]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/profile.c
rlimit: permit setting RLIMIT_NOFILE to RLIM_INFINITY
[net-next-2.6.git] / kernel / profile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
7 *
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 * Red Hat, July 2004
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14 */
15
1da177e4
LT
16#include <linux/module.h>
17#include <linux/profile.h>
18#include <linux/bootmem.h>
19#include <linux/notifier.h>
20#include <linux/mm.h>
21#include <linux/cpumask.h>
22#include <linux/cpu.h>
1da177e4 23#include <linux/highmem.h>
97d1f15b 24#include <linux/mutex.h>
1da177e4 25#include <asm/sections.h>
7d12e780 26#include <asm/irq_regs.h>
e8edc6e0 27#include <asm/ptrace.h>
1da177e4
LT
28
29struct profile_hit {
30 u32 pc, hits;
31};
32#define PROFILE_GRPSHIFT 3
33#define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
34#define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
35#define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
36
37/* Oprofile timer tick hook */
b012d346 38static int (*timer_hook)(struct pt_regs *) __read_mostly;
1da177e4
LT
39
40static atomic_t *prof_buffer;
41static unsigned long prof_len, prof_shift;
07031e14 42
ece8a684 43int prof_on __read_mostly;
07031e14
IM
44EXPORT_SYMBOL_GPL(prof_on);
45
1da177e4
LT
46static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
47#ifdef CONFIG_SMP
48static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
49static DEFINE_PER_CPU(int, cpu_profile_flip);
97d1f15b 50static DEFINE_MUTEX(profile_flip_mutex);
1da177e4
LT
51#endif /* CONFIG_SMP */
52
1ad82fd5 53static int __init profile_setup(char *str)
1da177e4 54{
dfaa9c94 55 static char __initdata schedstr[] = "schedule";
ece8a684 56 static char __initdata sleepstr[] = "sleep";
07031e14 57 static char __initdata kvmstr[] = "kvm";
1da177e4
LT
58 int par;
59
ece8a684 60 if (!strncmp(str, sleepstr, strlen(sleepstr))) {
b3da2a73 61#ifdef CONFIG_SCHEDSTATS
ece8a684
IM
62 prof_on = SLEEP_PROFILING;
63 if (str[strlen(sleepstr)] == ',')
64 str += strlen(sleepstr) + 1;
65 if (get_option(&str, &par))
66 prof_shift = par;
67 printk(KERN_INFO
68 "kernel sleep profiling enabled (shift: %ld)\n",
69 prof_shift);
b3da2a73
MG
70#else
71 printk(KERN_WARNING
72 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
73#endif /* CONFIG_SCHEDSTATS */
a75acf85 74 } else if (!strncmp(str, schedstr, strlen(schedstr))) {
1da177e4 75 prof_on = SCHED_PROFILING;
dfaa9c94
WLII
76 if (str[strlen(schedstr)] == ',')
77 str += strlen(schedstr) + 1;
78 if (get_option(&str, &par))
79 prof_shift = par;
80 printk(KERN_INFO
81 "kernel schedule profiling enabled (shift: %ld)\n",
82 prof_shift);
07031e14
IM
83 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
84 prof_on = KVM_PROFILING;
85 if (str[strlen(kvmstr)] == ',')
86 str += strlen(kvmstr) + 1;
87 if (get_option(&str, &par))
88 prof_shift = par;
89 printk(KERN_INFO
90 "kernel KVM profiling enabled (shift: %ld)\n",
91 prof_shift);
dfaa9c94 92 } else if (get_option(&str, &par)) {
1da177e4
LT
93 prof_shift = par;
94 prof_on = CPU_PROFILING;
95 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
96 prof_shift);
97 }
98 return 1;
99}
100__setup("profile=", profile_setup);
101
102
103void __init profile_init(void)
104{
1ad82fd5 105 if (!prof_on)
1da177e4 106 return;
1ad82fd5 107
1da177e4
LT
108 /* only text is profiled */
109 prof_len = (_etext - _stext) >> prof_shift;
110 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
111}
112
113/* Profile event notifications */
1ad82fd5 114
e041c683
AS
115static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
116static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
117static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
1ad82fd5
PC
118
119void profile_task_exit(struct task_struct *task)
1da177e4 120{
e041c683 121 blocking_notifier_call_chain(&task_exit_notifier, 0, task);
1da177e4 122}
1ad82fd5
PC
123
124int profile_handoff_task(struct task_struct *task)
1da177e4
LT
125{
126 int ret;
e041c683 127 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
1da177e4
LT
128 return (ret == NOTIFY_OK) ? 1 : 0;
129}
130
131void profile_munmap(unsigned long addr)
132{
e041c683 133 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
1da177e4
LT
134}
135
1ad82fd5 136int task_handoff_register(struct notifier_block *n)
1da177e4 137{
e041c683 138 return atomic_notifier_chain_register(&task_free_notifier, n);
1da177e4 139}
1ad82fd5 140EXPORT_SYMBOL_GPL(task_handoff_register);
1da177e4 141
1ad82fd5 142int task_handoff_unregister(struct notifier_block *n)
1da177e4 143{
e041c683 144 return atomic_notifier_chain_unregister(&task_free_notifier, n);
1da177e4 145}
1ad82fd5 146EXPORT_SYMBOL_GPL(task_handoff_unregister);
1da177e4 147
1ad82fd5 148int profile_event_register(enum profile_type type, struct notifier_block *n)
1da177e4
LT
149{
150 int err = -EINVAL;
1ad82fd5 151
1da177e4 152 switch (type) {
1ad82fd5
PC
153 case PROFILE_TASK_EXIT:
154 err = blocking_notifier_chain_register(
155 &task_exit_notifier, n);
156 break;
157 case PROFILE_MUNMAP:
158 err = blocking_notifier_chain_register(
159 &munmap_notifier, n);
160 break;
1da177e4 161 }
1ad82fd5 162
1da177e4
LT
163 return err;
164}
1ad82fd5 165EXPORT_SYMBOL_GPL(profile_event_register);
1da177e4 166
1ad82fd5 167int profile_event_unregister(enum profile_type type, struct notifier_block *n)
1da177e4
LT
168{
169 int err = -EINVAL;
1ad82fd5 170
1da177e4 171 switch (type) {
1ad82fd5
PC
172 case PROFILE_TASK_EXIT:
173 err = blocking_notifier_chain_unregister(
174 &task_exit_notifier, n);
175 break;
176 case PROFILE_MUNMAP:
177 err = blocking_notifier_chain_unregister(
178 &munmap_notifier, n);
179 break;
1da177e4
LT
180 }
181
1da177e4
LT
182 return err;
183}
1ad82fd5 184EXPORT_SYMBOL_GPL(profile_event_unregister);
1da177e4
LT
185
186int register_timer_hook(int (*hook)(struct pt_regs *))
187{
188 if (timer_hook)
189 return -EBUSY;
190 timer_hook = hook;
191 return 0;
192}
1ad82fd5 193EXPORT_SYMBOL_GPL(register_timer_hook);
1da177e4
LT
194
195void unregister_timer_hook(int (*hook)(struct pt_regs *))
196{
197 WARN_ON(hook != timer_hook);
198 timer_hook = NULL;
199 /* make sure all CPUs see the NULL hook */
fbd568a3 200 synchronize_sched(); /* Allow ongoing interrupts to complete. */
1da177e4 201}
1da177e4 202EXPORT_SYMBOL_GPL(unregister_timer_hook);
1da177e4 203
1da177e4
LT
204
205#ifdef CONFIG_SMP
206/*
207 * Each cpu has a pair of open-addressed hashtables for pending
208 * profile hits. read_profile() IPI's all cpus to request them
209 * to flip buffers and flushes their contents to prof_buffer itself.
210 * Flip requests are serialized by the profile_flip_mutex. The sole
211 * use of having a second hashtable is for avoiding cacheline
212 * contention that would otherwise happen during flushes of pending
213 * profile hits required for the accuracy of reported profile hits
214 * and so resurrect the interrupt livelock issue.
215 *
216 * The open-addressed hashtables are indexed by profile buffer slot
217 * and hold the number of pending hits to that profile buffer slot on
218 * a cpu in an entry. When the hashtable overflows, all pending hits
219 * are accounted to their corresponding profile buffer slots with
220 * atomic_add() and the hashtable emptied. As numerous pending hits
221 * may be accounted to a profile buffer slot in a hashtable entry,
222 * this amortizes a number of atomic profile buffer increments likely
223 * to be far larger than the number of entries in the hashtable,
224 * particularly given that the number of distinct profile buffer
225 * positions to which hits are accounted during short intervals (e.g.
226 * several seconds) is usually very small. Exclusion from buffer
227 * flipping is provided by interrupt disablement (note that for
ece8a684
IM
228 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
229 * process context).
1da177e4
LT
230 * The hash function is meant to be lightweight as opposed to strong,
231 * and was vaguely inspired by ppc64 firmware-supported inverted
232 * pagetable hash functions, but uses a full hashtable full of finite
233 * collision chains, not just pairs of them.
234 *
235 * -- wli
236 */
237static void __profile_flip_buffers(void *unused)
238{
239 int cpu = smp_processor_id();
240
241 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
242}
243
244static void profile_flip_buffers(void)
245{
246 int i, j, cpu;
247
97d1f15b 248 mutex_lock(&profile_flip_mutex);
1da177e4
LT
249 j = per_cpu(cpu_profile_flip, get_cpu());
250 put_cpu();
15c8b6c1 251 on_each_cpu(__profile_flip_buffers, NULL, 1);
1da177e4
LT
252 for_each_online_cpu(cpu) {
253 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
254 for (i = 0; i < NR_PROFILE_HIT; ++i) {
255 if (!hits[i].hits) {
256 if (hits[i].pc)
257 hits[i].pc = 0;
258 continue;
259 }
260 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
261 hits[i].hits = hits[i].pc = 0;
262 }
263 }
97d1f15b 264 mutex_unlock(&profile_flip_mutex);
1da177e4
LT
265}
266
267static void profile_discard_flip_buffers(void)
268{
269 int i, cpu;
270
97d1f15b 271 mutex_lock(&profile_flip_mutex);
1da177e4
LT
272 i = per_cpu(cpu_profile_flip, get_cpu());
273 put_cpu();
15c8b6c1 274 on_each_cpu(__profile_flip_buffers, NULL, 1);
1da177e4
LT
275 for_each_online_cpu(cpu) {
276 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
277 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
278 }
97d1f15b 279 mutex_unlock(&profile_flip_mutex);
1da177e4
LT
280}
281
ece8a684 282void profile_hits(int type, void *__pc, unsigned int nr_hits)
1da177e4
LT
283{
284 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
285 int i, j, cpu;
286 struct profile_hit *hits;
287
288 if (prof_on != type || !prof_buffer)
289 return;
290 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
291 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
292 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
293 cpu = get_cpu();
294 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
295 if (!hits) {
296 put_cpu();
297 return;
298 }
ece8a684
IM
299 /*
300 * We buffer the global profiler buffer into a per-CPU
301 * queue and thus reduce the number of global (and possibly
302 * NUMA-alien) accesses. The write-queue is self-coalescing:
303 */
1da177e4
LT
304 local_irq_save(flags);
305 do {
306 for (j = 0; j < PROFILE_GRPSZ; ++j) {
307 if (hits[i + j].pc == pc) {
ece8a684 308 hits[i + j].hits += nr_hits;
1da177e4
LT
309 goto out;
310 } else if (!hits[i + j].hits) {
311 hits[i + j].pc = pc;
ece8a684 312 hits[i + j].hits = nr_hits;
1da177e4
LT
313 goto out;
314 }
315 }
316 i = (i + secondary) & (NR_PROFILE_HIT - 1);
317 } while (i != primary);
ece8a684
IM
318
319 /*
320 * Add the current hit(s) and flush the write-queue out
321 * to the global buffer:
322 */
323 atomic_add(nr_hits, &prof_buffer[pc]);
1da177e4
LT
324 for (i = 0; i < NR_PROFILE_HIT; ++i) {
325 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
326 hits[i].pc = hits[i].hits = 0;
327 }
328out:
329 local_irq_restore(flags);
330 put_cpu();
331}
332
9c7b216d 333static int __devinit profile_cpu_callback(struct notifier_block *info,
1da177e4
LT
334 unsigned long action, void *__cpu)
335{
336 int node, cpu = (unsigned long)__cpu;
337 struct page *page;
338
339 switch (action) {
340 case CPU_UP_PREPARE:
8bb78442 341 case CPU_UP_PREPARE_FROZEN:
1da177e4
LT
342 node = cpu_to_node(cpu);
343 per_cpu(cpu_profile_flip, cpu) = 0;
344 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
fbd98167 345 page = alloc_pages_node(node,
4199cfa0 346 GFP_KERNEL | __GFP_ZERO,
fbd98167 347 0);
1da177e4
LT
348 if (!page)
349 return NOTIFY_BAD;
350 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
351 }
352 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
fbd98167 353 page = alloc_pages_node(node,
4199cfa0 354 GFP_KERNEL | __GFP_ZERO,
fbd98167 355 0);
1da177e4
LT
356 if (!page)
357 goto out_free;
358 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
359 }
360 break;
1ad82fd5 361out_free:
1da177e4
LT
362 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
363 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
364 __free_page(page);
365 return NOTIFY_BAD;
366 case CPU_ONLINE:
8bb78442 367 case CPU_ONLINE_FROZEN:
1da177e4
LT
368 cpu_set(cpu, prof_cpu_mask);
369 break;
370 case CPU_UP_CANCELED:
8bb78442 371 case CPU_UP_CANCELED_FROZEN:
1da177e4 372 case CPU_DEAD:
8bb78442 373 case CPU_DEAD_FROZEN:
1da177e4
LT
374 cpu_clear(cpu, prof_cpu_mask);
375 if (per_cpu(cpu_profile_hits, cpu)[0]) {
376 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
377 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
378 __free_page(page);
379 }
380 if (per_cpu(cpu_profile_hits, cpu)[1]) {
381 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
382 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
383 __free_page(page);
384 }
385 break;
386 }
387 return NOTIFY_OK;
388}
1da177e4
LT
389#else /* !CONFIG_SMP */
390#define profile_flip_buffers() do { } while (0)
391#define profile_discard_flip_buffers() do { } while (0)
02316067 392#define profile_cpu_callback NULL
1da177e4 393
ece8a684 394void profile_hits(int type, void *__pc, unsigned int nr_hits)
1da177e4
LT
395{
396 unsigned long pc;
397
398 if (prof_on != type || !prof_buffer)
399 return;
400 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
ece8a684 401 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
1da177e4
LT
402}
403#endif /* !CONFIG_SMP */
bbe1a59b
AM
404EXPORT_SYMBOL_GPL(profile_hits);
405
7d12e780 406void profile_tick(int type)
1da177e4 407{
7d12e780
DH
408 struct pt_regs *regs = get_irq_regs();
409
1da177e4
LT
410 if (type == CPU_PROFILING && timer_hook)
411 timer_hook(regs);
412 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
413 profile_hit(type, (void *)profile_pc(regs));
414}
415
416#ifdef CONFIG_PROC_FS
417#include <linux/proc_fs.h>
418#include <asm/uaccess.h>
419#include <asm/ptrace.h>
420
1ad82fd5 421static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
1da177e4
LT
422 int count, int *eof, void *data)
423{
424 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
425 if (count - len < 2)
426 return -EINVAL;
427 len += sprintf(page + len, "\n");
428 return len;
429}
430
1ad82fd5
PC
431static int prof_cpu_mask_write_proc(struct file *file,
432 const char __user *buffer, unsigned long count, void *data)
1da177e4
LT
433{
434 cpumask_t *mask = (cpumask_t *)data;
435 unsigned long full_count = count, err;
436 cpumask_t new_value;
437
01a3ee2b 438 err = cpumask_parse_user(buffer, count, new_value);
1da177e4
LT
439 if (err)
440 return err;
441
442 *mask = new_value;
443 return full_count;
444}
445
446void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
447{
448 struct proc_dir_entry *entry;
449
450 /* create /proc/irq/prof_cpu_mask */
1ad82fd5
PC
451 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
452 if (!entry)
1da177e4 453 return;
1da177e4
LT
454 entry->data = (void *)&prof_cpu_mask;
455 entry->read_proc = prof_cpu_mask_read_proc;
456 entry->write_proc = prof_cpu_mask_write_proc;
457}
458
459/*
460 * This function accesses profiling information. The returned data is
461 * binary: the sampling step and the actual contents of the profile
462 * buffer. Use of the program readprofile is recommended in order to
463 * get meaningful info out of these data.
464 */
465static ssize_t
466read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
467{
468 unsigned long p = *ppos;
469 ssize_t read;
1ad82fd5 470 char *pnt;
1da177e4
LT
471 unsigned int sample_step = 1 << prof_shift;
472
473 profile_flip_buffers();
474 if (p >= (prof_len+1)*sizeof(unsigned int))
475 return 0;
476 if (count > (prof_len+1)*sizeof(unsigned int) - p)
477 count = (prof_len+1)*sizeof(unsigned int) - p;
478 read = 0;
479
480 while (p < sizeof(unsigned int) && count > 0) {
1ad82fd5 481 if (put_user(*((char *)(&sample_step)+p), buf))
064b022c 482 return -EFAULT;
1da177e4
LT
483 buf++; p++; count--; read++;
484 }
485 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
1ad82fd5 486 if (copy_to_user(buf, (void *)pnt, count))
1da177e4
LT
487 return -EFAULT;
488 read += count;
489 *ppos += read;
490 return read;
491}
492
493/*
494 * Writing to /proc/profile resets the counters
495 *
496 * Writing a 'profiling multiplier' value into it also re-sets the profiling
497 * interrupt frequency, on architectures that support this.
498 */
499static ssize_t write_profile(struct file *file, const char __user *buf,
500 size_t count, loff_t *ppos)
501{
502#ifdef CONFIG_SMP
1ad82fd5 503 extern int setup_profiling_timer(unsigned int multiplier);
1da177e4
LT
504
505 if (count == sizeof(int)) {
506 unsigned int multiplier;
507
508 if (copy_from_user(&multiplier, buf, sizeof(int)))
509 return -EFAULT;
510
511 if (setup_profiling_timer(multiplier))
512 return -EINVAL;
513 }
514#endif
515 profile_discard_flip_buffers();
516 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
517 return count;
518}
519
15ad7cdc 520static const struct file_operations proc_profile_operations = {
1da177e4
LT
521 .read = read_profile,
522 .write = write_profile,
523};
524
525#ifdef CONFIG_SMP
526static void __init profile_nop(void *unused)
527{
528}
529
530static int __init create_hash_tables(void)
531{
532 int cpu;
533
534 for_each_online_cpu(cpu) {
535 int node = cpu_to_node(cpu);
536 struct page *page;
537
fbd98167
CL
538 page = alloc_pages_node(node,
539 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
540 0);
1da177e4
LT
541 if (!page)
542 goto out_cleanup;
543 per_cpu(cpu_profile_hits, cpu)[1]
544 = (struct profile_hit *)page_address(page);
fbd98167
CL
545 page = alloc_pages_node(node,
546 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
547 0);
1da177e4
LT
548 if (!page)
549 goto out_cleanup;
550 per_cpu(cpu_profile_hits, cpu)[0]
551 = (struct profile_hit *)page_address(page);
552 }
553 return 0;
554out_cleanup:
555 prof_on = 0;
d59dd462 556 smp_mb();
15c8b6c1 557 on_each_cpu(profile_nop, NULL, 1);
1da177e4
LT
558 for_each_online_cpu(cpu) {
559 struct page *page;
560
561 if (per_cpu(cpu_profile_hits, cpu)[0]) {
562 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
563 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
564 __free_page(page);
565 }
566 if (per_cpu(cpu_profile_hits, cpu)[1]) {
567 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
568 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
569 __free_page(page);
570 }
571 }
572 return -1;
573}
574#else
575#define create_hash_tables() ({ 0; })
576#endif
577
578static int __init create_proc_profile(void)
579{
580 struct proc_dir_entry *entry;
581
582 if (!prof_on)
583 return 0;
584 if (create_hash_tables())
585 return -1;
c33fff0a
DL
586 entry = proc_create("profile", S_IWUSR | S_IRUGO,
587 NULL, &proc_profile_operations);
1ad82fd5 588 if (!entry)
1da177e4 589 return 0;
1da177e4
LT
590 entry->size = (1+prof_len) * sizeof(atomic_t);
591 hotcpu_notifier(profile_cpu_callback, 0);
592 return 0;
593}
594module_init(create_proc_profile);
595#endif /* CONFIG_PROC_FS */