CTL
54# define GET_UNALIGN_CTL(a,b) (-EINVAL)
55#endif
56#ifndef SET_FPEMU_CTL
57# define SET_FPEMU_CTL(a,b) (-EINVAL)
58#endif
59#ifndef GET_FPEMU_CTL
60# define GET_FPEMU_CTL(a,b) (-EINVAL)
61#endif
62#ifndef SET_FPEXC_CTL
63# define SET_FPEXC_CTL(a,b) (-EINVAL)
64#endif
65#ifndef GET_FPEXC_CTL
66# define GET_FPEXC_CTL(a,b) (-EINVAL)
67#endif
651d765d
AB
68#ifndef GET_ENDIAN
69# define GET_ENDIAN(a,b) (-EINVAL)
70#endif
71#ifndef SET_ENDIAN
72# define SET_ENDIAN(a,b) (-EINVAL)
73#endif
8fb402bc
EB
74#ifndef GET_TSC_CTL
75# define GET_TSC_CTL(a) (-EINVAL)
76#endif
77#ifndef SET_TSC_CTL
78# define SET_TSC_CTL(a) (-EINVAL)
79#endif
1da177e4
LT
80
81/*
82 * this is where the system-wide overflow UID and GID are defined, for
83 * architectures that now have 32-bit UID/GID but didn't in the past
84 */
85
86int overflowuid = DEFAULT_OVERFLOWUID;
87int overflowgid = DEFAULT_OVERFLOWGID;
88
89#ifdef CONFIG_UID16
90EXPORT_SYMBOL(overflowuid);
91EXPORT_SYMBOL(overflowgid);
92#endif
93
94/*
95 * the same as above, but for filesystems which can only store a 16-bit
96 * UID and GID. as such, this is needed on all architectures
97 */
98
99int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
100int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
101
102EXPORT_SYMBOL(fs_overflowuid);
103EXPORT_SYMBOL(fs_overflowgid);
104
105/*
106 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
107 */
108
109int C_A_D = 1;
9ec52099
CLG
110struct pid *cad_pid;
111EXPORT_SYMBOL(cad_pid);
1da177e4 112
bd804eba
RW
113/*
114 * If set, this is used for preparing the system to power off.
115 */
116
117void (*pm_power_off_prepare)(void);
bd804eba 118
c69e8d9c
DH
119/*
120 * set the priority of a task
121 * - the caller must hold the RCU read lock
122 */
1da177e4
LT
123static int set_one_prio(struct task_struct *p, int niceval, int error)
124{
c69e8d9c 125 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
1da177e4
LT
126 int no_nice;
127
c69e8d9c
DH
128 if (pcred->uid != cred->euid &&
129 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
1da177e4
LT
130 error = -EPERM;
131 goto out;
132 }
e43379f1 133 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
134 error = -EACCES;
135 goto out;
136 }
137 no_nice = security_task_setnice(p, niceval);
138 if (no_nice) {
139 error = no_nice;
140 goto out;
141 }
142 if (error == -ESRCH)
143 error = 0;
144 set_user_nice(p, niceval);
145out:
146 return error;
147}
148
754fe8d2 149SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
150{
151 struct task_struct *g, *p;
152 struct user_struct *user;
86a264ab 153 const struct cred *cred = current_cred();
1da177e4 154 int error = -EINVAL;
41487c65 155 struct pid *pgrp;
1da177e4 156
3e88c553 157 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
158 goto out;
159
160 /* normalize: avoid signed division (rounding problems) */
161 error = -ESRCH;
162 if (niceval < -20)
163 niceval = -20;
164 if (niceval > 19)
165 niceval = 19;
166
d4581a23 167 rcu_read_lock();
1da177e4
LT
168 read_lock(&tasklist_lock);
169 switch (which) {
170 case PRIO_PROCESS:
41487c65 171 if (who)
228ebcbe 172 p = find_task_by_vpid(who);
41487c65
EB
173 else
174 p = current;
1da177e4
LT
175 if (p)
176 error = set_one_prio(p, niceval, error);
177 break;
178 case PRIO_PGRP:
41487c65 179 if (who)
b488893a 180 pgrp = find_vpid(who);
41487c65
EB
181 else
182 pgrp = task_pgrp(current);
2d70b68d 183 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 184 error = set_one_prio(p, niceval, error);
2d70b68d 185 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
186 break;
187 case PRIO_USER:
d84f4f99 188 user = (struct user_struct *) cred->user;
1da177e4 189 if (!who)
86a264ab
DH
190 who = cred->uid;
191 else if ((who != cred->uid) &&
192 !(user = find_user(who)))
193 goto out_unlock; /* No processes for this user */
1da177e4 194
dfc6a736 195 do_each_thread(g, p) {
86a264ab 196 if (__task_cred(p)->uid == who)
1da177e4 197 error = set_one_prio(p, niceval, error);
dfc6a736 198 } while_each_thread(g, p);
86a264ab 199 if (who != cred->uid)
1da177e4
LT
200 free_uid(user); /* For find_user() */
201 break;
202 }
203out_unlock:
204 read_unlock(&tasklist_lock);
d4581a23 205 rcu_read_unlock();
1da177e4
LT
206out:
207 return error;
208}
209
210/*
211 * Ugh. To avoid negative return values, "getpriority()" will
212 * not return the normal nice-value, but a negated value that
213 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
214 * to stay compatible.
215 */
754fe8d2 216SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
217{
218 struct task_struct *g, *p;
219 struct user_struct *user;
86a264ab 220 const struct cred *cred = current_cred();
1da177e4 221 long niceval, retval = -ESRCH;
41487c65 222 struct pid *pgrp;
1da177e4 223
3e88c553 224 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
225 return -EINVAL;
226
70118837 227 rcu_read_lock();
1da177e4
LT
228 read_lock(&tasklist_lock);
229 switch (which) {
230 case PRIO_PROCESS:
41487c65 231 if (who)
228ebcbe 232 p = find_task_by_vpid(who);
41487c65
EB
233 else
234 p = current;
1da177e4
LT
235 if (p) {
236 niceval = 20 - task_nice(p);
237 if (niceval > retval)
238 retval = niceval;
239 }
240 break;
241 case PRIO_PGRP:
41487c65 242 if (who)
b488893a 243 pgrp = find_vpid(who);
41487c65
EB
244 else
245 pgrp = task_pgrp(current);
2d70b68d 246 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
247 niceval = 20 - task_nice(p);
248 if (niceval > retval)
249 retval = niceval;
2d70b68d 250 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
251 break;
252 case PRIO_USER:
86a264ab 253 user = (struct user_struct *) cred->user;
1da177e4 254 if (!who)
86a264ab
DH
255 who = cred->uid;
256 else if ((who != cred->uid) &&
257 !(user = find_user(who)))
258 goto out_unlock; /* No processes for this user */
1da177e4 259
dfc6a736 260 do_each_thread(g, p) {
86a264ab 261 if (__task_cred(p)->uid == who) {
1da177e4
LT
262 niceval = 20 - task_nice(p);
263 if (niceval > retval)
264 retval = niceval;
265 }
dfc6a736 266 } while_each_thread(g, p);
86a264ab 267 if (who != cred->uid)
1da177e4
LT
268 free_uid(user); /* for find_user() */
269 break;
270 }
271out_unlock:
272 read_unlock(&tasklist_lock);
70118837 273 rcu_read_unlock();
1da177e4
LT
274
275 return retval;
276}
277
e4c94330
EB
278/**
279 * emergency_restart - reboot the system
280 *
281 * Without shutting down any hardware or taking any locks
282 * reboot the system. This is called when we know we are in
283 * trouble so this is our best effort to reboot. This is
284 * safe to call in interrupt context.
285 */
7c903473
EB
286void emergency_restart(void)
287{
288 machine_emergency_restart();
289}
290EXPORT_SYMBOL_GPL(emergency_restart);
291
ca195b7f 292void kernel_restart_prepare(char *cmd)
4a00ea1e 293{
e041c683 294 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 295 system_state = SYSTEM_RESTART;
4a00ea1e 296 device_shutdown();
58b3b71d 297 sysdev_shutdown();
e4c94330 298}
1e5d5331
RD
299
300/**
301 * kernel_restart - reboot the system
302 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 303 * or %NULL
1e5d5331
RD
304 *
305 * Shutdown everything and perform a clean reboot.
306 * This is not safe to call in interrupt context.
307 */
e4c94330
EB
308void kernel_restart(char *cmd)
309{
310 kernel_restart_prepare(cmd);
756184b7 311 if (!cmd)
4a00ea1e 312 printk(KERN_EMERG "Restarting system.\n");
756184b7 313 else
4a00ea1e 314 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
4a00ea1e
EB
315 machine_restart(cmd);
316}
317EXPORT_SYMBOL_GPL(kernel_restart);
318
4ef7229f 319static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 320{
e041c683 321 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
322 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
323 system_state = state;
324 device_shutdown();
325}
e4c94330
EB
326/**
327 * kernel_halt - halt the system
328 *
329 * Shutdown everything and perform a clean system halt.
330 */
e4c94330
EB
331void kernel_halt(void)
332{
729b4d4c 333 kernel_shutdown_prepare(SYSTEM_HALT);
58b3b71d 334 sysdev_shutdown();
4a00ea1e
EB
335 printk(KERN_EMERG "System halted.\n");
336 machine_halt();
337}
729b4d4c 338
4a00ea1e
EB
339EXPORT_SYMBOL_GPL(kernel_halt);
340
e4c94330
EB
341/**
342 * kernel_power_off - power_off the system
343 *
344 * Shutdown everything and perform a clean system power_off.
345 */
e4c94330
EB
346void kernel_power_off(void)
347{
729b4d4c 348 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
349 if (pm_power_off_prepare)
350 pm_power_off_prepare();
4047727e 351 disable_nonboot_cpus();
58b3b71d 352 sysdev_shutdown();
4a00ea1e
EB
353 printk(KERN_EMERG "Power down.\n");
354 machine_power_off();
355}
356EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
357
358static DEFINE_MUTEX(reboot_mutex);
359
1da177e4
LT
360/*
361 * Reboot system call: for obvious reasons only root may call it,
362 * and even root needs to set up some magic numbers in the registers
363 * so that some mistake won't make this reboot the whole machine.
364 * You can also set the meaning of the ctrl-alt-del-key here.
365 *
366 * reboot doesn't sync: do that yourself before calling this.
367 */
754fe8d2
HC
368SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
369 void __user *, arg)
1da177e4
LT
370{
371 char buffer[256];
3d26dcf7 372 int ret = 0;
1da177e4
LT
373
374 /* We only trust the superuser with rebooting the system. */
375 if (!capable(CAP_SYS_BOOT))
376 return -EPERM;
377
378 /* For safety, we require "magic" arguments. */
379 if (magic1 != LINUX_REBOOT_MAGIC1 ||
380 (magic2 != LINUX_REBOOT_MAGIC2 &&
381 magic2 != LINUX_REBOOT_MAGIC2A &&
382 magic2 != LINUX_REBOOT_MAGIC2B &&
383 magic2 != LINUX_REBOOT_MAGIC2C))
384 return -EINVAL;
385
5e38291d
EB
386 /* Instead of trying to make the power_off code look like
387 * halt when pm_power_off is not set do it the easy way.
388 */
389 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
390 cmd = LINUX_REBOOT_CMD_HALT;
391
6f15fa50 392 mutex_lock(&reboot_mutex);
1da177e4
LT
393 switch (cmd) {
394 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 395 kernel_restart(NULL);
1da177e4
LT
396 break;
397
398 case LINUX_REBOOT_CMD_CAD_ON:
399 C_A_D = 1;
400 break;
401
402 case LINUX_REBOOT_CMD_CAD_OFF:
403 C_A_D = 0;
404 break;
405
406 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 407 kernel_halt();
1da177e4 408 do_exit(0);
3d26dcf7 409 panic("cannot halt");
1da177e4
LT
410
411 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 412 kernel_power_off();
1da177e4
LT
413 do_exit(0);
414 break;
415
416 case LINUX_REBOOT_CMD_RESTART2:
417 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
418 ret = -EFAULT;
419 break;
1da177e4
LT
420 }
421 buffer[sizeof(buffer) - 1] = '\0';
422
4a00ea1e 423 kernel_restart(buffer);
1da177e4
LT
424 break;
425
3ab83521 426#ifdef CONFIG_KEXEC
dc009d92 427 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
428 ret = kernel_kexec();
429 break;
3ab83521 430#endif
4a00ea1e 431
b0cb1a19 432#ifdef CONFIG_HIBERNATION
1da177e4 433 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
434 ret = hibernate();
435 break;
1da177e4
LT
436#endif
437
438 default:
3d26dcf7
AK
439 ret = -EINVAL;
440 break;
1da177e4 441 }
6f15fa50 442 mutex_unlock(&reboot_mutex);
3d26dcf7 443 return ret;
1da177e4
LT
444}
445
65f27f38 446static void deferred_cad(struct work_struct *dummy)
1da177e4 447{
abcd9e51 448 kernel_restart(NULL);
1da177e4
LT
449}
450
451/*
452 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
453 * As it's called within an interrupt, it may NOT sync: the only choice
454 * is whether to reboot at once, or just ignore the ctrl-alt-del.
455 */
456void ctrl_alt_del(void)
457{
65f27f38 458 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
459
460 if (C_A_D)
461 schedule_work(&cad_work);
462 else
9ec52099 463 kill_cad_pid(SIGINT, 1);
1da177e4
LT
464}
465
1da177e4
LT
466/*
467 * Unprivileged users may change the real gid to the effective gid
468 * or vice versa. (BSD-style)
469 *
470 * If you set the real gid at all, or set the effective gid to a value not
471 * equal to the real gid, then the saved gid is set to the new effective gid.
472 *
473 * This makes it possible for a setgid program to completely drop its
474 * privileges, which is often a useful assertion to make when you are doing
475 * a security audit over a program.
476 *
477 * The general idea is that a program which uses just setregid() will be
478 * 100% compatible with BSD. A program which uses just setgid() will be
479 * 100% compatible with POSIX with saved IDs.
480 *
481 * SMP: There are not races, the GIDs are checked only by filesystem
482 * operations (as far as semantic preservation is concerned).
483 */
ae1251ab 484SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 485{
d84f4f99
DH
486 const struct cred *old;
487 struct cred *new;
1da177e4
LT
488 int retval;
489
d84f4f99
DH
490 new = prepare_creds();
491 if (!new)
492 return -ENOMEM;
493 old = current_cred();
494
d84f4f99 495 retval = -EPERM;
1da177e4 496 if (rgid != (gid_t) -1) {
d84f4f99
DH
497 if (old->gid == rgid ||
498 old->egid == rgid ||
1da177e4 499 capable(CAP_SETGID))
d84f4f99 500 new->gid = rgid;
1da177e4 501 else
d84f4f99 502 goto error;
1da177e4
LT
503 }
504 if (egid != (gid_t) -1) {
d84f4f99
DH
505 if (old->gid == egid ||
506 old->egid == egid ||
507 old->sgid == egid ||
1da177e4 508 capable(CAP_SETGID))
d84f4f99 509 new->egid = egid;
756184b7 510 else
d84f4f99 511 goto error;
1da177e4 512 }
d84f4f99 513
1da177e4 514 if (rgid != (gid_t) -1 ||
d84f4f99
DH
515 (egid != (gid_t) -1 && egid != old->gid))
516 new->sgid = new->egid;
517 new->fsgid = new->egid;
518
519 return commit_creds(new);
520
521error:
522 abort_creds(new);
523 return retval;
1da177e4
LT
524}
525
526/*
527 * setgid() is implemented like SysV w/ SAVED_IDS
528 *
529 * SMP: Same implicit races as above.
530 */
ae1251ab 531SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 532{
d84f4f99
DH
533 const struct cred *old;
534 struct cred *new;
1da177e4
LT
535 int retval;
536
d84f4f99
DH
537 new = prepare_creds();
538 if (!new)
539 return -ENOMEM;
540 old = current_cred();
541
d84f4f99
DH
542 retval = -EPERM;
543 if (capable(CAP_SETGID))
544 new->gid = new->egid = new->sgid = new->fsgid = gid;
545 else if (gid == old->gid || gid == old->sgid)
546 new->egid = new->fsgid = gid;
1da177e4 547 else
d84f4f99 548 goto error;
1da177e4 549
d84f4f99
DH
550 return commit_creds(new);
551
552error:
553 abort_creds(new);
554 return retval;
1da177e4 555}
54e99124 556
d84f4f99
DH
557/*
558 * change the user struct in a credentials set to match the new UID
559 */
560static int set_user(struct cred *new)
1da177e4
LT
561{
562 struct user_struct *new_user;
563
18b6e041 564 new_user = alloc_uid(current_user_ns(), new->uid);
1da177e4
LT
565 if (!new_user)
566 return -EAGAIN;
567
78d7d407 568 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
18b6e041 569 new_user != INIT_USER) {
1da177e4
LT
570 free_uid(new_user);
571 return -EAGAIN;
572 }
573
d84f4f99
DH
574 free_uid(new->user);
575 new->user = new_user;
1da177e4
LT
576 return 0;
577}
578
579/*
580 * Unprivileged users may change the real uid to the effective uid
581 * or vice versa. (BSD-style)
582 *
583 * If you set the real uid at all, or set the effective uid to a value not
584 * equal to the real uid, then the saved uid is set to the new effective uid.
585 *
586 * This makes it possible for a setuid program to completely drop its
587 * privileges, which is often a useful assertion to make when you are doing
588 * a security audit over a program.
589 *
590 * The general idea is that a program which uses just setreuid() will be
591 * 100% compatible with BSD. A program which uses just setuid() will be
592 * 100% compatible with POSIX with saved IDs.
593 */
ae1251ab 594SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 595{
d84f4f99
DH
596 const struct cred *old;
597 struct cred *new;
1da177e4
LT
598 int retval;
599
d84f4f99
DH
600 new = prepare_creds();
601 if (!new)
602 return -ENOMEM;
603 old = current_cred();
604
d84f4f99 605 retval = -EPERM;
1da177e4 606 if (ruid != (uid_t) -1) {
d84f4f99
DH
607 new->uid = ruid;
608 if (old->uid != ruid &&
609 old->euid != ruid &&
1da177e4 610 !capable(CAP_SETUID))
d84f4f99 611 goto error;
1da177e4
LT
612 }
613
614 if (euid != (uid_t) -1) {
d84f4f99
DH
615 new->euid = euid;
616 if (old->uid != euid &&
617 old->euid != euid &&
618 old->suid != euid &&
1da177e4 619 !capable(CAP_SETUID))
d84f4f99 620 goto error;
1da177e4
LT
621 }
622
54e99124
DG
623 if (new->uid != old->uid) {
624 retval = set_user(new);
625 if (retval < 0)
626 goto error;
627 }
1da177e4 628 if (ruid != (uid_t) -1 ||
d84f4f99
DH
629 (euid != (uid_t) -1 && euid != old->uid))
630 new->suid = new->euid;
631 new->fsuid = new->euid;
1da177e4 632
d84f4f99
DH
633 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
634 if (retval < 0)
635 goto error;
1da177e4 636
d84f4f99 637 return commit_creds(new);
1da177e4 638
d84f4f99
DH
639error:
640 abort_creds(new);
641 return retval;
642}
1da177e4
LT
643
644/*
645 * setuid() is implemented like SysV with SAVED_IDS
646 *
647 * Note that SAVED_ID's is deficient in that a setuid root program
648 * like sendmail, for example, cannot set its uid to be a normal
649 * user and then switch back, because if you're root, setuid() sets
650 * the saved uid too. If you don't like this, blame the bright people
651 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
652 * will allow a root program to temporarily drop privileges and be able to
653 * regain them by swapping the real and effective uid.
654 */
ae1251ab 655SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 656{
d84f4f99
DH
657 const struct cred *old;
658 struct cred *new;
1da177e4
LT
659 int retval;
660
d84f4f99
DH
661 new = prepare_creds();
662 if (!new)
663 return -ENOMEM;
664 old = current_cred();
665
d84f4f99 666 retval = -EPERM;
1da177e4 667 if (capable(CAP_SETUID)) {
d84f4f99 668 new->suid = new->uid = uid;
54e99124
DG
669 if (uid != old->uid) {
670 retval = set_user(new);
671 if (retval < 0)
672 goto error;
d84f4f99
DH
673 }
674 } else if (uid != old->uid && uid != new->suid) {
675 goto error;
1da177e4 676 }
1da177e4 677
d84f4f99
DH
678 new->fsuid = new->euid = uid;
679
680 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
681 if (retval < 0)
682 goto error;
1da177e4 683
d84f4f99 684 return commit_creds(new);
1da177e4 685
d84f4f99
DH
686error:
687 abort_creds(new);
688 return retval;
1da177e4
LT
689}
690
691
692/*
693 * This function implements a generic ability to update ruid, euid,
694 * and suid. This allows you to implement the 4.4 compatible seteuid().
695 */
ae1251ab 696SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 697{
d84f4f99
DH
698 const struct cred *old;
699 struct cred *new;
1da177e4
LT
700 int retval;
701
d84f4f99
DH
702 new = prepare_creds();
703 if (!new)
704 return -ENOMEM;
705
d84f4f99 706 old = current_cred();
1da177e4 707
d84f4f99 708 retval = -EPERM;
1da177e4 709 if (!capable(CAP_SETUID)) {
d84f4f99
DH
710 if (ruid != (uid_t) -1 && ruid != old->uid &&
711 ruid != old->euid && ruid != old->suid)
712 goto error;
713 if (euid != (uid_t) -1 && euid != old->uid &&
714 euid != old->euid && euid != old->suid)
715 goto error;
716 if (suid != (uid_t) -1 && suid != old->uid &&
717 suid != old->euid && suid != old->suid)
718 goto error;
1da177e4 719 }
d84f4f99 720
1da177e4 721 if (ruid != (uid_t) -1) {
d84f4f99 722 new->uid = ruid;
54e99124
DG
723 if (ruid != old->uid) {
724 retval = set_user(new);
725 if (retval < 0)
726 goto error;
727 }
1da177e4 728 }
d84f4f99
DH
729 if (euid != (uid_t) -1)
730 new->euid = euid;
1da177e4 731 if (suid != (uid_t) -1)
d84f4f99
DH
732 new->suid = suid;
733 new->fsuid = new->euid;
1da177e4 734
d84f4f99
DH
735 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
736 if (retval < 0)
737 goto error;
1da177e4 738
d84f4f99 739 return commit_creds(new);
1da177e4 740
d84f4f99
DH
741error:
742 abort_creds(new);
743 return retval;
1da177e4
LT
744}
745
dbf040d9 746SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
1da177e4 747{
86a264ab 748 const struct cred *cred = current_cred();
1da177e4
LT
749 int retval;
750
86a264ab
DH
751 if (!(retval = put_user(cred->uid, ruid)) &&
752 !(retval = put_user(cred->euid, euid)))
b6dff3ec 753 retval = put_user(cred->suid, suid);
1da177e4
LT
754
755 return retval;
756}
757
758/*
759 * Same as above, but for rgid, egid, sgid.
760 */
ae1251ab 761SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 762{
d84f4f99
DH
763 const struct cred *old;
764 struct cred *new;
1da177e4
LT
765 int retval;
766
d84f4f99
DH
767 new = prepare_creds();
768 if (!new)
769 return -ENOMEM;
770 old = current_cred();
771
d84f4f99 772 retval = -EPERM;
1da177e4 773 if (!capable(CAP_SETGID)) {
d84f4f99
DH
774 if (rgid != (gid_t) -1 && rgid != old->gid &&
775 rgid != old->egid && rgid != old->sgid)
776 goto error;
777 if (egid != (gid_t) -1 && egid != old->gid &&
778 egid != old->egid && egid != old->sgid)
779 goto error;
780 if (sgid != (gid_t) -1 && sgid != old->gid &&
781 sgid != old->egid && sgid != old->sgid)
782 goto error;
1da177e4 783 }
d84f4f99 784
1da177e4 785 if (rgid != (gid_t) -1)
d84f4f99
DH
786 new->gid = rgid;
787 if (egid != (gid_t) -1)
788 new->egid = egid;
1da177e4 789 if (sgid != (gid_t) -1)
d84f4f99
DH
790 new->sgid = sgid;
791 new->fsgid = new->egid;
1da177e4 792
d84f4f99
DH
793 return commit_creds(new);
794
795error:
796 abort_creds(new);
797 return retval;
1da177e4
LT
798}
799
dbf040d9 800SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
1da177e4 801{
86a264ab 802 const struct cred *cred = current_cred();
1da177e4
LT
803 int retval;
804
86a264ab
DH
805 if (!(retval = put_user(cred->gid, rgid)) &&
806 !(retval = put_user(cred->egid, egid)))
b6dff3ec 807 retval = put_user(cred->sgid, sgid);
1da177e4
LT
808
809 return retval;
810}
811
812
813/*
814 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
815 * is used for "access()" and for the NFS daemon (letting nfsd stay at
816 * whatever uid it wants to). It normally shadows "euid", except when
817 * explicitly set by setfsuid() or for access..
818 */
ae1251ab 819SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 820{
d84f4f99
DH
821 const struct cred *old;
822 struct cred *new;
823 uid_t old_fsuid;
1da177e4 824
d84f4f99
DH
825 new = prepare_creds();
826 if (!new)
827 return current_fsuid();
828 old = current_cred();
829 old_fsuid = old->fsuid;
1da177e4 830
d84f4f99
DH
831 if (uid == old->uid || uid == old->euid ||
832 uid == old->suid || uid == old->fsuid ||
756184b7
CP
833 capable(CAP_SETUID)) {
834 if (uid != old_fsuid) {
d84f4f99
DH
835 new->fsuid = uid;
836 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
837 goto change_okay;
1da177e4 838 }
1da177e4
LT
839 }
840
d84f4f99
DH
841 abort_creds(new);
842 return old_fsuid;
1da177e4 843
d84f4f99
DH
844change_okay:
845 commit_creds(new);
1da177e4
LT
846 return old_fsuid;
847}
848
849/*
f42df9e6 850 * Samma på svenska..
1da177e4 851 */
ae1251ab 852SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 853{
d84f4f99
DH
854 const struct cred *old;
855 struct cred *new;
856 gid_t old_fsgid;
857
858 new = prepare_creds();
859 if (!new)
860 return current_fsgid();
861 old = current_cred();
862 old_fsgid = old->fsgid;
1da177e4 863
d84f4f99
DH
864 if (gid == old->gid || gid == old->egid ||
865 gid == old->sgid || gid == old->fsgid ||
756184b7
CP
866 capable(CAP_SETGID)) {
867 if (gid != old_fsgid) {
d84f4f99
DH
868 new->fsgid = gid;
869 goto change_okay;
1da177e4 870 }
1da177e4 871 }
d84f4f99 872
d84f4f99
DH
873 abort_creds(new);
874 return old_fsgid;
875
876change_okay:
877 commit_creds(new);
1da177e4
LT
878 return old_fsgid;
879}
880
f06febc9
FM
881void do_sys_times(struct tms *tms)
882{
0cf55e1e 883 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 884
2b5fe6de 885 spin_lock_irq(&current->sighand->siglock);
0cf55e1e 886 thread_group_times(current, &tgutime, &tgstime);
f06febc9
FM
887 cutime = current->signal->cutime;
888 cstime = current->signal->cstime;
889 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
890 tms->tms_utime = cputime_to_clock_t(tgutime);
891 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
892 tms->tms_cutime = cputime_to_clock_t(cutime);
893 tms->tms_cstime = cputime_to_clock_t(cstime);
894}
895
58fd3aa2 896SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 897{
1da177e4
LT
898 if (tbuf) {
899 struct tms tmp;
f06febc9
FM
900
901 do_sys_times(&tmp);
1da177e4
LT
902 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
903 return -EFAULT;
904 }
e3d5a27d 905 force_successful_syscall_return();
1da177e4
LT
906 return (long) jiffies_64_to_clock_t(get_jiffies_64());
907}
908
909/*
910 * This needs some heavy checking ...
911 * I just haven't the stomach for it. I also don't fully
912 * understand sessions/pgrp etc. Let somebody who does explain it.
913 *
914 * OK, I think I have the protection semantics right.... this is really
915 * only important on a multi-user system anyway, to make sure one user
916 * can't send a signal to a process owned by another. -TYT, 12/12/91
917 *
918 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
919 * LBT 04.03.94
920 */
b290ebe2 921SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
922{
923 struct task_struct *p;
ee0acf90 924 struct task_struct *group_leader = current->group_leader;
4e021306
ON
925 struct pid *pgrp;
926 int err;
1da177e4
LT
927
928 if (!pid)
b488893a 929 pid = task_pid_vnr(group_leader);
1da177e4
LT
930 if (!pgid)
931 pgid = pid;
932 if (pgid < 0)
933 return -EINVAL;
934
935 /* From this point forward we keep holding onto the tasklist lock
936 * so that our parent does not change from under us. -DaveM
937 */
938 write_lock_irq(&tasklist_lock);
939
940 err = -ESRCH;
4e021306 941 p = find_task_by_vpid(pid);
1da177e4
LT
942 if (!p)
943 goto out;
944
945 err = -EINVAL;
946 if (!thread_group_leader(p))
947 goto out;
948
4e021306 949 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 950 err = -EPERM;
41487c65 951 if (task_session(p) != task_session(group_leader))
1da177e4
LT
952 goto out;
953 err = -EACCES;
954 if (p->did_exec)
955 goto out;
956 } else {
957 err = -ESRCH;
ee0acf90 958 if (p != group_leader)
1da177e4
LT
959 goto out;
960 }
961
962 err = -EPERM;
963 if (p->signal->leader)
964 goto out;
965
4e021306 966 pgrp = task_pid(p);
1da177e4 967 if (pgid != pid) {
b488893a 968 struct task_struct *g;
1da177e4 969
4e021306
ON
970 pgrp = find_vpid(pgid);
971 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 972 if (!g || task_session(g) != task_session(group_leader))
f020bc46 973 goto out;
1da177e4
LT
974 }
975
1da177e4
LT
976 err = security_task_setpgid(p, pgid);
977 if (err)
978 goto out;
979
1b0f7ffd 980 if (task_pgrp(p) != pgrp)
83beaf3c 981 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
982
983 err = 0;
984out:
985 /* All paths lead to here, thus we are safe. -DaveM */
986 write_unlock_irq(&tasklist_lock);
987 return err;
988}
989
dbf040d9 990SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 991{
12a3de0a
ON
992 struct task_struct *p;
993 struct pid *grp;
994 int retval;
995
996 rcu_read_lock();
756184b7 997 if (!pid)
12a3de0a 998 grp = task_pgrp(current);
756184b7 999 else {
1da177e4 1000 retval = -ESRCH;
12a3de0a
ON
1001 p = find_task_by_vpid(pid);
1002 if (!p)
1003 goto out;
1004 grp = task_pgrp(p);
1005 if (!grp)
1006 goto out;
1007
1008 retval = security_task_getpgid(p);
1009 if (retval)
1010 goto out;
1da177e4 1011 }
12a3de0a
ON
1012 retval = pid_vnr(grp);
1013out:
1014 rcu_read_unlock();
1015 return retval;
1da177e4
LT
1016}
1017
1018#ifdef __ARCH_WANT_SYS_GETPGRP
1019
dbf040d9 1020SYSCALL_DEFINE0(getpgrp)
1da177e4 1021{
12a3de0a 1022 return sys_getpgid(0);
1da177e4
LT
1023}
1024
1025#endif
1026
dbf040d9 1027SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1028{
1dd768c0
ON
1029 struct task_struct *p;
1030 struct pid *sid;
1031 int retval;
1032
1033 rcu_read_lock();
756184b7 1034 if (!pid)
1dd768c0 1035 sid = task_session(current);
756184b7 1036 else {
1da177e4 1037 retval = -ESRCH;
1dd768c0
ON
1038 p = find_task_by_vpid(pid);
1039 if (!p)
1040 goto out;
1041 sid = task_session(p);
1042 if (!sid)
1043 goto out;
1044
1045 retval = security_task_getsid(p);
1046 if (retval)
1047 goto out;
1da177e4 1048 }
1dd768c0
ON
1049 retval = pid_vnr(sid);
1050out:
1051 rcu_read_unlock();
1052 return retval;
1da177e4
LT
1053}
1054
b290ebe2 1055SYSCALL_DEFINE0(setsid)
1da177e4 1056{
e19f247a 1057 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1058 struct pid *sid = task_pid(group_leader);
1059 pid_t session = pid_vnr(sid);
1da177e4
LT
1060 int err = -EPERM;
1061
1da177e4 1062 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1063 /* Fail if I am already a session leader */
1064 if (group_leader->signal->leader)
1065 goto out;
1066
430c6231
ON
1067 /* Fail if a process group id already exists that equals the
1068 * proposed session id.
390e2ff0 1069 */
6806aac6 1070 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1071 goto out;
1072
e19f247a 1073 group_leader->signal->leader = 1;
8520d7c7 1074 __set_special_pids(sid);
24ec839c 1075
9c9f4ded 1076 proc_clear_tty(group_leader);
24ec839c 1077
e4cc0a9c 1078 err = session;
1da177e4
LT
1079out:
1080 write_unlock_irq(&tasklist_lock);
0d0df599
CB
1081 if (err > 0)
1082 proc_sid_connector(group_leader);
1da177e4
LT
1083 return err;
1084}
1085
1da177e4
LT
1086DECLARE_RWSEM(uts_sem);
1087
e28cbf22
CH
1088#ifdef COMPAT_UTS_MACHINE
1089#define override_architecture(name) \
46da2766 1090 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1091 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1092 sizeof(COMPAT_UTS_MACHINE)))
1093#else
1094#define override_architecture(name) 0
1095#endif
1096
e48fbb69 1097SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1098{
1099 int errno = 0;
1100
1101 down_read(&uts_sem);
e9ff3990 1102 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1103 errno = -EFAULT;
1104 up_read(&uts_sem);
e28cbf22
CH
1105
1106 if (!errno && override_architecture(name))
1107 errno = -EFAULT;
1da177e4
LT
1108 return errno;
1109}
1110
5cacdb4a
CH
1111#ifdef __ARCH_WANT_SYS_OLD_UNAME
1112/*
1113 * Old cruft
1114 */
1115SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1116{
1117 int error = 0;
1118
1119 if (!name)
1120 return -EFAULT;
1121
1122 down_read(&uts_sem);
1123 if (copy_to_user(name, utsname(), sizeof(*name)))
1124 error = -EFAULT;
1125 up_read(&uts_sem);
1126
1127 if (!error && override_architecture(name))
1128 error = -EFAULT;
1129 return error;
1130}
1131
1132SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1133{
1134 int error;
1135
1136 if (!name)
1137 return -EFAULT;
1138 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1139 return -EFAULT;
1140
1141 down_read(&uts_sem);
1142 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1143 __OLD_UTS_LEN);
1144 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1145 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1146 __OLD_UTS_LEN);
1147 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1148 error |= __copy_to_user(&name->release, &utsname()->release,
1149 __OLD_UTS_LEN);
1150 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1151 error |= __copy_to_user(&name->version, &utsname()->version,
1152 __OLD_UTS_LEN);
1153 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1154 error |= __copy_to_user(&name->machine, &utsname()->machine,
1155 __OLD_UTS_LEN);
1156 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1157 up_read(&uts_sem);
1158
1159 if (!error && override_architecture(name))
1160 error = -EFAULT;
1161 return error ? -EFAULT : 0;
1162}
1163#endif
1164
5a8a82b1 1165SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1166{
1167 int errno;
1168 char tmp[__NEW_UTS_LEN];
1169
1170 if (!capable(CAP_SYS_ADMIN))
1171 return -EPERM;
1172 if (len < 0 || len > __NEW_UTS_LEN)
1173 return -EINVAL;
1174 down_write(&uts_sem);
1175 errno = -EFAULT;
1176 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1177 struct new_utsname *u = utsname();
1178
1179 memcpy(u->nodename, tmp, len);
1180 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4
LT
1181 errno = 0;
1182 }
1183 up_write(&uts_sem);
1184 return errno;
1185}
1186
1187#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1188
5a8a82b1 1189SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1190{
1191 int i, errno;
9679e4dd 1192 struct new_utsname *u;
1da177e4
LT
1193
1194 if (len < 0)
1195 return -EINVAL;
1196 down_read(&uts_sem);
9679e4dd
AM
1197 u = utsname();
1198 i = 1 + strlen(u->nodename);
1da177e4
LT
1199 if (i > len)
1200 i = len;
1201 errno = 0;
9679e4dd 1202 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1203 errno = -EFAULT;
1204 up_read(&uts_sem);
1205 return errno;
1206}
1207
1208#endif
1209
1210/*
1211 * Only setdomainname; getdomainname can be implemented by calling
1212 * uname()
1213 */
5a8a82b1 1214SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1215{
1216 int errno;
1217 char tmp[__NEW_UTS_LEN];
1218
1219 if (!capable(CAP_SYS_ADMIN))
1220 return -EPERM;
1221 if (len < 0 || len > __NEW_UTS_LEN)
1222 return -EINVAL;
1223
1224 down_write(&uts_sem);
1225 errno = -EFAULT;
1226 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1227 struct new_utsname *u = utsname();
1228
1229 memcpy(u->domainname, tmp, len);
1230 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4
LT
1231 errno = 0;
1232 }
1233 up_write(&uts_sem);
1234 return errno;
1235}
1236
e48fbb69 1237SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4
LT
1238{
1239 if (resource >= RLIM_NLIMITS)
1240 return -EINVAL;
1241 else {
1242 struct rlimit value;
1243 task_lock(current->group_leader);
1244 value = current->signal->rlim[resource];
1245 task_unlock(current->group_leader);
1246 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1247 }
1248}
1249
1250#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1251
1252/*
1253 * Back compatibility for getrlimit. Needed for some apps.
1254 */
1255
e48fbb69
HC
1256SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1257 struct rlimit __user *, rlim)
1da177e4
LT
1258{
1259 struct rlimit x;
1260 if (resource >= RLIM_NLIMITS)
1261 return -EINVAL;
1262
1263 task_lock(current->group_leader);
1264 x = current->signal->rlim[resource];
1265 task_unlock(current->group_leader);
756184b7 1266 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1267 x.rlim_cur = 0x7FFFFFFF;
756184b7 1268 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1269 x.rlim_max = 0x7FFFFFFF;
1270 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1271}
1272
1273#endif
1274
e48fbb69 1275SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4
LT
1276{
1277 struct rlimit new_rlim, *old_rlim;
1278 int retval;
1279
1280 if (resource >= RLIM_NLIMITS)
1281 return -EINVAL;
ec9e16ba 1282 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1da177e4 1283 return -EFAULT;
60fd760f
AM
1284 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1285 return -EINVAL;
60fd760f
AM
1286 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1287 return -EPERM;
1da177e4 1288
8fd00b4d 1289 retval = security_task_setrlimit(current, resource, &new_rlim);
1da177e4
LT
1290 if (retval)
1291 return retval;
1292
9926e4c7
TA
1293 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1294 /*
1295 * The caller is asking for an immediate RLIMIT_CPU
1296 * expiry. But we use the zero value to mean "it was
1297 * never set". So let's cheat and make it one second
1298 * instead
1299 */
1300 new_rlim.rlim_cur = 1;
1301 }
1302
2fb9d268 1303 old_rlim = current->signal->rlim + resource;
1da177e4 1304 task_lock(current->group_leader);
2fb9d268
ON
1305 if (new_rlim.rlim_max > old_rlim->rlim_max &&
1306 !capable(CAP_SYS_RESOURCE))
1307 retval = -EPERM;
1308 else
1309 *old_rlim = new_rlim;
1da177e4
LT
1310 task_unlock(current->group_leader);
1311
2fb9d268 1312 if (retval || resource != RLIMIT_CPU)
ec9e16ba 1313 goto out;
d3561f78
AM
1314
1315 /*
1316 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1317 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1318 * very long-standing error, and fixing it now risks breakage of
1319 * applications, so we live with it
1320 */
ec9e16ba
AM
1321 if (new_rlim.rlim_cur == RLIM_INFINITY)
1322 goto out;
1323
5ab46b34 1324 update_rlimit_cpu(current, new_rlim.rlim_cur);
ec9e16ba 1325out:
2fb9d268 1326 return retval;
1da177e4
LT
1327}
1328
1329/*
1330 * It would make sense to put struct rusage in the task_struct,
1331 * except that would make the task_struct be *really big*. After
1332 * task_struct gets moved into malloc'ed memory, it would
1333 * make sense to do this. It will make moving the rest of the information
1334 * a lot simpler! (Which we're not doing right now because we're not
1335 * measuring them yet).
1336 *
1da177e4
LT
1337 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1338 * races with threads incrementing their own counters. But since word
1339 * reads are atomic, we either get new values or old values and we don't
1340 * care which for the sums. We always take the siglock to protect reading
1341 * the c* fields from p->signal from races with exit.c updating those
1342 * fields when reaping, so a sample either gets all the additions of a
1343 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1344 *
de047c1b
RT
1345 * Locking:
1346 * We need to take the siglock for CHILDEREN, SELF and BOTH
1347 * for the cases current multithreaded, non-current single threaded
1348 * non-current multithreaded. Thread traversal is now safe with
1349 * the siglock held.
1350 * Strictly speaking, we donot need to take the siglock if we are current and
1351 * single threaded, as no one else can take our signal_struct away, no one
1352 * else can reap the children to update signal->c* counters, and no one else
1353 * can race with the signal-> fields. If we do not take any lock, the
1354 * signal-> fields could be read out of order while another thread was just
1355 * exiting. So we should place a read memory barrier when we avoid the lock.
1356 * On the writer side, write memory barrier is implied in __exit_signal
1357 * as __exit_signal releases the siglock spinlock after updating the signal->
1358 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1359 *
1da177e4
LT
1360 */
1361
f06febc9 1362static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1363{
679c9cd4
SK
1364 r->ru_nvcsw += t->nvcsw;
1365 r->ru_nivcsw += t->nivcsw;
1366 r->ru_minflt += t->min_flt;
1367 r->ru_majflt += t->maj_flt;
1368 r->ru_inblock += task_io_get_inblock(t);
1369 r->ru_oublock += task_io_get_oublock(t);
1370}
1371
1da177e4
LT
1372static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1373{
1374 struct task_struct *t;
1375 unsigned long flags;
0cf55e1e 1376 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1377 unsigned long maxrss = 0;
1da177e4
LT
1378
1379 memset((char *) r, 0, sizeof *r);
2dd0ebcd 1380 utime = stime = cputime_zero;
1da177e4 1381
679c9cd4 1382 if (who == RUSAGE_THREAD) {
d180c5bc 1383 task_times(current, &utime, &stime);
f06febc9 1384 accumulate_thread_rusage(p, r);
1f10206c 1385 maxrss = p->signal->maxrss;
679c9cd4
SK
1386 goto out;
1387 }
1388
d6cf723a 1389 if (!lock_task_sighand(p, &flags))
de047c1b 1390 return;
0f59cc4a 1391
1da177e4 1392 switch (who) {
0f59cc4a 1393 case RUSAGE_BOTH:
1da177e4 1394 case RUSAGE_CHILDREN:
1da177e4
LT
1395 utime = p->signal->cutime;
1396 stime = p->signal->cstime;
1397 r->ru_nvcsw = p->signal->cnvcsw;
1398 r->ru_nivcsw = p->signal->cnivcsw;
1399 r->ru_minflt = p->signal->cmin_flt;
1400 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1401 r->ru_inblock = p->signal->cinblock;
1402 r->ru_oublock = p->signal->coublock;
1f10206c 1403 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1404
1405 if (who == RUSAGE_CHILDREN)
1406 break;
1407
1da177e4 1408 case RUSAGE_SELF:
0cf55e1e
HS
1409 thread_group_times(p, &tgutime, &tgstime);
1410 utime = cputime_add(utime, tgutime);
1411 stime = cputime_add(stime, tgstime);
1da177e4
LT
1412 r->ru_nvcsw += p->signal->nvcsw;
1413 r->ru_nivcsw += p->signal->nivcsw;
1414 r->ru_minflt += p->signal->min_flt;
1415 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1416 r->ru_inblock += p->signal->inblock;
1417 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1418 if (maxrss < p->signal->maxrss)
1419 maxrss = p->signal->maxrss;
1da177e4
LT
1420 t = p;
1421 do {
f06febc9 1422 accumulate_thread_rusage(t, r);
1da177e4
LT
1423 t = next_thread(t);
1424 } while (t != p);
1da177e4 1425 break;
0f59cc4a 1426
1da177e4
LT
1427 default:
1428 BUG();
1429 }
de047c1b 1430 unlock_task_sighand(p, &flags);
de047c1b 1431
679c9cd4 1432out:
0f59cc4a
ON
1433 cputime_to_timeval(utime, &r->ru_utime);
1434 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1435
1436 if (who != RUSAGE_CHILDREN) {
1437 struct mm_struct *mm = get_task_mm(p);
1438 if (mm) {
1439 setmax_mm_hiwater_rss(&maxrss, mm);
1440 mmput(mm);
1441 }
1442 }
1443 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1444}
1445
1446int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1447{
1448 struct rusage r;
1da177e4 1449 k_getrusage(p, who, &r);
1da177e4
LT
1450 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1451}
1452
e48fbb69 1453SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1454{
679c9cd4
SK
1455 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1456 who != RUSAGE_THREAD)
1da177e4
LT
1457 return -EINVAL;
1458 return getrusage(current, who, ru);
1459}
1460
e48fbb69 1461SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1462{
1463 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1464 return mask;
1465}
3b7391de 1466
c4ea37c2
HC
1467SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1468 unsigned long, arg4, unsigned long, arg5)
1da177e4 1469{
b6dff3ec
DH
1470 struct task_struct *me = current;
1471 unsigned char comm[sizeof(me->comm)];
1472 long error;
1da177e4 1473
d84f4f99
DH
1474 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1475 if (error != -ENOSYS)
1da177e4
LT
1476 return error;
1477
d84f4f99 1478 error = 0;
1da177e4
LT
1479 switch (option) {
1480 case PR_SET_PDEATHSIG:
0730ded5 1481 if (!valid_signal(arg2)) {
1da177e4
LT
1482 error = -EINVAL;
1483 break;
1484 }
b6dff3ec
DH
1485 me->pdeath_signal = arg2;
1486 error = 0;
1da177e4
LT
1487 break;
1488 case PR_GET_PDEATHSIG:
b6dff3ec 1489 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1490 break;
1491 case PR_GET_DUMPABLE:
b6dff3ec 1492 error = get_dumpable(me->mm);
1da177e4
LT
1493 break;
1494 case PR_SET_DUMPABLE:
abf75a50 1495 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1496 error = -EINVAL;
1497 break;
1498 }
b6dff3ec
DH
1499 set_dumpable(me->mm, arg2);
1500 error = 0;
1da177e4
LT
1501 break;
1502
1503 case PR_SET_UNALIGN:
b6dff3ec 1504 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1505 break;
1506 case PR_GET_UNALIGN:
b6dff3ec 1507 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1508 break;
1509 case PR_SET_FPEMU:
b6dff3ec 1510 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1511 break;
1512 case PR_GET_FPEMU:
b6dff3ec 1513 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1514 break;
1515 case PR_SET_FPEXC:
b6dff3ec 1516 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1517 break;
1518 case PR_GET_FPEXC:
b6dff3ec 1519 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1520 break;
1521 case PR_GET_TIMING:
1522 error = PR_TIMING_STATISTICAL;
1523 break;
1524 case PR_SET_TIMING:
7b26655f 1525 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1526 error = -EINVAL;
b6dff3ec
DH
1527 else
1528 error = 0;
1da177e4
LT
1529 break;
1530
b6dff3ec
DH
1531 case PR_SET_NAME:
1532 comm[sizeof(me->comm)-1] = 0;
1533 if (strncpy_from_user(comm, (char __user *)arg2,
1534 sizeof(me->comm) - 1) < 0)
1da177e4 1535 return -EFAULT;
b6dff3ec 1536 set_task_comm(me, comm);
1da177e4 1537 return 0;
b6dff3ec
DH
1538 case PR_GET_NAME:
1539 get_task_comm(comm, me);
1540 if (copy_to_user((char __user *)arg2, comm,
1541 sizeof(comm)))
1da177e4
LT
1542 return -EFAULT;
1543 return 0;
651d765d 1544 case PR_GET_ENDIAN:
b6dff3ec 1545 error = GET_ENDIAN(me, arg2);
651d765d
AB
1546 break;
1547 case PR_SET_ENDIAN:
b6dff3ec 1548 error = SET_ENDIAN(me, arg2);
651d765d
AB
1549 break;
1550
1d9d02fe
AA
1551 case PR_GET_SECCOMP:
1552 error = prctl_get_seccomp();
1553 break;
1554 case PR_SET_SECCOMP:
1555 error = prctl_set_seccomp(arg2);
1556 break;
8fb402bc
EB
1557 case PR_GET_TSC:
1558 error = GET_TSC_CTL(arg2);
1559 break;
1560 case PR_SET_TSC:
1561 error = SET_TSC_CTL(arg2);
1562 break;
cdd6c482
IM
1563 case PR_TASK_PERF_EVENTS_DISABLE:
1564 error = perf_event_task_disable();
1d1c7ddb 1565 break;
cdd6c482
IM
1566 case PR_TASK_PERF_EVENTS_ENABLE:
1567 error = perf_event_task_enable();
1d1c7ddb 1568 break;
6976675d
AV
1569 case PR_GET_TIMERSLACK:
1570 error = current->timer_slack_ns;
1571 break;
1572 case PR_SET_TIMERSLACK:
1573 if (arg2 <= 0)
1574 current->timer_slack_ns =
1575 current->default_timer_slack_ns;
1576 else
1577 current->timer_slack_ns = arg2;
b6dff3ec 1578 error = 0;
6976675d 1579 break;
4db96cf0
AK
1580 case PR_MCE_KILL:
1581 if (arg4 | arg5)
1582 return -EINVAL;
1583 switch (arg2) {
1087e9b4 1584 case PR_MCE_KILL_CLEAR:
4db96cf0
AK
1585 if (arg3 != 0)
1586 return -EINVAL;
1587 current->flags &= ~PF_MCE_PROCESS;
1588 break;
1087e9b4 1589 case PR_MCE_KILL_SET:
4db96cf0 1590 current->flags |= PF_MCE_PROCESS;
1087e9b4 1591 if (arg3 == PR_MCE_KILL_EARLY)
4db96cf0 1592 current->flags |= PF_MCE_EARLY;
1087e9b4 1593 else if (arg3 == PR_MCE_KILL_LATE)
4db96cf0 1594 current->flags &= ~PF_MCE_EARLY;
1087e9b4
AK
1595 else if (arg3 == PR_MCE_KILL_DEFAULT)
1596 current->flags &=
1597 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1598 else
1599 return -EINVAL;
4db96cf0
AK
1600 break;
1601 default:
1602 return -EINVAL;
1603 }
1604 error = 0;
1605 break;
1087e9b4
AK
1606 case PR_MCE_KILL_GET:
1607 if (arg2 | arg3 | arg4 | arg5)
1608 return -EINVAL;
1609 if (current->flags & PF_MCE_PROCESS)
1610 error = (current->flags & PF_MCE_EARLY) ?
1611 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1612 else
1613 error = PR_MCE_KILL_DEFAULT;
1614 break;
1da177e4
LT
1615 default:
1616 error = -EINVAL;
1617 break;
1618 }
1619 return error;
1620}
3cfc348b 1621
836f92ad
HC
1622SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1623 struct getcpu_cache __user *, unused)
3cfc348b
AK
1624{
1625 int err = 0;
1626 int cpu = raw_smp_processor_id();
1627 if (cpup)
1628 err |= put_user(cpu, cpup);
1629 if (nodep)
1630 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
1631 return err ? -EFAULT : 0;
1632}
10a0a8d4
JF
1633
1634char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1635
a06a4dc3 1636static void argv_cleanup(struct subprocess_info *info)
10a0a8d4 1637{
a06a4dc3 1638 argv_free(info->argv);
10a0a8d4
JF
1639}
1640
1641/**
1642 * orderly_poweroff - Trigger an orderly system poweroff
1643 * @force: force poweroff if command execution fails
1644 *
1645 * This may be called from any context to trigger a system shutdown.
1646 * If the orderly shutdown fails, it will force an immediate shutdown.
1647 */
1648int orderly_poweroff(bool force)
1649{
1650 int argc;
1651 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1652 static char *envp[] = {
1653 "HOME=/",
1654 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1655 NULL
1656 };
1657 int ret = -ENOMEM;
1658 struct subprocess_info *info;
1659
1660 if (argv == NULL) {
1661 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1662 __func__, poweroff_cmd);
1663 goto out;
1664 }
1665
ac331d15 1666 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
1667 if (info == NULL) {
1668 argv_free(argv);
1669 goto out;
1670 }
1671
a06a4dc3 1672 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
10a0a8d4 1673
86313c48 1674 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
1675
1676 out:
1677 if (ret && force) {
1678 printk(KERN_WARNING "Failed to start orderly shutdown: "
1679 "forcing the issue\n");
1680
1681 /* I guess this should try to kick off some daemon to
1682 sync and poweroff asap. Or not even bother syncing
1683 if we're doing an emergency shutdown? */
1684 emergency_sync();
1685 kernel_power_off();
1686 }
1687
1688 return ret;
1689}
1690EXPORT_SYMBOL_GPL(orderly_poweroff);