]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/xfs_extfree_item.c
xps: Transmit Packet Steering
[net-next-2.6.git] / fs / xfs / xfs_extfree_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
1da177e4 21#include "xfs_log.h"
a844f451 22#include "xfs_inum.h"
1da177e4
LT
23#include "xfs_trans.h"
24#include "xfs_buf_item.h"
25#include "xfs_sb.h"
da353b0d 26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_trans_priv.h"
29#include "xfs_extfree_item.h"
30
31
32kmem_zone_t *xfs_efi_zone;
33kmem_zone_t *xfs_efd_zone;
34
7bfa31d8
CH
35static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
36{
37 return container_of(lip, struct xfs_efi_log_item, efi_item);
38}
1da177e4 39
7d795ca3 40void
7bfa31d8
CH
41xfs_efi_item_free(
42 struct xfs_efi_log_item *efip)
7d795ca3 43{
7bfa31d8 44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
f0e2d93c 45 kmem_free(efip);
7bfa31d8 46 else
7d795ca3 47 kmem_zone_free(xfs_efi_zone, efip);
7d795ca3 48}
1da177e4
LT
49
50/*
51 * This returns the number of iovecs needed to log the given efi item.
52 * We only need 1 iovec for an efi item. It just logs the efi_log_format
53 * structure.
54 */
1da177e4 55STATIC uint
7bfa31d8
CH
56xfs_efi_item_size(
57 struct xfs_log_item *lip)
1da177e4
LT
58{
59 return 1;
60}
61
62/*
63 * This is called to fill in the vector of log iovecs for the
64 * given efi log item. We use only 1 iovec, and we point that
65 * at the efi_log_format structure embedded in the efi item.
66 * It is at this point that we assert that all of the extent
67 * slots in the efi item have been filled.
68 */
69STATIC void
7bfa31d8
CH
70xfs_efi_item_format(
71 struct xfs_log_item *lip,
72 struct xfs_log_iovec *log_vector)
1da177e4 73{
7bfa31d8
CH
74 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
75 uint size;
1da177e4
LT
76
77 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
78
79 efip->efi_format.efi_type = XFS_LI_EFI;
80
81 size = sizeof(xfs_efi_log_format_t);
82 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
83 efip->efi_format.efi_size = 1;
84
4e0d5f92 85 log_vector->i_addr = &efip->efi_format;
1da177e4 86 log_vector->i_len = size;
4139b3b3 87 log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
1da177e4
LT
88 ASSERT(size >= sizeof(xfs_efi_log_format_t));
89}
90
91
92/*
93 * Pinning has no meaning for an efi item, so just return.
94 */
1da177e4 95STATIC void
7bfa31d8
CH
96xfs_efi_item_pin(
97 struct xfs_log_item *lip)
1da177e4 98{
1da177e4
LT
99}
100
1da177e4
LT
101/*
102 * While EFIs cannot really be pinned, the unpin operation is the
103 * last place at which the EFI is manipulated during a transaction.
104 * Here we coordinate with xfs_efi_cancel() to determine who gets to
105 * free the EFI.
106 */
1da177e4 107STATIC void
7bfa31d8
CH
108xfs_efi_item_unpin(
109 struct xfs_log_item *lip,
110 int remove)
1da177e4 111{
7bfa31d8
CH
112 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
113 struct xfs_ail *ailp = lip->li_ailp;
1da177e4 114
fc1829f3 115 spin_lock(&ailp->xa_lock);
1da177e4 116 if (efip->efi_flags & XFS_EFI_CANCELED) {
9412e318
CH
117 if (remove)
118 xfs_trans_del_item(lip);
783a2f65
DC
119
120 /* xfs_trans_ail_delete() drops the AIL lock. */
e98c414f 121 xfs_trans_ail_delete(ailp, lip);
7d795ca3 122 xfs_efi_item_free(efip);
1da177e4
LT
123 } else {
124 efip->efi_flags |= XFS_EFI_COMMITTED;
fc1829f3 125 spin_unlock(&ailp->xa_lock);
1da177e4 126 }
1da177e4
LT
127}
128
129/*
130 * Efi items have no locking or pushing. However, since EFIs are
131 * pulled from the AIL when their corresponding EFDs are committed
132 * to disk, their situation is very similar to being pinned. Return
133 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
134 * This should help in getting the EFI out of the AIL.
135 */
1da177e4 136STATIC uint
7bfa31d8
CH
137xfs_efi_item_trylock(
138 struct xfs_log_item *lip)
1da177e4
LT
139{
140 return XFS_ITEM_PINNED;
141}
142
143/*
144 * Efi items have no locking, so just return.
145 */
1da177e4 146STATIC void
7bfa31d8
CH
147xfs_efi_item_unlock(
148 struct xfs_log_item *lip)
1da177e4 149{
7bfa31d8
CH
150 if (lip->li_flags & XFS_LI_ABORTED)
151 xfs_efi_item_free(EFI_ITEM(lip));
1da177e4
LT
152}
153
154/*
155 * The EFI is logged only once and cannot be moved in the log, so
156 * simply return the lsn at which it's been logged. The canceled
157 * flag is not paid any attention here. Checking for that is delayed
158 * until the EFI is unpinned.
159 */
1da177e4 160STATIC xfs_lsn_t
7bfa31d8
CH
161xfs_efi_item_committed(
162 struct xfs_log_item *lip,
163 xfs_lsn_t lsn)
1da177e4
LT
164{
165 return lsn;
166}
167
1da177e4
LT
168/*
169 * There isn't much you can do to push on an efi item. It is simply
170 * stuck waiting for all of its corresponding efd items to be
171 * committed to disk.
172 */
1da177e4 173STATIC void
7bfa31d8
CH
174xfs_efi_item_push(
175 struct xfs_log_item *lip)
1da177e4 176{
1da177e4
LT
177}
178
179/*
180 * The EFI dependency tracking op doesn't do squat. It can't because
181 * it doesn't know where the free extent is coming from. The dependency
182 * tracking has to be handled by the "enclosing" metadata object. For
183 * example, for inodes, the inode is locked throughout the extent freeing
184 * so the dependency should be recorded there.
185 */
1da177e4 186STATIC void
7bfa31d8
CH
187xfs_efi_item_committing(
188 struct xfs_log_item *lip,
189 xfs_lsn_t lsn)
1da177e4 190{
1da177e4
LT
191}
192
193/*
194 * This is the ops vector shared by all efi log items.
195 */
7989cb8e 196static struct xfs_item_ops xfs_efi_item_ops = {
7bfa31d8
CH
197 .iop_size = xfs_efi_item_size,
198 .iop_format = xfs_efi_item_format,
199 .iop_pin = xfs_efi_item_pin,
200 .iop_unpin = xfs_efi_item_unpin,
201 .iop_trylock = xfs_efi_item_trylock,
202 .iop_unlock = xfs_efi_item_unlock,
203 .iop_committed = xfs_efi_item_committed,
204 .iop_push = xfs_efi_item_push,
205 .iop_committing = xfs_efi_item_committing
1da177e4
LT
206};
207
208
209/*
210 * Allocate and initialize an efi item with the given number of extents.
211 */
7bfa31d8
CH
212struct xfs_efi_log_item *
213xfs_efi_init(
214 struct xfs_mount *mp,
215 uint nextents)
1da177e4
LT
216
217{
7bfa31d8 218 struct xfs_efi_log_item *efip;
1da177e4
LT
219 uint size;
220
221 ASSERT(nextents > 0);
222 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
223 size = (uint)(sizeof(xfs_efi_log_item_t) +
224 ((nextents - 1) * sizeof(xfs_extent_t)));
7bfa31d8 225 efip = kmem_zalloc(size, KM_SLEEP);
1da177e4 226 } else {
7bfa31d8 227 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
1da177e4
LT
228 }
229
43f5efc5 230 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
1da177e4
LT
231 efip->efi_format.efi_nextents = nextents;
232 efip->efi_format.efi_id = (__psint_t)(void*)efip;
233
7bfa31d8 234 return efip;
1da177e4
LT
235}
236
6d192a9b
TS
237/*
238 * Copy an EFI format buffer from the given buf, and into the destination
239 * EFI format structure.
240 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
241 * one of which will be the native format for this kernel.
242 * It will handle the conversion of formats if necessary.
243 */
244int
245xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
246{
4e0d5f92 247 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
6d192a9b
TS
248 uint i;
249 uint len = sizeof(xfs_efi_log_format_t) +
250 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
251 uint len32 = sizeof(xfs_efi_log_format_32_t) +
252 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
253 uint len64 = sizeof(xfs_efi_log_format_64_t) +
254 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
255
256 if (buf->i_len == len) {
257 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
258 return 0;
259 } else if (buf->i_len == len32) {
4e0d5f92 260 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
6d192a9b
TS
261
262 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
263 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
264 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
265 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
266 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
267 dst_efi_fmt->efi_extents[i].ext_start =
268 src_efi_fmt_32->efi_extents[i].ext_start;
269 dst_efi_fmt->efi_extents[i].ext_len =
270 src_efi_fmt_32->efi_extents[i].ext_len;
271 }
272 return 0;
273 } else if (buf->i_len == len64) {
4e0d5f92 274 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
6d192a9b
TS
275
276 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
277 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
278 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
279 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
280 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
281 dst_efi_fmt->efi_extents[i].ext_start =
282 src_efi_fmt_64->efi_extents[i].ext_start;
283 dst_efi_fmt->efi_extents[i].ext_len =
284 src_efi_fmt_64->efi_extents[i].ext_len;
285 }
286 return 0;
287 }
288 return EFSCORRUPTED;
289}
290
1da177e4
LT
291/*
292 * This is called by the efd item code below to release references to
293 * the given efi item. Each efd calls this with the number of
294 * extents that it has logged, and when the sum of these reaches
295 * the total number of extents logged by this efi item we can free
296 * the efi item.
297 *
298 * Freeing the efi item requires that we remove it from the AIL.
299 * We'll use the AIL lock to protect our counters as well as
300 * the removal from the AIL.
301 */
302void
303xfs_efi_release(xfs_efi_log_item_t *efip,
304 uint nextents)
305{
783a2f65 306 struct xfs_ail *ailp = efip->efi_item.li_ailp;
fc1829f3 307 int extents_left;
1da177e4 308
1da177e4
LT
309 ASSERT(efip->efi_next_extent > 0);
310 ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
311
fc1829f3 312 spin_lock(&ailp->xa_lock);
1da177e4
LT
313 ASSERT(efip->efi_next_extent >= nextents);
314 efip->efi_next_extent -= nextents;
315 extents_left = efip->efi_next_extent;
316 if (extents_left == 0) {
783a2f65
DC
317 /* xfs_trans_ail_delete() drops the AIL lock. */
318 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
7d795ca3 319 xfs_efi_item_free(efip);
1da177e4 320 } else {
fc1829f3 321 spin_unlock(&ailp->xa_lock);
1da177e4 322 }
1da177e4
LT
323}
324
7bfa31d8 325static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
7d795ca3 326{
7bfa31d8
CH
327 return container_of(lip, struct xfs_efd_log_item, efd_item);
328}
1da177e4 329
7bfa31d8
CH
330STATIC void
331xfs_efd_item_free(struct xfs_efd_log_item *efdp)
332{
333 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
f0e2d93c 334 kmem_free(efdp);
7bfa31d8 335 else
7d795ca3 336 kmem_zone_free(xfs_efd_zone, efdp);
7d795ca3 337}
1da177e4
LT
338
339/*
340 * This returns the number of iovecs needed to log the given efd item.
341 * We only need 1 iovec for an efd item. It just logs the efd_log_format
342 * structure.
343 */
1da177e4 344STATIC uint
7bfa31d8
CH
345xfs_efd_item_size(
346 struct xfs_log_item *lip)
1da177e4
LT
347{
348 return 1;
349}
350
351/*
352 * This is called to fill in the vector of log iovecs for the
353 * given efd log item. We use only 1 iovec, and we point that
354 * at the efd_log_format structure embedded in the efd item.
355 * It is at this point that we assert that all of the extent
356 * slots in the efd item have been filled.
357 */
358STATIC void
7bfa31d8
CH
359xfs_efd_item_format(
360 struct xfs_log_item *lip,
361 struct xfs_log_iovec *log_vector)
1da177e4 362{
7bfa31d8
CH
363 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
364 uint size;
1da177e4
LT
365
366 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
367
368 efdp->efd_format.efd_type = XFS_LI_EFD;
369
370 size = sizeof(xfs_efd_log_format_t);
371 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
372 efdp->efd_format.efd_size = 1;
373
4e0d5f92 374 log_vector->i_addr = &efdp->efd_format;
1da177e4 375 log_vector->i_len = size;
4139b3b3 376 log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
1da177e4
LT
377 ASSERT(size >= sizeof(xfs_efd_log_format_t));
378}
379
1da177e4
LT
380/*
381 * Pinning has no meaning for an efd item, so just return.
382 */
1da177e4 383STATIC void
7bfa31d8
CH
384xfs_efd_item_pin(
385 struct xfs_log_item *lip)
1da177e4 386{
1da177e4
LT
387}
388
1da177e4
LT
389/*
390 * Since pinning has no meaning for an efd item, unpinning does
391 * not either.
392 */
1da177e4 393STATIC void
7bfa31d8
CH
394xfs_efd_item_unpin(
395 struct xfs_log_item *lip,
396 int remove)
1da177e4 397{
1da177e4
LT
398}
399
400/*
401 * Efd items have no locking, so just return success.
402 */
1da177e4 403STATIC uint
7bfa31d8
CH
404xfs_efd_item_trylock(
405 struct xfs_log_item *lip)
1da177e4
LT
406{
407 return XFS_ITEM_LOCKED;
408}
409
410/*
411 * Efd items have no locking or pushing, so return failure
412 * so that the caller doesn't bother with us.
413 */
1da177e4 414STATIC void
7bfa31d8
CH
415xfs_efd_item_unlock(
416 struct xfs_log_item *lip)
1da177e4 417{
7bfa31d8
CH
418 if (lip->li_flags & XFS_LI_ABORTED)
419 xfs_efd_item_free(EFD_ITEM(lip));
1da177e4
LT
420}
421
422/*
423 * When the efd item is committed to disk, all we need to do
424 * is delete our reference to our partner efi item and then
425 * free ourselves. Since we're freeing ourselves we must
426 * return -1 to keep the transaction code from further referencing
427 * this item.
428 */
1da177e4 429STATIC xfs_lsn_t
7bfa31d8
CH
430xfs_efd_item_committed(
431 struct xfs_log_item *lip,
432 xfs_lsn_t lsn)
1da177e4 433{
7bfa31d8
CH
434 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
435
1da177e4
LT
436 /*
437 * If we got a log I/O error, it's always the case that the LR with the
438 * EFI got unpinned and freed before the EFD got aborted.
439 */
7bfa31d8 440 if (!(lip->li_flags & XFS_LI_ABORTED))
1da177e4
LT
441 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
442
7d795ca3 443 xfs_efd_item_free(efdp);
1da177e4
LT
444 return (xfs_lsn_t)-1;
445}
446
1da177e4
LT
447/*
448 * There isn't much you can do to push on an efd item. It is simply
449 * stuck waiting for the log to be flushed to disk.
450 */
1da177e4 451STATIC void
7bfa31d8
CH
452xfs_efd_item_push(
453 struct xfs_log_item *lip)
1da177e4 454{
1da177e4
LT
455}
456
457/*
458 * The EFD dependency tracking op doesn't do squat. It can't because
459 * it doesn't know where the free extent is coming from. The dependency
460 * tracking has to be handled by the "enclosing" metadata object. For
461 * example, for inodes, the inode is locked throughout the extent freeing
462 * so the dependency should be recorded there.
463 */
1da177e4 464STATIC void
7bfa31d8
CH
465xfs_efd_item_committing(
466 struct xfs_log_item *lip,
467 xfs_lsn_t lsn)
1da177e4 468{
1da177e4
LT
469}
470
471/*
472 * This is the ops vector shared by all efd log items.
473 */
7989cb8e 474static struct xfs_item_ops xfs_efd_item_ops = {
7bfa31d8
CH
475 .iop_size = xfs_efd_item_size,
476 .iop_format = xfs_efd_item_format,
477 .iop_pin = xfs_efd_item_pin,
478 .iop_unpin = xfs_efd_item_unpin,
479 .iop_trylock = xfs_efd_item_trylock,
480 .iop_unlock = xfs_efd_item_unlock,
481 .iop_committed = xfs_efd_item_committed,
482 .iop_push = xfs_efd_item_push,
483 .iop_committing = xfs_efd_item_committing
1da177e4
LT
484};
485
1da177e4
LT
486/*
487 * Allocate and initialize an efd item with the given number of extents.
488 */
7bfa31d8
CH
489struct xfs_efd_log_item *
490xfs_efd_init(
491 struct xfs_mount *mp,
492 struct xfs_efi_log_item *efip,
493 uint nextents)
1da177e4
LT
494
495{
7bfa31d8 496 struct xfs_efd_log_item *efdp;
1da177e4
LT
497 uint size;
498
499 ASSERT(nextents > 0);
500 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
501 size = (uint)(sizeof(xfs_efd_log_item_t) +
502 ((nextents - 1) * sizeof(xfs_extent_t)));
7bfa31d8 503 efdp = kmem_zalloc(size, KM_SLEEP);
1da177e4 504 } else {
7bfa31d8 505 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
1da177e4
LT
506 }
507
43f5efc5 508 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
1da177e4
LT
509 efdp->efd_efip = efip;
510 efdp->efd_format.efd_nextents = nextents;
511 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
512
7bfa31d8 513 return efdp;
1da177e4 514}