]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/hrtimer.c
xps: Transmit Packet Steering
[net-next-2.6.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c
GA
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
c0a31329 61 */
54cdfdb4 62DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 63{
3c8aa39d
TG
64
65 .clock_base =
c0a31329 66 {
3c8aa39d
TG
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
54cdfdb4 70 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
54cdfdb4 75 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
76 },
77 }
c0a31329
TG
78};
79
92127c7a
TG
80/*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
3c8aa39d 84static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
85{
86 ktime_t xtim, tomono;
ad28d94a 87 struct timespec xts, tom;
92127c7a
TG
88 unsigned long seq;
89
90 do {
91 seq = read_seqbegin(&xtime_lock);
174bd199 92 xts = __current_kernel_time();
8ab4351a 93 tom = __get_wall_to_monotonic();
92127c7a
TG
94 } while (read_seqretry(&xtime_lock, seq));
95
f4304ab2 96 xtim = timespec_to_ktime(xts);
ad28d94a 97 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
92127c7a
TG
101}
102
c0a31329
TG
103/*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107#ifdef CONFIG_SMP
108
c0a31329
TG
109/*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
3c8aa39d
TG
121static
122struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
c0a31329 124{
3c8aa39d 125 struct hrtimer_clock_base *base;
c0a31329
TG
126
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
ecb49d1a 130 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
ecb49d1a 134 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
135 }
136 cpu_relax();
137 }
138}
139
6ff7041d
TG
140
141/*
142 * Get the preferred target CPU for NOHZ
143 */
144static int hrtimer_get_target(int this_cpu, int pinned)
145{
146#ifdef CONFIG_NO_HZ
83cd4fe2
VP
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
148 return get_nohz_timer_target();
6ff7041d
TG
149#endif
150 return this_cpu;
151}
152
153/*
154 * With HIGHRES=y we do not migrate the timer when it is expiring
155 * before the next event on the target cpu because we cannot reprogram
156 * the target cpu hardware and we would cause it to fire late.
157 *
158 * Called with cpu_base->lock of target cpu held.
159 */
160static int
161hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
162{
163#ifdef CONFIG_HIGH_RES_TIMERS
164 ktime_t expires;
165
166 if (!new_base->cpu_base->hres_active)
167 return 0;
168
169 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
170 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
171#else
172 return 0;
173#endif
174}
175
c0a31329
TG
176/*
177 * Switch the timer base to the current CPU when possible.
178 */
3c8aa39d 179static inline struct hrtimer_clock_base *
597d0275
AB
180switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
181 int pinned)
c0a31329 182{
3c8aa39d
TG
183 struct hrtimer_clock_base *new_base;
184 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
185 int this_cpu = smp_processor_id();
186 int cpu = hrtimer_get_target(this_cpu, pinned);
c0a31329 187
eea08f32
AB
188again:
189 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
3c8aa39d 190 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
191
192 if (base != new_base) {
193 /*
6ff7041d 194 * We are trying to move timer to new_base.
c0a31329
TG
195 * However we can't change timer's base while it is running,
196 * so we keep it on the same CPU. No hassle vs. reprogramming
197 * the event source in the high resolution case. The softirq
198 * code will take care of this when the timer function has
199 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued.
201 */
54cdfdb4 202 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
203 return base;
204
205 /* See the comment in lock_timer_base() */
206 timer->base = NULL;
ecb49d1a
TG
207 raw_spin_unlock(&base->cpu_base->lock);
208 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 209
6ff7041d
TG
210 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
211 cpu = this_cpu;
ecb49d1a
TG
212 raw_spin_unlock(&new_base->cpu_base->lock);
213 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
214 timer->base = base;
215 goto again;
eea08f32 216 }
c0a31329
TG
217 timer->base = new_base;
218 }
219 return new_base;
220}
221
222#else /* CONFIG_SMP */
223
3c8aa39d 224static inline struct hrtimer_clock_base *
c0a31329
TG
225lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
226{
3c8aa39d 227 struct hrtimer_clock_base *base = timer->base;
c0a31329 228
ecb49d1a 229 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
230
231 return base;
232}
233
eea08f32 234# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
235
236#endif /* !CONFIG_SMP */
237
238/*
239 * Functions for the union type storage format of ktime_t which are
240 * too large for inlining:
241 */
242#if BITS_PER_LONG < 64
243# ifndef CONFIG_KTIME_SCALAR
244/**
245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
246 * @kt: addend
247 * @nsec: the scalar nsec value to add
248 *
249 * Returns the sum of kt and nsec in ktime_t format
250 */
251ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
252{
253 ktime_t tmp;
254
255 if (likely(nsec < NSEC_PER_SEC)) {
256 tmp.tv64 = nsec;
257 } else {
258 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
259
260 tmp = ktime_set((long)nsec, rem);
261 }
262
263 return ktime_add(kt, tmp);
264}
b8b8fd2d
DH
265
266EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
267
268/**
269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
270 * @kt: minuend
271 * @nsec: the scalar nsec value to subtract
272 *
273 * Returns the subtraction of @nsec from @kt in ktime_t format
274 */
275ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
276{
277 ktime_t tmp;
278
279 if (likely(nsec < NSEC_PER_SEC)) {
280 tmp.tv64 = nsec;
281 } else {
282 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
283
284 tmp = ktime_set((long)nsec, rem);
285 }
286
287 return ktime_sub(kt, tmp);
288}
289
290EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
291# endif /* !CONFIG_KTIME_SCALAR */
292
293/*
294 * Divide a ktime value by a nanosecond value
295 */
4d672e7a 296u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 297{
900cfa46 298 u64 dclc;
c0a31329
TG
299 int sft = 0;
300
900cfa46 301 dclc = ktime_to_ns(kt);
c0a31329
TG
302 /* Make sure the divisor is less than 2^32: */
303 while (div >> 32) {
304 sft++;
305 div >>= 1;
306 }
307 dclc >>= sft;
308 do_div(dclc, (unsigned long) div);
309
4d672e7a 310 return dclc;
c0a31329 311}
c0a31329
TG
312#endif /* BITS_PER_LONG >= 64 */
313
5a7780e7
TG
314/*
315 * Add two ktime values and do a safety check for overflow:
316 */
317ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
318{
319 ktime_t res = ktime_add(lhs, rhs);
320
321 /*
322 * We use KTIME_SEC_MAX here, the maximum timeout which we can
323 * return to user space in a timespec:
324 */
325 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
326 res = ktime_set(KTIME_SEC_MAX, 0);
327
328 return res;
329}
330
8daa21e6
AB
331EXPORT_SYMBOL_GPL(ktime_add_safe);
332
237fc6e7
TG
333#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
334
335static struct debug_obj_descr hrtimer_debug_descr;
336
337/*
338 * fixup_init is called when:
339 * - an active object is initialized
340 */
341static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
342{
343 struct hrtimer *timer = addr;
344
345 switch (state) {
346 case ODEBUG_STATE_ACTIVE:
347 hrtimer_cancel(timer);
348 debug_object_init(timer, &hrtimer_debug_descr);
349 return 1;
350 default:
351 return 0;
352 }
353}
354
355/*
356 * fixup_activate is called when:
357 * - an active object is activated
358 * - an unknown object is activated (might be a statically initialized object)
359 */
360static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
361{
362 switch (state) {
363
364 case ODEBUG_STATE_NOTAVAILABLE:
365 WARN_ON_ONCE(1);
366 return 0;
367
368 case ODEBUG_STATE_ACTIVE:
369 WARN_ON(1);
370
371 default:
372 return 0;
373 }
374}
375
376/*
377 * fixup_free is called when:
378 * - an active object is freed
379 */
380static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
381{
382 struct hrtimer *timer = addr;
383
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 hrtimer_cancel(timer);
387 debug_object_free(timer, &hrtimer_debug_descr);
388 return 1;
389 default:
390 return 0;
391 }
392}
393
394static struct debug_obj_descr hrtimer_debug_descr = {
395 .name = "hrtimer",
396 .fixup_init = hrtimer_fixup_init,
397 .fixup_activate = hrtimer_fixup_activate,
398 .fixup_free = hrtimer_fixup_free,
399};
400
401static inline void debug_hrtimer_init(struct hrtimer *timer)
402{
403 debug_object_init(timer, &hrtimer_debug_descr);
404}
405
406static inline void debug_hrtimer_activate(struct hrtimer *timer)
407{
408 debug_object_activate(timer, &hrtimer_debug_descr);
409}
410
411static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
412{
413 debug_object_deactivate(timer, &hrtimer_debug_descr);
414}
415
416static inline void debug_hrtimer_free(struct hrtimer *timer)
417{
418 debug_object_free(timer, &hrtimer_debug_descr);
419}
420
421static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode);
423
424void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode)
426{
427 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
428 __hrtimer_init(timer, clock_id, mode);
429}
2bc481cf 430EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
431
432void destroy_hrtimer_on_stack(struct hrtimer *timer)
433{
434 debug_object_free(timer, &hrtimer_debug_descr);
435}
436
437#else
438static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
440static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
441#endif
442
c6a2a177
XG
443static inline void
444debug_init(struct hrtimer *timer, clockid_t clockid,
445 enum hrtimer_mode mode)
446{
447 debug_hrtimer_init(timer);
448 trace_hrtimer_init(timer, clockid, mode);
449}
450
451static inline void debug_activate(struct hrtimer *timer)
452{
453 debug_hrtimer_activate(timer);
454 trace_hrtimer_start(timer);
455}
456
457static inline void debug_deactivate(struct hrtimer *timer)
458{
459 debug_hrtimer_deactivate(timer);
460 trace_hrtimer_cancel(timer);
461}
462
54cdfdb4
TG
463/* High resolution timer related functions */
464#ifdef CONFIG_HIGH_RES_TIMERS
465
466/*
467 * High resolution timer enabled ?
468 */
469static int hrtimer_hres_enabled __read_mostly = 1;
470
471/*
472 * Enable / Disable high resolution mode
473 */
474static int __init setup_hrtimer_hres(char *str)
475{
476 if (!strcmp(str, "off"))
477 hrtimer_hres_enabled = 0;
478 else if (!strcmp(str, "on"))
479 hrtimer_hres_enabled = 1;
480 else
481 return 0;
482 return 1;
483}
484
485__setup("highres=", setup_hrtimer_hres);
486
487/*
488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
489 */
490static inline int hrtimer_is_hres_enabled(void)
491{
492 return hrtimer_hres_enabled;
493}
494
495/*
496 * Is the high resolution mode active ?
497 */
498static inline int hrtimer_hres_active(void)
499{
500 return __get_cpu_var(hrtimer_bases).hres_active;
501}
502
503/*
504 * Reprogram the event source with checking both queues for the
505 * next event
506 * Called with interrupts disabled and base->lock held
507 */
7403f41f
AC
508static void
509hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
510{
511 int i;
512 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 513 ktime_t expires, expires_next;
54cdfdb4 514
7403f41f 515 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
516
517 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
518 struct hrtimer *timer;
519
520 if (!base->first)
521 continue;
522 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 523 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
524 /*
525 * clock_was_set() has changed base->offset so the
526 * result might be negative. Fix it up to prevent a
527 * false positive in clockevents_program_event()
528 */
529 if (expires.tv64 < 0)
530 expires.tv64 = 0;
7403f41f
AC
531 if (expires.tv64 < expires_next.tv64)
532 expires_next = expires;
54cdfdb4
TG
533 }
534
7403f41f
AC
535 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
536 return;
537
538 cpu_base->expires_next.tv64 = expires_next.tv64;
539
54cdfdb4
TG
540 if (cpu_base->expires_next.tv64 != KTIME_MAX)
541 tick_program_event(cpu_base->expires_next, 1);
542}
543
544/*
545 * Shared reprogramming for clock_realtime and clock_monotonic
546 *
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
550 *
551 * Called with interrupts disabled and base->cpu_base.lock held
552 */
553static int hrtimer_reprogram(struct hrtimer *timer,
554 struct hrtimer_clock_base *base)
555{
41d2e494 556 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 557 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
558 int res;
559
cc584b21 560 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 561
54cdfdb4
TG
562 /*
563 * When the callback is running, we do not reprogram the clock event
564 * device. The timer callback is either running on a different CPU or
3a4fa0a2 565 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
566 * reprogramming is handled either by the softirq, which called the
567 * callback or at the end of the hrtimer_interrupt.
568 */
569 if (hrtimer_callback_running(timer))
570 return 0;
571
63070a79
TG
572 /*
573 * CLOCK_REALTIME timer might be requested with an absolute
574 * expiry time which is less than base->offset. Nothing wrong
575 * about that, just avoid to call into the tick code, which
576 * has now objections against negative expiry values.
577 */
578 if (expires.tv64 < 0)
579 return -ETIME;
580
41d2e494
TG
581 if (expires.tv64 >= cpu_base->expires_next.tv64)
582 return 0;
583
584 /*
585 * If a hang was detected in the last timer interrupt then we
586 * do not schedule a timer which is earlier than the expiry
587 * which we enforced in the hang detection. We want the system
588 * to make progress.
589 */
590 if (cpu_base->hang_detected)
54cdfdb4
TG
591 return 0;
592
593 /*
594 * Clockevents returns -ETIME, when the event was in the past.
595 */
596 res = tick_program_event(expires, 0);
597 if (!IS_ERR_VALUE(res))
41d2e494 598 cpu_base->expires_next = expires;
54cdfdb4
TG
599 return res;
600}
601
602
603/*
604 * Retrigger next event is called after clock was set
605 *
606 * Called with interrupts disabled via on_each_cpu()
607 */
608static void retrigger_next_event(void *arg)
609{
610 struct hrtimer_cpu_base *base;
8ab4351a 611 struct timespec realtime_offset, wtm;
54cdfdb4
TG
612 unsigned long seq;
613
614 if (!hrtimer_hres_active())
615 return;
616
617 do {
618 seq = read_seqbegin(&xtime_lock);
8ab4351a 619 wtm = __get_wall_to_monotonic();
54cdfdb4 620 } while (read_seqretry(&xtime_lock, seq));
8ab4351a 621 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
54cdfdb4
TG
622
623 base = &__get_cpu_var(hrtimer_bases);
624
625 /* Adjust CLOCK_REALTIME offset */
ecb49d1a 626 raw_spin_lock(&base->lock);
54cdfdb4
TG
627 base->clock_base[CLOCK_REALTIME].offset =
628 timespec_to_ktime(realtime_offset);
629
7403f41f 630 hrtimer_force_reprogram(base, 0);
ecb49d1a 631 raw_spin_unlock(&base->lock);
54cdfdb4
TG
632}
633
634/*
635 * Clock realtime was set
636 *
637 * Change the offset of the realtime clock vs. the monotonic
638 * clock.
639 *
640 * We might have to reprogram the high resolution timer interrupt. On
641 * SMP we call the architecture specific code to retrigger _all_ high
642 * resolution timer interrupts. On UP we just disable interrupts and
643 * call the high resolution interrupt code.
644 */
645void clock_was_set(void)
646{
647 /* Retrigger the CPU local events everywhere */
15c8b6c1 648 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
649}
650
995f054f
IM
651/*
652 * During resume we might have to reprogram the high resolution timer
653 * interrupt (on the local CPU):
654 */
655void hres_timers_resume(void)
656{
1d4a7f1c
PZ
657 WARN_ONCE(!irqs_disabled(),
658 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
659
995f054f
IM
660 retrigger_next_event(NULL);
661}
662
54cdfdb4
TG
663/*
664 * Initialize the high resolution related parts of cpu_base
665 */
666static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
667{
668 base->expires_next.tv64 = KTIME_MAX;
669 base->hres_active = 0;
54cdfdb4
TG
670}
671
672/*
673 * Initialize the high resolution related parts of a hrtimer
674 */
675static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
676{
54cdfdb4
TG
677}
678
ca109491 679
54cdfdb4
TG
680/*
681 * When High resolution timers are active, try to reprogram. Note, that in case
682 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
683 * check happens. The timer gets enqueued into the rbtree. The reprogramming
684 * and expiry check is done in the hrtimer_interrupt or in the softirq.
685 */
686static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
687 struct hrtimer_clock_base *base,
688 int wakeup)
54cdfdb4
TG
689{
690 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9 691 if (wakeup) {
ecb49d1a 692 raw_spin_unlock(&base->cpu_base->lock);
7f1e2ca9 693 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
ecb49d1a 694 raw_spin_lock(&base->cpu_base->lock);
7f1e2ca9
PZ
695 } else
696 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
697
ca109491 698 return 1;
54cdfdb4 699 }
7f1e2ca9 700
54cdfdb4
TG
701 return 0;
702}
703
704/*
705 * Switch to high resolution mode
706 */
f8953856 707static int hrtimer_switch_to_hres(void)
54cdfdb4 708{
820de5c3
IM
709 int cpu = smp_processor_id();
710 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
711 unsigned long flags;
712
713 if (base->hres_active)
f8953856 714 return 1;
54cdfdb4
TG
715
716 local_irq_save(flags);
717
718 if (tick_init_highres()) {
719 local_irq_restore(flags);
820de5c3
IM
720 printk(KERN_WARNING "Could not switch to high resolution "
721 "mode on CPU %d\n", cpu);
f8953856 722 return 0;
54cdfdb4
TG
723 }
724 base->hres_active = 1;
725 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
726 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
727
728 tick_setup_sched_timer();
729
730 /* "Retrigger" the interrupt to get things going */
731 retrigger_next_event(NULL);
732 local_irq_restore(flags);
f8953856 733 return 1;
54cdfdb4
TG
734}
735
736#else
737
738static inline int hrtimer_hres_active(void) { return 0; }
739static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 740static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
741static inline void
742hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 743static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
744 struct hrtimer_clock_base *base,
745 int wakeup)
54cdfdb4
TG
746{
747 return 0;
748}
54cdfdb4
TG
749static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
750static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
751
752#endif /* CONFIG_HIGH_RES_TIMERS */
753
5f201907 754static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 755{
5f201907 756#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
757 if (timer->start_site)
758 return;
5f201907 759 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
760 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
761 timer->start_pid = current->pid;
5f201907
HC
762#endif
763}
764
765static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
766{
767#ifdef CONFIG_TIMER_STATS
768 timer->start_site = NULL;
769#endif
82f67cd9 770}
5f201907
HC
771
772static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
773{
774#ifdef CONFIG_TIMER_STATS
775 if (likely(!timer_stats_active))
776 return;
777 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
778 timer->function, timer->start_comm, 0);
82f67cd9 779#endif
5f201907 780}
82f67cd9 781
c0a31329 782/*
6506f2aa 783 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
784 */
785static inline
786void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
787{
ecb49d1a 788 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
789}
790
791/**
792 * hrtimer_forward - forward the timer expiry
c0a31329 793 * @timer: hrtimer to forward
44f21475 794 * @now: forward past this time
c0a31329
TG
795 * @interval: the interval to forward
796 *
797 * Forward the timer expiry so it will expire in the future.
8dca6f33 798 * Returns the number of overruns.
c0a31329 799 */
4d672e7a 800u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 801{
4d672e7a 802 u64 orun = 1;
44f21475 803 ktime_t delta;
c0a31329 804
cc584b21 805 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
806
807 if (delta.tv64 < 0)
808 return 0;
809
c9db4fa1
TG
810 if (interval.tv64 < timer->base->resolution.tv64)
811 interval.tv64 = timer->base->resolution.tv64;
812
c0a31329 813 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 814 s64 incr = ktime_to_ns(interval);
c0a31329
TG
815
816 orun = ktime_divns(delta, incr);
cc584b21
AV
817 hrtimer_add_expires_ns(timer, incr * orun);
818 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
819 return orun;
820 /*
821 * This (and the ktime_add() below) is the
822 * correction for exact:
823 */
824 orun++;
825 }
cc584b21 826 hrtimer_add_expires(timer, interval);
c0a31329
TG
827
828 return orun;
829}
6bdb6b62 830EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
831
832/*
833 * enqueue_hrtimer - internal function to (re)start a timer
834 *
835 * The timer is inserted in expiry order. Insertion into the
836 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
837 *
838 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 839 */
a6037b61
PZ
840static int enqueue_hrtimer(struct hrtimer *timer,
841 struct hrtimer_clock_base *base)
c0a31329
TG
842{
843 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
844 struct rb_node *parent = NULL;
845 struct hrtimer *entry;
99bc2fcb 846 int leftmost = 1;
c0a31329 847
c6a2a177 848 debug_activate(timer);
237fc6e7 849
c0a31329
TG
850 /*
851 * Find the right place in the rbtree:
852 */
853 while (*link) {
854 parent = *link;
855 entry = rb_entry(parent, struct hrtimer, node);
856 /*
857 * We dont care about collisions. Nodes with
858 * the same expiry time stay together.
859 */
cc584b21
AV
860 if (hrtimer_get_expires_tv64(timer) <
861 hrtimer_get_expires_tv64(entry)) {
c0a31329 862 link = &(*link)->rb_left;
99bc2fcb 863 } else {
c0a31329 864 link = &(*link)->rb_right;
99bc2fcb
IM
865 leftmost = 0;
866 }
c0a31329
TG
867 }
868
869 /*
288867ec
TG
870 * Insert the timer to the rbtree and check whether it
871 * replaces the first pending timer
c0a31329 872 */
a6037b61 873 if (leftmost)
54cdfdb4 874 base->first = &timer->node;
54cdfdb4 875
c0a31329
TG
876 rb_link_node(&timer->node, parent, link);
877 rb_insert_color(&timer->node, &base->active);
303e967f
TG
878 /*
879 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
880 * state of a possibly running callback.
881 */
882 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61
PZ
883
884 return leftmost;
288867ec 885}
c0a31329
TG
886
887/*
888 * __remove_hrtimer - internal function to remove a timer
889 *
890 * Caller must hold the base lock.
54cdfdb4
TG
891 *
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
c0a31329 896 */
3c8aa39d 897static void __remove_hrtimer(struct hrtimer *timer,
303e967f 898 struct hrtimer_clock_base *base,
54cdfdb4 899 unsigned long newstate, int reprogram)
c0a31329 900{
7403f41f
AC
901 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
902 goto out;
903
904 /*
905 * Remove the timer from the rbtree and replace the first
906 * entry pointer if necessary.
907 */
908 if (base->first == &timer->node) {
909 base->first = rb_next(&timer->node);
910#ifdef CONFIG_HIGH_RES_TIMERS
911 /* Reprogram the clock event device. if enabled */
912 if (reprogram && hrtimer_hres_active()) {
913 ktime_t expires;
914
915 expires = ktime_sub(hrtimer_get_expires(timer),
916 base->offset);
917 if (base->cpu_base->expires_next.tv64 == expires.tv64)
918 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 919 }
7403f41f 920#endif
54cdfdb4 921 }
7403f41f
AC
922 rb_erase(&timer->node, &base->active);
923out:
303e967f 924 timer->state = newstate;
c0a31329
TG
925}
926
927/*
928 * remove hrtimer, called with base lock held
929 */
930static inline int
3c8aa39d 931remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 932{
303e967f 933 if (hrtimer_is_queued(timer)) {
f13d4f97 934 unsigned long state;
54cdfdb4
TG
935 int reprogram;
936
937 /*
938 * Remove the timer and force reprogramming when high
939 * resolution mode is active and the timer is on the current
940 * CPU. If we remove a timer on another CPU, reprogramming is
941 * skipped. The interrupt event on this CPU is fired and
942 * reprogramming happens in the interrupt handler. This is a
943 * rare case and less expensive than a smp call.
944 */
c6a2a177 945 debug_deactivate(timer);
82f67cd9 946 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4 947 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
f13d4f97
SQ
948 /*
949 * We must preserve the CALLBACK state flag here,
950 * otherwise we could move the timer base in
951 * switch_hrtimer_base.
952 */
953 state = timer->state & HRTIMER_STATE_CALLBACK;
954 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
955 return 1;
956 }
957 return 0;
958}
959
7f1e2ca9
PZ
960int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
961 unsigned long delta_ns, const enum hrtimer_mode mode,
962 int wakeup)
c0a31329 963{
3c8aa39d 964 struct hrtimer_clock_base *base, *new_base;
c0a31329 965 unsigned long flags;
a6037b61 966 int ret, leftmost;
c0a31329
TG
967
968 base = lock_hrtimer_base(timer, &flags);
969
970 /* Remove an active timer from the queue: */
971 ret = remove_hrtimer(timer, base);
972
973 /* Switch the timer base, if necessary: */
597d0275 974 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 975
597d0275 976 if (mode & HRTIMER_MODE_REL) {
5a7780e7 977 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
978 /*
979 * CONFIG_TIME_LOW_RES is a temporary way for architectures
980 * to signal that they simply return xtime in
981 * do_gettimeoffset(). In this case we want to round up by
982 * resolution when starting a relative timer, to avoid short
983 * timeouts. This will go away with the GTOD framework.
984 */
985#ifdef CONFIG_TIME_LOW_RES
5a7780e7 986 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
987#endif
988 }
237fc6e7 989
da8f2e17 990 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 991
82f67cd9
IM
992 timer_stats_hrtimer_set_start_info(timer);
993
a6037b61
PZ
994 leftmost = enqueue_hrtimer(timer, new_base);
995
935c631d
IM
996 /*
997 * Only allow reprogramming if the new base is on this CPU.
998 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
999 *
1000 * XXX send_remote_softirq() ?
935c631d 1001 */
a6037b61 1002 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 1003 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
1004
1005 unlock_hrtimer_base(timer, &flags);
1006
1007 return ret;
1008}
7f1e2ca9
PZ
1009
1010/**
1011 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1012 * @timer: the timer to be added
1013 * @tim: expiry time
1014 * @delta_ns: "slack" range for the timer
1015 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1016 *
1017 * Returns:
1018 * 0 on success
1019 * 1 when the timer was active
1020 */
1021int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1022 unsigned long delta_ns, const enum hrtimer_mode mode)
1023{
1024 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1025}
da8f2e17
AV
1026EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1027
1028/**
e1dd7bc5 1029 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1030 * @timer: the timer to be added
1031 * @tim: expiry time
1032 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1033 *
1034 * Returns:
1035 * 0 on success
1036 * 1 when the timer was active
1037 */
1038int
1039hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1040{
7f1e2ca9 1041 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1042}
8d16b764 1043EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1044
da8f2e17 1045
c0a31329
TG
1046/**
1047 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1048 * @timer: hrtimer to stop
1049 *
1050 * Returns:
1051 * 0 when the timer was not active
1052 * 1 when the timer was active
1053 * -1 when the timer is currently excuting the callback function and
fa9799e3 1054 * cannot be stopped
c0a31329
TG
1055 */
1056int hrtimer_try_to_cancel(struct hrtimer *timer)
1057{
3c8aa39d 1058 struct hrtimer_clock_base *base;
c0a31329
TG
1059 unsigned long flags;
1060 int ret = -1;
1061
1062 base = lock_hrtimer_base(timer, &flags);
1063
303e967f 1064 if (!hrtimer_callback_running(timer))
c0a31329
TG
1065 ret = remove_hrtimer(timer, base);
1066
1067 unlock_hrtimer_base(timer, &flags);
1068
1069 return ret;
1070
1071}
8d16b764 1072EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1073
1074/**
1075 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1076 * @timer: the timer to be cancelled
1077 *
1078 * Returns:
1079 * 0 when the timer was not active
1080 * 1 when the timer was active
1081 */
1082int hrtimer_cancel(struct hrtimer *timer)
1083{
1084 for (;;) {
1085 int ret = hrtimer_try_to_cancel(timer);
1086
1087 if (ret >= 0)
1088 return ret;
5ef37b19 1089 cpu_relax();
c0a31329
TG
1090 }
1091}
8d16b764 1092EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1093
1094/**
1095 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1096 * @timer: the timer to read
1097 */
1098ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1099{
c0a31329
TG
1100 unsigned long flags;
1101 ktime_t rem;
1102
b3bd3de6 1103 lock_hrtimer_base(timer, &flags);
cc584b21 1104 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1105 unlock_hrtimer_base(timer, &flags);
1106
1107 return rem;
1108}
8d16b764 1109EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1110
ee9c5785 1111#ifdef CONFIG_NO_HZ
69239749
TL
1112/**
1113 * hrtimer_get_next_event - get the time until next expiry event
1114 *
1115 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1116 * is pending.
1117 */
1118ktime_t hrtimer_get_next_event(void)
1119{
3c8aa39d
TG
1120 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1121 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1122 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1123 unsigned long flags;
1124 int i;
1125
ecb49d1a 1126 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1127
54cdfdb4
TG
1128 if (!hrtimer_hres_active()) {
1129 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1130 struct hrtimer *timer;
69239749 1131
54cdfdb4
TG
1132 if (!base->first)
1133 continue;
3c8aa39d 1134
54cdfdb4 1135 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 1136 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1137 delta = ktime_sub(delta, base->get_time());
1138 if (delta.tv64 < mindelta.tv64)
1139 mindelta.tv64 = delta.tv64;
1140 }
69239749 1141 }
3c8aa39d 1142
ecb49d1a 1143 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1144
69239749
TL
1145 if (mindelta.tv64 < 0)
1146 mindelta.tv64 = 0;
1147 return mindelta;
1148}
1149#endif
1150
237fc6e7
TG
1151static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1152 enum hrtimer_mode mode)
c0a31329 1153{
3c8aa39d 1154 struct hrtimer_cpu_base *cpu_base;
c0a31329 1155
7978672c
GA
1156 memset(timer, 0, sizeof(struct hrtimer));
1157
3c8aa39d 1158 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1159
c9cb2e3d 1160 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1161 clock_id = CLOCK_MONOTONIC;
1162
3c8aa39d 1163 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 1164 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1165
1166#ifdef CONFIG_TIMER_STATS
1167 timer->start_site = NULL;
1168 timer->start_pid = -1;
1169 memset(timer->start_comm, 0, TASK_COMM_LEN);
1170#endif
c0a31329 1171}
237fc6e7
TG
1172
1173/**
1174 * hrtimer_init - initialize a timer to the given clock
1175 * @timer: the timer to be initialized
1176 * @clock_id: the clock to be used
1177 * @mode: timer mode abs/rel
1178 */
1179void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1180 enum hrtimer_mode mode)
1181{
c6a2a177 1182 debug_init(timer, clock_id, mode);
237fc6e7
TG
1183 __hrtimer_init(timer, clock_id, mode);
1184}
8d16b764 1185EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1186
1187/**
1188 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1189 * @which_clock: which clock to query
1190 * @tp: pointer to timespec variable to store the resolution
1191 *
72fd4a35
RD
1192 * Store the resolution of the clock selected by @which_clock in the
1193 * variable pointed to by @tp.
c0a31329
TG
1194 */
1195int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1196{
3c8aa39d 1197 struct hrtimer_cpu_base *cpu_base;
c0a31329 1198
3c8aa39d
TG
1199 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1200 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1201
1202 return 0;
1203}
8d16b764 1204EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1205
c6a2a177 1206static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1207{
1208 struct hrtimer_clock_base *base = timer->base;
1209 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1210 enum hrtimer_restart (*fn)(struct hrtimer *);
1211 int restart;
1212
ca109491
PZ
1213 WARN_ON(!irqs_disabled());
1214
c6a2a177 1215 debug_deactivate(timer);
d3d74453
PZ
1216 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1217 timer_stats_account_hrtimer(timer);
d3d74453 1218 fn = timer->function;
ca109491
PZ
1219
1220 /*
1221 * Because we run timers from hardirq context, there is no chance
1222 * they get migrated to another cpu, therefore its safe to unlock
1223 * the timer base.
1224 */
ecb49d1a 1225 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1226 trace_hrtimer_expire_entry(timer, now);
ca109491 1227 restart = fn(timer);
c6a2a177 1228 trace_hrtimer_expire_exit(timer);
ecb49d1a 1229 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1230
1231 /*
e3f1d883
TG
1232 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1233 * we do not reprogramm the event hardware. Happens either in
1234 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1235 */
1236 if (restart != HRTIMER_NORESTART) {
1237 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1238 enqueue_hrtimer(timer, base);
d3d74453 1239 }
f13d4f97
SQ
1240
1241 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1242
d3d74453
PZ
1243 timer->state &= ~HRTIMER_STATE_CALLBACK;
1244}
1245
54cdfdb4
TG
1246#ifdef CONFIG_HIGH_RES_TIMERS
1247
1248/*
1249 * High resolution timer interrupt
1250 * Called with interrupts disabled
1251 */
1252void hrtimer_interrupt(struct clock_event_device *dev)
1253{
1254 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1255 struct hrtimer_clock_base *base;
41d2e494
TG
1256 ktime_t expires_next, now, entry_time, delta;
1257 int i, retries = 0;
54cdfdb4
TG
1258
1259 BUG_ON(!cpu_base->hres_active);
1260 cpu_base->nr_events++;
1261 dev->next_event.tv64 = KTIME_MAX;
1262
41d2e494
TG
1263 entry_time = now = ktime_get();
1264retry:
54cdfdb4
TG
1265 expires_next.tv64 = KTIME_MAX;
1266
ecb49d1a 1267 raw_spin_lock(&cpu_base->lock);
6ff7041d
TG
1268 /*
1269 * We set expires_next to KTIME_MAX here with cpu_base->lock
1270 * held to prevent that a timer is enqueued in our queue via
1271 * the migration code. This does not affect enqueueing of
1272 * timers which run their callback and need to be requeued on
1273 * this CPU.
1274 */
1275 cpu_base->expires_next.tv64 = KTIME_MAX;
1276
54cdfdb4
TG
1277 base = cpu_base->clock_base;
1278
1279 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1280 ktime_t basenow;
1281 struct rb_node *node;
1282
54cdfdb4
TG
1283 basenow = ktime_add(now, base->offset);
1284
1285 while ((node = base->first)) {
1286 struct hrtimer *timer;
1287
1288 timer = rb_entry(node, struct hrtimer, node);
1289
654c8e0b
AV
1290 /*
1291 * The immediate goal for using the softexpires is
1292 * minimizing wakeups, not running timers at the
1293 * earliest interrupt after their soft expiration.
1294 * This allows us to avoid using a Priority Search
1295 * Tree, which can answer a stabbing querry for
1296 * overlapping intervals and instead use the simple
1297 * BST we already have.
1298 * We don't add extra wakeups by delaying timers that
1299 * are right-of a not yet expired timer, because that
1300 * timer will have to trigger a wakeup anyway.
1301 */
1302
1303 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1304 ktime_t expires;
1305
cc584b21 1306 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1307 base->offset);
1308 if (expires.tv64 < expires_next.tv64)
1309 expires_next = expires;
1310 break;
1311 }
1312
c6a2a177 1313 __run_hrtimer(timer, &basenow);
54cdfdb4 1314 }
54cdfdb4
TG
1315 base++;
1316 }
1317
6ff7041d
TG
1318 /*
1319 * Store the new expiry value so the migration code can verify
1320 * against it.
1321 */
54cdfdb4 1322 cpu_base->expires_next = expires_next;
ecb49d1a 1323 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1324
1325 /* Reprogramming necessary ? */
41d2e494
TG
1326 if (expires_next.tv64 == KTIME_MAX ||
1327 !tick_program_event(expires_next, 0)) {
1328 cpu_base->hang_detected = 0;
1329 return;
54cdfdb4 1330 }
41d2e494
TG
1331
1332 /*
1333 * The next timer was already expired due to:
1334 * - tracing
1335 * - long lasting callbacks
1336 * - being scheduled away when running in a VM
1337 *
1338 * We need to prevent that we loop forever in the hrtimer
1339 * interrupt routine. We give it 3 attempts to avoid
1340 * overreacting on some spurious event.
1341 */
1342 now = ktime_get();
1343 cpu_base->nr_retries++;
1344 if (++retries < 3)
1345 goto retry;
1346 /*
1347 * Give the system a chance to do something else than looping
1348 * here. We stored the entry time, so we know exactly how long
1349 * we spent here. We schedule the next event this amount of
1350 * time away.
1351 */
1352 cpu_base->nr_hangs++;
1353 cpu_base->hang_detected = 1;
1354 delta = ktime_sub(now, entry_time);
1355 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1356 cpu_base->max_hang_time = delta;
1357 /*
1358 * Limit it to a sensible value as we enforce a longer
1359 * delay. Give the CPU at least 100ms to catch up.
1360 */
1361 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1362 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1363 else
1364 expires_next = ktime_add(now, delta);
1365 tick_program_event(expires_next, 1);
1366 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1367 ktime_to_ns(delta));
54cdfdb4
TG
1368}
1369
8bdec955
TG
1370/*
1371 * local version of hrtimer_peek_ahead_timers() called with interrupts
1372 * disabled.
1373 */
1374static void __hrtimer_peek_ahead_timers(void)
1375{
1376 struct tick_device *td;
1377
1378 if (!hrtimer_hres_active())
1379 return;
1380
1381 td = &__get_cpu_var(tick_cpu_device);
1382 if (td && td->evtdev)
1383 hrtimer_interrupt(td->evtdev);
1384}
1385
2e94d1f7
AV
1386/**
1387 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1388 *
1389 * hrtimer_peek_ahead_timers will peek at the timer queue of
1390 * the current cpu and check if there are any timers for which
1391 * the soft expires time has passed. If any such timers exist,
1392 * they are run immediately and then removed from the timer queue.
1393 *
1394 */
1395void hrtimer_peek_ahead_timers(void)
1396{
643bdf68 1397 unsigned long flags;
dc4304f7 1398
2e94d1f7 1399 local_irq_save(flags);
8bdec955 1400 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1401 local_irq_restore(flags);
1402}
1403
a6037b61
PZ
1404static void run_hrtimer_softirq(struct softirq_action *h)
1405{
1406 hrtimer_peek_ahead_timers();
1407}
1408
82c5b7b5
IM
1409#else /* CONFIG_HIGH_RES_TIMERS */
1410
1411static inline void __hrtimer_peek_ahead_timers(void) { }
1412
1413#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1414
d3d74453
PZ
1415/*
1416 * Called from timer softirq every jiffy, expire hrtimers:
1417 *
1418 * For HRT its the fall back code to run the softirq in the timer
1419 * softirq context in case the hrtimer initialization failed or has
1420 * not been done yet.
1421 */
1422void hrtimer_run_pending(void)
1423{
d3d74453
PZ
1424 if (hrtimer_hres_active())
1425 return;
54cdfdb4 1426
d3d74453
PZ
1427 /*
1428 * This _is_ ugly: We have to check in the softirq context,
1429 * whether we can switch to highres and / or nohz mode. The
1430 * clocksource switch happens in the timer interrupt with
1431 * xtime_lock held. Notification from there only sets the
1432 * check bit in the tick_oneshot code, otherwise we might
1433 * deadlock vs. xtime_lock.
1434 */
1435 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1436 hrtimer_switch_to_hres();
54cdfdb4
TG
1437}
1438
c0a31329 1439/*
d3d74453 1440 * Called from hardirq context every jiffy
c0a31329 1441 */
833883d9 1442void hrtimer_run_queues(void)
c0a31329 1443{
288867ec 1444 struct rb_node *node;
833883d9
DS
1445 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1446 struct hrtimer_clock_base *base;
1447 int index, gettime = 1;
c0a31329 1448
833883d9 1449 if (hrtimer_hres_active())
3055adda
DS
1450 return;
1451
833883d9
DS
1452 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1453 base = &cpu_base->clock_base[index];
c0a31329 1454
833883d9 1455 if (!base->first)
d3d74453 1456 continue;
833883d9 1457
d7cfb60c 1458 if (gettime) {
833883d9
DS
1459 hrtimer_get_softirq_time(cpu_base);
1460 gettime = 0;
b75f7a51 1461 }
d3d74453 1462
ecb49d1a 1463 raw_spin_lock(&cpu_base->lock);
c0a31329 1464
833883d9
DS
1465 while ((node = base->first)) {
1466 struct hrtimer *timer;
54cdfdb4 1467
833883d9 1468 timer = rb_entry(node, struct hrtimer, node);
cc584b21
AV
1469 if (base->softirq_time.tv64 <=
1470 hrtimer_get_expires_tv64(timer))
833883d9
DS
1471 break;
1472
c6a2a177 1473 __run_hrtimer(timer, &base->softirq_time);
833883d9 1474 }
ecb49d1a 1475 raw_spin_unlock(&cpu_base->lock);
833883d9 1476 }
c0a31329
TG
1477}
1478
10c94ec1
TG
1479/*
1480 * Sleep related functions:
1481 */
c9cb2e3d 1482static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1483{
1484 struct hrtimer_sleeper *t =
1485 container_of(timer, struct hrtimer_sleeper, timer);
1486 struct task_struct *task = t->task;
1487
1488 t->task = NULL;
1489 if (task)
1490 wake_up_process(task);
1491
1492 return HRTIMER_NORESTART;
1493}
1494
36c8b586 1495void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1496{
1497 sl->timer.function = hrtimer_wakeup;
1498 sl->task = task;
1499}
2bc481cf 1500EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1501
669d7868 1502static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1503{
669d7868 1504 hrtimer_init_sleeper(t, current);
10c94ec1 1505
432569bb
RZ
1506 do {
1507 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1508 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1509 if (!hrtimer_active(&t->timer))
1510 t->task = NULL;
432569bb 1511
54cdfdb4
TG
1512 if (likely(t->task))
1513 schedule();
432569bb 1514
669d7868 1515 hrtimer_cancel(&t->timer);
c9cb2e3d 1516 mode = HRTIMER_MODE_ABS;
669d7868
TG
1517
1518 } while (t->task && !signal_pending(current));
432569bb 1519
3588a085
PZ
1520 __set_current_state(TASK_RUNNING);
1521
669d7868 1522 return t->task == NULL;
10c94ec1
TG
1523}
1524
080344b9
ON
1525static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1526{
1527 struct timespec rmt;
1528 ktime_t rem;
1529
cc584b21 1530 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1531 if (rem.tv64 <= 0)
1532 return 0;
1533 rmt = ktime_to_timespec(rem);
1534
1535 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1536 return -EFAULT;
1537
1538 return 1;
1539}
1540
1711ef38 1541long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1542{
669d7868 1543 struct hrtimer_sleeper t;
080344b9 1544 struct timespec __user *rmtp;
237fc6e7 1545 int ret = 0;
10c94ec1 1546
237fc6e7
TG
1547 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1548 HRTIMER_MODE_ABS);
cc584b21 1549 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1550
c9cb2e3d 1551 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1552 goto out;
10c94ec1 1553
029a07e0 1554 rmtp = restart->nanosleep.rmtp;
432569bb 1555 if (rmtp) {
237fc6e7 1556 ret = update_rmtp(&t.timer, rmtp);
080344b9 1557 if (ret <= 0)
237fc6e7 1558 goto out;
432569bb 1559 }
10c94ec1 1560
10c94ec1 1561 /* The other values in restart are already filled in */
237fc6e7
TG
1562 ret = -ERESTART_RESTARTBLOCK;
1563out:
1564 destroy_hrtimer_on_stack(&t.timer);
1565 return ret;
10c94ec1
TG
1566}
1567
080344b9 1568long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1569 const enum hrtimer_mode mode, const clockid_t clockid)
1570{
1571 struct restart_block *restart;
669d7868 1572 struct hrtimer_sleeper t;
237fc6e7 1573 int ret = 0;
3bd01206
AV
1574 unsigned long slack;
1575
1576 slack = current->timer_slack_ns;
1577 if (rt_task(current))
1578 slack = 0;
10c94ec1 1579
237fc6e7 1580 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1581 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1582 if (do_nanosleep(&t, mode))
237fc6e7 1583 goto out;
10c94ec1 1584
7978672c 1585 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1586 if (mode == HRTIMER_MODE_ABS) {
1587 ret = -ERESTARTNOHAND;
1588 goto out;
1589 }
10c94ec1 1590
432569bb 1591 if (rmtp) {
237fc6e7 1592 ret = update_rmtp(&t.timer, rmtp);
080344b9 1593 if (ret <= 0)
237fc6e7 1594 goto out;
432569bb 1595 }
10c94ec1
TG
1596
1597 restart = &current_thread_info()->restart_block;
1711ef38 1598 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1599 restart->nanosleep.index = t.timer.base->index;
1600 restart->nanosleep.rmtp = rmtp;
cc584b21 1601 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1602
237fc6e7
TG
1603 ret = -ERESTART_RESTARTBLOCK;
1604out:
1605 destroy_hrtimer_on_stack(&t.timer);
1606 return ret;
10c94ec1
TG
1607}
1608
58fd3aa2
HC
1609SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1610 struct timespec __user *, rmtp)
6ba1b912 1611{
080344b9 1612 struct timespec tu;
6ba1b912
TG
1613
1614 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1615 return -EFAULT;
1616
1617 if (!timespec_valid(&tu))
1618 return -EINVAL;
1619
080344b9 1620 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1621}
1622
c0a31329
TG
1623/*
1624 * Functions related to boot-time initialization:
1625 */
0ec160dd 1626static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1627{
3c8aa39d 1628 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1629 int i;
1630
ecb49d1a 1631 raw_spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1632
1633 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1634 cpu_base->clock_base[i].cpu_base = cpu_base;
1635
54cdfdb4 1636 hrtimer_init_hres(cpu_base);
c0a31329
TG
1637}
1638
1639#ifdef CONFIG_HOTPLUG_CPU
1640
ca109491 1641static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1642 struct hrtimer_clock_base *new_base)
c0a31329
TG
1643{
1644 struct hrtimer *timer;
1645 struct rb_node *node;
1646
1647 while ((node = rb_first(&old_base->active))) {
1648 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1649 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1650 debug_deactivate(timer);
b00c1a99
TG
1651
1652 /*
1653 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1654 * timer could be seen as !active and just vanish away
1655 * under us on another CPU
1656 */
1657 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1658 timer->base = new_base;
54cdfdb4 1659 /*
e3f1d883
TG
1660 * Enqueue the timers on the new cpu. This does not
1661 * reprogram the event device in case the timer
1662 * expires before the earliest on this CPU, but we run
1663 * hrtimer_interrupt after we migrated everything to
1664 * sort out already expired timers and reprogram the
1665 * event device.
54cdfdb4 1666 */
a6037b61 1667 enqueue_hrtimer(timer, new_base);
41e1022e 1668
b00c1a99
TG
1669 /* Clear the migration state bit */
1670 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1671 }
1672}
1673
d5fd43c4 1674static void migrate_hrtimers(int scpu)
c0a31329 1675{
3c8aa39d 1676 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1677 int i;
c0a31329 1678
37810659 1679 BUG_ON(cpu_online(scpu));
37810659 1680 tick_cancel_sched_timer(scpu);
731a55ba
TG
1681
1682 local_irq_disable();
1683 old_base = &per_cpu(hrtimer_bases, scpu);
1684 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1685 /*
1686 * The caller is globally serialized and nobody else
1687 * takes two locks at once, deadlock is not possible.
1688 */
ecb49d1a
TG
1689 raw_spin_lock(&new_base->lock);
1690 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1691
3c8aa39d 1692 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1693 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1694 &new_base->clock_base[i]);
c0a31329
TG
1695 }
1696
ecb49d1a
TG
1697 raw_spin_unlock(&old_base->lock);
1698 raw_spin_unlock(&new_base->lock);
37810659 1699
731a55ba
TG
1700 /* Check, if we got expired work to do */
1701 __hrtimer_peek_ahead_timers();
1702 local_irq_enable();
c0a31329 1703}
37810659 1704
c0a31329
TG
1705#endif /* CONFIG_HOTPLUG_CPU */
1706
8c78f307 1707static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1708 unsigned long action, void *hcpu)
1709{
b2e3c0ad 1710 int scpu = (long)hcpu;
c0a31329
TG
1711
1712 switch (action) {
1713
1714 case CPU_UP_PREPARE:
8bb78442 1715 case CPU_UP_PREPARE_FROZEN:
37810659 1716 init_hrtimers_cpu(scpu);
c0a31329
TG
1717 break;
1718
1719#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1720 case CPU_DYING:
1721 case CPU_DYING_FROZEN:
1722 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1723 break;
c0a31329 1724 case CPU_DEAD:
8bb78442 1725 case CPU_DEAD_FROZEN:
b2e3c0ad 1726 {
37810659 1727 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1728 migrate_hrtimers(scpu);
c0a31329 1729 break;
b2e3c0ad 1730 }
c0a31329
TG
1731#endif
1732
1733 default:
1734 break;
1735 }
1736
1737 return NOTIFY_OK;
1738}
1739
8c78f307 1740static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1741 .notifier_call = hrtimer_cpu_notify,
1742};
1743
1744void __init hrtimers_init(void)
1745{
1746 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1747 (void *)(long)smp_processor_id());
1748 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1749#ifdef CONFIG_HIGH_RES_TIMERS
1750 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1751#endif
c0a31329
TG
1752}
1753
7bb67439 1754/**
351b3f7a 1755 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1756 * @expires: timeout value (ktime_t)
654c8e0b 1757 * @delta: slack in expires timeout (ktime_t)
7bb67439 1758 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1759 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1760 */
351b3f7a
CE
1761int __sched
1762schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1763 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1764{
1765 struct hrtimer_sleeper t;
1766
1767 /*
1768 * Optimize when a zero timeout value is given. It does not
1769 * matter whether this is an absolute or a relative time.
1770 */
1771 if (expires && !expires->tv64) {
1772 __set_current_state(TASK_RUNNING);
1773 return 0;
1774 }
1775
1776 /*
1777 * A NULL parameter means "inifinte"
1778 */
1779 if (!expires) {
1780 schedule();
1781 __set_current_state(TASK_RUNNING);
1782 return -EINTR;
1783 }
1784
351b3f7a 1785 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1786 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1787
1788 hrtimer_init_sleeper(&t, current);
1789
cc584b21 1790 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1791 if (!hrtimer_active(&t.timer))
1792 t.task = NULL;
1793
1794 if (likely(t.task))
1795 schedule();
1796
1797 hrtimer_cancel(&t.timer);
1798 destroy_hrtimer_on_stack(&t.timer);
1799
1800 __set_current_state(TASK_RUNNING);
1801
1802 return !t.task ? 0 : -EINTR;
1803}
351b3f7a
CE
1804
1805/**
1806 * schedule_hrtimeout_range - sleep until timeout
1807 * @expires: timeout value (ktime_t)
1808 * @delta: slack in expires timeout (ktime_t)
1809 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1810 *
1811 * Make the current task sleep until the given expiry time has
1812 * elapsed. The routine will return immediately unless
1813 * the current task state has been set (see set_current_state()).
1814 *
1815 * The @delta argument gives the kernel the freedom to schedule the
1816 * actual wakeup to a time that is both power and performance friendly.
1817 * The kernel give the normal best effort behavior for "@expires+@delta",
1818 * but may decide to fire the timer earlier, but no earlier than @expires.
1819 *
1820 * You can set the task state as follows -
1821 *
1822 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1823 * pass before the routine returns.
1824 *
1825 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1826 * delivered to the current task.
1827 *
1828 * The current task state is guaranteed to be TASK_RUNNING when this
1829 * routine returns.
1830 *
1831 * Returns 0 when the timer has expired otherwise -EINTR
1832 */
1833int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1834 const enum hrtimer_mode mode)
1835{
1836 return schedule_hrtimeout_range_clock(expires, delta, mode,
1837 CLOCK_MONOTONIC);
1838}
654c8e0b
AV
1839EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1840
1841/**
1842 * schedule_hrtimeout - sleep until timeout
1843 * @expires: timeout value (ktime_t)
1844 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1845 *
1846 * Make the current task sleep until the given expiry time has
1847 * elapsed. The routine will return immediately unless
1848 * the current task state has been set (see set_current_state()).
1849 *
1850 * You can set the task state as follows -
1851 *
1852 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1853 * pass before the routine returns.
1854 *
1855 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1856 * delivered to the current task.
1857 *
1858 * The current task state is guaranteed to be TASK_RUNNING when this
1859 * routine returns.
1860 *
1861 * Returns 0 when the timer has expired otherwise -EINTR
1862 */
1863int __sched schedule_hrtimeout(ktime_t *expires,
1864 const enum hrtimer_mode mode)
1865{
1866 return schedule_hrtimeout_range(expires, 0, mode);
1867}
7bb67439 1868EXPORT_SYMBOL_GPL(schedule_hrtimeout);