]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/signal.c
[PATCH] hpet: hpet driver cleanups
[net-next-2.6.git] / kernel / signal.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/config.h>
14#include <linux/slab.h>
15#include <linux/module.h>
16#include <linux/smp_lock.h>
17#include <linux/init.h>
18#include <linux/sched.h>
19#include <linux/fs.h>
20#include <linux/tty.h>
21#include <linux/binfmts.h>
22#include <linux/security.h>
23#include <linux/syscalls.h>
24#include <linux/ptrace.h>
25#include <linux/posix-timers.h>
7ed20e1a 26#include <linux/signal.h>
c2f0c7c3 27#include <linux/audit.h>
1da177e4
LT
28#include <asm/param.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/siginfo.h>
32
33/*
34 * SLAB caches for signal bits.
35 */
36
37static kmem_cache_t *sigqueue_cachep;
38
39/*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113#ifdef SIGEMT
114#define M_SIGEMT M(SIGEMT)
115#else
116#define M_SIGEMT 0
117#endif
118
119#if SIGRTMIN > BITS_PER_LONG
120#define M(sig) (1ULL << ((sig)-1))
121#else
122#define M(sig) (1UL << ((sig)-1))
123#endif
124#define T(sig, mask) (M(sig) & (mask))
125
126#define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129#define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132#define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137#define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140#define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142#define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144#define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146#define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149#define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153#define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157static int sig_ignored(struct task_struct *t, int sig)
158{
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179}
180
181/*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186{
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209}
210
211#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213fastcall void recalc_sigpending_tsk(struct task_struct *t)
214{
215 if (t->signal->group_stop_count > 0 ||
3e1d1d28 216 (freezing(t)) ||
1da177e4
LT
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222}
223
224void recalc_sigpending(void)
225{
226 recalc_sigpending_tsk(current);
227}
228
229/* Given the mask, find the first available signal that should be serviced. */
230
231static int
232next_signal(struct sigpending *pending, sigset_t *mask)
233{
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263}
264
dd0fc66f 265static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
1da177e4
LT
266 int override_rlimit)
267{
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
1da177e4
LT
280 q->user = get_uid(t->user);
281 }
282 return(q);
283}
284
285static inline void __sigqueue_free(struct sigqueue *q)
286{
287 if (q->flags & SIGQUEUE_PREALLOC)
288 return;
289 atomic_dec(&q->user->sigpending);
290 free_uid(q->user);
291 kmem_cache_free(sigqueue_cachep, q);
292}
293
294static void flush_sigqueue(struct sigpending *queue)
295{
296 struct sigqueue *q;
297
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
302 __sigqueue_free(q);
303 }
304}
305
306/*
307 * Flush all pending signals for a task.
308 */
309
310void
311flush_signals(struct task_struct *t)
312{
313 unsigned long flags;
314
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
320}
321
322/*
323 * This function expects the tasklist_lock write-locked.
324 */
325void __exit_sighand(struct task_struct *tsk)
326{
327 struct sighand_struct * sighand = tsk->sighand;
328
329 /* Ok, we're done with the signal handlers */
330 tsk->sighand = NULL;
331 if (atomic_dec_and_test(&sighand->count))
332 kmem_cache_free(sighand_cachep, sighand);
333}
334
335void exit_sighand(struct task_struct *tsk)
336{
337 write_lock_irq(&tasklist_lock);
338 __exit_sighand(tsk);
339 write_unlock_irq(&tasklist_lock);
340}
341
342/*
343 * This function expects the tasklist_lock write-locked.
344 */
345void __exit_signal(struct task_struct *tsk)
346{
347 struct signal_struct * sig = tsk->signal;
348 struct sighand_struct * sighand = tsk->sighand;
349
350 if (!sig)
351 BUG();
352 if (!atomic_read(&sig->count))
353 BUG();
354 spin_lock(&sighand->siglock);
355 posix_cpu_timers_exit(tsk);
356 if (atomic_dec_and_test(&sig->count)) {
357 posix_cpu_timers_exit_group(tsk);
358 if (tsk == sig->curr_target)
359 sig->curr_target = next_thread(tsk);
360 tsk->signal = NULL;
361 spin_unlock(&sighand->siglock);
362 flush_sigqueue(&sig->shared_pending);
363 } else {
364 /*
365 * If there is any task waiting for the group exit
366 * then notify it:
367 */
368 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
369 wake_up_process(sig->group_exit_task);
370 sig->group_exit_task = NULL;
371 }
372 if (tsk == sig->curr_target)
373 sig->curr_target = next_thread(tsk);
374 tsk->signal = NULL;
375 /*
376 * Accumulate here the counters for all threads but the
377 * group leader as they die, so they can be added into
378 * the process-wide totals when those are taken.
379 * The group leader stays around as a zombie as long
380 * as there are other threads. When it gets reaped,
381 * the exit.c code will add its counts into these totals.
382 * We won't ever get here for the group leader, since it
383 * will have been the last reference on the signal_struct.
384 */
385 sig->utime = cputime_add(sig->utime, tsk->utime);
386 sig->stime = cputime_add(sig->stime, tsk->stime);
387 sig->min_flt += tsk->min_flt;
388 sig->maj_flt += tsk->maj_flt;
389 sig->nvcsw += tsk->nvcsw;
390 sig->nivcsw += tsk->nivcsw;
391 sig->sched_time += tsk->sched_time;
392 spin_unlock(&sighand->siglock);
393 sig = NULL; /* Marker for below. */
394 }
395 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
396 flush_sigqueue(&tsk->pending);
397 if (sig) {
398 /*
25f407f0 399 * We are cleaning up the signal_struct here.
1da177e4 400 */
1da177e4
LT
401 exit_thread_group_keys(sig);
402 kmem_cache_free(signal_cachep, sig);
403 }
404}
405
406void exit_signal(struct task_struct *tsk)
407{
8d027de5
ON
408 atomic_dec(&tsk->signal->live);
409
1da177e4
LT
410 write_lock_irq(&tasklist_lock);
411 __exit_signal(tsk);
412 write_unlock_irq(&tasklist_lock);
413}
414
415/*
416 * Flush all handlers for a task.
417 */
418
419void
420flush_signal_handlers(struct task_struct *t, int force_default)
421{
422 int i;
423 struct k_sigaction *ka = &t->sighand->action[0];
424 for (i = _NSIG ; i != 0 ; i--) {
425 if (force_default || ka->sa.sa_handler != SIG_IGN)
426 ka->sa.sa_handler = SIG_DFL;
427 ka->sa.sa_flags = 0;
428 sigemptyset(&ka->sa.sa_mask);
429 ka++;
430 }
431}
432
433
434/* Notify the system that a driver wants to block all signals for this
435 * process, and wants to be notified if any signals at all were to be
436 * sent/acted upon. If the notifier routine returns non-zero, then the
437 * signal will be acted upon after all. If the notifier routine returns 0,
438 * then then signal will be blocked. Only one block per process is
439 * allowed. priv is a pointer to private data that the notifier routine
440 * can use to determine if the signal should be blocked or not. */
441
442void
443block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
444{
445 unsigned long flags;
446
447 spin_lock_irqsave(&current->sighand->siglock, flags);
448 current->notifier_mask = mask;
449 current->notifier_data = priv;
450 current->notifier = notifier;
451 spin_unlock_irqrestore(&current->sighand->siglock, flags);
452}
453
454/* Notify the system that blocking has ended. */
455
456void
457unblock_all_signals(void)
458{
459 unsigned long flags;
460
461 spin_lock_irqsave(&current->sighand->siglock, flags);
462 current->notifier = NULL;
463 current->notifier_data = NULL;
464 recalc_sigpending();
465 spin_unlock_irqrestore(&current->sighand->siglock, flags);
466}
467
468static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
469{
470 struct sigqueue *q, *first = NULL;
471 int still_pending = 0;
472
473 if (unlikely(!sigismember(&list->signal, sig)))
474 return 0;
475
476 /*
477 * Collect the siginfo appropriate to this signal. Check if
478 * there is another siginfo for the same signal.
479 */
480 list_for_each_entry(q, &list->list, list) {
481 if (q->info.si_signo == sig) {
482 if (first) {
483 still_pending = 1;
484 break;
485 }
486 first = q;
487 }
488 }
489 if (first) {
490 list_del_init(&first->list);
491 copy_siginfo(info, &first->info);
492 __sigqueue_free(first);
493 if (!still_pending)
494 sigdelset(&list->signal, sig);
495 } else {
496
497 /* Ok, it wasn't in the queue. This must be
498 a fast-pathed signal or we must have been
499 out of queue space. So zero out the info.
500 */
501 sigdelset(&list->signal, sig);
502 info->si_signo = sig;
503 info->si_errno = 0;
504 info->si_code = 0;
505 info->si_pid = 0;
506 info->si_uid = 0;
507 }
508 return 1;
509}
510
511static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
512 siginfo_t *info)
513{
514 int sig = 0;
515
c33880aa
KK
516 /* SIGKILL must have priority, otherwise it is quite easy
517 * to create an unkillable process, sending sig < SIGKILL
518 * to self */
519 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
520 if (!sigismember(mask, SIGKILL))
521 sig = SIGKILL;
522 }
523
524 if (likely(!sig))
525 sig = next_signal(pending, mask);
1da177e4
LT
526 if (sig) {
527 if (current->notifier) {
528 if (sigismember(current->notifier_mask, sig)) {
529 if (!(current->notifier)(current->notifier_data)) {
530 clear_thread_flag(TIF_SIGPENDING);
531 return 0;
532 }
533 }
534 }
535
536 if (!collect_signal(sig, pending, info))
537 sig = 0;
538
539 }
540 recalc_sigpending();
541
542 return sig;
543}
544
545/*
546 * Dequeue a signal and return the element to the caller, which is
547 * expected to free it.
548 *
549 * All callers have to hold the siglock.
550 */
551int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
552{
553 int signr = __dequeue_signal(&tsk->pending, mask, info);
554 if (!signr)
555 signr = __dequeue_signal(&tsk->signal->shared_pending,
556 mask, info);
557 if (signr && unlikely(sig_kernel_stop(signr))) {
558 /*
559 * Set a marker that we have dequeued a stop signal. Our
560 * caller might release the siglock and then the pending
561 * stop signal it is about to process is no longer in the
562 * pending bitmasks, but must still be cleared by a SIGCONT
563 * (and overruled by a SIGKILL). So those cases clear this
564 * shared flag after we've set it. Note that this flag may
565 * remain set after the signal we return is ignored or
566 * handled. That doesn't matter because its only purpose
567 * is to alert stop-signal processing code when another
568 * processor has come along and cleared the flag.
569 */
788e05a6
ON
570 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
571 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
1da177e4
LT
572 }
573 if ( signr &&
574 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
575 info->si_sys_private){
576 /*
577 * Release the siglock to ensure proper locking order
578 * of timer locks outside of siglocks. Note, we leave
579 * irqs disabled here, since the posix-timers code is
580 * about to disable them again anyway.
581 */
582 spin_unlock(&tsk->sighand->siglock);
583 do_schedule_next_timer(info);
584 spin_lock(&tsk->sighand->siglock);
585 }
586 return signr;
587}
588
589/*
590 * Tell a process that it has a new active signal..
591 *
592 * NOTE! we rely on the previous spin_lock to
593 * lock interrupts for us! We can only be called with
594 * "siglock" held, and the local interrupt must
595 * have been disabled when that got acquired!
596 *
597 * No need to set need_resched since signal event passing
598 * goes through ->blocked
599 */
600void signal_wake_up(struct task_struct *t, int resume)
601{
602 unsigned int mask;
603
604 set_tsk_thread_flag(t, TIF_SIGPENDING);
605
606 /*
607 * For SIGKILL, we want to wake it up in the stopped/traced case.
608 * We don't check t->state here because there is a race with it
609 * executing another processor and just now entering stopped state.
610 * By using wake_up_state, we ensure the process will wake up and
611 * handle its death signal.
612 */
613 mask = TASK_INTERRUPTIBLE;
614 if (resume)
615 mask |= TASK_STOPPED | TASK_TRACED;
616 if (!wake_up_state(t, mask))
617 kick_process(t);
618}
619
620/*
621 * Remove signals in mask from the pending set and queue.
622 * Returns 1 if any signals were found.
623 *
624 * All callers must be holding the siglock.
625 */
626static int rm_from_queue(unsigned long mask, struct sigpending *s)
627{
628 struct sigqueue *q, *n;
629
630 if (!sigtestsetmask(&s->signal, mask))
631 return 0;
632
633 sigdelsetmask(&s->signal, mask);
634 list_for_each_entry_safe(q, n, &s->list, list) {
635 if (q->info.si_signo < SIGRTMIN &&
636 (mask & sigmask(q->info.si_signo))) {
637 list_del_init(&q->list);
638 __sigqueue_free(q);
639 }
640 }
641 return 1;
642}
643
644/*
645 * Bad permissions for sending the signal
646 */
647static int check_kill_permission(int sig, struct siginfo *info,
648 struct task_struct *t)
649{
650 int error = -EINVAL;
7ed20e1a 651 if (!valid_signal(sig))
1da177e4
LT
652 return error;
653 error = -EPERM;
654 if ((!info || ((unsigned long)info != 1 &&
655 (unsigned long)info != 2 && SI_FROMUSER(info)))
656 && ((sig != SIGCONT) ||
657 (current->signal->session != t->signal->session))
658 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
659 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
660 && !capable(CAP_KILL))
661 return error;
c2f0c7c3
SG
662
663 error = security_task_kill(t, info, sig);
664 if (!error)
665 audit_signal_info(sig, t); /* Let audit system see the signal */
666 return error;
1da177e4
LT
667}
668
669/* forward decl */
670static void do_notify_parent_cldstop(struct task_struct *tsk,
bc505a47 671 int to_self,
1da177e4
LT
672 int why);
673
674/*
675 * Handle magic process-wide effects of stop/continue signals.
676 * Unlike the signal actions, these happen immediately at signal-generation
677 * time regardless of blocking, ignoring, or handling. This does the
678 * actual continuing for SIGCONT, but not the actual stopping for stop
679 * signals. The process stop is done as a signal action for SIG_DFL.
680 */
681static void handle_stop_signal(int sig, struct task_struct *p)
682{
683 struct task_struct *t;
684
dd12f48d 685 if (p->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
686 /*
687 * The process is in the middle of dying already.
688 */
689 return;
690
691 if (sig_kernel_stop(sig)) {
692 /*
693 * This is a stop signal. Remove SIGCONT from all queues.
694 */
695 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
696 t = p;
697 do {
698 rm_from_queue(sigmask(SIGCONT), &t->pending);
699 t = next_thread(t);
700 } while (t != p);
701 } else if (sig == SIGCONT) {
702 /*
703 * Remove all stop signals from all queues,
704 * and wake all threads.
705 */
706 if (unlikely(p->signal->group_stop_count > 0)) {
707 /*
708 * There was a group stop in progress. We'll
709 * pretend it finished before we got here. We are
710 * obliged to report it to the parent: if the
711 * SIGSTOP happened "after" this SIGCONT, then it
712 * would have cleared this pending SIGCONT. If it
713 * happened "before" this SIGCONT, then the parent
714 * got the SIGCHLD about the stop finishing before
715 * the continue happened. We do the notification
716 * now, and it's as if the stop had finished and
717 * the SIGCHLD was pending on entry to this kill.
718 */
719 p->signal->group_stop_count = 0;
720 p->signal->flags = SIGNAL_STOP_CONTINUED;
721 spin_unlock(&p->sighand->siglock);
bc505a47 722 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
1da177e4
LT
723 spin_lock(&p->sighand->siglock);
724 }
725 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
726 t = p;
727 do {
728 unsigned int state;
729 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
730
731 /*
732 * If there is a handler for SIGCONT, we must make
733 * sure that no thread returns to user mode before
734 * we post the signal, in case it was the only
735 * thread eligible to run the signal handler--then
736 * it must not do anything between resuming and
737 * running the handler. With the TIF_SIGPENDING
738 * flag set, the thread will pause and acquire the
739 * siglock that we hold now and until we've queued
740 * the pending signal.
741 *
742 * Wake up the stopped thread _after_ setting
743 * TIF_SIGPENDING
744 */
745 state = TASK_STOPPED;
746 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
747 set_tsk_thread_flag(t, TIF_SIGPENDING);
748 state |= TASK_INTERRUPTIBLE;
749 }
750 wake_up_state(t, state);
751
752 t = next_thread(t);
753 } while (t != p);
754
755 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
756 /*
757 * We were in fact stopped, and are now continued.
758 * Notify the parent with CLD_CONTINUED.
759 */
760 p->signal->flags = SIGNAL_STOP_CONTINUED;
761 p->signal->group_exit_code = 0;
762 spin_unlock(&p->sighand->siglock);
bc505a47 763 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
1da177e4
LT
764 spin_lock(&p->sighand->siglock);
765 } else {
766 /*
767 * We are not stopped, but there could be a stop
768 * signal in the middle of being processed after
769 * being removed from the queue. Clear that too.
770 */
771 p->signal->flags = 0;
772 }
773 } else if (sig == SIGKILL) {
774 /*
775 * Make sure that any pending stop signal already dequeued
776 * is undone by the wakeup for SIGKILL.
777 */
778 p->signal->flags = 0;
779 }
780}
781
782static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
783 struct sigpending *signals)
784{
785 struct sigqueue * q = NULL;
786 int ret = 0;
787
788 /*
789 * fast-pathed signals for kernel-internal things like SIGSTOP
790 * or SIGKILL.
791 */
792 if ((unsigned long)info == 2)
793 goto out_set;
794
795 /* Real-time signals must be queued if sent by sigqueue, or
796 some other real-time mechanism. It is implementation
797 defined whether kill() does so. We attempt to do so, on
798 the principle of least surprise, but since kill is not
799 allowed to fail with EAGAIN when low on memory we just
800 make sure at least one signal gets delivered and don't
801 pass on the info struct. */
802
803 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
804 ((unsigned long) info < 2 ||
805 info->si_code >= 0)));
806 if (q) {
807 list_add_tail(&q->list, &signals->list);
808 switch ((unsigned long) info) {
809 case 0:
810 q->info.si_signo = sig;
811 q->info.si_errno = 0;
812 q->info.si_code = SI_USER;
813 q->info.si_pid = current->pid;
814 q->info.si_uid = current->uid;
815 break;
816 case 1:
817 q->info.si_signo = sig;
818 q->info.si_errno = 0;
819 q->info.si_code = SI_KERNEL;
820 q->info.si_pid = 0;
821 q->info.si_uid = 0;
822 break;
823 default:
824 copy_siginfo(&q->info, info);
825 break;
826 }
827 } else {
828 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
829 && info->si_code != SI_USER)
830 /*
831 * Queue overflow, abort. We may abort if the signal was rt
832 * and sent by user using something other than kill().
833 */
834 return -EAGAIN;
835 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
836 /*
837 * Set up a return to indicate that we dropped
838 * the signal.
839 */
840 ret = info->si_sys_private;
841 }
842
843out_set:
844 sigaddset(&signals->signal, sig);
845 return ret;
846}
847
848#define LEGACY_QUEUE(sigptr, sig) \
849 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
850
851
852static int
853specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
854{
855 int ret = 0;
856
857 if (!irqs_disabled())
858 BUG();
859 assert_spin_locked(&t->sighand->siglock);
860
861 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
862 /*
863 * Set up a return to indicate that we dropped the signal.
864 */
865 ret = info->si_sys_private;
866
867 /* Short-circuit ignored signals. */
868 if (sig_ignored(t, sig))
869 goto out;
870
871 /* Support queueing exactly one non-rt signal, so that we
872 can get more detailed information about the cause of
873 the signal. */
874 if (LEGACY_QUEUE(&t->pending, sig))
875 goto out;
876
877 ret = send_signal(sig, info, t, &t->pending);
878 if (!ret && !sigismember(&t->blocked, sig))
879 signal_wake_up(t, sig == SIGKILL);
880out:
881 return ret;
882}
883
884/*
885 * Force a signal that the process can't ignore: if necessary
886 * we unblock the signal and change any SIG_IGN to SIG_DFL.
887 */
888
889int
890force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
891{
892 unsigned long int flags;
893 int ret;
894
895 spin_lock_irqsave(&t->sighand->siglock, flags);
896 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
897 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
898 sigdelset(&t->blocked, sig);
899 recalc_sigpending_tsk(t);
900 }
901 ret = specific_send_sig_info(sig, info, t);
902 spin_unlock_irqrestore(&t->sighand->siglock, flags);
903
904 return ret;
905}
906
907void
908force_sig_specific(int sig, struct task_struct *t)
909{
910 unsigned long int flags;
911
912 spin_lock_irqsave(&t->sighand->siglock, flags);
913 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
914 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
915 sigdelset(&t->blocked, sig);
916 recalc_sigpending_tsk(t);
917 specific_send_sig_info(sig, (void *)2, t);
918 spin_unlock_irqrestore(&t->sighand->siglock, flags);
919}
920
921/*
922 * Test if P wants to take SIG. After we've checked all threads with this,
923 * it's equivalent to finding no threads not blocking SIG. Any threads not
924 * blocking SIG were ruled out because they are not running and already
925 * have pending signals. Such threads will dequeue from the shared queue
926 * as soon as they're available, so putting the signal on the shared queue
927 * will be equivalent to sending it to one such thread.
928 */
188a1eaf
LT
929static inline int wants_signal(int sig, struct task_struct *p)
930{
931 if (sigismember(&p->blocked, sig))
932 return 0;
933 if (p->flags & PF_EXITING)
934 return 0;
935 if (sig == SIGKILL)
936 return 1;
937 if (p->state & (TASK_STOPPED | TASK_TRACED))
938 return 0;
939 return task_curr(p) || !signal_pending(p);
940}
1da177e4
LT
941
942static void
943__group_complete_signal(int sig, struct task_struct *p)
944{
1da177e4
LT
945 struct task_struct *t;
946
1da177e4
LT
947 /*
948 * Now find a thread we can wake up to take the signal off the queue.
949 *
950 * If the main thread wants the signal, it gets first crack.
951 * Probably the least surprising to the average bear.
952 */
188a1eaf 953 if (wants_signal(sig, p))
1da177e4
LT
954 t = p;
955 else if (thread_group_empty(p))
956 /*
957 * There is just one thread and it does not need to be woken.
958 * It will dequeue unblocked signals before it runs again.
959 */
960 return;
961 else {
962 /*
963 * Otherwise try to find a suitable thread.
964 */
965 t = p->signal->curr_target;
966 if (t == NULL)
967 /* restart balancing at this thread */
968 t = p->signal->curr_target = p;
969 BUG_ON(t->tgid != p->tgid);
970
188a1eaf 971 while (!wants_signal(sig, t)) {
1da177e4
LT
972 t = next_thread(t);
973 if (t == p->signal->curr_target)
974 /*
975 * No thread needs to be woken.
976 * Any eligible threads will see
977 * the signal in the queue soon.
978 */
979 return;
980 }
981 p->signal->curr_target = t;
982 }
983
984 /*
985 * Found a killable thread. If the signal will be fatal,
986 * then start taking the whole group down immediately.
987 */
988 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
989 !sigismember(&t->real_blocked, sig) &&
990 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
991 /*
992 * This signal will be fatal to the whole group.
993 */
994 if (!sig_kernel_coredump(sig)) {
995 /*
996 * Start a group exit and wake everybody up.
997 * This way we don't have other threads
998 * running and doing things after a slower
999 * thread has the fatal signal pending.
1000 */
1001 p->signal->flags = SIGNAL_GROUP_EXIT;
1002 p->signal->group_exit_code = sig;
1003 p->signal->group_stop_count = 0;
1004 t = p;
1005 do {
1006 sigaddset(&t->pending.signal, SIGKILL);
1007 signal_wake_up(t, 1);
1008 t = next_thread(t);
1009 } while (t != p);
1010 return;
1011 }
1012
1013 /*
1014 * There will be a core dump. We make all threads other
1015 * than the chosen one go into a group stop so that nothing
1016 * happens until it gets scheduled, takes the signal off
1017 * the shared queue, and does the core dump. This is a
1018 * little more complicated than strictly necessary, but it
1019 * keeps the signal state that winds up in the core dump
1020 * unchanged from the death state, e.g. which thread had
1021 * the core-dump signal unblocked.
1022 */
1023 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1024 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1025 p->signal->group_stop_count = 0;
1026 p->signal->group_exit_task = t;
1027 t = p;
1028 do {
1029 p->signal->group_stop_count++;
1030 signal_wake_up(t, 0);
1031 t = next_thread(t);
1032 } while (t != p);
1033 wake_up_process(p->signal->group_exit_task);
1034 return;
1035 }
1036
1037 /*
1038 * The signal is already in the shared-pending queue.
1039 * Tell the chosen thread to wake up and dequeue it.
1040 */
1041 signal_wake_up(t, sig == SIGKILL);
1042 return;
1043}
1044
1045int
1046__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1047{
1048 int ret = 0;
1049
1050 assert_spin_locked(&p->sighand->siglock);
1051 handle_stop_signal(sig, p);
1052
1053 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1054 /*
1055 * Set up a return to indicate that we dropped the signal.
1056 */
1057 ret = info->si_sys_private;
1058
1059 /* Short-circuit ignored signals. */
1060 if (sig_ignored(p, sig))
1061 return ret;
1062
1063 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1064 /* This is a non-RT signal and we already have one queued. */
1065 return ret;
1066
1067 /*
1068 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1069 * We always use the shared queue for process-wide signals,
1070 * to avoid several races.
1071 */
1072 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1073 if (unlikely(ret))
1074 return ret;
1075
1076 __group_complete_signal(sig, p);
1077 return 0;
1078}
1079
1080/*
1081 * Nuke all other threads in the group.
1082 */
1083void zap_other_threads(struct task_struct *p)
1084{
1085 struct task_struct *t;
1086
1087 p->signal->flags = SIGNAL_GROUP_EXIT;
1088 p->signal->group_stop_count = 0;
1089
1090 if (thread_group_empty(p))
1091 return;
1092
1093 for (t = next_thread(p); t != p; t = next_thread(t)) {
1094 /*
1095 * Don't bother with already dead threads
1096 */
1097 if (t->exit_state)
1098 continue;
1099
1100 /*
1101 * We don't want to notify the parent, since we are
1102 * killed as part of a thread group due to another
1103 * thread doing an execve() or similar. So set the
1104 * exit signal to -1 to allow immediate reaping of
1105 * the process. But don't detach the thread group
1106 * leader.
1107 */
1108 if (t != p->group_leader)
1109 t->exit_signal = -1;
1110
30e0fca6 1111 /* SIGKILL will be handled before any pending SIGSTOP */
1da177e4 1112 sigaddset(&t->pending.signal, SIGKILL);
1da177e4
LT
1113 signal_wake_up(t, 1);
1114 }
1115}
1116
1117/*
1118 * Must be called with the tasklist_lock held for reading!
1119 */
1120int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1121{
1122 unsigned long flags;
1123 int ret;
1124
1125 ret = check_kill_permission(sig, info, p);
1126 if (!ret && sig && p->sighand) {
1127 spin_lock_irqsave(&p->sighand->siglock, flags);
1128 ret = __group_send_sig_info(sig, info, p);
1129 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1130 }
1131
1132 return ret;
1133}
1134
1135/*
1136 * kill_pg_info() sends a signal to a process group: this is what the tty
1137 * control characters do (^C, ^Z etc)
1138 */
1139
1140int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1141{
1142 struct task_struct *p = NULL;
1143 int retval, success;
1144
1145 if (pgrp <= 0)
1146 return -EINVAL;
1147
1148 success = 0;
1149 retval = -ESRCH;
1150 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1151 int err = group_send_sig_info(sig, info, p);
1152 success |= !err;
1153 retval = err;
1154 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1155 return success ? 0 : retval;
1156}
1157
1158int
1159kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1160{
1161 int retval;
1162
1163 read_lock(&tasklist_lock);
1164 retval = __kill_pg_info(sig, info, pgrp);
1165 read_unlock(&tasklist_lock);
1166
1167 return retval;
1168}
1169
1170int
1171kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1172{
1173 int error;
1174 struct task_struct *p;
1175
1176 read_lock(&tasklist_lock);
1177 p = find_task_by_pid(pid);
1178 error = -ESRCH;
1179 if (p)
1180 error = group_send_sig_info(sig, info, p);
1181 read_unlock(&tasklist_lock);
1182 return error;
1183}
1184
46113830
HW
1185/* like kill_proc_info(), but doesn't use uid/euid of "current" */
1186int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1187 uid_t uid, uid_t euid)
1188{
1189 int ret = -EINVAL;
1190 struct task_struct *p;
1191
1192 if (!valid_signal(sig))
1193 return ret;
1194
1195 read_lock(&tasklist_lock);
1196 p = find_task_by_pid(pid);
1197 if (!p) {
1198 ret = -ESRCH;
1199 goto out_unlock;
1200 }
1201 if ((!info || ((unsigned long)info != 1 &&
1202 (unsigned long)info != 2 && SI_FROMUSER(info)))
1203 && (euid != p->suid) && (euid != p->uid)
1204 && (uid != p->suid) && (uid != p->uid)) {
1205 ret = -EPERM;
1206 goto out_unlock;
1207 }
1208 if (sig && p->sighand) {
1209 unsigned long flags;
1210 spin_lock_irqsave(&p->sighand->siglock, flags);
1211 ret = __group_send_sig_info(sig, info, p);
1212 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1213 }
1214out_unlock:
1215 read_unlock(&tasklist_lock);
1216 return ret;
1217}
1218EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1da177e4
LT
1219
1220/*
1221 * kill_something_info() interprets pid in interesting ways just like kill(2).
1222 *
1223 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1224 * is probably wrong. Should make it like BSD or SYSV.
1225 */
1226
1227static int kill_something_info(int sig, struct siginfo *info, int pid)
1228{
1229 if (!pid) {
1230 return kill_pg_info(sig, info, process_group(current));
1231 } else if (pid == -1) {
1232 int retval = 0, count = 0;
1233 struct task_struct * p;
1234
1235 read_lock(&tasklist_lock);
1236 for_each_process(p) {
1237 if (p->pid > 1 && p->tgid != current->tgid) {
1238 int err = group_send_sig_info(sig, info, p);
1239 ++count;
1240 if (err != -EPERM)
1241 retval = err;
1242 }
1243 }
1244 read_unlock(&tasklist_lock);
1245 return count ? retval : -ESRCH;
1246 } else if (pid < 0) {
1247 return kill_pg_info(sig, info, -pid);
1248 } else {
1249 return kill_proc_info(sig, info, pid);
1250 }
1251}
1252
1253/*
1254 * These are for backward compatibility with the rest of the kernel source.
1255 */
1256
1257/*
1258 * These two are the most common entry points. They send a signal
1259 * just to the specific thread.
1260 */
1261int
1262send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1263{
1264 int ret;
1265 unsigned long flags;
1266
1267 /*
1268 * Make sure legacy kernel users don't send in bad values
1269 * (normal paths check this in check_kill_permission).
1270 */
7ed20e1a 1271 if (!valid_signal(sig))
1da177e4
LT
1272 return -EINVAL;
1273
1274 /*
1275 * We need the tasklist lock even for the specific
1276 * thread case (when we don't need to follow the group
1277 * lists) in order to avoid races with "p->sighand"
1278 * going away or changing from under us.
1279 */
1280 read_lock(&tasklist_lock);
1281 spin_lock_irqsave(&p->sighand->siglock, flags);
1282 ret = specific_send_sig_info(sig, info, p);
1283 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1284 read_unlock(&tasklist_lock);
1285 return ret;
1286}
1287
1288int
1289send_sig(int sig, struct task_struct *p, int priv)
1290{
1291 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1292}
1293
1294/*
1295 * This is the entry point for "process-wide" signals.
1296 * They will go to an appropriate thread in the thread group.
1297 */
1298int
1299send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1300{
1301 int ret;
1302 read_lock(&tasklist_lock);
1303 ret = group_send_sig_info(sig, info, p);
1304 read_unlock(&tasklist_lock);
1305 return ret;
1306}
1307
1308void
1309force_sig(int sig, struct task_struct *p)
1310{
1311 force_sig_info(sig, (void*)1L, p);
1312}
1313
1314/*
1315 * When things go south during signal handling, we
1316 * will force a SIGSEGV. And if the signal that caused
1317 * the problem was already a SIGSEGV, we'll want to
1318 * make sure we don't even try to deliver the signal..
1319 */
1320int
1321force_sigsegv(int sig, struct task_struct *p)
1322{
1323 if (sig == SIGSEGV) {
1324 unsigned long flags;
1325 spin_lock_irqsave(&p->sighand->siglock, flags);
1326 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1327 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1328 }
1329 force_sig(SIGSEGV, p);
1330 return 0;
1331}
1332
1333int
1334kill_pg(pid_t pgrp, int sig, int priv)
1335{
1336 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1337}
1338
1339int
1340kill_proc(pid_t pid, int sig, int priv)
1341{
1342 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1343}
1344
1345/*
1346 * These functions support sending signals using preallocated sigqueue
1347 * structures. This is needed "because realtime applications cannot
1348 * afford to lose notifications of asynchronous events, like timer
1349 * expirations or I/O completions". In the case of Posix Timers
1350 * we allocate the sigqueue structure from the timer_create. If this
1351 * allocation fails we are able to report the failure to the application
1352 * with an EAGAIN error.
1353 */
1354
1355struct sigqueue *sigqueue_alloc(void)
1356{
1357 struct sigqueue *q;
1358
1359 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1360 q->flags |= SIGQUEUE_PREALLOC;
1361 return(q);
1362}
1363
1364void sigqueue_free(struct sigqueue *q)
1365{
1366 unsigned long flags;
1367 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1368 /*
1369 * If the signal is still pending remove it from the
1370 * pending queue.
1371 */
1372 if (unlikely(!list_empty(&q->list))) {
19a4fcb5
ON
1373 spinlock_t *lock = &current->sighand->siglock;
1374 read_lock(&tasklist_lock);
1375 spin_lock_irqsave(lock, flags);
1da177e4
LT
1376 if (!list_empty(&q->list))
1377 list_del_init(&q->list);
19a4fcb5 1378 spin_unlock_irqrestore(lock, flags);
1da177e4
LT
1379 read_unlock(&tasklist_lock);
1380 }
1381 q->flags &= ~SIGQUEUE_PREALLOC;
1382 __sigqueue_free(q);
1383}
1384
1385int
1386send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1387{
1388 unsigned long flags;
1389 int ret = 0;
1390
1da177e4 1391 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
e752dd6c
ON
1392 read_lock(&tasklist_lock);
1393
1394 if (unlikely(p->flags & PF_EXITING)) {
1395 ret = -1;
1396 goto out_err;
1397 }
1398
1da177e4 1399 spin_lock_irqsave(&p->sighand->siglock, flags);
e752dd6c 1400
1da177e4
LT
1401 if (unlikely(!list_empty(&q->list))) {
1402 /*
1403 * If an SI_TIMER entry is already queue just increment
1404 * the overrun count.
1405 */
1406 if (q->info.si_code != SI_TIMER)
1407 BUG();
1408 q->info.si_overrun++;
1409 goto out;
e752dd6c 1410 }
1da177e4
LT
1411 /* Short-circuit ignored signals. */
1412 if (sig_ignored(p, sig)) {
1413 ret = 1;
1414 goto out;
1415 }
1416
1da177e4
LT
1417 list_add_tail(&q->list, &p->pending.list);
1418 sigaddset(&p->pending.signal, sig);
1419 if (!sigismember(&p->blocked, sig))
1420 signal_wake_up(p, sig == SIGKILL);
1421
1422out:
1423 spin_unlock_irqrestore(&p->sighand->siglock, flags);
e752dd6c 1424out_err:
1da177e4 1425 read_unlock(&tasklist_lock);
e752dd6c
ON
1426
1427 return ret;
1da177e4
LT
1428}
1429
1430int
1431send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1432{
1433 unsigned long flags;
1434 int ret = 0;
1435
1436 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1437 read_lock(&tasklist_lock);
1438 spin_lock_irqsave(&p->sighand->siglock, flags);
1439 handle_stop_signal(sig, p);
1440
1441 /* Short-circuit ignored signals. */
1442 if (sig_ignored(p, sig)) {
1443 ret = 1;
1444 goto out;
1445 }
1446
1447 if (unlikely(!list_empty(&q->list))) {
1448 /*
1449 * If an SI_TIMER entry is already queue just increment
1450 * the overrun count. Other uses should not try to
1451 * send the signal multiple times.
1452 */
1453 if (q->info.si_code != SI_TIMER)
1454 BUG();
1455 q->info.si_overrun++;
1456 goto out;
1457 }
1458
1459 /*
1460 * Put this signal on the shared-pending queue.
1461 * We always use the shared queue for process-wide signals,
1462 * to avoid several races.
1463 */
1da177e4
LT
1464 list_add_tail(&q->list, &p->signal->shared_pending.list);
1465 sigaddset(&p->signal->shared_pending.signal, sig);
1466
1467 __group_complete_signal(sig, p);
1468out:
1469 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1470 read_unlock(&tasklist_lock);
1471 return(ret);
1472}
1473
1474/*
1475 * Wake up any threads in the parent blocked in wait* syscalls.
1476 */
1477static inline void __wake_up_parent(struct task_struct *p,
1478 struct task_struct *parent)
1479{
1480 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1481}
1482
1483/*
1484 * Let a parent know about the death of a child.
1485 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1486 */
1487
1488void do_notify_parent(struct task_struct *tsk, int sig)
1489{
1490 struct siginfo info;
1491 unsigned long flags;
1492 struct sighand_struct *psig;
1493
1494 BUG_ON(sig == -1);
1495
1496 /* do_notify_parent_cldstop should have been called instead. */
1497 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1498
1499 BUG_ON(!tsk->ptrace &&
1500 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1501
1502 info.si_signo = sig;
1503 info.si_errno = 0;
1504 info.si_pid = tsk->pid;
1505 info.si_uid = tsk->uid;
1506
1507 /* FIXME: find out whether or not this is supposed to be c*time. */
1508 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1509 tsk->signal->utime));
1510 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1511 tsk->signal->stime));
1512
1513 info.si_status = tsk->exit_code & 0x7f;
1514 if (tsk->exit_code & 0x80)
1515 info.si_code = CLD_DUMPED;
1516 else if (tsk->exit_code & 0x7f)
1517 info.si_code = CLD_KILLED;
1518 else {
1519 info.si_code = CLD_EXITED;
1520 info.si_status = tsk->exit_code >> 8;
1521 }
1522
1523 psig = tsk->parent->sighand;
1524 spin_lock_irqsave(&psig->siglock, flags);
1525 if (sig == SIGCHLD &&
1526 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1527 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1528 /*
1529 * We are exiting and our parent doesn't care. POSIX.1
1530 * defines special semantics for setting SIGCHLD to SIG_IGN
1531 * or setting the SA_NOCLDWAIT flag: we should be reaped
1532 * automatically and not left for our parent's wait4 call.
1533 * Rather than having the parent do it as a magic kind of
1534 * signal handler, we just set this to tell do_exit that we
1535 * can be cleaned up without becoming a zombie. Note that
1536 * we still call __wake_up_parent in this case, because a
1537 * blocked sys_wait4 might now return -ECHILD.
1538 *
1539 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1540 * is implementation-defined: we do (if you don't want
1541 * it, just use SIG_IGN instead).
1542 */
1543 tsk->exit_signal = -1;
1544 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1545 sig = 0;
1546 }
7ed20e1a 1547 if (valid_signal(sig) && sig > 0)
1da177e4
LT
1548 __group_send_sig_info(sig, &info, tsk->parent);
1549 __wake_up_parent(tsk, tsk->parent);
1550 spin_unlock_irqrestore(&psig->siglock, flags);
1551}
1552
bc505a47 1553static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1da177e4
LT
1554{
1555 struct siginfo info;
1556 unsigned long flags;
bc505a47 1557 struct task_struct *parent;
1da177e4
LT
1558 struct sighand_struct *sighand;
1559
bc505a47
ON
1560 if (to_self)
1561 parent = tsk->parent;
1562 else {
1563 tsk = tsk->group_leader;
1564 parent = tsk->real_parent;
1565 }
1566
1da177e4
LT
1567 info.si_signo = SIGCHLD;
1568 info.si_errno = 0;
1569 info.si_pid = tsk->pid;
1570 info.si_uid = tsk->uid;
1571
1572 /* FIXME: find out whether or not this is supposed to be c*time. */
1573 info.si_utime = cputime_to_jiffies(tsk->utime);
1574 info.si_stime = cputime_to_jiffies(tsk->stime);
1575
1576 info.si_code = why;
1577 switch (why) {
1578 case CLD_CONTINUED:
1579 info.si_status = SIGCONT;
1580 break;
1581 case CLD_STOPPED:
1582 info.si_status = tsk->signal->group_exit_code & 0x7f;
1583 break;
1584 case CLD_TRAPPED:
1585 info.si_status = tsk->exit_code & 0x7f;
1586 break;
1587 default:
1588 BUG();
1589 }
1590
1591 sighand = parent->sighand;
1592 spin_lock_irqsave(&sighand->siglock, flags);
1593 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1594 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1595 __group_send_sig_info(SIGCHLD, &info, parent);
1596 /*
1597 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1598 */
1599 __wake_up_parent(tsk, parent);
1600 spin_unlock_irqrestore(&sighand->siglock, flags);
1601}
1602
1603/*
1604 * This must be called with current->sighand->siglock held.
1605 *
1606 * This should be the path for all ptrace stops.
1607 * We always set current->last_siginfo while stopped here.
1608 * That makes it a way to test a stopped process for
1609 * being ptrace-stopped vs being job-control-stopped.
1610 *
1611 * If we actually decide not to stop at all because the tracer is gone,
1612 * we leave nostop_code in current->exit_code.
1613 */
1614static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1615{
1616 /*
1617 * If there is a group stop in progress,
1618 * we must participate in the bookkeeping.
1619 */
1620 if (current->signal->group_stop_count > 0)
1621 --current->signal->group_stop_count;
1622
1623 current->last_siginfo = info;
1624 current->exit_code = exit_code;
1625
1626 /* Let the debugger run. */
1627 set_current_state(TASK_TRACED);
1628 spin_unlock_irq(&current->sighand->siglock);
1629 read_lock(&tasklist_lock);
1630 if (likely(current->ptrace & PT_PTRACED) &&
1631 likely(current->parent != current->real_parent ||
1632 !(current->ptrace & PT_ATTACHED)) &&
1633 (likely(current->parent->signal != current->signal) ||
1634 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
bc505a47 1635 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1da177e4
LT
1636 read_unlock(&tasklist_lock);
1637 schedule();
1638 } else {
1639 /*
1640 * By the time we got the lock, our tracer went away.
1641 * Don't stop here.
1642 */
1643 read_unlock(&tasklist_lock);
1644 set_current_state(TASK_RUNNING);
1645 current->exit_code = nostop_code;
1646 }
1647
1648 /*
1649 * We are back. Now reacquire the siglock before touching
1650 * last_siginfo, so that we are sure to have synchronized with
1651 * any signal-sending on another CPU that wants to examine it.
1652 */
1653 spin_lock_irq(&current->sighand->siglock);
1654 current->last_siginfo = NULL;
1655
1656 /*
1657 * Queued signals ignored us while we were stopped for tracing.
1658 * So check for any that we should take before resuming user mode.
1659 */
1660 recalc_sigpending();
1661}
1662
1663void ptrace_notify(int exit_code)
1664{
1665 siginfo_t info;
1666
1667 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1668
1669 memset(&info, 0, sizeof info);
1670 info.si_signo = SIGTRAP;
1671 info.si_code = exit_code;
1672 info.si_pid = current->pid;
1673 info.si_uid = current->uid;
1674
1675 /* Let the debugger run. */
1676 spin_lock_irq(&current->sighand->siglock);
1677 ptrace_stop(exit_code, 0, &info);
1678 spin_unlock_irq(&current->sighand->siglock);
1679}
1680
1da177e4
LT
1681static void
1682finish_stop(int stop_count)
1683{
bc505a47
ON
1684 int to_self;
1685
1da177e4
LT
1686 /*
1687 * If there are no other threads in the group, or if there is
1688 * a group stop in progress and we are the last to stop,
1689 * report to the parent. When ptraced, every thread reports itself.
1690 */
bc505a47
ON
1691 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1692 to_self = 1;
1693 else if (stop_count == 0)
1694 to_self = 0;
1695 else
1696 goto out;
1da177e4 1697
bc505a47
ON
1698 read_lock(&tasklist_lock);
1699 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1700 read_unlock(&tasklist_lock);
1701
1702out:
1da177e4
LT
1703 schedule();
1704 /*
1705 * Now we don't run again until continued.
1706 */
1707 current->exit_code = 0;
1708}
1709
1710/*
1711 * This performs the stopping for SIGSTOP and other stop signals.
1712 * We have to stop all threads in the thread group.
1713 * Returns nonzero if we've actually stopped and released the siglock.
1714 * Returns zero if we didn't stop and still hold the siglock.
1715 */
1716static int
1717do_signal_stop(int signr)
1718{
1719 struct signal_struct *sig = current->signal;
1720 struct sighand_struct *sighand = current->sighand;
1721 int stop_count = -1;
1722
1723 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1724 return 0;
1725
1726 if (sig->group_stop_count > 0) {
1727 /*
1728 * There is a group stop in progress. We don't need to
1729 * start another one.
1730 */
1731 signr = sig->group_exit_code;
1732 stop_count = --sig->group_stop_count;
1733 current->exit_code = signr;
1734 set_current_state(TASK_STOPPED);
1735 if (stop_count == 0)
1736 sig->flags = SIGNAL_STOP_STOPPED;
1737 spin_unlock_irq(&sighand->siglock);
1738 }
1739 else if (thread_group_empty(current)) {
1740 /*
1741 * Lock must be held through transition to stopped state.
1742 */
1743 current->exit_code = current->signal->group_exit_code = signr;
1744 set_current_state(TASK_STOPPED);
1745 sig->flags = SIGNAL_STOP_STOPPED;
1746 spin_unlock_irq(&sighand->siglock);
1747 }
1748 else {
1749 /*
1750 * There is no group stop already in progress.
1751 * We must initiate one now, but that requires
1752 * dropping siglock to get both the tasklist lock
1753 * and siglock again in the proper order. Note that
1754 * this allows an intervening SIGCONT to be posted.
1755 * We need to check for that and bail out if necessary.
1756 */
1757 struct task_struct *t;
1758
1759 spin_unlock_irq(&sighand->siglock);
1760
1761 /* signals can be posted during this window */
1762
1763 read_lock(&tasklist_lock);
1764 spin_lock_irq(&sighand->siglock);
1765
1766 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1767 /*
1768 * Another stop or continue happened while we
1769 * didn't have the lock. We can just swallow this
1770 * signal now. If we raced with a SIGCONT, that
1771 * should have just cleared it now. If we raced
1772 * with another processor delivering a stop signal,
1773 * then the SIGCONT that wakes us up should clear it.
1774 */
1775 read_unlock(&tasklist_lock);
1776 return 0;
1777 }
1778
1779 if (sig->group_stop_count == 0) {
1780 sig->group_exit_code = signr;
1781 stop_count = 0;
1782 for (t = next_thread(current); t != current;
1783 t = next_thread(t))
1784 /*
1785 * Setting state to TASK_STOPPED for a group
1786 * stop is always done with the siglock held,
1787 * so this check has no races.
1788 */
5acbc5cb
RM
1789 if (!t->exit_state &&
1790 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1da177e4
LT
1791 stop_count++;
1792 signal_wake_up(t, 0);
1793 }
1794 sig->group_stop_count = stop_count;
1795 }
1796 else {
1797 /* A race with another thread while unlocked. */
1798 signr = sig->group_exit_code;
1799 stop_count = --sig->group_stop_count;
1800 }
1801
1802 current->exit_code = signr;
1803 set_current_state(TASK_STOPPED);
1804 if (stop_count == 0)
1805 sig->flags = SIGNAL_STOP_STOPPED;
1806
1807 spin_unlock_irq(&sighand->siglock);
1808 read_unlock(&tasklist_lock);
1809 }
1810
1811 finish_stop(stop_count);
1812 return 1;
1813}
1814
1815/*
1816 * Do appropriate magic when group_stop_count > 0.
1817 * We return nonzero if we stopped, after releasing the siglock.
1818 * We return zero if we still hold the siglock and should look
1819 * for another signal without checking group_stop_count again.
1820 */
1821static inline int handle_group_stop(void)
1822{
1823 int stop_count;
1824
1825 if (current->signal->group_exit_task == current) {
1826 /*
1827 * Group stop is so we can do a core dump,
1828 * We are the initiating thread, so get on with it.
1829 */
1830 current->signal->group_exit_task = NULL;
1831 return 0;
1832 }
1833
1834 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1835 /*
1836 * Group stop is so another thread can do a core dump,
1837 * or else we are racing against a death signal.
1838 * Just punt the stop so we can get the next signal.
1839 */
1840 return 0;
1841
1842 /*
1843 * There is a group stop in progress. We stop
1844 * without any associated signal being in our queue.
1845 */
1846 stop_count = --current->signal->group_stop_count;
1847 if (stop_count == 0)
1848 current->signal->flags = SIGNAL_STOP_STOPPED;
1849 current->exit_code = current->signal->group_exit_code;
1850 set_current_state(TASK_STOPPED);
1851 spin_unlock_irq(&current->sighand->siglock);
1852 finish_stop(stop_count);
1853 return 1;
1854}
1855
1856int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1857 struct pt_regs *regs, void *cookie)
1858{
1859 sigset_t *mask = &current->blocked;
1860 int signr = 0;
1861
1862relock:
1863 spin_lock_irq(&current->sighand->siglock);
1864 for (;;) {
1865 struct k_sigaction *ka;
1866
1867 if (unlikely(current->signal->group_stop_count > 0) &&
1868 handle_group_stop())
1869 goto relock;
1870
1871 signr = dequeue_signal(current, mask, info);
1872
1873 if (!signr)
1874 break; /* will return 0 */
1875
1876 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1877 ptrace_signal_deliver(regs, cookie);
1878
1879 /* Let the debugger run. */
1880 ptrace_stop(signr, signr, info);
1881
30e0fca6 1882 /* We're back. Did the debugger cancel the sig or group_exit? */
1da177e4 1883 signr = current->exit_code;
30e0fca6 1884 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
1885 continue;
1886
1887 current->exit_code = 0;
1888
1889 /* Update the siginfo structure if the signal has
1890 changed. If the debugger wanted something
1891 specific in the siginfo structure then it should
1892 have updated *info via PTRACE_SETSIGINFO. */
1893 if (signr != info->si_signo) {
1894 info->si_signo = signr;
1895 info->si_errno = 0;
1896 info->si_code = SI_USER;
1897 info->si_pid = current->parent->pid;
1898 info->si_uid = current->parent->uid;
1899 }
1900
1901 /* If the (new) signal is now blocked, requeue it. */
1902 if (sigismember(&current->blocked, signr)) {
1903 specific_send_sig_info(signr, info, current);
1904 continue;
1905 }
1906 }
1907
1908 ka = &current->sighand->action[signr-1];
1909 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1910 continue;
1911 if (ka->sa.sa_handler != SIG_DFL) {
1912 /* Run the handler. */
1913 *return_ka = *ka;
1914
1915 if (ka->sa.sa_flags & SA_ONESHOT)
1916 ka->sa.sa_handler = SIG_DFL;
1917
1918 break; /* will return non-zero "signr" value */
1919 }
1920
1921 /*
1922 * Now we are doing the default action for this signal.
1923 */
1924 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1925 continue;
1926
1927 /* Init gets no signals it doesn't want. */
1928 if (current->pid == 1)
1929 continue;
1930
1931 if (sig_kernel_stop(signr)) {
1932 /*
1933 * The default action is to stop all threads in
1934 * the thread group. The job control signals
1935 * do nothing in an orphaned pgrp, but SIGSTOP
1936 * always works. Note that siglock needs to be
1937 * dropped during the call to is_orphaned_pgrp()
1938 * because of lock ordering with tasklist_lock.
1939 * This allows an intervening SIGCONT to be posted.
1940 * We need to check for that and bail out if necessary.
1941 */
1942 if (signr != SIGSTOP) {
1943 spin_unlock_irq(&current->sighand->siglock);
1944
1945 /* signals can be posted during this window */
1946
1947 if (is_orphaned_pgrp(process_group(current)))
1948 goto relock;
1949
1950 spin_lock_irq(&current->sighand->siglock);
1951 }
1952
1953 if (likely(do_signal_stop(signr))) {
1954 /* It released the siglock. */
1955 goto relock;
1956 }
1957
1958 /*
1959 * We didn't actually stop, due to a race
1960 * with SIGCONT or something like that.
1961 */
1962 continue;
1963 }
1964
1965 spin_unlock_irq(&current->sighand->siglock);
1966
1967 /*
1968 * Anything else is fatal, maybe with a core dump.
1969 */
1970 current->flags |= PF_SIGNALED;
1971 if (sig_kernel_coredump(signr)) {
1972 /*
1973 * If it was able to dump core, this kills all
1974 * other threads in the group and synchronizes with
1975 * their demise. If we lost the race with another
1976 * thread getting here, it set group_exit_code
1977 * first and our do_group_exit call below will use
1978 * that value and ignore the one we pass it.
1979 */
1980 do_coredump((long)signr, signr, regs);
1981 }
1982
1983 /*
1984 * Death signals, no core dump.
1985 */
1986 do_group_exit(signr);
1987 /* NOTREACHED */
1988 }
1989 spin_unlock_irq(&current->sighand->siglock);
1990 return signr;
1991}
1992
1da177e4
LT
1993EXPORT_SYMBOL(recalc_sigpending);
1994EXPORT_SYMBOL_GPL(dequeue_signal);
1995EXPORT_SYMBOL(flush_signals);
1996EXPORT_SYMBOL(force_sig);
1997EXPORT_SYMBOL(kill_pg);
1998EXPORT_SYMBOL(kill_proc);
1999EXPORT_SYMBOL(ptrace_notify);
2000EXPORT_SYMBOL(send_sig);
2001EXPORT_SYMBOL(send_sig_info);
2002EXPORT_SYMBOL(sigprocmask);
2003EXPORT_SYMBOL(block_all_signals);
2004EXPORT_SYMBOL(unblock_all_signals);
2005
2006
2007/*
2008 * System call entry points.
2009 */
2010
2011asmlinkage long sys_restart_syscall(void)
2012{
2013 struct restart_block *restart = &current_thread_info()->restart_block;
2014 return restart->fn(restart);
2015}
2016
2017long do_no_restart_syscall(struct restart_block *param)
2018{
2019 return -EINTR;
2020}
2021
2022/*
2023 * We don't need to get the kernel lock - this is all local to this
2024 * particular thread.. (and that's good, because this is _heavily_
2025 * used by various programs)
2026 */
2027
2028/*
2029 * This is also useful for kernel threads that want to temporarily
2030 * (or permanently) block certain signals.
2031 *
2032 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2033 * interface happily blocks "unblockable" signals like SIGKILL
2034 * and friends.
2035 */
2036int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2037{
2038 int error;
2039 sigset_t old_block;
2040
2041 spin_lock_irq(&current->sighand->siglock);
2042 old_block = current->blocked;
2043 error = 0;
2044 switch (how) {
2045 case SIG_BLOCK:
2046 sigorsets(&current->blocked, &current->blocked, set);
2047 break;
2048 case SIG_UNBLOCK:
2049 signandsets(&current->blocked, &current->blocked, set);
2050 break;
2051 case SIG_SETMASK:
2052 current->blocked = *set;
2053 break;
2054 default:
2055 error = -EINVAL;
2056 }
2057 recalc_sigpending();
2058 spin_unlock_irq(&current->sighand->siglock);
2059 if (oldset)
2060 *oldset = old_block;
2061 return error;
2062}
2063
2064asmlinkage long
2065sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2066{
2067 int error = -EINVAL;
2068 sigset_t old_set, new_set;
2069
2070 /* XXX: Don't preclude handling different sized sigset_t's. */
2071 if (sigsetsize != sizeof(sigset_t))
2072 goto out;
2073
2074 if (set) {
2075 error = -EFAULT;
2076 if (copy_from_user(&new_set, set, sizeof(*set)))
2077 goto out;
2078 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2079
2080 error = sigprocmask(how, &new_set, &old_set);
2081 if (error)
2082 goto out;
2083 if (oset)
2084 goto set_old;
2085 } else if (oset) {
2086 spin_lock_irq(&current->sighand->siglock);
2087 old_set = current->blocked;
2088 spin_unlock_irq(&current->sighand->siglock);
2089
2090 set_old:
2091 error = -EFAULT;
2092 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2093 goto out;
2094 }
2095 error = 0;
2096out:
2097 return error;
2098}
2099
2100long do_sigpending(void __user *set, unsigned long sigsetsize)
2101{
2102 long error = -EINVAL;
2103 sigset_t pending;
2104
2105 if (sigsetsize > sizeof(sigset_t))
2106 goto out;
2107
2108 spin_lock_irq(&current->sighand->siglock);
2109 sigorsets(&pending, &current->pending.signal,
2110 &current->signal->shared_pending.signal);
2111 spin_unlock_irq(&current->sighand->siglock);
2112
2113 /* Outside the lock because only this thread touches it. */
2114 sigandsets(&pending, &current->blocked, &pending);
2115
2116 error = -EFAULT;
2117 if (!copy_to_user(set, &pending, sigsetsize))
2118 error = 0;
2119
2120out:
2121 return error;
2122}
2123
2124asmlinkage long
2125sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2126{
2127 return do_sigpending(set, sigsetsize);
2128}
2129
2130#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2131
2132int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2133{
2134 int err;
2135
2136 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2137 return -EFAULT;
2138 if (from->si_code < 0)
2139 return __copy_to_user(to, from, sizeof(siginfo_t))
2140 ? -EFAULT : 0;
2141 /*
2142 * If you change siginfo_t structure, please be sure
2143 * this code is fixed accordingly.
2144 * It should never copy any pad contained in the structure
2145 * to avoid security leaks, but must copy the generic
2146 * 3 ints plus the relevant union member.
2147 */
2148 err = __put_user(from->si_signo, &to->si_signo);
2149 err |= __put_user(from->si_errno, &to->si_errno);
2150 err |= __put_user((short)from->si_code, &to->si_code);
2151 switch (from->si_code & __SI_MASK) {
2152 case __SI_KILL:
2153 err |= __put_user(from->si_pid, &to->si_pid);
2154 err |= __put_user(from->si_uid, &to->si_uid);
2155 break;
2156 case __SI_TIMER:
2157 err |= __put_user(from->si_tid, &to->si_tid);
2158 err |= __put_user(from->si_overrun, &to->si_overrun);
2159 err |= __put_user(from->si_ptr, &to->si_ptr);
2160 break;
2161 case __SI_POLL:
2162 err |= __put_user(from->si_band, &to->si_band);
2163 err |= __put_user(from->si_fd, &to->si_fd);
2164 break;
2165 case __SI_FAULT:
2166 err |= __put_user(from->si_addr, &to->si_addr);
2167#ifdef __ARCH_SI_TRAPNO
2168 err |= __put_user(from->si_trapno, &to->si_trapno);
2169#endif
2170 break;
2171 case __SI_CHLD:
2172 err |= __put_user(from->si_pid, &to->si_pid);
2173 err |= __put_user(from->si_uid, &to->si_uid);
2174 err |= __put_user(from->si_status, &to->si_status);
2175 err |= __put_user(from->si_utime, &to->si_utime);
2176 err |= __put_user(from->si_stime, &to->si_stime);
2177 break;
2178 case __SI_RT: /* This is not generated by the kernel as of now. */
2179 case __SI_MESGQ: /* But this is */
2180 err |= __put_user(from->si_pid, &to->si_pid);
2181 err |= __put_user(from->si_uid, &to->si_uid);
2182 err |= __put_user(from->si_ptr, &to->si_ptr);
2183 break;
2184 default: /* this is just in case for now ... */
2185 err |= __put_user(from->si_pid, &to->si_pid);
2186 err |= __put_user(from->si_uid, &to->si_uid);
2187 break;
2188 }
2189 return err;
2190}
2191
2192#endif
2193
2194asmlinkage long
2195sys_rt_sigtimedwait(const sigset_t __user *uthese,
2196 siginfo_t __user *uinfo,
2197 const struct timespec __user *uts,
2198 size_t sigsetsize)
2199{
2200 int ret, sig;
2201 sigset_t these;
2202 struct timespec ts;
2203 siginfo_t info;
2204 long timeout = 0;
2205
2206 /* XXX: Don't preclude handling different sized sigset_t's. */
2207 if (sigsetsize != sizeof(sigset_t))
2208 return -EINVAL;
2209
2210 if (copy_from_user(&these, uthese, sizeof(these)))
2211 return -EFAULT;
2212
2213 /*
2214 * Invert the set of allowed signals to get those we
2215 * want to block.
2216 */
2217 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2218 signotset(&these);
2219
2220 if (uts) {
2221 if (copy_from_user(&ts, uts, sizeof(ts)))
2222 return -EFAULT;
2223 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2224 || ts.tv_sec < 0)
2225 return -EINVAL;
2226 }
2227
2228 spin_lock_irq(&current->sighand->siglock);
2229 sig = dequeue_signal(current, &these, &info);
2230 if (!sig) {
2231 timeout = MAX_SCHEDULE_TIMEOUT;
2232 if (uts)
2233 timeout = (timespec_to_jiffies(&ts)
2234 + (ts.tv_sec || ts.tv_nsec));
2235
2236 if (timeout) {
2237 /* None ready -- temporarily unblock those we're
2238 * interested while we are sleeping in so that we'll
2239 * be awakened when they arrive. */
2240 current->real_blocked = current->blocked;
2241 sigandsets(&current->blocked, &current->blocked, &these);
2242 recalc_sigpending();
2243 spin_unlock_irq(&current->sighand->siglock);
2244
75bcc8c5 2245 timeout = schedule_timeout_interruptible(timeout);
1da177e4 2246
3e1d1d28 2247 try_to_freeze();
1da177e4
LT
2248 spin_lock_irq(&current->sighand->siglock);
2249 sig = dequeue_signal(current, &these, &info);
2250 current->blocked = current->real_blocked;
2251 siginitset(&current->real_blocked, 0);
2252 recalc_sigpending();
2253 }
2254 }
2255 spin_unlock_irq(&current->sighand->siglock);
2256
2257 if (sig) {
2258 ret = sig;
2259 if (uinfo) {
2260 if (copy_siginfo_to_user(uinfo, &info))
2261 ret = -EFAULT;
2262 }
2263 } else {
2264 ret = -EAGAIN;
2265 if (timeout)
2266 ret = -EINTR;
2267 }
2268
2269 return ret;
2270}
2271
2272asmlinkage long
2273sys_kill(int pid, int sig)
2274{
2275 struct siginfo info;
2276
2277 info.si_signo = sig;
2278 info.si_errno = 0;
2279 info.si_code = SI_USER;
2280 info.si_pid = current->tgid;
2281 info.si_uid = current->uid;
2282
2283 return kill_something_info(sig, &info, pid);
2284}
2285
6dd69f10 2286static int do_tkill(int tgid, int pid, int sig)
1da177e4 2287{
1da177e4 2288 int error;
6dd69f10 2289 struct siginfo info;
1da177e4
LT
2290 struct task_struct *p;
2291
6dd69f10 2292 error = -ESRCH;
1da177e4
LT
2293 info.si_signo = sig;
2294 info.si_errno = 0;
2295 info.si_code = SI_TKILL;
2296 info.si_pid = current->tgid;
2297 info.si_uid = current->uid;
2298
2299 read_lock(&tasklist_lock);
2300 p = find_task_by_pid(pid);
6dd69f10 2301 if (p && (tgid <= 0 || p->tgid == tgid)) {
1da177e4
LT
2302 error = check_kill_permission(sig, &info, p);
2303 /*
2304 * The null signal is a permissions and process existence
2305 * probe. No signal is actually delivered.
2306 */
2307 if (!error && sig && p->sighand) {
2308 spin_lock_irq(&p->sighand->siglock);
2309 handle_stop_signal(sig, p);
2310 error = specific_send_sig_info(sig, &info, p);
2311 spin_unlock_irq(&p->sighand->siglock);
2312 }
2313 }
2314 read_unlock(&tasklist_lock);
6dd69f10 2315
1da177e4
LT
2316 return error;
2317}
2318
6dd69f10
VL
2319/**
2320 * sys_tgkill - send signal to one specific thread
2321 * @tgid: the thread group ID of the thread
2322 * @pid: the PID of the thread
2323 * @sig: signal to be sent
2324 *
2325 * This syscall also checks the tgid and returns -ESRCH even if the PID
2326 * exists but it's not belonging to the target process anymore. This
2327 * method solves the problem of threads exiting and PIDs getting reused.
2328 */
2329asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2330{
2331 /* This is only valid for single tasks */
2332 if (pid <= 0 || tgid <= 0)
2333 return -EINVAL;
2334
2335 return do_tkill(tgid, pid, sig);
2336}
2337
1da177e4
LT
2338/*
2339 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2340 */
2341asmlinkage long
2342sys_tkill(int pid, int sig)
2343{
1da177e4
LT
2344 /* This is only valid for single tasks */
2345 if (pid <= 0)
2346 return -EINVAL;
2347
6dd69f10 2348 return do_tkill(0, pid, sig);
1da177e4
LT
2349}
2350
2351asmlinkage long
2352sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2353{
2354 siginfo_t info;
2355
2356 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2357 return -EFAULT;
2358
2359 /* Not even root can pretend to send signals from the kernel.
2360 Nor can they impersonate a kill(), which adds source info. */
2361 if (info.si_code >= 0)
2362 return -EPERM;
2363 info.si_signo = sig;
2364
2365 /* POSIX.1b doesn't mention process groups. */
2366 return kill_proc_info(sig, &info, pid);
2367}
2368
2369int
2370do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2371{
2372 struct k_sigaction *k;
2373
7ed20e1a 2374 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
1da177e4
LT
2375 return -EINVAL;
2376
2377 k = &current->sighand->action[sig-1];
2378
2379 spin_lock_irq(&current->sighand->siglock);
2380 if (signal_pending(current)) {
2381 /*
2382 * If there might be a fatal signal pending on multiple
2383 * threads, make sure we take it before changing the action.
2384 */
2385 spin_unlock_irq(&current->sighand->siglock);
2386 return -ERESTARTNOINTR;
2387 }
2388
2389 if (oact)
2390 *oact = *k;
2391
2392 if (act) {
2393 /*
2394 * POSIX 3.3.1.3:
2395 * "Setting a signal action to SIG_IGN for a signal that is
2396 * pending shall cause the pending signal to be discarded,
2397 * whether or not it is blocked."
2398 *
2399 * "Setting a signal action to SIG_DFL for a signal that is
2400 * pending and whose default action is to ignore the signal
2401 * (for example, SIGCHLD), shall cause the pending signal to
2402 * be discarded, whether or not it is blocked"
2403 */
2404 if (act->sa.sa_handler == SIG_IGN ||
2405 (act->sa.sa_handler == SIG_DFL &&
2406 sig_kernel_ignore(sig))) {
2407 /*
2408 * This is a fairly rare case, so we only take the
2409 * tasklist_lock once we're sure we'll need it.
2410 * Now we must do this little unlock and relock
2411 * dance to maintain the lock hierarchy.
2412 */
2413 struct task_struct *t = current;
2414 spin_unlock_irq(&t->sighand->siglock);
2415 read_lock(&tasklist_lock);
2416 spin_lock_irq(&t->sighand->siglock);
2417 *k = *act;
2418 sigdelsetmask(&k->sa.sa_mask,
2419 sigmask(SIGKILL) | sigmask(SIGSTOP));
2420 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2421 do {
2422 rm_from_queue(sigmask(sig), &t->pending);
2423 recalc_sigpending_tsk(t);
2424 t = next_thread(t);
2425 } while (t != current);
2426 spin_unlock_irq(&current->sighand->siglock);
2427 read_unlock(&tasklist_lock);
2428 return 0;
2429 }
2430
2431 *k = *act;
2432 sigdelsetmask(&k->sa.sa_mask,
2433 sigmask(SIGKILL) | sigmask(SIGSTOP));
2434 }
2435
2436 spin_unlock_irq(&current->sighand->siglock);
2437 return 0;
2438}
2439
2440int
2441do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2442{
2443 stack_t oss;
2444 int error;
2445
2446 if (uoss) {
2447 oss.ss_sp = (void __user *) current->sas_ss_sp;
2448 oss.ss_size = current->sas_ss_size;
2449 oss.ss_flags = sas_ss_flags(sp);
2450 }
2451
2452 if (uss) {
2453 void __user *ss_sp;
2454 size_t ss_size;
2455 int ss_flags;
2456
2457 error = -EFAULT;
2458 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2459 || __get_user(ss_sp, &uss->ss_sp)
2460 || __get_user(ss_flags, &uss->ss_flags)
2461 || __get_user(ss_size, &uss->ss_size))
2462 goto out;
2463
2464 error = -EPERM;
2465 if (on_sig_stack(sp))
2466 goto out;
2467
2468 error = -EINVAL;
2469 /*
2470 *
2471 * Note - this code used to test ss_flags incorrectly
2472 * old code may have been written using ss_flags==0
2473 * to mean ss_flags==SS_ONSTACK (as this was the only
2474 * way that worked) - this fix preserves that older
2475 * mechanism
2476 */
2477 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2478 goto out;
2479
2480 if (ss_flags == SS_DISABLE) {
2481 ss_size = 0;
2482 ss_sp = NULL;
2483 } else {
2484 error = -ENOMEM;
2485 if (ss_size < MINSIGSTKSZ)
2486 goto out;
2487 }
2488
2489 current->sas_ss_sp = (unsigned long) ss_sp;
2490 current->sas_ss_size = ss_size;
2491 }
2492
2493 if (uoss) {
2494 error = -EFAULT;
2495 if (copy_to_user(uoss, &oss, sizeof(oss)))
2496 goto out;
2497 }
2498
2499 error = 0;
2500out:
2501 return error;
2502}
2503
2504#ifdef __ARCH_WANT_SYS_SIGPENDING
2505
2506asmlinkage long
2507sys_sigpending(old_sigset_t __user *set)
2508{
2509 return do_sigpending(set, sizeof(*set));
2510}
2511
2512#endif
2513
2514#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2515/* Some platforms have their own version with special arguments others
2516 support only sys_rt_sigprocmask. */
2517
2518asmlinkage long
2519sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2520{
2521 int error;
2522 old_sigset_t old_set, new_set;
2523
2524 if (set) {
2525 error = -EFAULT;
2526 if (copy_from_user(&new_set, set, sizeof(*set)))
2527 goto out;
2528 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2529
2530 spin_lock_irq(&current->sighand->siglock);
2531 old_set = current->blocked.sig[0];
2532
2533 error = 0;
2534 switch (how) {
2535 default:
2536 error = -EINVAL;
2537 break;
2538 case SIG_BLOCK:
2539 sigaddsetmask(&current->blocked, new_set);
2540 break;
2541 case SIG_UNBLOCK:
2542 sigdelsetmask(&current->blocked, new_set);
2543 break;
2544 case SIG_SETMASK:
2545 current->blocked.sig[0] = new_set;
2546 break;
2547 }
2548
2549 recalc_sigpending();
2550 spin_unlock_irq(&current->sighand->siglock);
2551 if (error)
2552 goto out;
2553 if (oset)
2554 goto set_old;
2555 } else if (oset) {
2556 old_set = current->blocked.sig[0];
2557 set_old:
2558 error = -EFAULT;
2559 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2560 goto out;
2561 }
2562 error = 0;
2563out:
2564 return error;
2565}
2566#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2567
2568#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2569asmlinkage long
2570sys_rt_sigaction(int sig,
2571 const struct sigaction __user *act,
2572 struct sigaction __user *oact,
2573 size_t sigsetsize)
2574{
2575 struct k_sigaction new_sa, old_sa;
2576 int ret = -EINVAL;
2577
2578 /* XXX: Don't preclude handling different sized sigset_t's. */
2579 if (sigsetsize != sizeof(sigset_t))
2580 goto out;
2581
2582 if (act) {
2583 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2584 return -EFAULT;
2585 }
2586
2587 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2588
2589 if (!ret && oact) {
2590 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2591 return -EFAULT;
2592 }
2593out:
2594 return ret;
2595}
2596#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2597
2598#ifdef __ARCH_WANT_SYS_SGETMASK
2599
2600/*
2601 * For backwards compatibility. Functionality superseded by sigprocmask.
2602 */
2603asmlinkage long
2604sys_sgetmask(void)
2605{
2606 /* SMP safe */
2607 return current->blocked.sig[0];
2608}
2609
2610asmlinkage long
2611sys_ssetmask(int newmask)
2612{
2613 int old;
2614
2615 spin_lock_irq(&current->sighand->siglock);
2616 old = current->blocked.sig[0];
2617
2618 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2619 sigmask(SIGSTOP)));
2620 recalc_sigpending();
2621 spin_unlock_irq(&current->sighand->siglock);
2622
2623 return old;
2624}
2625#endif /* __ARCH_WANT_SGETMASK */
2626
2627#ifdef __ARCH_WANT_SYS_SIGNAL
2628/*
2629 * For backwards compatibility. Functionality superseded by sigaction.
2630 */
2631asmlinkage unsigned long
2632sys_signal(int sig, __sighandler_t handler)
2633{
2634 struct k_sigaction new_sa, old_sa;
2635 int ret;
2636
2637 new_sa.sa.sa_handler = handler;
2638 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2639
2640 ret = do_sigaction(sig, &new_sa, &old_sa);
2641
2642 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2643}
2644#endif /* __ARCH_WANT_SYS_SIGNAL */
2645
2646#ifdef __ARCH_WANT_SYS_PAUSE
2647
2648asmlinkage long
2649sys_pause(void)
2650{
2651 current->state = TASK_INTERRUPTIBLE;
2652 schedule();
2653 return -ERESTARTNOHAND;
2654}
2655
2656#endif
2657
2658void __init signals_init(void)
2659{
2660 sigqueue_cachep =
2661 kmem_cache_create("sigqueue",
2662 sizeof(struct sigqueue),
2663 __alignof__(struct sigqueue),
2664 SLAB_PANIC, NULL, NULL);
2665}