]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/mmzone.h
mm: page allocator: calculate a better estimate of NR_FREE_PAGES when memory is low...
[net-next-2.6.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
01fc0ac1 18#include <generated/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
5f8dcc21 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
64c5e135 42#define MIGRATE_RESERVE 3
a5d76b54
KH
43#define MIGRATE_ISOLATE 4 /* can't allocate from here */
44#define MIGRATE_TYPES 5
b2a0ac88
MG
45
46#define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
49
467c996c
MG
50extern int page_group_by_mobility_disabled;
51
52static inline int get_pageblock_migratetype(struct page *page)
53{
467c996c
MG
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55}
56
1da177e4 57struct free_area {
b2a0ac88 58 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
59 unsigned long nr_free;
60};
61
62struct pglist_data;
63
64/*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70#if defined(CONFIG_SMP)
71struct zone_padding {
72 char x[0];
22fc6ecc 73} ____cacheline_internodealigned_in_smp;
1da177e4
LT
74#define ZONE_PADDING(name) struct zone_padding name;
75#else
76#define ZONE_PADDING(name)
77#endif
78
2244b95a 79enum zone_stat_item {
51ed4491 80 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 81 NR_FREE_PAGES,
b69408e8 82 NR_LRU_BASE,
4f98a2fe
RR
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
894bc310 87 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 91 only modified from process context */
347ce434 92 NR_FILE_PAGES,
b1e7a8fd 93 NR_FILE_DIRTY,
ce866b34 94 NR_WRITEBACK,
51ed4491
CL
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
fd39fc85 100 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 101 NR_BOUNCE,
e129b5c2 102 NR_VMSCAN_WRITE,
fc3ba692 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ca889e6c
CL
107#ifdef CONFIG_NUMA
108 NUMA_HIT, /* allocated in intended node */
109 NUMA_MISS, /* allocated in non intended node */
110 NUMA_FOREIGN, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
112 NUMA_LOCAL, /* allocation from local node */
113 NUMA_OTHER, /* allocation from other node */
114#endif
2244b95a
CL
115 NR_VM_ZONE_STAT_ITEMS };
116
4f98a2fe
RR
117/*
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122 *
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
125 */
126#define LRU_BASE 0
127#define LRU_ACTIVE 1
128#define LRU_FILE 2
129
b69408e8 130enum lru_list {
4f98a2fe
RR
131 LRU_INACTIVE_ANON = LRU_BASE,
132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 135 LRU_UNEVICTABLE,
894bc310
LS
136 NR_LRU_LISTS
137};
b69408e8
CL
138
139#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
140
894bc310
LS
141#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
142
4f98a2fe
RR
143static inline int is_file_lru(enum lru_list l)
144{
145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
146}
147
b69408e8
CL
148static inline int is_active_lru(enum lru_list l)
149{
4f98a2fe 150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
151}
152
894bc310
LS
153static inline int is_unevictable_lru(enum lru_list l)
154{
894bc310 155 return (l == LRU_UNEVICTABLE);
894bc310
LS
156}
157
41858966
MG
158enum zone_watermarks {
159 WMARK_MIN,
160 WMARK_LOW,
161 WMARK_HIGH,
162 NR_WMARK
163};
164
165#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
166#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
167#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
168
1da177e4
LT
169struct per_cpu_pages {
170 int count; /* number of pages in the list */
1da177e4
LT
171 int high; /* high watermark, emptying needed */
172 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
173
174 /* Lists of pages, one per migrate type stored on the pcp-lists */
175 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
176};
177
178struct per_cpu_pageset {
3dfa5721 179 struct per_cpu_pages pcp;
4037d452
CL
180#ifdef CONFIG_NUMA
181 s8 expire;
182#endif
2244b95a 183#ifdef CONFIG_SMP
df9ecaba 184 s8 stat_threshold;
2244b95a
CL
185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
186#endif
99dcc3e5 187};
e7c8d5c9 188
97965478
CL
189#endif /* !__GENERATING_BOUNDS.H */
190
2f1b6248 191enum zone_type {
4b51d669 192#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
193 /*
194 * ZONE_DMA is used when there are devices that are not able
195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
196 * carve out the portion of memory that is needed for these devices.
197 * The range is arch specific.
198 *
199 * Some examples
200 *
201 * Architecture Limit
202 * ---------------------------
203 * parisc, ia64, sparc <4G
204 * s390 <2G
2f1b6248
CL
205 * arm Various
206 * alpha Unlimited or 0-16MB.
207 *
208 * i386, x86_64 and multiple other arches
209 * <16M.
210 */
211 ZONE_DMA,
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
214 /*
215 * x86_64 needs two ZONE_DMAs because it supports devices that are
216 * only able to do DMA to the lower 16M but also 32 bit devices that
217 * can only do DMA areas below 4G.
218 */
219 ZONE_DMA32,
fb0e7942 220#endif
2f1b6248
CL
221 /*
222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
223 * performed on pages in ZONE_NORMAL if the DMA devices support
224 * transfers to all addressable memory.
225 */
226 ZONE_NORMAL,
e53ef38d 227#ifdef CONFIG_HIGHMEM
2f1b6248
CL
228 /*
229 * A memory area that is only addressable by the kernel through
230 * mapping portions into its own address space. This is for example
231 * used by i386 to allow the kernel to address the memory beyond
232 * 900MB. The kernel will set up special mappings (page
233 * table entries on i386) for each page that the kernel needs to
234 * access.
235 */
236 ZONE_HIGHMEM,
e53ef38d 237#endif
2a1e274a 238 ZONE_MOVABLE,
97965478 239 __MAX_NR_ZONES
2f1b6248 240};
1da177e4 241
97965478
CL
242#ifndef __GENERATING_BOUNDS_H
243
1da177e4
LT
244/*
245 * When a memory allocation must conform to specific limitations (such
246 * as being suitable for DMA) the caller will pass in hints to the
247 * allocator in the gfp_mask, in the zone modifier bits. These bits
248 * are used to select a priority ordered list of memory zones which
19655d34 249 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 250 */
fb0e7942 251
97965478 252#if MAX_NR_ZONES < 2
4b51d669 253#define ZONES_SHIFT 0
97965478 254#elif MAX_NR_ZONES <= 2
19655d34 255#define ZONES_SHIFT 1
97965478 256#elif MAX_NR_ZONES <= 4
19655d34 257#define ZONES_SHIFT 2
4b51d669
CL
258#else
259#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 260#endif
1da177e4 261
6e901571
KM
262struct zone_reclaim_stat {
263 /*
264 * The pageout code in vmscan.c keeps track of how many of the
265 * mem/swap backed and file backed pages are refeferenced.
266 * The higher the rotated/scanned ratio, the more valuable
267 * that cache is.
268 *
269 * The anon LRU stats live in [0], file LRU stats in [1]
270 */
271 unsigned long recent_rotated[2];
272 unsigned long recent_scanned[2];
f8629631
WF
273
274 /*
275 * accumulated for batching
276 */
277 unsigned long nr_saved_scan[NR_LRU_LISTS];
6e901571
KM
278};
279
1da177e4
LT
280struct zone {
281 /* Fields commonly accessed by the page allocator */
41858966
MG
282
283 /* zone watermarks, access with *_wmark_pages(zone) macros */
284 unsigned long watermark[NR_WMARK];
285
aa454840
CL
286 /*
287 * When free pages are below this point, additional steps are taken
288 * when reading the number of free pages to avoid per-cpu counter
289 * drift allowing watermarks to be breached
290 */
291 unsigned long percpu_drift_mark;
292
1da177e4
LT
293 /*
294 * We don't know if the memory that we're going to allocate will be freeable
295 * or/and it will be released eventually, so to avoid totally wasting several
296 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
297 * to run OOM on the lower zones despite there's tons of freeable ram
298 * on the higher zones). This array is recalculated at runtime if the
299 * sysctl_lowmem_reserve_ratio sysctl changes.
300 */
301 unsigned long lowmem_reserve[MAX_NR_ZONES];
302
e7c8d5c9 303#ifdef CONFIG_NUMA
d5f541ed 304 int node;
9614634f
CL
305 /*
306 * zone reclaim becomes active if more unmapped pages exist.
307 */
8417bba4 308 unsigned long min_unmapped_pages;
0ff38490 309 unsigned long min_slab_pages;
e7c8d5c9 310#endif
43cf38eb 311 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
312 /*
313 * free areas of different sizes
314 */
315 spinlock_t lock;
93e4a89a 316 int all_unreclaimable; /* All pages pinned */
bdc8cb98
DH
317#ifdef CONFIG_MEMORY_HOTPLUG
318 /* see spanned/present_pages for more description */
319 seqlock_t span_seqlock;
320#endif
1da177e4
LT
321 struct free_area free_area[MAX_ORDER];
322
835c134e
MG
323#ifndef CONFIG_SPARSEMEM
324 /*
d9c23400 325 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
326 * In SPARSEMEM, this map is stored in struct mem_section
327 */
328 unsigned long *pageblock_flags;
329#endif /* CONFIG_SPARSEMEM */
330
4f92e258
MG
331#ifdef CONFIG_COMPACTION
332 /*
333 * On compaction failure, 1<<compact_defer_shift compactions
334 * are skipped before trying again. The number attempted since
335 * last failure is tracked with compact_considered.
336 */
337 unsigned int compact_considered;
338 unsigned int compact_defer_shift;
339#endif
1da177e4
LT
340
341 ZONE_PADDING(_pad1_)
342
343 /* Fields commonly accessed by the page reclaim scanner */
344 spinlock_t lru_lock;
6e08a369 345 struct zone_lru {
b69408e8 346 struct list_head list;
b69408e8 347 } lru[NR_LRU_LISTS];
4f98a2fe 348
6e901571 349 struct zone_reclaim_stat reclaim_stat;
4f98a2fe 350
1da177e4 351 unsigned long pages_scanned; /* since last reclaim */
e815af95 352 unsigned long flags; /* zone flags, see below */
753ee728 353
2244b95a
CL
354 /* Zone statistics */
355 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 356
556adecb
RR
357 /*
358 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
359 * this zone's LRU. Maintained by the pageout code.
360 */
361 unsigned int inactive_ratio;
362
1da177e4
LT
363
364 ZONE_PADDING(_pad2_)
365 /* Rarely used or read-mostly fields */
366
367 /*
368 * wait_table -- the array holding the hash table
02b694de 369 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
370 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
371 *
372 * The purpose of all these is to keep track of the people
373 * waiting for a page to become available and make them
374 * runnable again when possible. The trouble is that this
375 * consumes a lot of space, especially when so few things
376 * wait on pages at a given time. So instead of using
377 * per-page waitqueues, we use a waitqueue hash table.
378 *
379 * The bucket discipline is to sleep on the same queue when
380 * colliding and wake all in that wait queue when removing.
381 * When something wakes, it must check to be sure its page is
382 * truly available, a la thundering herd. The cost of a
383 * collision is great, but given the expected load of the
384 * table, they should be so rare as to be outweighed by the
385 * benefits from the saved space.
386 *
387 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
388 * primary users of these fields, and in mm/page_alloc.c
389 * free_area_init_core() performs the initialization of them.
390 */
391 wait_queue_head_t * wait_table;
02b694de 392 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
393 unsigned long wait_table_bits;
394
395 /*
396 * Discontig memory support fields.
397 */
398 struct pglist_data *zone_pgdat;
1da177e4
LT
399 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
400 unsigned long zone_start_pfn;
401
bdc8cb98
DH
402 /*
403 * zone_start_pfn, spanned_pages and present_pages are all
404 * protected by span_seqlock. It is a seqlock because it has
405 * to be read outside of zone->lock, and it is done in the main
406 * allocator path. But, it is written quite infrequently.
407 *
408 * The lock is declared along with zone->lock because it is
409 * frequently read in proximity to zone->lock. It's good to
410 * give them a chance of being in the same cacheline.
411 */
1da177e4
LT
412 unsigned long spanned_pages; /* total size, including holes */
413 unsigned long present_pages; /* amount of memory (excluding holes) */
414
415 /*
416 * rarely used fields:
417 */
15ad7cdc 418 const char *name;
22fc6ecc 419} ____cacheline_internodealigned_in_smp;
1da177e4 420
e815af95 421typedef enum {
e815af95 422 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 423 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
424} zone_flags_t;
425
426static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
427{
428 set_bit(flag, &zone->flags);
429}
d773ed6b
DR
430
431static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
432{
433 return test_and_set_bit(flag, &zone->flags);
434}
435
e815af95
DR
436static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
437{
438 clear_bit(flag, &zone->flags);
439}
440
e815af95
DR
441static inline int zone_is_reclaim_locked(const struct zone *zone)
442{
443 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
444}
d773ed6b 445
098d7f12
DR
446static inline int zone_is_oom_locked(const struct zone *zone)
447{
448 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
449}
e815af95 450
aa454840
CL
451#ifdef CONFIG_SMP
452unsigned long zone_nr_free_pages(struct zone *zone);
453#else
454#define zone_nr_free_pages(zone) zone_page_state(zone, NR_FREE_PAGES)
455#endif /* CONFIG_SMP */
456
1da177e4
LT
457/*
458 * The "priority" of VM scanning is how much of the queues we will scan in one
459 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
460 * queues ("queue_length >> 12") during an aging round.
461 */
462#define DEF_PRIORITY 12
463
9276b1bc
PJ
464/* Maximum number of zones on a zonelist */
465#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
466
467#ifdef CONFIG_NUMA
523b9458
CL
468
469/*
470 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
471 * allocations to a single node for GFP_THISNODE.
472 *
54a6eb5c
MG
473 * [0] : Zonelist with fallback
474 * [1] : No fallback (GFP_THISNODE)
523b9458 475 */
54a6eb5c 476#define MAX_ZONELISTS 2
523b9458
CL
477
478
9276b1bc
PJ
479/*
480 * We cache key information from each zonelist for smaller cache
481 * footprint when scanning for free pages in get_page_from_freelist().
482 *
483 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
484 * up short of free memory since the last time (last_fullzone_zap)
485 * we zero'd fullzones.
486 * 2) The array z_to_n[] maps each zone in the zonelist to its node
487 * id, so that we can efficiently evaluate whether that node is
488 * set in the current tasks mems_allowed.
489 *
490 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
491 * indexed by a zones offset in the zonelist zones[] array.
492 *
493 * The get_page_from_freelist() routine does two scans. During the
494 * first scan, we skip zones whose corresponding bit in 'fullzones'
495 * is set or whose corresponding node in current->mems_allowed (which
496 * comes from cpusets) is not set. During the second scan, we bypass
497 * this zonelist_cache, to ensure we look methodically at each zone.
498 *
499 * Once per second, we zero out (zap) fullzones, forcing us to
500 * reconsider nodes that might have regained more free memory.
501 * The field last_full_zap is the time we last zapped fullzones.
502 *
503 * This mechanism reduces the amount of time we waste repeatedly
504 * reexaming zones for free memory when they just came up low on
505 * memory momentarilly ago.
506 *
507 * The zonelist_cache struct members logically belong in struct
508 * zonelist. However, the mempolicy zonelists constructed for
509 * MPOL_BIND are intentionally variable length (and usually much
510 * shorter). A general purpose mechanism for handling structs with
511 * multiple variable length members is more mechanism than we want
512 * here. We resort to some special case hackery instead.
513 *
514 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
515 * part because they are shorter), so we put the fixed length stuff
516 * at the front of the zonelist struct, ending in a variable length
517 * zones[], as is needed by MPOL_BIND.
518 *
519 * Then we put the optional zonelist cache on the end of the zonelist
520 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
521 * the fixed length portion at the front of the struct. This pointer
522 * both enables us to find the zonelist cache, and in the case of
523 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
524 * to know that the zonelist cache is not there.
525 *
526 * The end result is that struct zonelists come in two flavors:
527 * 1) The full, fixed length version, shown below, and
528 * 2) The custom zonelists for MPOL_BIND.
529 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
530 *
531 * Even though there may be multiple CPU cores on a node modifying
532 * fullzones or last_full_zap in the same zonelist_cache at the same
533 * time, we don't lock it. This is just hint data - if it is wrong now
534 * and then, the allocator will still function, perhaps a bit slower.
535 */
536
537
538struct zonelist_cache {
9276b1bc 539 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 540 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
541 unsigned long last_full_zap; /* when last zap'd (jiffies) */
542};
543#else
54a6eb5c 544#define MAX_ZONELISTS 1
9276b1bc
PJ
545struct zonelist_cache;
546#endif
547
dd1a239f
MG
548/*
549 * This struct contains information about a zone in a zonelist. It is stored
550 * here to avoid dereferences into large structures and lookups of tables
551 */
552struct zoneref {
553 struct zone *zone; /* Pointer to actual zone */
554 int zone_idx; /* zone_idx(zoneref->zone) */
555};
556
1da177e4
LT
557/*
558 * One allocation request operates on a zonelist. A zonelist
559 * is a list of zones, the first one is the 'goal' of the
560 * allocation, the other zones are fallback zones, in decreasing
561 * priority.
562 *
9276b1bc
PJ
563 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
564 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
565 * *
566 * To speed the reading of the zonelist, the zonerefs contain the zone index
567 * of the entry being read. Helper functions to access information given
568 * a struct zoneref are
569 *
570 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
571 * zonelist_zone_idx() - Return the index of the zone for an entry
572 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
573 */
574struct zonelist {
9276b1bc 575 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 576 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
577#ifdef CONFIG_NUMA
578 struct zonelist_cache zlcache; // optional ...
579#endif
1da177e4
LT
580};
581
c713216d
MG
582#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
583struct node_active_region {
584 unsigned long start_pfn;
585 unsigned long end_pfn;
586 int nid;
587};
588#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 589
5b99cd0e
HC
590#ifndef CONFIG_DISCONTIGMEM
591/* The array of struct pages - for discontigmem use pgdat->lmem_map */
592extern struct page *mem_map;
593#endif
594
1da177e4
LT
595/*
596 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
597 * (mostly NUMA machines?) to denote a higher-level memory zone than the
598 * zone denotes.
599 *
600 * On NUMA machines, each NUMA node would have a pg_data_t to describe
601 * it's memory layout.
602 *
603 * Memory statistics and page replacement data structures are maintained on a
604 * per-zone basis.
605 */
606struct bootmem_data;
607typedef struct pglist_data {
608 struct zone node_zones[MAX_NR_ZONES];
523b9458 609 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 610 int nr_zones;
52d4b9ac 611#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 612 struct page *node_mem_map;
52d4b9ac
KH
613#ifdef CONFIG_CGROUP_MEM_RES_CTLR
614 struct page_cgroup *node_page_cgroup;
615#endif
d41dee36 616#endif
08677214 617#ifndef CONFIG_NO_BOOTMEM
1da177e4 618 struct bootmem_data *bdata;
08677214 619#endif
208d54e5
DH
620#ifdef CONFIG_MEMORY_HOTPLUG
621 /*
622 * Must be held any time you expect node_start_pfn, node_present_pages
623 * or node_spanned_pages stay constant. Holding this will also
624 * guarantee that any pfn_valid() stays that way.
625 *
626 * Nests above zone->lock and zone->size_seqlock.
627 */
628 spinlock_t node_size_lock;
629#endif
1da177e4
LT
630 unsigned long node_start_pfn;
631 unsigned long node_present_pages; /* total number of physical pages */
632 unsigned long node_spanned_pages; /* total size of physical page
633 range, including holes */
634 int node_id;
1da177e4
LT
635 wait_queue_head_t kswapd_wait;
636 struct task_struct *kswapd;
637 int kswapd_max_order;
638} pg_data_t;
639
640#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
641#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 642#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 643#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
644#else
645#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
646#endif
408fde81 647#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 648
208d54e5
DH
649#include <linux/memory_hotplug.h>
650
4eaf3f64 651extern struct mutex zonelists_mutex;
1f522509 652void build_all_zonelists(void *data);
1da177e4
LT
653void wakeup_kswapd(struct zone *zone, int order);
654int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 655 int classzone_idx, int alloc_flags);
a2f3aa02
DH
656enum memmap_context {
657 MEMMAP_EARLY,
658 MEMMAP_HOTPLUG,
659};
718127cc 660extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
661 unsigned long size,
662 enum memmap_context context);
718127cc 663
1da177e4
LT
664#ifdef CONFIG_HAVE_MEMORY_PRESENT
665void memory_present(int nid, unsigned long start, unsigned long end);
666#else
667static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
668#endif
669
7aac7898
LS
670#ifdef CONFIG_HAVE_MEMORYLESS_NODES
671int local_memory_node(int node_id);
672#else
673static inline int local_memory_node(int node_id) { return node_id; };
674#endif
675
1da177e4
LT
676#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
677unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
678#endif
679
680/*
681 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
682 */
683#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
684
f3fe6512
CK
685static inline int populated_zone(struct zone *zone)
686{
687 return (!!zone->present_pages);
688}
689
2a1e274a
MG
690extern int movable_zone;
691
692static inline int zone_movable_is_highmem(void)
693{
694#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
695 return movable_zone == ZONE_HIGHMEM;
696#else
697 return 0;
698#endif
699}
700
2f1b6248 701static inline int is_highmem_idx(enum zone_type idx)
1da177e4 702{
e53ef38d 703#ifdef CONFIG_HIGHMEM
2a1e274a
MG
704 return (idx == ZONE_HIGHMEM ||
705 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
706#else
707 return 0;
708#endif
1da177e4
LT
709}
710
2f1b6248 711static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
712{
713 return (idx == ZONE_NORMAL);
714}
9328b8fa 715
1da177e4
LT
716/**
717 * is_highmem - helper function to quickly check if a struct zone is a
718 * highmem zone or not. This is an attempt to keep references
719 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
720 * @zone - pointer to struct zone variable
721 */
722static inline int is_highmem(struct zone *zone)
723{
e53ef38d 724#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
725 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
726 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
727 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
728 zone_movable_is_highmem());
e53ef38d
CL
729#else
730 return 0;
731#endif
1da177e4
LT
732}
733
734static inline int is_normal(struct zone *zone)
735{
736 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
737}
738
9328b8fa
NP
739static inline int is_dma32(struct zone *zone)
740{
fb0e7942 741#ifdef CONFIG_ZONE_DMA32
9328b8fa 742 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
743#else
744 return 0;
745#endif
9328b8fa
NP
746}
747
748static inline int is_dma(struct zone *zone)
749{
4b51d669 750#ifdef CONFIG_ZONE_DMA
9328b8fa 751 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
752#else
753 return 0;
754#endif
9328b8fa
NP
755}
756
1da177e4
LT
757/* These two functions are used to setup the per zone pages min values */
758struct ctl_table;
8d65af78 759int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
760 void __user *, size_t *, loff_t *);
761extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 762int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 763 void __user *, size_t *, loff_t *);
8d65af78 764int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 765 void __user *, size_t *, loff_t *);
9614634f 766int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 767 void __user *, size_t *, loff_t *);
0ff38490 768int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 769 void __user *, size_t *, loff_t *);
1da177e4 770
f0c0b2b8 771extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 772 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
773extern char numa_zonelist_order[];
774#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
775
93b7504e 776#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
777
778extern struct pglist_data contig_page_data;
779#define NODE_DATA(nid) (&contig_page_data)
780#define NODE_MEM_MAP(nid) mem_map
1da177e4 781
93b7504e 782#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
783
784#include <asm/mmzone.h>
785
93b7504e 786#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 787
95144c78
KH
788extern struct pglist_data *first_online_pgdat(void);
789extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
790extern struct zone *next_zone(struct zone *zone);
8357f869
KH
791
792/**
12d15f0d 793 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
794 * @pgdat - pointer to a pg_data_t variable
795 */
796#define for_each_online_pgdat(pgdat) \
797 for (pgdat = first_online_pgdat(); \
798 pgdat; \
799 pgdat = next_online_pgdat(pgdat))
8357f869
KH
800/**
801 * for_each_zone - helper macro to iterate over all memory zones
802 * @zone - pointer to struct zone variable
803 *
804 * The user only needs to declare the zone variable, for_each_zone
805 * fills it in.
806 */
807#define for_each_zone(zone) \
808 for (zone = (first_online_pgdat())->node_zones; \
809 zone; \
810 zone = next_zone(zone))
811
ee99c71c
KM
812#define for_each_populated_zone(zone) \
813 for (zone = (first_online_pgdat())->node_zones; \
814 zone; \
815 zone = next_zone(zone)) \
816 if (!populated_zone(zone)) \
817 ; /* do nothing */ \
818 else
819
dd1a239f
MG
820static inline struct zone *zonelist_zone(struct zoneref *zoneref)
821{
822 return zoneref->zone;
823}
824
825static inline int zonelist_zone_idx(struct zoneref *zoneref)
826{
827 return zoneref->zone_idx;
828}
829
830static inline int zonelist_node_idx(struct zoneref *zoneref)
831{
832#ifdef CONFIG_NUMA
833 /* zone_to_nid not available in this context */
834 return zoneref->zone->node;
835#else
836 return 0;
837#endif /* CONFIG_NUMA */
838}
839
19770b32
MG
840/**
841 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
842 * @z - The cursor used as a starting point for the search
843 * @highest_zoneidx - The zone index of the highest zone to return
844 * @nodes - An optional nodemask to filter the zonelist with
845 * @zone - The first suitable zone found is returned via this parameter
846 *
847 * This function returns the next zone at or below a given zone index that is
848 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
849 * search. The zoneref returned is a cursor that represents the current zone
850 * being examined. It should be advanced by one before calling
851 * next_zones_zonelist again.
19770b32
MG
852 */
853struct zoneref *next_zones_zonelist(struct zoneref *z,
854 enum zone_type highest_zoneidx,
855 nodemask_t *nodes,
856 struct zone **zone);
dd1a239f 857
19770b32
MG
858/**
859 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
860 * @zonelist - The zonelist to search for a suitable zone
861 * @highest_zoneidx - The zone index of the highest zone to return
862 * @nodes - An optional nodemask to filter the zonelist with
863 * @zone - The first suitable zone found is returned via this parameter
864 *
865 * This function returns the first zone at or below a given zone index that is
866 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
867 * used to iterate the zonelist with next_zones_zonelist by advancing it by
868 * one before calling.
19770b32 869 */
dd1a239f 870static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
871 enum zone_type highest_zoneidx,
872 nodemask_t *nodes,
873 struct zone **zone)
54a6eb5c 874{
19770b32
MG
875 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
876 zone);
54a6eb5c
MG
877}
878
19770b32
MG
879/**
880 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
881 * @zone - The current zone in the iterator
882 * @z - The current pointer within zonelist->zones being iterated
883 * @zlist - The zonelist being iterated
884 * @highidx - The zone index of the highest zone to return
885 * @nodemask - Nodemask allowed by the allocator
886 *
887 * This iterator iterates though all zones at or below a given zone index and
888 * within a given nodemask
889 */
890#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
891 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
892 zone; \
5bead2a0 893 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
894
895/**
896 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
897 * @zone - The current zone in the iterator
898 * @z - The current pointer within zonelist->zones being iterated
899 * @zlist - The zonelist being iterated
900 * @highidx - The zone index of the highest zone to return
901 *
902 * This iterator iterates though all zones at or below a given zone index.
903 */
904#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 905 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 906
d41dee36
AW
907#ifdef CONFIG_SPARSEMEM
908#include <asm/sparsemem.h>
909#endif
910
c713216d
MG
911#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
912 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
913static inline unsigned long early_pfn_to_nid(unsigned long pfn)
914{
915 return 0;
916}
b159d43f
AW
917#endif
918
2bdaf115
AW
919#ifdef CONFIG_FLATMEM
920#define pfn_to_nid(pfn) (0)
921#endif
922
d41dee36
AW
923#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
924#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
925
926#ifdef CONFIG_SPARSEMEM
927
928/*
929 * SECTION_SHIFT #bits space required to store a section #
930 *
931 * PA_SECTION_SHIFT physical address to/from section number
932 * PFN_SECTION_SHIFT pfn to/from section number
933 */
934#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
935
936#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
937#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
938
939#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
940
941#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
942#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
943
835c134e 944#define SECTION_BLOCKFLAGS_BITS \
d9c23400 945 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 946
d41dee36
AW
947#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
948#error Allocator MAX_ORDER exceeds SECTION_SIZE
949#endif
950
951struct page;
52d4b9ac 952struct page_cgroup;
d41dee36 953struct mem_section {
29751f69
AW
954 /*
955 * This is, logically, a pointer to an array of struct
956 * pages. However, it is stored with some other magic.
957 * (see sparse.c::sparse_init_one_section())
958 *
30c253e6
AW
959 * Additionally during early boot we encode node id of
960 * the location of the section here to guide allocation.
961 * (see sparse.c::memory_present())
962 *
29751f69
AW
963 * Making it a UL at least makes someone do a cast
964 * before using it wrong.
965 */
966 unsigned long section_mem_map;
5c0e3066
MG
967
968 /* See declaration of similar field in struct zone */
969 unsigned long *pageblock_flags;
52d4b9ac
KH
970#ifdef CONFIG_CGROUP_MEM_RES_CTLR
971 /*
972 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
973 * section. (see memcontrol.h/page_cgroup.h about this.)
974 */
975 struct page_cgroup *page_cgroup;
976 unsigned long pad;
977#endif
d41dee36
AW
978};
979
3e347261
BP
980#ifdef CONFIG_SPARSEMEM_EXTREME
981#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
982#else
983#define SECTIONS_PER_ROOT 1
984#endif
802f192e 985
3e347261 986#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 987#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 988#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 989
3e347261
BP
990#ifdef CONFIG_SPARSEMEM_EXTREME
991extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 992#else
3e347261
BP
993extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
994#endif
d41dee36 995
29751f69
AW
996static inline struct mem_section *__nr_to_section(unsigned long nr)
997{
3e347261
BP
998 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
999 return NULL;
1000 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1001}
4ca644d9 1002extern int __section_nr(struct mem_section* ms);
04753278 1003extern unsigned long usemap_size(void);
29751f69
AW
1004
1005/*
1006 * We use the lower bits of the mem_map pointer to store
1007 * a little bit of information. There should be at least
1008 * 3 bits here due to 32-bit alignment.
1009 */
1010#define SECTION_MARKED_PRESENT (1UL<<0)
1011#define SECTION_HAS_MEM_MAP (1UL<<1)
1012#define SECTION_MAP_LAST_BIT (1UL<<2)
1013#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1014#define SECTION_NID_SHIFT 2
29751f69
AW
1015
1016static inline struct page *__section_mem_map_addr(struct mem_section *section)
1017{
1018 unsigned long map = section->section_mem_map;
1019 map &= SECTION_MAP_MASK;
1020 return (struct page *)map;
1021}
1022
540557b9 1023static inline int present_section(struct mem_section *section)
29751f69 1024{
802f192e 1025 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1026}
1027
540557b9
AW
1028static inline int present_section_nr(unsigned long nr)
1029{
1030 return present_section(__nr_to_section(nr));
1031}
1032
1033static inline int valid_section(struct mem_section *section)
29751f69 1034{
802f192e 1035 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1036}
1037
1038static inline int valid_section_nr(unsigned long nr)
1039{
1040 return valid_section(__nr_to_section(nr));
1041}
1042
d41dee36
AW
1043static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1044{
29751f69 1045 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1046}
1047
d41dee36
AW
1048static inline int pfn_valid(unsigned long pfn)
1049{
1050 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1051 return 0;
29751f69 1052 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1053}
1054
540557b9
AW
1055static inline int pfn_present(unsigned long pfn)
1056{
1057 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1058 return 0;
1059 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1060}
1061
d41dee36
AW
1062/*
1063 * These are _only_ used during initialisation, therefore they
1064 * can use __initdata ... They could have names to indicate
1065 * this restriction.
1066 */
1067#ifdef CONFIG_NUMA
161599ff
AW
1068#define pfn_to_nid(pfn) \
1069({ \
1070 unsigned long __pfn_to_nid_pfn = (pfn); \
1071 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1072})
2bdaf115
AW
1073#else
1074#define pfn_to_nid(pfn) (0)
d41dee36
AW
1075#endif
1076
d41dee36
AW
1077#define early_pfn_valid(pfn) pfn_valid(pfn)
1078void sparse_init(void);
1079#else
1080#define sparse_init() do {} while (0)
28ae55c9 1081#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1082#endif /* CONFIG_SPARSEMEM */
1083
75167957 1084#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1085bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1086#else
1087#define early_pfn_in_nid(pfn, nid) (1)
1088#endif
1089
d41dee36
AW
1090#ifndef early_pfn_valid
1091#define early_pfn_valid(pfn) (1)
1092#endif
1093
1094void memory_present(int nid, unsigned long start, unsigned long end);
1095unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1096
14e07298
AW
1097/*
1098 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1099 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1100 * pfn_valid_within() should be used in this case; we optimise this away
1101 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1102 */
1103#ifdef CONFIG_HOLES_IN_ZONE
1104#define pfn_valid_within(pfn) pfn_valid(pfn)
1105#else
1106#define pfn_valid_within(pfn) (1)
1107#endif
1108
eb33575c
MG
1109#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1110/*
1111 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1112 * associated with it or not. In FLATMEM, it is expected that holes always
1113 * have valid memmap as long as there is valid PFNs either side of the hole.
1114 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1115 * entire section.
1116 *
1117 * However, an ARM, and maybe other embedded architectures in the future
1118 * free memmap backing holes to save memory on the assumption the memmap is
1119 * never used. The page_zone linkages are then broken even though pfn_valid()
1120 * returns true. A walker of the full memmap must then do this additional
1121 * check to ensure the memmap they are looking at is sane by making sure
1122 * the zone and PFN linkages are still valid. This is expensive, but walkers
1123 * of the full memmap are extremely rare.
1124 */
1125int memmap_valid_within(unsigned long pfn,
1126 struct page *page, struct zone *zone);
1127#else
1128static inline int memmap_valid_within(unsigned long pfn,
1129 struct page *page, struct zone *zone)
1130{
1131 return 1;
1132}
1133#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1134
97965478 1135#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1136#endif /* !__ASSEMBLY__ */
1da177e4 1137#endif /* _LINUX_MMZONE_H */