]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/kexec.c
parport_serial: use the PCI IRQ if offered
[net-next-2.6.git] / kernel / kexec.c
CommitLineData
dc009d92
EB
1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
c59ede7b 9#include <linux/capability.h>
dc009d92
EB
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/kexec.h>
8c5a1cf0 15#include <linux/mutex.h>
dc009d92
EB
16#include <linux/list.h>
17#include <linux/highmem.h>
18#include <linux/syscalls.h>
19#include <linux/reboot.h>
dc009d92 20#include <linux/ioport.h>
6e274d14 21#include <linux/hardirq.h>
85916f81
MD
22#include <linux/elf.h>
23#include <linux/elfcore.h>
273b281f 24#include <generated/utsrelease.h>
fd59d231
KO
25#include <linux/utsname.h>
26#include <linux/numa.h>
3ab83521
HY
27#include <linux/suspend.h>
28#include <linux/device.h>
89081d17
HY
29#include <linux/freezer.h>
30#include <linux/pm.h>
31#include <linux/cpu.h>
32#include <linux/console.h>
5f41b8cd 33#include <linux/vmalloc.h>
06a7f711 34#include <linux/swap.h>
0f4bd46e 35#include <linux/kmsg_dump.h>
6e274d14 36
dc009d92
EB
37#include <asm/page.h>
38#include <asm/uaccess.h>
39#include <asm/io.h>
40#include <asm/system.h>
fd59d231 41#include <asm/sections.h>
dc009d92 42
cc571658 43/* Per cpu memory for storing cpu states in case of system crash. */
43cf38eb 44note_buf_t __percpu *crash_notes;
cc571658 45
fd59d231 46/* vmcoreinfo stuff */
edb79a21 47static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
fd59d231 48u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
d768281e
KO
49size_t vmcoreinfo_size;
50size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
fd59d231 51
dc009d92
EB
52/* Location of the reserved area for the crash kernel */
53struct resource crashk_res = {
54 .name = "Crash kernel",
55 .start = 0,
56 .end = 0,
57 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
58};
59
6e274d14
AN
60int kexec_should_crash(struct task_struct *p)
61{
b460cbc5 62 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
6e274d14
AN
63 return 1;
64 return 0;
65}
66
dc009d92
EB
67/*
68 * When kexec transitions to the new kernel there is a one-to-one
69 * mapping between physical and virtual addresses. On processors
70 * where you can disable the MMU this is trivial, and easy. For
71 * others it is still a simple predictable page table to setup.
72 *
73 * In that environment kexec copies the new kernel to its final
74 * resting place. This means I can only support memory whose
75 * physical address can fit in an unsigned long. In particular
76 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
77 * If the assembly stub has more restrictive requirements
78 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
79 * defined more restrictively in <asm/kexec.h>.
80 *
81 * The code for the transition from the current kernel to the
82 * the new kernel is placed in the control_code_buffer, whose size
163f6876 83 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
dc009d92
EB
84 * page of memory is necessary, but some architectures require more.
85 * Because this memory must be identity mapped in the transition from
86 * virtual to physical addresses it must live in the range
87 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
88 * modifiable.
89 *
90 * The assembly stub in the control code buffer is passed a linked list
91 * of descriptor pages detailing the source pages of the new kernel,
92 * and the destination addresses of those source pages. As this data
93 * structure is not used in the context of the current OS, it must
94 * be self-contained.
95 *
96 * The code has been made to work with highmem pages and will use a
97 * destination page in its final resting place (if it happens
98 * to allocate it). The end product of this is that most of the
99 * physical address space, and most of RAM can be used.
100 *
101 * Future directions include:
102 * - allocating a page table with the control code buffer identity
103 * mapped, to simplify machine_kexec and make kexec_on_panic more
104 * reliable.
105 */
106
107/*
108 * KIMAGE_NO_DEST is an impossible destination address..., for
109 * allocating pages whose destination address we do not care about.
110 */
111#define KIMAGE_NO_DEST (-1UL)
112
72414d3f
MS
113static int kimage_is_destination_range(struct kimage *image,
114 unsigned long start, unsigned long end);
115static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 116 gfp_t gfp_mask,
72414d3f 117 unsigned long dest);
dc009d92
EB
118
119static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
120 unsigned long nr_segments,
121 struct kexec_segment __user *segments)
dc009d92
EB
122{
123 size_t segment_bytes;
124 struct kimage *image;
125 unsigned long i;
126 int result;
127
128 /* Allocate a controlling structure */
129 result = -ENOMEM;
4668edc3 130 image = kzalloc(sizeof(*image), GFP_KERNEL);
72414d3f 131 if (!image)
dc009d92 132 goto out;
72414d3f 133
dc009d92
EB
134 image->head = 0;
135 image->entry = &image->head;
136 image->last_entry = &image->head;
137 image->control_page = ~0; /* By default this does not apply */
138 image->start = entry;
139 image->type = KEXEC_TYPE_DEFAULT;
140
141 /* Initialize the list of control pages */
142 INIT_LIST_HEAD(&image->control_pages);
143
144 /* Initialize the list of destination pages */
145 INIT_LIST_HEAD(&image->dest_pages);
146
147 /* Initialize the list of unuseable pages */
148 INIT_LIST_HEAD(&image->unuseable_pages);
149
150 /* Read in the segments */
151 image->nr_segments = nr_segments;
152 segment_bytes = nr_segments * sizeof(*segments);
153 result = copy_from_user(image->segment, segments, segment_bytes);
154 if (result)
155 goto out;
156
157 /*
158 * Verify we have good destination addresses. The caller is
159 * responsible for making certain we don't attempt to load
160 * the new image into invalid or reserved areas of RAM. This
161 * just verifies it is an address we can use.
162 *
163 * Since the kernel does everything in page size chunks ensure
164 * the destination addreses are page aligned. Too many
165 * special cases crop of when we don't do this. The most
166 * insidious is getting overlapping destination addresses
167 * simply because addresses are changed to page size
168 * granularity.
169 */
170 result = -EADDRNOTAVAIL;
171 for (i = 0; i < nr_segments; i++) {
172 unsigned long mstart, mend;
72414d3f 173
dc009d92
EB
174 mstart = image->segment[i].mem;
175 mend = mstart + image->segment[i].memsz;
176 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
177 goto out;
178 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
179 goto out;
180 }
181
182 /* Verify our destination addresses do not overlap.
183 * If we alloed overlapping destination addresses
184 * through very weird things can happen with no
185 * easy explanation as one segment stops on another.
186 */
187 result = -EINVAL;
72414d3f 188 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
189 unsigned long mstart, mend;
190 unsigned long j;
72414d3f 191
dc009d92
EB
192 mstart = image->segment[i].mem;
193 mend = mstart + image->segment[i].memsz;
72414d3f 194 for (j = 0; j < i; j++) {
dc009d92
EB
195 unsigned long pstart, pend;
196 pstart = image->segment[j].mem;
197 pend = pstart + image->segment[j].memsz;
198 /* Do the segments overlap ? */
199 if ((mend > pstart) && (mstart < pend))
200 goto out;
201 }
202 }
203
204 /* Ensure our buffer sizes are strictly less than
205 * our memory sizes. This should always be the case,
206 * and it is easier to check up front than to be surprised
207 * later on.
208 */
209 result = -EINVAL;
72414d3f 210 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
211 if (image->segment[i].bufsz > image->segment[i].memsz)
212 goto out;
213 }
214
dc009d92 215 result = 0;
72414d3f
MS
216out:
217 if (result == 0)
dc009d92 218 *rimage = image;
72414d3f 219 else
dc009d92 220 kfree(image);
72414d3f 221
dc009d92
EB
222 return result;
223
224}
225
226static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
227 unsigned long nr_segments,
228 struct kexec_segment __user *segments)
dc009d92
EB
229{
230 int result;
231 struct kimage *image;
232
233 /* Allocate and initialize a controlling structure */
234 image = NULL;
235 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 236 if (result)
dc009d92 237 goto out;
72414d3f 238
dc009d92
EB
239 *rimage = image;
240
241 /*
242 * Find a location for the control code buffer, and add it
243 * the vector of segments so that it's pages will also be
244 * counted as destination pages.
245 */
246 result = -ENOMEM;
247 image->control_code_page = kimage_alloc_control_pages(image,
163f6876 248 get_order(KEXEC_CONTROL_PAGE_SIZE));
dc009d92
EB
249 if (!image->control_code_page) {
250 printk(KERN_ERR "Could not allocate control_code_buffer\n");
251 goto out;
252 }
253
3ab83521
HY
254 image->swap_page = kimage_alloc_control_pages(image, 0);
255 if (!image->swap_page) {
256 printk(KERN_ERR "Could not allocate swap buffer\n");
257 goto out;
258 }
259
dc009d92
EB
260 result = 0;
261 out:
72414d3f 262 if (result == 0)
dc009d92 263 *rimage = image;
72414d3f 264 else
dc009d92 265 kfree(image);
72414d3f 266
dc009d92
EB
267 return result;
268}
269
270static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
72414d3f 271 unsigned long nr_segments,
314b6a4d 272 struct kexec_segment __user *segments)
dc009d92
EB
273{
274 int result;
275 struct kimage *image;
276 unsigned long i;
277
278 image = NULL;
279 /* Verify we have a valid entry point */
280 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
281 result = -EADDRNOTAVAIL;
282 goto out;
283 }
284
285 /* Allocate and initialize a controlling structure */
286 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 287 if (result)
dc009d92 288 goto out;
dc009d92
EB
289
290 /* Enable the special crash kernel control page
291 * allocation policy.
292 */
293 image->control_page = crashk_res.start;
294 image->type = KEXEC_TYPE_CRASH;
295
296 /*
297 * Verify we have good destination addresses. Normally
298 * the caller is responsible for making certain we don't
299 * attempt to load the new image into invalid or reserved
300 * areas of RAM. But crash kernels are preloaded into a
301 * reserved area of ram. We must ensure the addresses
302 * are in the reserved area otherwise preloading the
303 * kernel could corrupt things.
304 */
305 result = -EADDRNOTAVAIL;
306 for (i = 0; i < nr_segments; i++) {
307 unsigned long mstart, mend;
72414d3f 308
dc009d92 309 mstart = image->segment[i].mem;
50cccc69 310 mend = mstart + image->segment[i].memsz - 1;
dc009d92
EB
311 /* Ensure we are within the crash kernel limits */
312 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
313 goto out;
314 }
315
dc009d92
EB
316 /*
317 * Find a location for the control code buffer, and add
318 * the vector of segments so that it's pages will also be
319 * counted as destination pages.
320 */
321 result = -ENOMEM;
322 image->control_code_page = kimage_alloc_control_pages(image,
163f6876 323 get_order(KEXEC_CONTROL_PAGE_SIZE));
dc009d92
EB
324 if (!image->control_code_page) {
325 printk(KERN_ERR "Could not allocate control_code_buffer\n");
326 goto out;
327 }
328
329 result = 0;
72414d3f
MS
330out:
331 if (result == 0)
dc009d92 332 *rimage = image;
72414d3f 333 else
dc009d92 334 kfree(image);
72414d3f 335
dc009d92
EB
336 return result;
337}
338
72414d3f
MS
339static int kimage_is_destination_range(struct kimage *image,
340 unsigned long start,
341 unsigned long end)
dc009d92
EB
342{
343 unsigned long i;
344
345 for (i = 0; i < image->nr_segments; i++) {
346 unsigned long mstart, mend;
72414d3f 347
dc009d92 348 mstart = image->segment[i].mem;
72414d3f
MS
349 mend = mstart + image->segment[i].memsz;
350 if ((end > mstart) && (start < mend))
dc009d92 351 return 1;
dc009d92 352 }
72414d3f 353
dc009d92
EB
354 return 0;
355}
356
9796fdd8 357static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
dc009d92
EB
358{
359 struct page *pages;
72414d3f 360
dc009d92
EB
361 pages = alloc_pages(gfp_mask, order);
362 if (pages) {
363 unsigned int count, i;
364 pages->mapping = NULL;
4c21e2f2 365 set_page_private(pages, order);
dc009d92 366 count = 1 << order;
72414d3f 367 for (i = 0; i < count; i++)
dc009d92 368 SetPageReserved(pages + i);
dc009d92 369 }
72414d3f 370
dc009d92
EB
371 return pages;
372}
373
374static void kimage_free_pages(struct page *page)
375{
376 unsigned int order, count, i;
72414d3f 377
4c21e2f2 378 order = page_private(page);
dc009d92 379 count = 1 << order;
72414d3f 380 for (i = 0; i < count; i++)
dc009d92 381 ClearPageReserved(page + i);
dc009d92
EB
382 __free_pages(page, order);
383}
384
385static void kimage_free_page_list(struct list_head *list)
386{
387 struct list_head *pos, *next;
72414d3f 388
dc009d92
EB
389 list_for_each_safe(pos, next, list) {
390 struct page *page;
391
392 page = list_entry(pos, struct page, lru);
393 list_del(&page->lru);
dc009d92
EB
394 kimage_free_pages(page);
395 }
396}
397
72414d3f
MS
398static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
399 unsigned int order)
dc009d92
EB
400{
401 /* Control pages are special, they are the intermediaries
402 * that are needed while we copy the rest of the pages
403 * to their final resting place. As such they must
404 * not conflict with either the destination addresses
405 * or memory the kernel is already using.
406 *
407 * The only case where we really need more than one of
408 * these are for architectures where we cannot disable
409 * the MMU and must instead generate an identity mapped
410 * page table for all of the memory.
411 *
412 * At worst this runs in O(N) of the image size.
413 */
414 struct list_head extra_pages;
415 struct page *pages;
416 unsigned int count;
417
418 count = 1 << order;
419 INIT_LIST_HEAD(&extra_pages);
420
421 /* Loop while I can allocate a page and the page allocated
422 * is a destination page.
423 */
424 do {
425 unsigned long pfn, epfn, addr, eaddr;
72414d3f 426
dc009d92
EB
427 pages = kimage_alloc_pages(GFP_KERNEL, order);
428 if (!pages)
429 break;
430 pfn = page_to_pfn(pages);
431 epfn = pfn + count;
432 addr = pfn << PAGE_SHIFT;
433 eaddr = epfn << PAGE_SHIFT;
434 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
72414d3f 435 kimage_is_destination_range(image, addr, eaddr)) {
dc009d92
EB
436 list_add(&pages->lru, &extra_pages);
437 pages = NULL;
438 }
72414d3f
MS
439 } while (!pages);
440
dc009d92
EB
441 if (pages) {
442 /* Remember the allocated page... */
443 list_add(&pages->lru, &image->control_pages);
444
445 /* Because the page is already in it's destination
446 * location we will never allocate another page at
447 * that address. Therefore kimage_alloc_pages
448 * will not return it (again) and we don't need
449 * to give it an entry in image->segment[].
450 */
451 }
452 /* Deal with the destination pages I have inadvertently allocated.
453 *
454 * Ideally I would convert multi-page allocations into single
455 * page allocations, and add everyting to image->dest_pages.
456 *
457 * For now it is simpler to just free the pages.
458 */
459 kimage_free_page_list(&extra_pages);
dc009d92 460
72414d3f 461 return pages;
dc009d92
EB
462}
463
72414d3f
MS
464static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
465 unsigned int order)
dc009d92
EB
466{
467 /* Control pages are special, they are the intermediaries
468 * that are needed while we copy the rest of the pages
469 * to their final resting place. As such they must
470 * not conflict with either the destination addresses
471 * or memory the kernel is already using.
472 *
473 * Control pages are also the only pags we must allocate
474 * when loading a crash kernel. All of the other pages
475 * are specified by the segments and we just memcpy
476 * into them directly.
477 *
478 * The only case where we really need more than one of
479 * these are for architectures where we cannot disable
480 * the MMU and must instead generate an identity mapped
481 * page table for all of the memory.
482 *
483 * Given the low demand this implements a very simple
484 * allocator that finds the first hole of the appropriate
485 * size in the reserved memory region, and allocates all
486 * of the memory up to and including the hole.
487 */
488 unsigned long hole_start, hole_end, size;
489 struct page *pages;
72414d3f 490
dc009d92
EB
491 pages = NULL;
492 size = (1 << order) << PAGE_SHIFT;
493 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
494 hole_end = hole_start + size - 1;
72414d3f 495 while (hole_end <= crashk_res.end) {
dc009d92 496 unsigned long i;
72414d3f
MS
497
498 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
dc009d92 499 break;
72414d3f 500 if (hole_end > crashk_res.end)
dc009d92 501 break;
dc009d92 502 /* See if I overlap any of the segments */
72414d3f 503 for (i = 0; i < image->nr_segments; i++) {
dc009d92 504 unsigned long mstart, mend;
72414d3f 505
dc009d92
EB
506 mstart = image->segment[i].mem;
507 mend = mstart + image->segment[i].memsz - 1;
508 if ((hole_end >= mstart) && (hole_start <= mend)) {
509 /* Advance the hole to the end of the segment */
510 hole_start = (mend + (size - 1)) & ~(size - 1);
511 hole_end = hole_start + size - 1;
512 break;
513 }
514 }
515 /* If I don't overlap any segments I have found my hole! */
516 if (i == image->nr_segments) {
517 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
518 break;
519 }
520 }
72414d3f 521 if (pages)
dc009d92 522 image->control_page = hole_end;
72414d3f 523
dc009d92
EB
524 return pages;
525}
526
527
72414d3f
MS
528struct page *kimage_alloc_control_pages(struct kimage *image,
529 unsigned int order)
dc009d92
EB
530{
531 struct page *pages = NULL;
72414d3f
MS
532
533 switch (image->type) {
dc009d92
EB
534 case KEXEC_TYPE_DEFAULT:
535 pages = kimage_alloc_normal_control_pages(image, order);
536 break;
537 case KEXEC_TYPE_CRASH:
538 pages = kimage_alloc_crash_control_pages(image, order);
539 break;
540 }
72414d3f 541
dc009d92
EB
542 return pages;
543}
544
545static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
546{
72414d3f 547 if (*image->entry != 0)
dc009d92 548 image->entry++;
72414d3f 549
dc009d92
EB
550 if (image->entry == image->last_entry) {
551 kimage_entry_t *ind_page;
552 struct page *page;
72414d3f 553
dc009d92 554 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
72414d3f 555 if (!page)
dc009d92 556 return -ENOMEM;
72414d3f 557
dc009d92
EB
558 ind_page = page_address(page);
559 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
560 image->entry = ind_page;
72414d3f
MS
561 image->last_entry = ind_page +
562 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
dc009d92
EB
563 }
564 *image->entry = entry;
565 image->entry++;
566 *image->entry = 0;
72414d3f 567
dc009d92
EB
568 return 0;
569}
570
72414d3f
MS
571static int kimage_set_destination(struct kimage *image,
572 unsigned long destination)
dc009d92
EB
573{
574 int result;
575
576 destination &= PAGE_MASK;
577 result = kimage_add_entry(image, destination | IND_DESTINATION);
72414d3f 578 if (result == 0)
dc009d92 579 image->destination = destination;
72414d3f 580
dc009d92
EB
581 return result;
582}
583
584
585static int kimage_add_page(struct kimage *image, unsigned long page)
586{
587 int result;
588
589 page &= PAGE_MASK;
590 result = kimage_add_entry(image, page | IND_SOURCE);
72414d3f 591 if (result == 0)
dc009d92 592 image->destination += PAGE_SIZE;
72414d3f 593
dc009d92
EB
594 return result;
595}
596
597
598static void kimage_free_extra_pages(struct kimage *image)
599{
600 /* Walk through and free any extra destination pages I may have */
601 kimage_free_page_list(&image->dest_pages);
602
603 /* Walk through and free any unuseable pages I have cached */
604 kimage_free_page_list(&image->unuseable_pages);
605
606}
7fccf032 607static void kimage_terminate(struct kimage *image)
dc009d92 608{
72414d3f 609 if (*image->entry != 0)
dc009d92 610 image->entry++;
72414d3f 611
dc009d92 612 *image->entry = IND_DONE;
dc009d92
EB
613}
614
615#define for_each_kimage_entry(image, ptr, entry) \
616 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
617 ptr = (entry & IND_INDIRECTION)? \
618 phys_to_virt((entry & PAGE_MASK)): ptr +1)
619
620static void kimage_free_entry(kimage_entry_t entry)
621{
622 struct page *page;
623
624 page = pfn_to_page(entry >> PAGE_SHIFT);
625 kimage_free_pages(page);
626}
627
628static void kimage_free(struct kimage *image)
629{
630 kimage_entry_t *ptr, entry;
631 kimage_entry_t ind = 0;
632
633 if (!image)
634 return;
72414d3f 635
dc009d92
EB
636 kimage_free_extra_pages(image);
637 for_each_kimage_entry(image, ptr, entry) {
638 if (entry & IND_INDIRECTION) {
639 /* Free the previous indirection page */
72414d3f 640 if (ind & IND_INDIRECTION)
dc009d92 641 kimage_free_entry(ind);
dc009d92
EB
642 /* Save this indirection page until we are
643 * done with it.
644 */
645 ind = entry;
646 }
72414d3f 647 else if (entry & IND_SOURCE)
dc009d92 648 kimage_free_entry(entry);
dc009d92
EB
649 }
650 /* Free the final indirection page */
72414d3f 651 if (ind & IND_INDIRECTION)
dc009d92 652 kimage_free_entry(ind);
dc009d92
EB
653
654 /* Handle any machine specific cleanup */
655 machine_kexec_cleanup(image);
656
657 /* Free the kexec control pages... */
658 kimage_free_page_list(&image->control_pages);
659 kfree(image);
660}
661
72414d3f
MS
662static kimage_entry_t *kimage_dst_used(struct kimage *image,
663 unsigned long page)
dc009d92
EB
664{
665 kimage_entry_t *ptr, entry;
666 unsigned long destination = 0;
667
668 for_each_kimage_entry(image, ptr, entry) {
72414d3f 669 if (entry & IND_DESTINATION)
dc009d92 670 destination = entry & PAGE_MASK;
dc009d92 671 else if (entry & IND_SOURCE) {
72414d3f 672 if (page == destination)
dc009d92 673 return ptr;
dc009d92
EB
674 destination += PAGE_SIZE;
675 }
676 }
72414d3f 677
314b6a4d 678 return NULL;
dc009d92
EB
679}
680
72414d3f 681static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 682 gfp_t gfp_mask,
72414d3f 683 unsigned long destination)
dc009d92
EB
684{
685 /*
686 * Here we implement safeguards to ensure that a source page
687 * is not copied to its destination page before the data on
688 * the destination page is no longer useful.
689 *
690 * To do this we maintain the invariant that a source page is
691 * either its own destination page, or it is not a
692 * destination page at all.
693 *
694 * That is slightly stronger than required, but the proof
695 * that no problems will not occur is trivial, and the
696 * implementation is simply to verify.
697 *
698 * When allocating all pages normally this algorithm will run
699 * in O(N) time, but in the worst case it will run in O(N^2)
700 * time. If the runtime is a problem the data structures can
701 * be fixed.
702 */
703 struct page *page;
704 unsigned long addr;
705
706 /*
707 * Walk through the list of destination pages, and see if I
708 * have a match.
709 */
710 list_for_each_entry(page, &image->dest_pages, lru) {
711 addr = page_to_pfn(page) << PAGE_SHIFT;
712 if (addr == destination) {
713 list_del(&page->lru);
714 return page;
715 }
716 }
717 page = NULL;
718 while (1) {
719 kimage_entry_t *old;
720
721 /* Allocate a page, if we run out of memory give up */
722 page = kimage_alloc_pages(gfp_mask, 0);
72414d3f 723 if (!page)
314b6a4d 724 return NULL;
dc009d92 725 /* If the page cannot be used file it away */
72414d3f
MS
726 if (page_to_pfn(page) >
727 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
dc009d92
EB
728 list_add(&page->lru, &image->unuseable_pages);
729 continue;
730 }
731 addr = page_to_pfn(page) << PAGE_SHIFT;
732
733 /* If it is the destination page we want use it */
734 if (addr == destination)
735 break;
736
737 /* If the page is not a destination page use it */
72414d3f
MS
738 if (!kimage_is_destination_range(image, addr,
739 addr + PAGE_SIZE))
dc009d92
EB
740 break;
741
742 /*
743 * I know that the page is someones destination page.
744 * See if there is already a source page for this
745 * destination page. And if so swap the source pages.
746 */
747 old = kimage_dst_used(image, addr);
748 if (old) {
749 /* If so move it */
750 unsigned long old_addr;
751 struct page *old_page;
752
753 old_addr = *old & PAGE_MASK;
754 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
755 copy_highpage(page, old_page);
756 *old = addr | (*old & ~PAGE_MASK);
757
758 /* The old page I have found cannot be a
f9092f35
JS
759 * destination page, so return it if it's
760 * gfp_flags honor the ones passed in.
dc009d92 761 */
f9092f35
JS
762 if (!(gfp_mask & __GFP_HIGHMEM) &&
763 PageHighMem(old_page)) {
764 kimage_free_pages(old_page);
765 continue;
766 }
dc009d92
EB
767 addr = old_addr;
768 page = old_page;
769 break;
770 }
771 else {
772 /* Place the page on the destination list I
773 * will use it later.
774 */
775 list_add(&page->lru, &image->dest_pages);
776 }
777 }
72414d3f 778
dc009d92
EB
779 return page;
780}
781
782static int kimage_load_normal_segment(struct kimage *image,
72414d3f 783 struct kexec_segment *segment)
dc009d92
EB
784{
785 unsigned long maddr;
786 unsigned long ubytes, mbytes;
787 int result;
314b6a4d 788 unsigned char __user *buf;
dc009d92
EB
789
790 result = 0;
791 buf = segment->buf;
792 ubytes = segment->bufsz;
793 mbytes = segment->memsz;
794 maddr = segment->mem;
795
796 result = kimage_set_destination(image, maddr);
72414d3f 797 if (result < 0)
dc009d92 798 goto out;
72414d3f
MS
799
800 while (mbytes) {
dc009d92
EB
801 struct page *page;
802 char *ptr;
803 size_t uchunk, mchunk;
72414d3f 804
dc009d92 805 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
c80544dc 806 if (!page) {
dc009d92
EB
807 result = -ENOMEM;
808 goto out;
809 }
72414d3f
MS
810 result = kimage_add_page(image, page_to_pfn(page)
811 << PAGE_SHIFT);
812 if (result < 0)
dc009d92 813 goto out;
72414d3f 814
dc009d92
EB
815 ptr = kmap(page);
816 /* Start with a clear page */
817 memset(ptr, 0, PAGE_SIZE);
818 ptr += maddr & ~PAGE_MASK;
819 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 820 if (mchunk > mbytes)
dc009d92 821 mchunk = mbytes;
72414d3f 822
dc009d92 823 uchunk = mchunk;
72414d3f 824 if (uchunk > ubytes)
dc009d92 825 uchunk = ubytes;
72414d3f 826
dc009d92
EB
827 result = copy_from_user(ptr, buf, uchunk);
828 kunmap(page);
829 if (result) {
830 result = (result < 0) ? result : -EIO;
831 goto out;
832 }
833 ubytes -= uchunk;
834 maddr += mchunk;
835 buf += mchunk;
836 mbytes -= mchunk;
837 }
72414d3f 838out:
dc009d92
EB
839 return result;
840}
841
842static int kimage_load_crash_segment(struct kimage *image,
72414d3f 843 struct kexec_segment *segment)
dc009d92
EB
844{
845 /* For crash dumps kernels we simply copy the data from
846 * user space to it's destination.
847 * We do things a page at a time for the sake of kmap.
848 */
849 unsigned long maddr;
850 unsigned long ubytes, mbytes;
851 int result;
314b6a4d 852 unsigned char __user *buf;
dc009d92
EB
853
854 result = 0;
855 buf = segment->buf;
856 ubytes = segment->bufsz;
857 mbytes = segment->memsz;
858 maddr = segment->mem;
72414d3f 859 while (mbytes) {
dc009d92
EB
860 struct page *page;
861 char *ptr;
862 size_t uchunk, mchunk;
72414d3f 863
dc009d92 864 page = pfn_to_page(maddr >> PAGE_SHIFT);
c80544dc 865 if (!page) {
dc009d92
EB
866 result = -ENOMEM;
867 goto out;
868 }
869 ptr = kmap(page);
870 ptr += maddr & ~PAGE_MASK;
871 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 872 if (mchunk > mbytes)
dc009d92 873 mchunk = mbytes;
72414d3f 874
dc009d92
EB
875 uchunk = mchunk;
876 if (uchunk > ubytes) {
877 uchunk = ubytes;
878 /* Zero the trailing part of the page */
879 memset(ptr + uchunk, 0, mchunk - uchunk);
880 }
881 result = copy_from_user(ptr, buf, uchunk);
a7956113 882 kexec_flush_icache_page(page);
dc009d92
EB
883 kunmap(page);
884 if (result) {
885 result = (result < 0) ? result : -EIO;
886 goto out;
887 }
888 ubytes -= uchunk;
889 maddr += mchunk;
890 buf += mchunk;
891 mbytes -= mchunk;
892 }
72414d3f 893out:
dc009d92
EB
894 return result;
895}
896
897static int kimage_load_segment(struct kimage *image,
72414d3f 898 struct kexec_segment *segment)
dc009d92
EB
899{
900 int result = -ENOMEM;
72414d3f
MS
901
902 switch (image->type) {
dc009d92
EB
903 case KEXEC_TYPE_DEFAULT:
904 result = kimage_load_normal_segment(image, segment);
905 break;
906 case KEXEC_TYPE_CRASH:
907 result = kimage_load_crash_segment(image, segment);
908 break;
909 }
72414d3f 910
dc009d92
EB
911 return result;
912}
913
914/*
915 * Exec Kernel system call: for obvious reasons only root may call it.
916 *
917 * This call breaks up into three pieces.
918 * - A generic part which loads the new kernel from the current
919 * address space, and very carefully places the data in the
920 * allocated pages.
921 *
922 * - A generic part that interacts with the kernel and tells all of
923 * the devices to shut down. Preventing on-going dmas, and placing
924 * the devices in a consistent state so a later kernel can
925 * reinitialize them.
926 *
927 * - A machine specific part that includes the syscall number
928 * and the copies the image to it's final destination. And
929 * jumps into the image at entry.
930 *
931 * kexec does not sync, or unmount filesystems so if you need
932 * that to happen you need to do that yourself.
933 */
c330dda9
JM
934struct kimage *kexec_image;
935struct kimage *kexec_crash_image;
8c5a1cf0
AM
936
937static DEFINE_MUTEX(kexec_mutex);
dc009d92 938
754fe8d2
HC
939SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
940 struct kexec_segment __user *, segments, unsigned long, flags)
dc009d92
EB
941{
942 struct kimage **dest_image, *image;
dc009d92
EB
943 int result;
944
945 /* We only trust the superuser with rebooting the system. */
946 if (!capable(CAP_SYS_BOOT))
947 return -EPERM;
948
949 /*
950 * Verify we have a legal set of flags
951 * This leaves us room for future extensions.
952 */
953 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
954 return -EINVAL;
955
956 /* Verify we are on the appropriate architecture */
957 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
958 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
dc009d92 959 return -EINVAL;
dc009d92
EB
960
961 /* Put an artificial cap on the number
962 * of segments passed to kexec_load.
963 */
964 if (nr_segments > KEXEC_SEGMENT_MAX)
965 return -EINVAL;
966
967 image = NULL;
968 result = 0;
969
970 /* Because we write directly to the reserved memory
971 * region when loading crash kernels we need a mutex here to
972 * prevent multiple crash kernels from attempting to load
973 * simultaneously, and to prevent a crash kernel from loading
974 * over the top of a in use crash kernel.
975 *
976 * KISS: always take the mutex.
977 */
8c5a1cf0 978 if (!mutex_trylock(&kexec_mutex))
dc009d92 979 return -EBUSY;
72414d3f 980
dc009d92 981 dest_image = &kexec_image;
72414d3f 982 if (flags & KEXEC_ON_CRASH)
dc009d92 983 dest_image = &kexec_crash_image;
dc009d92
EB
984 if (nr_segments > 0) {
985 unsigned long i;
72414d3f 986
dc009d92 987 /* Loading another kernel to reboot into */
72414d3f
MS
988 if ((flags & KEXEC_ON_CRASH) == 0)
989 result = kimage_normal_alloc(&image, entry,
990 nr_segments, segments);
dc009d92
EB
991 /* Loading another kernel to switch to if this one crashes */
992 else if (flags & KEXEC_ON_CRASH) {
993 /* Free any current crash dump kernel before
994 * we corrupt it.
995 */
996 kimage_free(xchg(&kexec_crash_image, NULL));
72414d3f
MS
997 result = kimage_crash_alloc(&image, entry,
998 nr_segments, segments);
dc009d92 999 }
72414d3f 1000 if (result)
dc009d92 1001 goto out;
72414d3f 1002
3ab83521
HY
1003 if (flags & KEXEC_PRESERVE_CONTEXT)
1004 image->preserve_context = 1;
dc009d92 1005 result = machine_kexec_prepare(image);
72414d3f 1006 if (result)
dc009d92 1007 goto out;
72414d3f
MS
1008
1009 for (i = 0; i < nr_segments; i++) {
dc009d92 1010 result = kimage_load_segment(image, &image->segment[i]);
72414d3f 1011 if (result)
dc009d92 1012 goto out;
dc009d92 1013 }
7fccf032 1014 kimage_terminate(image);
dc009d92
EB
1015 }
1016 /* Install the new kernel, and Uninstall the old */
1017 image = xchg(dest_image, image);
1018
72414d3f 1019out:
8c5a1cf0 1020 mutex_unlock(&kexec_mutex);
dc009d92 1021 kimage_free(image);
72414d3f 1022
dc009d92
EB
1023 return result;
1024}
1025
1026#ifdef CONFIG_COMPAT
1027asmlinkage long compat_sys_kexec_load(unsigned long entry,
72414d3f
MS
1028 unsigned long nr_segments,
1029 struct compat_kexec_segment __user *segments,
1030 unsigned long flags)
dc009d92
EB
1031{
1032 struct compat_kexec_segment in;
1033 struct kexec_segment out, __user *ksegments;
1034 unsigned long i, result;
1035
1036 /* Don't allow clients that don't understand the native
1037 * architecture to do anything.
1038 */
72414d3f 1039 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
dc009d92 1040 return -EINVAL;
dc009d92 1041
72414d3f 1042 if (nr_segments > KEXEC_SEGMENT_MAX)
dc009d92 1043 return -EINVAL;
dc009d92
EB
1044
1045 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1046 for (i=0; i < nr_segments; i++) {
1047 result = copy_from_user(&in, &segments[i], sizeof(in));
72414d3f 1048 if (result)
dc009d92 1049 return -EFAULT;
dc009d92
EB
1050
1051 out.buf = compat_ptr(in.buf);
1052 out.bufsz = in.bufsz;
1053 out.mem = in.mem;
1054 out.memsz = in.memsz;
1055
1056 result = copy_to_user(&ksegments[i], &out, sizeof(out));
72414d3f 1057 if (result)
dc009d92 1058 return -EFAULT;
dc009d92
EB
1059 }
1060
1061 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1062}
1063#endif
1064
6e274d14 1065void crash_kexec(struct pt_regs *regs)
dc009d92 1066{
8c5a1cf0 1067 /* Take the kexec_mutex here to prevent sys_kexec_load
dc009d92
EB
1068 * running on one cpu from replacing the crash kernel
1069 * we are using after a panic on a different cpu.
1070 *
1071 * If the crash kernel was not located in a fixed area
1072 * of memory the xchg(&kexec_crash_image) would be
1073 * sufficient. But since I reuse the memory...
1074 */
8c5a1cf0 1075 if (mutex_trylock(&kexec_mutex)) {
c0ce7d08 1076 if (kexec_crash_image) {
e996e581 1077 struct pt_regs fixed_regs;
0f4bd46e
KM
1078
1079 kmsg_dump(KMSG_DUMP_KEXEC);
1080
e996e581 1081 crash_setup_regs(&fixed_regs, regs);
fd59d231 1082 crash_save_vmcoreinfo();
e996e581 1083 machine_crash_shutdown(&fixed_regs);
c0ce7d08 1084 machine_kexec(kexec_crash_image);
dc009d92 1085 }
8c5a1cf0 1086 mutex_unlock(&kexec_mutex);
dc009d92
EB
1087 }
1088}
cc571658 1089
06a7f711
AW
1090size_t crash_get_memory_size(void)
1091{
e05bd336 1092 size_t size = 0;
06a7f711 1093 mutex_lock(&kexec_mutex);
e05bd336
PN
1094 if (crashk_res.end != crashk_res.start)
1095 size = crashk_res.end - crashk_res.start + 1;
06a7f711
AW
1096 mutex_unlock(&kexec_mutex);
1097 return size;
1098}
1099
1100static void free_reserved_phys_range(unsigned long begin, unsigned long end)
1101{
1102 unsigned long addr;
1103
1104 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1105 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1106 init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1107 free_page((unsigned long)__va(addr));
1108 totalram_pages++;
1109 }
1110}
1111
1112int crash_shrink_memory(unsigned long new_size)
1113{
1114 int ret = 0;
1115 unsigned long start, end;
1116
1117 mutex_lock(&kexec_mutex);
1118
1119 if (kexec_crash_image) {
1120 ret = -ENOENT;
1121 goto unlock;
1122 }
1123 start = crashk_res.start;
1124 end = crashk_res.end;
1125
1126 if (new_size >= end - start + 1) {
1127 ret = -EINVAL;
1128 if (new_size == end - start + 1)
1129 ret = 0;
1130 goto unlock;
1131 }
1132
1133 start = roundup(start, PAGE_SIZE);
1134 end = roundup(start + new_size, PAGE_SIZE);
1135
1136 free_reserved_phys_range(end, crashk_res.end);
1137
e05bd336 1138 if ((start == end) && (crashk_res.parent != NULL))
06a7f711 1139 release_resource(&crashk_res);
475f9aa6 1140 crashk_res.end = end - 1;
06a7f711
AW
1141
1142unlock:
1143 mutex_unlock(&kexec_mutex);
1144 return ret;
1145}
1146
85916f81
MD
1147static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1148 size_t data_len)
1149{
1150 struct elf_note note;
1151
1152 note.n_namesz = strlen(name) + 1;
1153 note.n_descsz = data_len;
1154 note.n_type = type;
1155 memcpy(buf, &note, sizeof(note));
1156 buf += (sizeof(note) + 3)/4;
1157 memcpy(buf, name, note.n_namesz);
1158 buf += (note.n_namesz + 3)/4;
1159 memcpy(buf, data, note.n_descsz);
1160 buf += (note.n_descsz + 3)/4;
1161
1162 return buf;
1163}
1164
1165static void final_note(u32 *buf)
1166{
1167 struct elf_note note;
1168
1169 note.n_namesz = 0;
1170 note.n_descsz = 0;
1171 note.n_type = 0;
1172 memcpy(buf, &note, sizeof(note));
1173}
1174
1175void crash_save_cpu(struct pt_regs *regs, int cpu)
1176{
1177 struct elf_prstatus prstatus;
1178 u32 *buf;
1179
4f4b6c1a 1180 if ((cpu < 0) || (cpu >= nr_cpu_ids))
85916f81
MD
1181 return;
1182
1183 /* Using ELF notes here is opportunistic.
1184 * I need a well defined structure format
1185 * for the data I pass, and I need tags
1186 * on the data to indicate what information I have
1187 * squirrelled away. ELF notes happen to provide
1188 * all of that, so there is no need to invent something new.
1189 */
1190 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1191 if (!buf)
1192 return;
1193 memset(&prstatus, 0, sizeof(prstatus));
1194 prstatus.pr_pid = current->pid;
6cd61c0b 1195 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
6672f76a
SH
1196 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1197 &prstatus, sizeof(prstatus));
85916f81
MD
1198 final_note(buf);
1199}
1200
cc571658
VG
1201static int __init crash_notes_memory_init(void)
1202{
1203 /* Allocate memory for saving cpu registers. */
1204 crash_notes = alloc_percpu(note_buf_t);
1205 if (!crash_notes) {
1206 printk("Kexec: Memory allocation for saving cpu register"
1207 " states failed\n");
1208 return -ENOMEM;
1209 }
1210 return 0;
1211}
1212module_init(crash_notes_memory_init)
fd59d231 1213
cba63c30
BW
1214
1215/*
1216 * parsing the "crashkernel" commandline
1217 *
1218 * this code is intended to be called from architecture specific code
1219 */
1220
1221
1222/*
1223 * This function parses command lines in the format
1224 *
1225 * crashkernel=ramsize-range:size[,...][@offset]
1226 *
1227 * The function returns 0 on success and -EINVAL on failure.
1228 */
1229static int __init parse_crashkernel_mem(char *cmdline,
1230 unsigned long long system_ram,
1231 unsigned long long *crash_size,
1232 unsigned long long *crash_base)
1233{
1234 char *cur = cmdline, *tmp;
1235
1236 /* for each entry of the comma-separated list */
1237 do {
1238 unsigned long long start, end = ULLONG_MAX, size;
1239
1240 /* get the start of the range */
1241 start = memparse(cur, &tmp);
1242 if (cur == tmp) {
1243 pr_warning("crashkernel: Memory value expected\n");
1244 return -EINVAL;
1245 }
1246 cur = tmp;
1247 if (*cur != '-') {
1248 pr_warning("crashkernel: '-' expected\n");
1249 return -EINVAL;
1250 }
1251 cur++;
1252
1253 /* if no ':' is here, than we read the end */
1254 if (*cur != ':') {
1255 end = memparse(cur, &tmp);
1256 if (cur == tmp) {
1257 pr_warning("crashkernel: Memory "
1258 "value expected\n");
1259 return -EINVAL;
1260 }
1261 cur = tmp;
1262 if (end <= start) {
1263 pr_warning("crashkernel: end <= start\n");
1264 return -EINVAL;
1265 }
1266 }
1267
1268 if (*cur != ':') {
1269 pr_warning("crashkernel: ':' expected\n");
1270 return -EINVAL;
1271 }
1272 cur++;
1273
1274 size = memparse(cur, &tmp);
1275 if (cur == tmp) {
1276 pr_warning("Memory value expected\n");
1277 return -EINVAL;
1278 }
1279 cur = tmp;
1280 if (size >= system_ram) {
1281 pr_warning("crashkernel: invalid size\n");
1282 return -EINVAL;
1283 }
1284
1285 /* match ? */
be089d79 1286 if (system_ram >= start && system_ram < end) {
cba63c30
BW
1287 *crash_size = size;
1288 break;
1289 }
1290 } while (*cur++ == ',');
1291
1292 if (*crash_size > 0) {
11c7da4b 1293 while (*cur && *cur != ' ' && *cur != '@')
cba63c30
BW
1294 cur++;
1295 if (*cur == '@') {
1296 cur++;
1297 *crash_base = memparse(cur, &tmp);
1298 if (cur == tmp) {
1299 pr_warning("Memory value expected "
1300 "after '@'\n");
1301 return -EINVAL;
1302 }
1303 }
1304 }
1305
1306 return 0;
1307}
1308
1309/*
1310 * That function parses "simple" (old) crashkernel command lines like
1311 *
1312 * crashkernel=size[@offset]
1313 *
1314 * It returns 0 on success and -EINVAL on failure.
1315 */
1316static int __init parse_crashkernel_simple(char *cmdline,
1317 unsigned long long *crash_size,
1318 unsigned long long *crash_base)
1319{
1320 char *cur = cmdline;
1321
1322 *crash_size = memparse(cmdline, &cur);
1323 if (cmdline == cur) {
1324 pr_warning("crashkernel: memory value expected\n");
1325 return -EINVAL;
1326 }
1327
1328 if (*cur == '@')
1329 *crash_base = memparse(cur+1, &cur);
1330
1331 return 0;
1332}
1333
1334/*
1335 * That function is the entry point for command line parsing and should be
1336 * called from the arch-specific code.
1337 */
1338int __init parse_crashkernel(char *cmdline,
1339 unsigned long long system_ram,
1340 unsigned long long *crash_size,
1341 unsigned long long *crash_base)
1342{
1343 char *p = cmdline, *ck_cmdline = NULL;
1344 char *first_colon, *first_space;
1345
1346 BUG_ON(!crash_size || !crash_base);
1347 *crash_size = 0;
1348 *crash_base = 0;
1349
1350 /* find crashkernel and use the last one if there are more */
1351 p = strstr(p, "crashkernel=");
1352 while (p) {
1353 ck_cmdline = p;
1354 p = strstr(p+1, "crashkernel=");
1355 }
1356
1357 if (!ck_cmdline)
1358 return -EINVAL;
1359
1360 ck_cmdline += 12; /* strlen("crashkernel=") */
1361
1362 /*
1363 * if the commandline contains a ':', then that's the extended
1364 * syntax -- if not, it must be the classic syntax
1365 */
1366 first_colon = strchr(ck_cmdline, ':');
1367 first_space = strchr(ck_cmdline, ' ');
1368 if (first_colon && (!first_space || first_colon < first_space))
1369 return parse_crashkernel_mem(ck_cmdline, system_ram,
1370 crash_size, crash_base);
1371 else
1372 return parse_crashkernel_simple(ck_cmdline, crash_size,
1373 crash_base);
1374
1375 return 0;
1376}
1377
1378
1379
fd59d231
KO
1380void crash_save_vmcoreinfo(void)
1381{
1382 u32 *buf;
1383
1384 if (!vmcoreinfo_size)
1385 return;
1386
d768281e 1387 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
fd59d231
KO
1388
1389 buf = (u32 *)vmcoreinfo_note;
1390
1391 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1392 vmcoreinfo_size);
1393
1394 final_note(buf);
1395}
1396
1397void vmcoreinfo_append_str(const char *fmt, ...)
1398{
1399 va_list args;
1400 char buf[0x50];
1401 int r;
1402
1403 va_start(args, fmt);
1404 r = vsnprintf(buf, sizeof(buf), fmt, args);
1405 va_end(args);
1406
1407 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1408 r = vmcoreinfo_max_size - vmcoreinfo_size;
1409
1410 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1411
1412 vmcoreinfo_size += r;
1413}
1414
1415/*
1416 * provide an empty default implementation here -- architecture
1417 * code may override this
1418 */
1419void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1420{}
1421
1422unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1423{
1424 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1425}
1426
1427static int __init crash_save_vmcoreinfo_init(void)
1428{
bba1f603
KO
1429 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1430 VMCOREINFO_PAGESIZE(PAGE_SIZE);
fd59d231 1431
bcbba6c1
KO
1432 VMCOREINFO_SYMBOL(init_uts_ns);
1433 VMCOREINFO_SYMBOL(node_online_map);
1434 VMCOREINFO_SYMBOL(swapper_pg_dir);
1435 VMCOREINFO_SYMBOL(_stext);
acd99dbf 1436 VMCOREINFO_SYMBOL(vmlist);
fd59d231
KO
1437
1438#ifndef CONFIG_NEED_MULTIPLE_NODES
bcbba6c1
KO
1439 VMCOREINFO_SYMBOL(mem_map);
1440 VMCOREINFO_SYMBOL(contig_page_data);
fd59d231
KO
1441#endif
1442#ifdef CONFIG_SPARSEMEM
bcbba6c1
KO
1443 VMCOREINFO_SYMBOL(mem_section);
1444 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
c76f860c 1445 VMCOREINFO_STRUCT_SIZE(mem_section);
bcbba6c1 1446 VMCOREINFO_OFFSET(mem_section, section_mem_map);
fd59d231 1447#endif
c76f860c
KO
1448 VMCOREINFO_STRUCT_SIZE(page);
1449 VMCOREINFO_STRUCT_SIZE(pglist_data);
1450 VMCOREINFO_STRUCT_SIZE(zone);
1451 VMCOREINFO_STRUCT_SIZE(free_area);
1452 VMCOREINFO_STRUCT_SIZE(list_head);
1453 VMCOREINFO_SIZE(nodemask_t);
bcbba6c1
KO
1454 VMCOREINFO_OFFSET(page, flags);
1455 VMCOREINFO_OFFSET(page, _count);
1456 VMCOREINFO_OFFSET(page, mapping);
1457 VMCOREINFO_OFFSET(page, lru);
1458 VMCOREINFO_OFFSET(pglist_data, node_zones);
1459 VMCOREINFO_OFFSET(pglist_data, nr_zones);
fd59d231 1460#ifdef CONFIG_FLAT_NODE_MEM_MAP
bcbba6c1 1461 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
fd59d231 1462#endif
bcbba6c1
KO
1463 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1464 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1465 VMCOREINFO_OFFSET(pglist_data, node_id);
1466 VMCOREINFO_OFFSET(zone, free_area);
1467 VMCOREINFO_OFFSET(zone, vm_stat);
1468 VMCOREINFO_OFFSET(zone, spanned_pages);
1469 VMCOREINFO_OFFSET(free_area, free_list);
1470 VMCOREINFO_OFFSET(list_head, next);
1471 VMCOREINFO_OFFSET(list_head, prev);
acd99dbf 1472 VMCOREINFO_OFFSET(vm_struct, addr);
bcbba6c1 1473 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
04d491ab 1474 log_buf_kexec_setup();
83a08e7c 1475 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
bcbba6c1 1476 VMCOREINFO_NUMBER(NR_FREE_PAGES);
122c7a59
KO
1477 VMCOREINFO_NUMBER(PG_lru);
1478 VMCOREINFO_NUMBER(PG_private);
1479 VMCOREINFO_NUMBER(PG_swapcache);
fd59d231
KO
1480
1481 arch_crash_save_vmcoreinfo();
1482
1483 return 0;
1484}
1485
1486module_init(crash_save_vmcoreinfo_init)
3ab83521 1487
7ade3fcc
HY
1488/*
1489 * Move into place and start executing a preloaded standalone
1490 * executable. If nothing was preloaded return an error.
3ab83521
HY
1491 */
1492int kernel_kexec(void)
1493{
1494 int error = 0;
1495
8c5a1cf0 1496 if (!mutex_trylock(&kexec_mutex))
3ab83521
HY
1497 return -EBUSY;
1498 if (!kexec_image) {
1499 error = -EINVAL;
1500 goto Unlock;
1501 }
1502
3ab83521 1503#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 1504 if (kexec_image->preserve_context) {
89081d17
HY
1505 mutex_lock(&pm_mutex);
1506 pm_prepare_console();
1507 error = freeze_processes();
1508 if (error) {
1509 error = -EBUSY;
1510 goto Restore_console;
1511 }
1512 suspend_console();
d1616302 1513 error = dpm_suspend_start(PMSG_FREEZE);
89081d17
HY
1514 if (error)
1515 goto Resume_console;
d1616302
AS
1516 /* At this point, dpm_suspend_start() has been called,
1517 * but *not* dpm_suspend_noirq(). We *must* call
1518 * dpm_suspend_noirq() now. Otherwise, drivers for
89081d17
HY
1519 * some devices (e.g. interrupt controllers) become
1520 * desynchronized with the actual state of the
1521 * hardware at resume time, and evil weirdness ensues.
1522 */
d1616302 1523 error = dpm_suspend_noirq(PMSG_FREEZE);
89081d17 1524 if (error)
749b0afc
RW
1525 goto Resume_devices;
1526 error = disable_nonboot_cpus();
1527 if (error)
1528 goto Enable_cpus;
2ed8d2b3 1529 local_irq_disable();
770824bd
RW
1530 /* Suspend system devices */
1531 error = sysdev_suspend(PMSG_FREEZE);
1532 if (error)
749b0afc 1533 goto Enable_irqs;
7ade3fcc 1534 } else
3ab83521 1535#endif
7ade3fcc 1536 {
ca195b7f 1537 kernel_restart_prepare(NULL);
3ab83521
HY
1538 printk(KERN_EMERG "Starting new kernel\n");
1539 machine_shutdown();
1540 }
1541
1542 machine_kexec(kexec_image);
1543
3ab83521 1544#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 1545 if (kexec_image->preserve_context) {
770824bd 1546 sysdev_resume();
749b0afc 1547 Enable_irqs:
3ab83521 1548 local_irq_enable();
749b0afc 1549 Enable_cpus:
89081d17 1550 enable_nonboot_cpus();
d1616302 1551 dpm_resume_noirq(PMSG_RESTORE);
89081d17 1552 Resume_devices:
d1616302 1553 dpm_resume_end(PMSG_RESTORE);
89081d17
HY
1554 Resume_console:
1555 resume_console();
1556 thaw_processes();
1557 Restore_console:
1558 pm_restore_console();
1559 mutex_unlock(&pm_mutex);
3ab83521 1560 }
7ade3fcc 1561#endif
3ab83521
HY
1562
1563 Unlock:
8c5a1cf0 1564 mutex_unlock(&kexec_mutex);
3ab83521
HY
1565 return error;
1566}