]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/pid.c
pid namespaces: helpers to obtain pid numbers
[net-next-2.6.git] / kernel / pid.c
CommitLineData
1da177e4
LT
1/*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 */
22
23#include <linux/mm.h>
24#include <linux/module.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/bootmem.h>
28#include <linux/hash.h>
61a58c6c 29#include <linux/pid_namespace.h>
820e45db 30#include <linux/init_task.h>
1da177e4 31
8ef047aa
PE
32#define pid_hashfn(nr, ns) \
33 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
92476d7f 34static struct hlist_head *pid_hash;
1da177e4 35static int pidhash_shift;
820e45db 36struct pid init_struct_pid = INIT_STRUCT_PID;
1da177e4
LT
37
38int pid_max = PID_MAX_DEFAULT;
1da177e4
LT
39
40#define RESERVED_PIDS 300
41
42int pid_max_min = RESERVED_PIDS + 1;
43int pid_max_max = PID_MAX_LIMIT;
44
1da177e4
LT
45#define BITS_PER_PAGE (PAGE_SIZE*8)
46#define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
3fbc9648 47
61a58c6c
SB
48static inline int mk_pid(struct pid_namespace *pid_ns,
49 struct pidmap *map, int off)
3fbc9648 50{
61a58c6c 51 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
3fbc9648
SB
52}
53
1da177e4
LT
54#define find_next_offset(map, off) \
55 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
56
57/*
58 * PID-map pages start out as NULL, they get allocated upon
59 * first use and are never deallocated. This way a low pid_max
60 * value does not cause lots of bitmaps to be allocated, but
61 * the scheme scales to up to 4 million PIDs, runtime.
62 */
61a58c6c 63struct pid_namespace init_pid_ns = {
9a575a92
CLG
64 .kref = {
65 .refcount = ATOMIC_INIT(2),
66 },
3fbc9648
SB
67 .pidmap = {
68 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
69 },
84d73786 70 .last_pid = 0,
faacbfd3
PE
71 .level = 0,
72 .child_reaper = &init_task,
3fbc9648 73};
1da177e4 74
b460cbc5
SH
75int is_global_init(struct task_struct *tsk)
76{
77 return tsk == init_pid_ns.child_reaper;
78}
79
92476d7f
EB
80/*
81 * Note: disable interrupts while the pidmap_lock is held as an
82 * interrupt might come in and do read_lock(&tasklist_lock).
83 *
84 * If we don't disable interrupts there is a nasty deadlock between
85 * detach_pid()->free_pid() and another cpu that does
86 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
87 * read_lock(&tasklist_lock);
88 *
89 * After we clean up the tasklist_lock and know there are no
90 * irq handlers that take it we can leave the interrupts enabled.
91 * For now it is easier to be safe than to prove it can't happen.
92 */
3fbc9648 93
1da177e4
LT
94static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
95
61a58c6c 96static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
1da177e4 97{
61a58c6c 98 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
1da177e4
LT
99 int offset = pid & BITS_PER_PAGE_MASK;
100
101 clear_bit(offset, map->page);
102 atomic_inc(&map->nr_free);
103}
104
61a58c6c 105static int alloc_pidmap(struct pid_namespace *pid_ns)
1da177e4 106{
61a58c6c 107 int i, offset, max_scan, pid, last = pid_ns->last_pid;
6a1f3b84 108 struct pidmap *map;
1da177e4
LT
109
110 pid = last + 1;
111 if (pid >= pid_max)
112 pid = RESERVED_PIDS;
113 offset = pid & BITS_PER_PAGE_MASK;
61a58c6c 114 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
1da177e4
LT
115 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
116 for (i = 0; i <= max_scan; ++i) {
117 if (unlikely(!map->page)) {
3fbc9648 118 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1da177e4
LT
119 /*
120 * Free the page if someone raced with us
121 * installing it:
122 */
92476d7f 123 spin_lock_irq(&pidmap_lock);
1da177e4 124 if (map->page)
3fbc9648 125 kfree(page);
1da177e4 126 else
3fbc9648 127 map->page = page;
92476d7f 128 spin_unlock_irq(&pidmap_lock);
1da177e4
LT
129 if (unlikely(!map->page))
130 break;
131 }
132 if (likely(atomic_read(&map->nr_free))) {
133 do {
134 if (!test_and_set_bit(offset, map->page)) {
135 atomic_dec(&map->nr_free);
61a58c6c 136 pid_ns->last_pid = pid;
1da177e4
LT
137 return pid;
138 }
139 offset = find_next_offset(map, offset);
61a58c6c 140 pid = mk_pid(pid_ns, map, offset);
1da177e4
LT
141 /*
142 * find_next_offset() found a bit, the pid from it
143 * is in-bounds, and if we fell back to the last
144 * bitmap block and the final block was the same
145 * as the starting point, pid is before last_pid.
146 */
147 } while (offset < BITS_PER_PAGE && pid < pid_max &&
148 (i != max_scan || pid < last ||
149 !((last+1) & BITS_PER_PAGE_MASK)));
150 }
61a58c6c 151 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
1da177e4
LT
152 ++map;
153 offset = 0;
154 } else {
61a58c6c 155 map = &pid_ns->pidmap[0];
1da177e4
LT
156 offset = RESERVED_PIDS;
157 if (unlikely(last == offset))
158 break;
159 }
61a58c6c 160 pid = mk_pid(pid_ns, map, offset);
1da177e4
LT
161 }
162 return -1;
163}
164
61a58c6c 165static int next_pidmap(struct pid_namespace *pid_ns, int last)
0804ef4b
EB
166{
167 int offset;
f40f50d3 168 struct pidmap *map, *end;
0804ef4b
EB
169
170 offset = (last + 1) & BITS_PER_PAGE_MASK;
61a58c6c
SB
171 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
172 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
f40f50d3 173 for (; map < end; map++, offset = 0) {
0804ef4b
EB
174 if (unlikely(!map->page))
175 continue;
176 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
177 if (offset < BITS_PER_PAGE)
61a58c6c 178 return mk_pid(pid_ns, map, offset);
0804ef4b
EB
179 }
180 return -1;
181}
182
92476d7f
EB
183fastcall void put_pid(struct pid *pid)
184{
baf8f0f8
PE
185 struct pid_namespace *ns;
186
92476d7f
EB
187 if (!pid)
188 return;
baf8f0f8 189
8ef047aa 190 ns = pid->numbers[pid->level].ns;
92476d7f 191 if ((atomic_read(&pid->count) == 1) ||
8ef047aa 192 atomic_dec_and_test(&pid->count)) {
baf8f0f8 193 kmem_cache_free(ns->pid_cachep, pid);
8ef047aa
PE
194 if (ns != &init_pid_ns)
195 put_pid_ns(ns);
196 }
92476d7f 197}
bbf73147 198EXPORT_SYMBOL_GPL(put_pid);
92476d7f
EB
199
200static void delayed_put_pid(struct rcu_head *rhp)
201{
202 struct pid *pid = container_of(rhp, struct pid, rcu);
203 put_pid(pid);
204}
205
206fastcall void free_pid(struct pid *pid)
207{
208 /* We can be called with write_lock_irq(&tasklist_lock) held */
8ef047aa 209 int i;
92476d7f
EB
210 unsigned long flags;
211
212 spin_lock_irqsave(&pidmap_lock, flags);
213 hlist_del_rcu(&pid->pid_chain);
214 spin_unlock_irqrestore(&pidmap_lock, flags);
215
8ef047aa
PE
216 for (i = 0; i <= pid->level; i++)
217 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
218
92476d7f
EB
219 call_rcu(&pid->rcu, delayed_put_pid);
220}
221
8ef047aa 222struct pid *alloc_pid(struct pid_namespace *ns)
92476d7f
EB
223{
224 struct pid *pid;
225 enum pid_type type;
8ef047aa
PE
226 int i, nr;
227 struct pid_namespace *tmp;
92476d7f 228
baf8f0f8 229 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
92476d7f
EB
230 if (!pid)
231 goto out;
232
8ef047aa
PE
233 tmp = ns;
234 for (i = ns->level; i >= 0; i--) {
235 nr = alloc_pidmap(tmp);
236 if (nr < 0)
237 goto out_free;
92476d7f 238
8ef047aa
PE
239 pid->numbers[i].nr = nr;
240 pid->numbers[i].ns = tmp;
241 tmp = tmp->parent;
242 }
243
244 if (ns != &init_pid_ns)
245 get_pid_ns(ns);
246
247 pid->level = ns->level;
248 pid->nr = pid->numbers[0].nr;
92476d7f 249 atomic_set(&pid->count, 1);
92476d7f
EB
250 for (type = 0; type < PIDTYPE_MAX; ++type)
251 INIT_HLIST_HEAD(&pid->tasks[type]);
252
253 spin_lock_irq(&pidmap_lock);
8ef047aa 254 hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr, ns)]);
92476d7f
EB
255 spin_unlock_irq(&pidmap_lock);
256
257out:
258 return pid;
259
260out_free:
8ef047aa
PE
261 for (i++; i <= ns->level; i++)
262 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
263
baf8f0f8 264 kmem_cache_free(ns->pid_cachep, pid);
92476d7f
EB
265 pid = NULL;
266 goto out;
267}
268
269struct pid * fastcall find_pid(int nr)
1da177e4
LT
270{
271 struct hlist_node *elem;
272 struct pid *pid;
273
e56d0903 274 hlist_for_each_entry_rcu(pid, elem,
8ef047aa 275 &pid_hash[pid_hashfn(nr, &init_pid_ns)], pid_chain) {
1da177e4
LT
276 if (pid->nr == nr)
277 return pid;
278 }
279 return NULL;
280}
bbf73147 281EXPORT_SYMBOL_GPL(find_pid);
1da177e4 282
e713d0da
SB
283/*
284 * attach_pid() must be called with the tasklist_lock write-held.
285 */
286int fastcall attach_pid(struct task_struct *task, enum pid_type type,
287 struct pid *pid)
1da177e4 288{
92476d7f 289 struct pid_link *link;
92476d7f 290
92476d7f 291 link = &task->pids[type];
e713d0da 292 link->pid = pid;
92476d7f 293 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
1da177e4
LT
294
295 return 0;
296}
297
36c8b586 298void fastcall detach_pid(struct task_struct *task, enum pid_type type)
1da177e4 299{
92476d7f
EB
300 struct pid_link *link;
301 struct pid *pid;
302 int tmp;
1da177e4 303
92476d7f
EB
304 link = &task->pids[type];
305 pid = link->pid;
1da177e4 306
92476d7f
EB
307 hlist_del_rcu(&link->node);
308 link->pid = NULL;
1da177e4 309
92476d7f
EB
310 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
311 if (!hlist_empty(&pid->tasks[tmp]))
312 return;
1da177e4 313
92476d7f 314 free_pid(pid);
1da177e4
LT
315}
316
c18258c6
EB
317/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
318void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
319 enum pid_type type)
320{
321 new->pids[type].pid = old->pids[type].pid;
322 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
323 old->pids[type].pid = NULL;
324}
325
92476d7f 326struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
1da177e4 327{
92476d7f
EB
328 struct task_struct *result = NULL;
329 if (pid) {
330 struct hlist_node *first;
331 first = rcu_dereference(pid->tasks[type].first);
332 if (first)
333 result = hlist_entry(first, struct task_struct, pids[(type)].node);
334 }
335 return result;
336}
1da177e4 337
92476d7f
EB
338/*
339 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
340 */
36c8b586 341struct task_struct *find_task_by_pid_type(int type, int nr)
92476d7f
EB
342{
343 return pid_task(find_pid(nr), type);
344}
1da177e4 345
92476d7f 346EXPORT_SYMBOL(find_task_by_pid_type);
1da177e4 347
1a657f78
ON
348struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
349{
350 struct pid *pid;
351 rcu_read_lock();
352 pid = get_pid(task->pids[type].pid);
353 rcu_read_unlock();
354 return pid;
355}
356
92476d7f
EB
357struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
358{
359 struct task_struct *result;
360 rcu_read_lock();
361 result = pid_task(pid, type);
362 if (result)
363 get_task_struct(result);
364 rcu_read_unlock();
365 return result;
1da177e4
LT
366}
367
92476d7f 368struct pid *find_get_pid(pid_t nr)
1da177e4
LT
369{
370 struct pid *pid;
371
92476d7f
EB
372 rcu_read_lock();
373 pid = get_pid(find_pid(nr));
374 rcu_read_unlock();
1da177e4 375
92476d7f 376 return pid;
1da177e4
LT
377}
378
7af57294
PE
379pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
380{
381 struct upid *upid;
382 pid_t nr = 0;
383
384 if (pid && ns->level <= pid->level) {
385 upid = &pid->numbers[ns->level];
386 if (upid->ns == ns)
387 nr = upid->nr;
388 }
389 return nr;
390}
391
0804ef4b
EB
392/*
393 * Used by proc to find the first pid that is greater then or equal to nr.
394 *
395 * If there is a pid at nr this function is exactly the same as find_pid.
396 */
397struct pid *find_ge_pid(int nr)
398{
399 struct pid *pid;
400
401 do {
402 pid = find_pid(nr);
403 if (pid)
404 break;
2894d650 405 nr = next_pidmap(task_active_pid_ns(current), nr);
0804ef4b
EB
406 } while (nr > 0);
407
408 return pid;
409}
bbf73147 410EXPORT_SYMBOL_GPL(find_get_pid);
0804ef4b 411
baf8f0f8
PE
412struct pid_cache {
413 int nr_ids;
414 char name[16];
415 struct kmem_cache *cachep;
416 struct list_head list;
417};
418
419static LIST_HEAD(pid_caches_lh);
420static DEFINE_MUTEX(pid_caches_mutex);
421
422/*
423 * creates the kmem cache to allocate pids from.
424 * @nr_ids: the number of numerical ids this pid will have to carry
425 */
426
427static struct kmem_cache *create_pid_cachep(int nr_ids)
428{
429 struct pid_cache *pcache;
430 struct kmem_cache *cachep;
431
432 mutex_lock(&pid_caches_mutex);
433 list_for_each_entry (pcache, &pid_caches_lh, list)
434 if (pcache->nr_ids == nr_ids)
435 goto out;
436
437 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
438 if (pcache == NULL)
439 goto err_alloc;
440
441 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
442 cachep = kmem_cache_create(pcache->name,
443 /* FIXME add numerical ids here */
444 sizeof(struct pid), 0, SLAB_HWCACHE_ALIGN, NULL);
445 if (cachep == NULL)
446 goto err_cachep;
447
448 pcache->nr_ids = nr_ids;
449 pcache->cachep = cachep;
450 list_add(&pcache->list, &pid_caches_lh);
451out:
452 mutex_unlock(&pid_caches_mutex);
453 return pcache->cachep;
454
455err_cachep:
456 kfree(pcache);
457err_alloc:
458 mutex_unlock(&pid_caches_mutex);
459 return NULL;
460}
461
213dd266 462struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
9a575a92 463{
e3222c4e 464 BUG_ON(!old_ns);
9a575a92 465 get_pid_ns(old_ns);
e3222c4e 466 return old_ns;
9a575a92
CLG
467}
468
469void free_pid_ns(struct kref *kref)
470{
471 struct pid_namespace *ns;
472
473 ns = container_of(kref, struct pid_namespace, kref);
474 kfree(ns);
475}
476
1da177e4
LT
477/*
478 * The pid hash table is scaled according to the amount of memory in the
479 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
480 * more.
481 */
482void __init pidhash_init(void)
483{
92476d7f 484 int i, pidhash_size;
1da177e4
LT
485 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
486
487 pidhash_shift = max(4, fls(megabytes * 4));
488 pidhash_shift = min(12, pidhash_shift);
489 pidhash_size = 1 << pidhash_shift;
490
491 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
492 pidhash_size, pidhash_shift,
92476d7f
EB
493 pidhash_size * sizeof(struct hlist_head));
494
495 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
496 if (!pid_hash)
497 panic("Could not alloc pidhash!\n");
498 for (i = 0; i < pidhash_size; i++)
499 INIT_HLIST_HEAD(&pid_hash[i]);
1da177e4
LT
500}
501
502void __init pidmap_init(void)
503{
61a58c6c 504 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
73b9ebfe 505 /* Reserve PID 0. We never call free_pidmap(0) */
61a58c6c
SB
506 set_bit(0, init_pid_ns.pidmap[0].page);
507 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
92476d7f 508
baf8f0f8
PE
509 init_pid_ns.pid_cachep = create_pid_cachep(1);
510 if (init_pid_ns.pid_cachep == NULL)
511 panic("Can't create pid_1 cachep\n");
1da177e4 512}