]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/posix-timers.c
xps: Transmit Packet Steering
[net-next-2.6.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
84
85/*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94/*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
27af4245 119 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
1da177e4
LT
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 135
1da177e4 136/*
becf8b5d 137 * These ones are defined below.
1da177e4 138 */
becf8b5d
TG
139static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141static void common_timer_get(struct k_itimer *, struct itimerspec *);
142static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144static int common_timer_del(struct k_itimer *timer);
1da177e4 145
c9cb2e3d 146static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4
LT
147
148static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151{
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153}
154
155/*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158#define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163/*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
a924b04d 171static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
172 struct timespec *tp)
173{
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177}
178
becf8b5d
TG
179/*
180 * Get real time for posix timers
181 */
182static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 183{
becf8b5d 184 ktime_get_real_ts(tp);
1da177e4
LT
185 return 0;
186}
187
a924b04d
TG
188static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
1da177e4
LT
190{
191 return do_sys_settimeofday(tp, NULL);
192}
193
858119e1 194static int common_timer_create(struct k_itimer *new_timer)
1da177e4 195{
7978672c 196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
197 return 0;
198}
199
3d44cc3e
TG
200static int no_timer_create(struct k_itimer *new_timer)
201{
202 return -EOPNOTSUPP;
203}
204
70d715fd
HS
205static int no_nsleep(const clockid_t which_clock, int flags,
206 struct timespec *tsave, struct timespec __user *rmtp)
207{
208 return -EOPNOTSUPP;
209}
210
1da177e4 211/*
becf8b5d 212 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 213 */
a924b04d 214static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
215{
216 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
217 return 0;
218 if ((unsigned) which_clock >= MAX_CLOCKS)
219 return 1;
220 if (posix_clocks[which_clock].clock_getres != NULL)
221 return 0;
1da177e4
LT
222 if (posix_clocks[which_clock].res != 0)
223 return 0;
1da177e4
LT
224 return 1;
225}
226
becf8b5d
TG
227/*
228 * Get monotonic time for posix timers
229 */
230static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
231{
232 ktime_get_ts(tp);
233 return 0;
234}
1da177e4 235
2d42244a
JS
236/*
237 * Get monotonic time for posix timers
238 */
239static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
240{
241 getrawmonotonic(tp);
242 return 0;
243}
244
da15cfda
JS
245
246static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
247{
248 *tp = current_kernel_time();
249 return 0;
250}
251
252static int posix_get_monotonic_coarse(clockid_t which_clock,
253 struct timespec *tp)
254{
255 *tp = get_monotonic_coarse();
256 return 0;
257}
258
6622e670 259static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
da15cfda
JS
260{
261 *tp = ktime_to_timespec(KTIME_LOW_RES);
262 return 0;
263}
1da177e4
LT
264/*
265 * Initialize everything, well, just everything in Posix clocks/timers ;)
266 */
267static __init int init_posix_timers(void)
268{
becf8b5d
TG
269 struct k_clock clock_realtime = {
270 .clock_getres = hrtimer_get_res,
1da177e4 271 };
becf8b5d
TG
272 struct k_clock clock_monotonic = {
273 .clock_getres = hrtimer_get_res,
274 .clock_get = posix_ktime_get_ts,
275 .clock_set = do_posix_clock_nosettime,
1da177e4 276 };
2d42244a
JS
277 struct k_clock clock_monotonic_raw = {
278 .clock_getres = hrtimer_get_res,
279 .clock_get = posix_get_monotonic_raw,
280 .clock_set = do_posix_clock_nosettime,
3d44cc3e 281 .timer_create = no_timer_create,
70d715fd 282 .nsleep = no_nsleep,
2d42244a 283 };
da15cfda
JS
284 struct k_clock clock_realtime_coarse = {
285 .clock_getres = posix_get_coarse_res,
286 .clock_get = posix_get_realtime_coarse,
287 .clock_set = do_posix_clock_nosettime,
288 .timer_create = no_timer_create,
289 .nsleep = no_nsleep,
290 };
291 struct k_clock clock_monotonic_coarse = {
292 .clock_getres = posix_get_coarse_res,
293 .clock_get = posix_get_monotonic_coarse,
294 .clock_set = do_posix_clock_nosettime,
295 .timer_create = no_timer_create,
296 .nsleep = no_nsleep,
297 };
1da177e4
LT
298
299 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
300 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
2d42244a 301 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
da15cfda
JS
302 register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
303 register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
1da177e4
LT
304
305 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
306 sizeof (struct k_itimer), 0, SLAB_PANIC,
307 NULL);
1da177e4
LT
308 idr_init(&posix_timers_id);
309 return 0;
310}
311
312__initcall(init_posix_timers);
313
1da177e4
LT
314static void schedule_next_timer(struct k_itimer *timr)
315{
44f21475
RZ
316 struct hrtimer *timer = &timr->it.real.timer;
317
becf8b5d 318 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
319 return;
320
4d672e7a
DL
321 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
322 timer->base->get_time(),
323 timr->it.real.interval);
44f21475 324
1da177e4
LT
325 timr->it_overrun_last = timr->it_overrun;
326 timr->it_overrun = -1;
327 ++timr->it_requeue_pending;
44f21475 328 hrtimer_restart(timer);
1da177e4
LT
329}
330
331/*
332 * This function is exported for use by the signal deliver code. It is
333 * called just prior to the info block being released and passes that
334 * block to us. It's function is to update the overrun entry AND to
335 * restart the timer. It should only be called if the timer is to be
336 * restarted (i.e. we have flagged this in the sys_private entry of the
337 * info block).
338 *
339 * To protect aginst the timer going away while the interrupt is queued,
340 * we require that the it_requeue_pending flag be set.
341 */
342void do_schedule_next_timer(struct siginfo *info)
343{
344 struct k_itimer *timr;
345 unsigned long flags;
346
347 timr = lock_timer(info->si_tid, &flags);
348
becf8b5d
TG
349 if (timr && timr->it_requeue_pending == info->si_sys_private) {
350 if (timr->it_clock < 0)
351 posix_cpu_timer_schedule(timr);
352 else
353 schedule_next_timer(timr);
1da177e4 354
54da1174 355 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
356 }
357
b6557fbc
TG
358 if (timr)
359 unlock_timer(timr, flags);
1da177e4
LT
360}
361
ba661292 362int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 363{
27af4245
ON
364 struct task_struct *task;
365 int shared, ret = -1;
ba661292
ON
366 /*
367 * FIXME: if ->sigq is queued we can race with
368 * dequeue_signal()->do_schedule_next_timer().
369 *
370 * If dequeue_signal() sees the "right" value of
371 * si_sys_private it calls do_schedule_next_timer().
372 * We re-queue ->sigq and drop ->it_lock().
373 * do_schedule_next_timer() locks the timer
374 * and re-schedules it while ->sigq is pending.
375 * Not really bad, but not that we want.
376 */
1da177e4 377 timr->sigq->info.si_sys_private = si_private;
1da177e4 378
27af4245
ON
379 rcu_read_lock();
380 task = pid_task(timr->it_pid, PIDTYPE_PID);
381 if (task) {
382 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
383 ret = send_sigqueue(timr->sigq, task, shared);
384 }
385 rcu_read_unlock();
4aa73611
ON
386 /* If we failed to send the signal the timer stops. */
387 return ret > 0;
1da177e4
LT
388}
389EXPORT_SYMBOL_GPL(posix_timer_event);
390
391/*
392 * This function gets called when a POSIX.1b interval timer expires. It
393 * is used as a callback from the kernel internal timer. The
394 * run_timer_list code ALWAYS calls with interrupts on.
395
396 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
397 */
c9cb2e3d 398static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 399{
05cfb614 400 struct k_itimer *timr;
1da177e4 401 unsigned long flags;
becf8b5d 402 int si_private = 0;
c9cb2e3d 403 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 404
05cfb614 405 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 406 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 407
becf8b5d
TG
408 if (timr->it.real.interval.tv64 != 0)
409 si_private = ++timr->it_requeue_pending;
1da177e4 410
becf8b5d
TG
411 if (posix_timer_event(timr, si_private)) {
412 /*
413 * signal was not sent because of sig_ignor
414 * we will not get a call back to restart it AND
415 * it should be restarted.
416 */
417 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
418 ktime_t now = hrtimer_cb_get_time(timer);
419
420 /*
421 * FIXME: What we really want, is to stop this
422 * timer completely and restart it in case the
423 * SIG_IGN is removed. This is a non trivial
424 * change which involves sighand locking
425 * (sigh !), which we don't want to do late in
426 * the release cycle.
427 *
428 * For now we just let timers with an interval
429 * less than a jiffie expire every jiffie to
430 * avoid softirq starvation in case of SIG_IGN
431 * and a very small interval, which would put
432 * the timer right back on the softirq pending
433 * list. By moving now ahead of time we trick
434 * hrtimer_forward() to expire the timer
435 * later, while we still maintain the overrun
436 * accuracy, but have some inconsistency in
437 * the timer_gettime() case. This is at least
438 * better than a starved softirq. A more
439 * complex fix which solves also another related
440 * inconsistency is already in the pipeline.
441 */
442#ifdef CONFIG_HIGH_RES_TIMERS
443 {
444 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
445
446 if (timr->it.real.interval.tv64 < kj.tv64)
447 now = ktime_add(now, kj);
448 }
449#endif
4d672e7a 450 timr->it_overrun += (unsigned int)
58229a18 451 hrtimer_forward(timer, now,
becf8b5d
TG
452 timr->it.real.interval);
453 ret = HRTIMER_RESTART;
a0a0c28c 454 ++timr->it_requeue_pending;
1da177e4 455 }
1da177e4 456 }
1da177e4 457
becf8b5d
TG
458 unlock_timer(timr, flags);
459 return ret;
460}
1da177e4 461
27af4245 462static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
463{
464 struct task_struct *rtn = current->group_leader;
465
466 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 467 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 468 !same_thread_group(rtn, current) ||
1da177e4
LT
469 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
470 return NULL;
471
472 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
473 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
474 return NULL;
475
27af4245 476 return task_pid(rtn);
1da177e4
LT
477}
478
a924b04d 479void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
480{
481 if ((unsigned) clock_id >= MAX_CLOCKS) {
482 printk("POSIX clock register failed for clock_id %d\n",
483 clock_id);
484 return;
485 }
486
487 posix_clocks[clock_id] = *new_clock;
488}
489EXPORT_SYMBOL_GPL(register_posix_clock);
490
491static struct k_itimer * alloc_posix_timer(void)
492{
493 struct k_itimer *tmr;
c3762229 494 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
495 if (!tmr)
496 return tmr;
1da177e4
LT
497 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
498 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 499 return NULL;
1da177e4 500 }
ba661292 501 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
502 return tmr;
503}
504
505#define IT_ID_SET 1
506#define IT_ID_NOT_SET 0
507static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
508{
509 if (it_id_set) {
510 unsigned long flags;
511 spin_lock_irqsave(&idr_lock, flags);
512 idr_remove(&posix_timers_id, tmr->it_id);
513 spin_unlock_irqrestore(&idr_lock, flags);
514 }
89992102 515 put_pid(tmr->it_pid);
1da177e4 516 sigqueue_free(tmr->sigq);
1da177e4
LT
517 kmem_cache_free(posix_timers_cache, tmr);
518}
519
520/* Create a POSIX.1b interval timer. */
521
362e9c07
HC
522SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
523 struct sigevent __user *, timer_event_spec,
524 timer_t __user *, created_timer_id)
1da177e4 525{
2cd499e3 526 struct k_itimer *new_timer;
ef864c95 527 int error, new_timer_id;
1da177e4
LT
528 sigevent_t event;
529 int it_id_set = IT_ID_NOT_SET;
530
531 if (invalid_clockid(which_clock))
532 return -EINVAL;
533
534 new_timer = alloc_posix_timer();
535 if (unlikely(!new_timer))
536 return -EAGAIN;
537
538 spin_lock_init(&new_timer->it_lock);
539 retry:
540 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
541 error = -EAGAIN;
542 goto out;
543 }
544 spin_lock_irq(&idr_lock);
5a51b713 545 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
1da177e4 546 spin_unlock_irq(&idr_lock);
ef864c95
ON
547 if (error) {
548 if (error == -EAGAIN)
549 goto retry;
1da177e4 550 /*
0b0a3e7b 551 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
552 * full (proper POSIX return value for this)
553 */
554 error = -EAGAIN;
555 goto out;
556 }
557
558 it_id_set = IT_ID_SET;
559 new_timer->it_id = (timer_t) new_timer_id;
560 new_timer->it_clock = which_clock;
561 new_timer->it_overrun = -1;
1da177e4 562
1da177e4
LT
563 if (timer_event_spec) {
564 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
565 error = -EFAULT;
566 goto out;
567 }
36b2f046 568 rcu_read_lock();
89992102 569 new_timer->it_pid = get_pid(good_sigevent(&event));
36b2f046 570 rcu_read_unlock();
89992102 571 if (!new_timer->it_pid) {
1da177e4
LT
572 error = -EINVAL;
573 goto out;
574 }
575 } else {
5a9fa730
ON
576 event.sigev_notify = SIGEV_SIGNAL;
577 event.sigev_signo = SIGALRM;
578 event.sigev_value.sival_int = new_timer->it_id;
89992102 579 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
580 }
581
5a9fa730
ON
582 new_timer->it_sigev_notify = event.sigev_notify;
583 new_timer->sigq->info.si_signo = event.sigev_signo;
584 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 585 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 586 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 587
2b08de00
AV
588 if (copy_to_user(created_timer_id,
589 &new_timer_id, sizeof (new_timer_id))) {
590 error = -EFAULT;
591 goto out;
592 }
593
45e0fffc
AV
594 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
595 if (error)
596 goto out;
597
36b2f046 598 spin_lock_irq(&current->sighand->siglock);
27af4245 599 new_timer->it_signal = current->signal;
36b2f046
ON
600 list_add(&new_timer->list, &current->signal->posix_timers);
601 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
602
603 return 0;
1da177e4
LT
604 /*
605 * In the case of the timer belonging to another task, after
606 * the task is unlocked, the timer is owned by the other task
607 * and may cease to exist at any time. Don't use or modify
608 * new_timer after the unlock call.
609 */
1da177e4 610out:
ef864c95 611 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
612 return error;
613}
614
1da177e4
LT
615/*
616 * Locking issues: We need to protect the result of the id look up until
617 * we get the timer locked down so it is not deleted under us. The
618 * removal is done under the idr spinlock so we use that here to bridge
619 * the find to the timer lock. To avoid a dead lock, the timer id MUST
620 * be release with out holding the timer lock.
621 */
31d92845 622static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
623{
624 struct k_itimer *timr;
625 /*
626 * Watch out here. We do a irqsave on the idr_lock and pass the
627 * flags part over to the timer lock. Must not let interrupts in
628 * while we are moving the lock.
629 */
1da177e4 630 spin_lock_irqsave(&idr_lock, *flags);
31d92845 631 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4
LT
632 if (timr) {
633 spin_lock(&timr->it_lock);
89992102 634 if (timr->it_signal == current->signal) {
179394af 635 spin_unlock(&idr_lock);
31d92845
ON
636 return timr;
637 }
638 spin_unlock(&timr->it_lock);
639 }
640 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 641
31d92845 642 return NULL;
1da177e4
LT
643}
644
645/*
646 * Get the time remaining on a POSIX.1b interval timer. This function
647 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
648 * mess with irq.
649 *
650 * We have a couple of messes to clean up here. First there is the case
651 * of a timer that has a requeue pending. These timers should appear to
652 * be in the timer list with an expiry as if we were to requeue them
653 * now.
654 *
655 * The second issue is the SIGEV_NONE timer which may be active but is
656 * not really ever put in the timer list (to save system resources).
657 * This timer may be expired, and if so, we will do it here. Otherwise
658 * it is the same as a requeue pending timer WRT to what we should
659 * report.
660 */
661static void
662common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
663{
3b98a532 664 ktime_t now, remaining, iv;
becf8b5d 665 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 666
becf8b5d 667 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 668
3b98a532
RZ
669 iv = timr->it.real.interval;
670
becf8b5d 671 /* interval timer ? */
3b98a532
RZ
672 if (iv.tv64)
673 cur_setting->it_interval = ktime_to_timespec(iv);
674 else if (!hrtimer_active(timer) &&
675 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 676 return;
3b98a532
RZ
677
678 now = timer->base->get_time();
679
becf8b5d 680 /*
3b98a532
RZ
681 * When a requeue is pending or this is a SIGEV_NONE
682 * timer move the expiry time forward by intervals, so
683 * expiry is > now.
becf8b5d 684 */
3b98a532
RZ
685 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
686 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 687 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 688
cc584b21 689 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 690 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
691 if (remaining.tv64 <= 0) {
692 /*
693 * A single shot SIGEV_NONE timer must return 0, when
694 * it is expired !
695 */
696 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
697 cur_setting->it_value.tv_nsec = 1;
698 } else
becf8b5d 699 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
700}
701
702/* Get the time remaining on a POSIX.1b interval timer. */
362e9c07
HC
703SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
704 struct itimerspec __user *, setting)
1da177e4
LT
705{
706 struct k_itimer *timr;
707 struct itimerspec cur_setting;
708 unsigned long flags;
709
710 timr = lock_timer(timer_id, &flags);
711 if (!timr)
712 return -EINVAL;
713
714 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
715
716 unlock_timer(timr, flags);
717
718 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
719 return -EFAULT;
720
721 return 0;
722}
becf8b5d 723
1da177e4
LT
724/*
725 * Get the number of overruns of a POSIX.1b interval timer. This is to
726 * be the overrun of the timer last delivered. At the same time we are
727 * accumulating overruns on the next timer. The overrun is frozen when
728 * the signal is delivered, either at the notify time (if the info block
729 * is not queued) or at the actual delivery time (as we are informed by
730 * the call back to do_schedule_next_timer(). So all we need to do is
731 * to pick up the frozen overrun.
732 */
362e9c07 733SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
734{
735 struct k_itimer *timr;
736 int overrun;
5ba25331 737 unsigned long flags;
1da177e4
LT
738
739 timr = lock_timer(timer_id, &flags);
740 if (!timr)
741 return -EINVAL;
742
743 overrun = timr->it_overrun_last;
744 unlock_timer(timr, flags);
745
746 return overrun;
747}
1da177e4
LT
748
749/* Set a POSIX.1b interval timer. */
750/* timr->it_lock is taken. */
858119e1 751static int
1da177e4
LT
752common_timer_set(struct k_itimer *timr, int flags,
753 struct itimerspec *new_setting, struct itimerspec *old_setting)
754{
becf8b5d 755 struct hrtimer *timer = &timr->it.real.timer;
7978672c 756 enum hrtimer_mode mode;
1da177e4
LT
757
758 if (old_setting)
759 common_timer_get(timr, old_setting);
760
761 /* disable the timer */
becf8b5d 762 timr->it.real.interval.tv64 = 0;
1da177e4
LT
763 /*
764 * careful here. If smp we could be in the "fire" routine which will
765 * be spinning as we hold the lock. But this is ONLY an SMP issue.
766 */
becf8b5d 767 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 768 return TIMER_RETRY;
1da177e4
LT
769
770 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
771 ~REQUEUE_PENDING;
772 timr->it_overrun_last = 0;
1da177e4 773
becf8b5d
TG
774 /* switch off the timer when it_value is zero */
775 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
776 return 0;
1da177e4 777
c9cb2e3d 778 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 779 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 780 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 781
cc584b21 782 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
783
784 /* Convert interval */
785 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
786
787 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
788 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
789 /* Setup correct expiry time for relative timers */
5a7780e7 790 if (mode == HRTIMER_MODE_REL) {
cc584b21 791 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 792 }
becf8b5d 793 return 0;
952bbc87 794 }
becf8b5d 795
cc584b21 796 hrtimer_start_expires(timer, mode);
1da177e4
LT
797 return 0;
798}
799
800/* Set a POSIX.1b interval timer */
362e9c07
HC
801SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
802 const struct itimerspec __user *, new_setting,
803 struct itimerspec __user *, old_setting)
1da177e4
LT
804{
805 struct k_itimer *timr;
806 struct itimerspec new_spec, old_spec;
807 int error = 0;
5ba25331 808 unsigned long flag;
1da177e4
LT
809 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
810
811 if (!new_setting)
812 return -EINVAL;
813
814 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
815 return -EFAULT;
816
becf8b5d
TG
817 if (!timespec_valid(&new_spec.it_interval) ||
818 !timespec_valid(&new_spec.it_value))
1da177e4
LT
819 return -EINVAL;
820retry:
821 timr = lock_timer(timer_id, &flag);
822 if (!timr)
823 return -EINVAL;
824
825 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
826 (timr, flags, &new_spec, rtn));
827
828 unlock_timer(timr, flag);
829 if (error == TIMER_RETRY) {
830 rtn = NULL; // We already got the old time...
831 goto retry;
832 }
833
becf8b5d
TG
834 if (old_setting && !error &&
835 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
836 error = -EFAULT;
837
838 return error;
839}
840
841static inline int common_timer_del(struct k_itimer *timer)
842{
becf8b5d 843 timer->it.real.interval.tv64 = 0;
f972be33 844
becf8b5d 845 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 846 return TIMER_RETRY;
1da177e4
LT
847 return 0;
848}
849
850static inline int timer_delete_hook(struct k_itimer *timer)
851{
852 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
853}
854
855/* Delete a POSIX.1b interval timer. */
362e9c07 856SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
857{
858 struct k_itimer *timer;
5ba25331 859 unsigned long flags;
1da177e4 860
1da177e4 861retry_delete:
1da177e4
LT
862 timer = lock_timer(timer_id, &flags);
863 if (!timer)
864 return -EINVAL;
865
becf8b5d 866 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
867 unlock_timer(timer, flags);
868 goto retry_delete;
869 }
becf8b5d 870
1da177e4
LT
871 spin_lock(&current->sighand->siglock);
872 list_del(&timer->list);
873 spin_unlock(&current->sighand->siglock);
874 /*
875 * This keeps any tasks waiting on the spin lock from thinking
876 * they got something (see the lock code above).
877 */
89992102 878 timer->it_signal = NULL;
4b7a1304 879
1da177e4
LT
880 unlock_timer(timer, flags);
881 release_posix_timer(timer, IT_ID_SET);
882 return 0;
883}
becf8b5d 884
1da177e4
LT
885/*
886 * return timer owned by the process, used by exit_itimers
887 */
858119e1 888static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
889{
890 unsigned long flags;
891
1da177e4 892retry_delete:
1da177e4
LT
893 spin_lock_irqsave(&timer->it_lock, flags);
894
becf8b5d 895 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
896 unlock_timer(timer, flags);
897 goto retry_delete;
898 }
1da177e4
LT
899 list_del(&timer->list);
900 /*
901 * This keeps any tasks waiting on the spin lock from thinking
902 * they got something (see the lock code above).
903 */
89992102 904 timer->it_signal = NULL;
4b7a1304 905
1da177e4
LT
906 unlock_timer(timer, flags);
907 release_posix_timer(timer, IT_ID_SET);
908}
909
910/*
25f407f0 911 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
912 * references to the shared signal_struct.
913 */
914void exit_itimers(struct signal_struct *sig)
915{
916 struct k_itimer *tmr;
917
918 while (!list_empty(&sig->posix_timers)) {
919 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
920 itimer_delete(tmr);
921 }
922}
923
becf8b5d 924/* Not available / possible... functions */
a924b04d 925int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1da177e4
LT
926{
927 return -EINVAL;
928}
929EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
930
a924b04d 931int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
97735f25 932 struct timespec *t, struct timespec __user *r)
1da177e4
LT
933{
934#ifndef ENOTSUP
935 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
936#else /* parisc does define it separately. */
937 return -ENOTSUP;
938#endif
939}
940EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
941
362e9c07
HC
942SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
943 const struct timespec __user *, tp)
1da177e4
LT
944{
945 struct timespec new_tp;
946
947 if (invalid_clockid(which_clock))
948 return -EINVAL;
949 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
950 return -EFAULT;
951
952 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
953}
954
362e9c07
HC
955SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
956 struct timespec __user *,tp)
1da177e4
LT
957{
958 struct timespec kernel_tp;
959 int error;
960
961 if (invalid_clockid(which_clock))
962 return -EINVAL;
963 error = CLOCK_DISPATCH(which_clock, clock_get,
964 (which_clock, &kernel_tp));
965 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
966 error = -EFAULT;
967
968 return error;
969
970}
971
362e9c07
HC
972SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
973 struct timespec __user *, tp)
1da177e4
LT
974{
975 struct timespec rtn_tp;
976 int error;
977
978 if (invalid_clockid(which_clock))
979 return -EINVAL;
980
981 error = CLOCK_DISPATCH(which_clock, clock_getres,
982 (which_clock, &rtn_tp));
983
984 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
985 error = -EFAULT;
986 }
987
988 return error;
989}
990
97735f25
TG
991/*
992 * nanosleep for monotonic and realtime clocks
993 */
994static int common_nsleep(const clockid_t which_clock, int flags,
995 struct timespec *tsave, struct timespec __user *rmtp)
996{
080344b9
ON
997 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
998 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
999 which_clock);
97735f25 1000}
1da177e4 1001
362e9c07
HC
1002SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1003 const struct timespec __user *, rqtp,
1004 struct timespec __user *, rmtp)
1da177e4
LT
1005{
1006 struct timespec t;
1da177e4
LT
1007
1008 if (invalid_clockid(which_clock))
1009 return -EINVAL;
1010
1011 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1012 return -EFAULT;
1013
5f82b2b7 1014 if (!timespec_valid(&t))
1da177e4
LT
1015 return -EINVAL;
1016
97735f25
TG
1017 return CLOCK_DISPATCH(which_clock, nsleep,
1018 (which_clock, flags, &t, rmtp));
1da177e4 1019}
1711ef38
TA
1020
1021/*
1022 * nanosleep_restart for monotonic and realtime clocks
1023 */
1024static int common_nsleep_restart(struct restart_block *restart_block)
1025{
1026 return hrtimer_nanosleep_restart(restart_block);
1027}
1028
1029/*
1030 * This will restart clock_nanosleep. This is required only by
1031 * compat_clock_nanosleep_restart for now.
1032 */
1033long
1034clock_nanosleep_restart(struct restart_block *restart_block)
1035{
1036 clockid_t which_clock = restart_block->arg0;
1037
1038 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1039 (restart_block));
1040}