]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/linux-2.6/xfs_buf.c
Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
ed3b4d6c 40#include "xfs_log.h"
b7963133 41#include "xfs_ag.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
7f8275d0 47STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
ce8e922c 48STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
8e1f936b
RR
49static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52};
23ea4032 53
7989cb8e 54static struct workqueue_struct *xfslogd_workqueue;
0829c360 55struct workqueue_struct *xfsdatad_workqueue;
c626d174 56struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 57
ce8e922c
NS
58#ifdef XFS_BUF_LOCK_TRACKING
59# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 62#else
ce8e922c
NS
63# define XB_SET_OWNER(bp) do { } while (0)
64# define XB_CLEAR_OWNER(bp) do { } while (0)
65# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
66#endif
67
ce8e922c
NS
68#define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 71
ce8e922c
NS
72#define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 74
ce8e922c
NS
75#define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77#define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 79
73c77e2c
JB
80static inline int
81xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83{
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92}
93
94static inline int
95xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97{
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99}
100
1da177e4 101/*
ce8e922c 102 * Page Region interfaces.
1da177e4 103 *
ce8e922c
NS
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
1da177e4 107 *
ce8e922c 108 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 109 *
ce8e922c
NS
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
113 */
114#if (BITS_PER_LONG == 32)
115#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116#elif (BITS_PER_LONG == 64)
117#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118#else
119#error BITS_PER_LONG must be 32 or 64
120#endif
121#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125STATIC unsigned long
126page_region_mask(
127 size_t offset,
128 size_t length)
129{
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145}
146
b8f82a4a 147STATIC void
1da177e4
LT
148set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152{
4c21e2f2
HD
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
1da177e4
LT
156 SetPageUptodate(page);
157}
158
b8f82a4a 159STATIC int
1da177e4
LT
160test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164{
165 unsigned long mask = page_region_mask(offset, length);
166
4c21e2f2 167 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
168}
169
1da177e4 170/*
ce8e922c 171 * Internal xfs_buf_t object manipulation
1da177e4
LT
172 */
173
174STATIC void
ce8e922c
NS
175_xfs_buf_initialize(
176 xfs_buf_t *bp,
1da177e4 177 xfs_buftarg_t *target,
204ab25f 178 xfs_off_t range_base,
1da177e4 179 size_t range_length,
ce8e922c 180 xfs_buf_flags_t flags)
1da177e4
LT
181{
182 /*
ce8e922c 183 * We don't want certain flags to appear in b_flags.
1da177e4 184 */
ce8e922c
NS
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
b4dd330b 189 init_completion(&bp->b_iowait);
ce8e922c 190 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 191 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 192 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
1da177e4
LT
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
ce8e922c
NS
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
0b1b213f
CH
208
209 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
1da177e4 219 int page_count,
ce8e922c 220 xfs_buf_flags_t flags)
1da177e4
LT
221{
222 /* Make sure that we have a page list */
ce8e922c
NS
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
1da177e4 228 } else {
ce8e922c
NS
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
1da177e4
LT
232 return -ENOMEM;
233 }
ce8e922c 234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
235 }
236 return 0;
237}
238
239/*
ce8e922c 240 * Frees b_pages if it was allocated.
1da177e4
LT
241 */
242STATIC void
ce8e922c 243_xfs_buf_free_pages(
1da177e4
LT
244 xfs_buf_t *bp)
245{
ce8e922c 246 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 247 kmem_free(bp->b_pages);
3fc98b1a 248 bp->b_pages = NULL;
1da177e4
LT
249 }
250}
251
252/*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
ce8e922c 256 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
257 * hashed and refcounted buffers
258 */
259void
ce8e922c 260xfs_buf_free(
1da177e4
LT
261 xfs_buf_t *bp)
262{
0b1b213f 263 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 264
1fa40b01 265 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
266 uint i;
267
73c77e2c 268 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
1da177e4 271
948ecdb4
NS
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
1fa40b01
CH
275 if (bp->b_flags & _XBF_PAGE_CACHE)
276 ASSERT(!PagePrivate(page));
948ecdb4
NS
277 page_cache_release(page);
278 }
1da177e4 279 }
3fc98b1a 280 _xfs_buf_free_pages(bp);
ce8e922c 281 xfs_buf_deallocate(bp);
1da177e4
LT
282}
283
284/*
285 * Finds all pages for buffer in question and builds it's page list.
286 */
287STATIC int
ce8e922c 288_xfs_buf_lookup_pages(
1da177e4
LT
289 xfs_buf_t *bp,
290 uint flags)
291{
ce8e922c
NS
292 struct address_space *mapping = bp->b_target->bt_mapping;
293 size_t blocksize = bp->b_target->bt_bsize;
294 size_t size = bp->b_count_desired;
1da177e4 295 size_t nbytes, offset;
ce8e922c 296 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
297 unsigned short page_count, i;
298 pgoff_t first;
204ab25f 299 xfs_off_t end;
1da177e4
LT
300 int error;
301
ce8e922c
NS
302 end = bp->b_file_offset + bp->b_buffer_length;
303 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 304
ce8e922c 305 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
306 if (unlikely(error))
307 return error;
ce8e922c 308 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 309
ce8e922c
NS
310 offset = bp->b_offset;
311 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 312
ce8e922c 313 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
314 struct page *page;
315 uint retries = 0;
316
317 retry:
318 page = find_or_create_page(mapping, first + i, gfp_mask);
319 if (unlikely(page == NULL)) {
ce8e922c
NS
320 if (flags & XBF_READ_AHEAD) {
321 bp->b_page_count = i;
6ab455ee
CH
322 for (i = 0; i < bp->b_page_count; i++)
323 unlock_page(bp->b_pages[i]);
1da177e4
LT
324 return -ENOMEM;
325 }
326
327 /*
328 * This could deadlock.
329 *
330 * But until all the XFS lowlevel code is revamped to
331 * handle buffer allocation failures we can't do much.
332 */
333 if (!(++retries % 100))
334 printk(KERN_ERR
335 "XFS: possible memory allocation "
336 "deadlock in %s (mode:0x%x)\n",
34a622b2 337 __func__, gfp_mask);
1da177e4 338
ce8e922c 339 XFS_STATS_INC(xb_page_retries);
7f8275d0 340 xfsbufd_wakeup(NULL, 0, gfp_mask);
8aa7e847 341 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
342 goto retry;
343 }
344
ce8e922c 345 XFS_STATS_INC(xb_page_found);
1da177e4
LT
346
347 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
348 size -= nbytes;
349
948ecdb4 350 ASSERT(!PagePrivate(page));
1da177e4
LT
351 if (!PageUptodate(page)) {
352 page_count--;
6ab455ee
CH
353 if (blocksize >= PAGE_CACHE_SIZE) {
354 if (flags & XBF_READ)
355 bp->b_flags |= _XBF_PAGE_LOCKED;
356 } else if (!PagePrivate(page)) {
1da177e4
LT
357 if (test_page_region(page, offset, nbytes))
358 page_count++;
359 }
360 }
361
ce8e922c 362 bp->b_pages[i] = page;
1da177e4
LT
363 offset = 0;
364 }
365
6ab455ee
CH
366 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
367 for (i = 0; i < bp->b_page_count; i++)
368 unlock_page(bp->b_pages[i]);
369 }
370
ce8e922c
NS
371 if (page_count == bp->b_page_count)
372 bp->b_flags |= XBF_DONE;
1da177e4 373
1da177e4
LT
374 return error;
375}
376
377/*
378 * Map buffer into kernel address-space if nessecary.
379 */
380STATIC int
ce8e922c 381_xfs_buf_map_pages(
1da177e4
LT
382 xfs_buf_t *bp,
383 uint flags)
384{
385 /* A single page buffer is always mappable */
ce8e922c
NS
386 if (bp->b_page_count == 1) {
387 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
388 bp->b_flags |= XBF_MAPPED;
389 } else if (flags & XBF_MAPPED) {
8a262e57
AE
390 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
391 -1, PAGE_KERNEL);
ce8e922c 392 if (unlikely(bp->b_addr == NULL))
1da177e4 393 return -ENOMEM;
ce8e922c
NS
394 bp->b_addr += bp->b_offset;
395 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
396 }
397
398 return 0;
399}
400
401/*
402 * Finding and Reading Buffers
403 */
404
405/*
ce8e922c 406 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
407 * a given range of an inode. The buffer is returned
408 * locked. If other overlapping buffers exist, they are
409 * released before the new buffer is created and locked,
410 * which may imply that this call will block until those buffers
411 * are unlocked. No I/O is implied by this call.
412 */
413xfs_buf_t *
ce8e922c 414_xfs_buf_find(
1da177e4 415 xfs_buftarg_t *btp, /* block device target */
204ab25f 416 xfs_off_t ioff, /* starting offset of range */
1da177e4 417 size_t isize, /* length of range */
ce8e922c
NS
418 xfs_buf_flags_t flags,
419 xfs_buf_t *new_bp)
1da177e4 420{
204ab25f 421 xfs_off_t range_base;
1da177e4 422 size_t range_length;
74f75a0c
DC
423 struct xfs_perag *pag;
424 struct rb_node **rbp;
425 struct rb_node *parent;
426 xfs_buf_t *bp;
1da177e4
LT
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 434
74f75a0c
DC
435 /* get tree root */
436 pag = xfs_perag_get(btp->bt_mount,
437 xfs_daddr_to_agno(btp->bt_mount, ioff));
438
439 /* walk tree */
440 spin_lock(&pag->pag_buf_lock);
441 rbp = &pag->pag_buf_tree.rb_node;
442 parent = NULL;
443 bp = NULL;
444 while (*rbp) {
445 parent = *rbp;
446 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
447
448 if (range_base < bp->b_file_offset)
449 rbp = &(*rbp)->rb_left;
450 else if (range_base > bp->b_file_offset)
451 rbp = &(*rbp)->rb_right;
452 else {
453 /*
454 * found a block offset match. If the range doesn't
455 * match, the only way this is allowed is if the buffer
456 * in the cache is stale and the transaction that made
457 * it stale has not yet committed. i.e. we are
458 * reallocating a busy extent. Skip this buffer and
459 * continue searching to the right for an exact match.
460 */
461 if (bp->b_buffer_length != range_length) {
462 ASSERT(bp->b_flags & XBF_STALE);
463 rbp = &(*rbp)->rb_right;
464 continue;
465 }
ce8e922c 466 atomic_inc(&bp->b_hold);
1da177e4
LT
467 goto found;
468 }
469 }
470
471 /* No match found */
ce8e922c
NS
472 if (new_bp) {
473 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 474 range_length, flags);
74f75a0c
DC
475 rb_link_node(&new_bp->b_rbnode, parent, rbp);
476 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
477 /* the buffer keeps the perag reference until it is freed */
478 new_bp->b_pag = pag;
479 spin_unlock(&pag->pag_buf_lock);
1da177e4 480 } else {
ce8e922c 481 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
482 spin_unlock(&pag->pag_buf_lock);
483 xfs_perag_put(pag);
1da177e4 484 }
ce8e922c 485 return new_bp;
1da177e4
LT
486
487found:
74f75a0c
DC
488 spin_unlock(&pag->pag_buf_lock);
489 xfs_perag_put(pag);
1da177e4
LT
490
491 /* Attempt to get the semaphore without sleeping,
492 * if this does not work then we need to drop the
493 * spinlock and do a hard attempt on the semaphore.
494 */
ce8e922c
NS
495 if (down_trylock(&bp->b_sema)) {
496 if (!(flags & XBF_TRYLOCK)) {
1da177e4 497 /* wait for buffer ownership */
ce8e922c
NS
498 xfs_buf_lock(bp);
499 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
500 } else {
501 /* We asked for a trylock and failed, no need
502 * to look at file offset and length here, we
ce8e922c
NS
503 * know that this buffer at least overlaps our
504 * buffer and is locked, therefore our buffer
505 * either does not exist, or is this buffer.
1da177e4 506 */
ce8e922c
NS
507 xfs_buf_rele(bp);
508 XFS_STATS_INC(xb_busy_locked);
509 return NULL;
1da177e4
LT
510 }
511 } else {
512 /* trylock worked */
ce8e922c 513 XB_SET_OWNER(bp);
1da177e4
LT
514 }
515
ce8e922c
NS
516 if (bp->b_flags & XBF_STALE) {
517 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
518 bp->b_flags &= XBF_MAPPED;
2f926587 519 }
0b1b213f
CH
520
521 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
522 XFS_STATS_INC(xb_get_locked);
523 return bp;
1da177e4
LT
524}
525
526/*
ce8e922c 527 * Assembles a buffer covering the specified range.
1da177e4
LT
528 * Storage in memory for all portions of the buffer will be allocated,
529 * although backing storage may not be.
530 */
531xfs_buf_t *
6ad112bf 532xfs_buf_get(
1da177e4 533 xfs_buftarg_t *target,/* target for buffer */
204ab25f 534 xfs_off_t ioff, /* starting offset of range */
1da177e4 535 size_t isize, /* length of range */
ce8e922c 536 xfs_buf_flags_t flags)
1da177e4 537{
ce8e922c 538 xfs_buf_t *bp, *new_bp;
1da177e4
LT
539 int error = 0, i;
540
ce8e922c
NS
541 new_bp = xfs_buf_allocate(flags);
542 if (unlikely(!new_bp))
1da177e4
LT
543 return NULL;
544
ce8e922c
NS
545 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
546 if (bp == new_bp) {
547 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
548 if (error)
549 goto no_buffer;
550 } else {
ce8e922c
NS
551 xfs_buf_deallocate(new_bp);
552 if (unlikely(bp == NULL))
1da177e4
LT
553 return NULL;
554 }
555
ce8e922c
NS
556 for (i = 0; i < bp->b_page_count; i++)
557 mark_page_accessed(bp->b_pages[i]);
1da177e4 558
ce8e922c
NS
559 if (!(bp->b_flags & XBF_MAPPED)) {
560 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
561 if (unlikely(error)) {
562 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 563 __func__);
1da177e4
LT
564 goto no_buffer;
565 }
566 }
567
ce8e922c 568 XFS_STATS_INC(xb_get);
1da177e4
LT
569
570 /*
571 * Always fill in the block number now, the mapped cases can do
572 * their own overlay of this later.
573 */
ce8e922c
NS
574 bp->b_bn = ioff;
575 bp->b_count_desired = bp->b_buffer_length;
1da177e4 576
0b1b213f 577 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 578 return bp;
1da177e4
LT
579
580 no_buffer:
ce8e922c
NS
581 if (flags & (XBF_LOCK | XBF_TRYLOCK))
582 xfs_buf_unlock(bp);
583 xfs_buf_rele(bp);
1da177e4
LT
584 return NULL;
585}
586
5d765b97
CH
587STATIC int
588_xfs_buf_read(
589 xfs_buf_t *bp,
590 xfs_buf_flags_t flags)
591{
592 int status;
593
5d765b97
CH
594 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
595 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
596
597 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
598 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
599 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
600 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
601
602 status = xfs_buf_iorequest(bp);
ec53d1db
DC
603 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
604 return status;
605 return xfs_buf_iowait(bp);
5d765b97
CH
606}
607
1da177e4 608xfs_buf_t *
6ad112bf 609xfs_buf_read(
1da177e4 610 xfs_buftarg_t *target,
204ab25f 611 xfs_off_t ioff,
1da177e4 612 size_t isize,
ce8e922c 613 xfs_buf_flags_t flags)
1da177e4 614{
ce8e922c
NS
615 xfs_buf_t *bp;
616
617 flags |= XBF_READ;
618
6ad112bf 619 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 620 if (bp) {
0b1b213f
CH
621 trace_xfs_buf_read(bp, flags, _RET_IP_);
622
ce8e922c 623 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 624 XFS_STATS_INC(xb_get_read);
5d765b97 625 _xfs_buf_read(bp, flags);
ce8e922c 626 } else if (flags & XBF_ASYNC) {
1da177e4
LT
627 /*
628 * Read ahead call which is already satisfied,
629 * drop the buffer
630 */
631 goto no_buffer;
632 } else {
1da177e4 633 /* We do not want read in the flags */
ce8e922c 634 bp->b_flags &= ~XBF_READ;
1da177e4
LT
635 }
636 }
637
ce8e922c 638 return bp;
1da177e4
LT
639
640 no_buffer:
ce8e922c
NS
641 if (flags & (XBF_LOCK | XBF_TRYLOCK))
642 xfs_buf_unlock(bp);
643 xfs_buf_rele(bp);
1da177e4
LT
644 return NULL;
645}
646
1da177e4 647/*
ce8e922c
NS
648 * If we are not low on memory then do the readahead in a deadlock
649 * safe manner.
1da177e4
LT
650 */
651void
ce8e922c 652xfs_buf_readahead(
1da177e4 653 xfs_buftarg_t *target,
204ab25f 654 xfs_off_t ioff,
1a1a3e97 655 size_t isize)
1da177e4
LT
656{
657 struct backing_dev_info *bdi;
658
ce8e922c 659 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
660 if (bdi_read_congested(bdi))
661 return;
662
1a1a3e97
CH
663 xfs_buf_read(target, ioff, isize,
664 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
665}
666
5adc94c2
DC
667/*
668 * Read an uncached buffer from disk. Allocates and returns a locked
669 * buffer containing the disk contents or nothing.
670 */
671struct xfs_buf *
672xfs_buf_read_uncached(
673 struct xfs_mount *mp,
674 struct xfs_buftarg *target,
675 xfs_daddr_t daddr,
676 size_t length,
677 int flags)
678{
679 xfs_buf_t *bp;
680 int error;
681
682 bp = xfs_buf_get_uncached(target, length, flags);
683 if (!bp)
684 return NULL;
685
686 /* set up the buffer for a read IO */
687 xfs_buf_lock(bp);
688 XFS_BUF_SET_ADDR(bp, daddr);
689 XFS_BUF_READ(bp);
690 XFS_BUF_BUSY(bp);
691
692 xfsbdstrat(mp, bp);
1a1a3e97 693 error = xfs_buf_iowait(bp);
5adc94c2
DC
694 if (error || bp->b_error) {
695 xfs_buf_relse(bp);
696 return NULL;
697 }
698 return bp;
1da177e4
LT
699}
700
701xfs_buf_t *
ce8e922c 702xfs_buf_get_empty(
1da177e4
LT
703 size_t len,
704 xfs_buftarg_t *target)
705{
ce8e922c 706 xfs_buf_t *bp;
1da177e4 707
ce8e922c
NS
708 bp = xfs_buf_allocate(0);
709 if (bp)
710 _xfs_buf_initialize(bp, target, 0, len, 0);
711 return bp;
1da177e4
LT
712}
713
714static inline struct page *
715mem_to_page(
716 void *addr)
717{
9e2779fa 718 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
719 return virt_to_page(addr);
720 } else {
721 return vmalloc_to_page(addr);
722 }
723}
724
725int
ce8e922c
NS
726xfs_buf_associate_memory(
727 xfs_buf_t *bp,
1da177e4
LT
728 void *mem,
729 size_t len)
730{
731 int rval;
732 int i = 0;
d1afb678
LM
733 unsigned long pageaddr;
734 unsigned long offset;
735 size_t buflen;
1da177e4
LT
736 int page_count;
737
d1afb678
LM
738 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
739 offset = (unsigned long)mem - pageaddr;
740 buflen = PAGE_CACHE_ALIGN(len + offset);
741 page_count = buflen >> PAGE_CACHE_SHIFT;
1da177e4
LT
742
743 /* Free any previous set of page pointers */
ce8e922c
NS
744 if (bp->b_pages)
745 _xfs_buf_free_pages(bp);
1da177e4 746
ce8e922c
NS
747 bp->b_pages = NULL;
748 bp->b_addr = mem;
1da177e4 749
36fae17a 750 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
751 if (rval)
752 return rval;
753
ce8e922c 754 bp->b_offset = offset;
d1afb678
LM
755
756 for (i = 0; i < bp->b_page_count; i++) {
757 bp->b_pages[i] = mem_to_page((void *)pageaddr);
758 pageaddr += PAGE_CACHE_SIZE;
1da177e4 759 }
1da177e4 760
d1afb678
LM
761 bp->b_count_desired = len;
762 bp->b_buffer_length = buflen;
ce8e922c 763 bp->b_flags |= XBF_MAPPED;
6ab455ee 764 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1da177e4
LT
765
766 return 0;
767}
768
769xfs_buf_t *
686865f7
DC
770xfs_buf_get_uncached(
771 struct xfs_buftarg *target,
1da177e4 772 size_t len,
686865f7 773 int flags)
1da177e4 774{
1fa40b01
CH
775 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
776 int error, i;
1da177e4 777 xfs_buf_t *bp;
1da177e4 778
ce8e922c 779 bp = xfs_buf_allocate(0);
1da177e4
LT
780 if (unlikely(bp == NULL))
781 goto fail;
ce8e922c 782 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 783
1fa40b01
CH
784 error = _xfs_buf_get_pages(bp, page_count, 0);
785 if (error)
1da177e4
LT
786 goto fail_free_buf;
787
1fa40b01 788 for (i = 0; i < page_count; i++) {
686865f7 789 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
790 if (!bp->b_pages[i])
791 goto fail_free_mem;
1da177e4 792 }
1fa40b01 793 bp->b_flags |= _XBF_PAGES;
1da177e4 794
1fa40b01
CH
795 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
796 if (unlikely(error)) {
797 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 798 __func__);
1da177e4 799 goto fail_free_mem;
1fa40b01 800 }
1da177e4 801
ce8e922c 802 xfs_buf_unlock(bp);
1da177e4 803
686865f7 804 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 805 return bp;
1fa40b01 806
1da177e4 807 fail_free_mem:
1fa40b01
CH
808 while (--i >= 0)
809 __free_page(bp->b_pages[i]);
ca165b88 810 _xfs_buf_free_pages(bp);
1da177e4 811 fail_free_buf:
ca165b88 812 xfs_buf_deallocate(bp);
1da177e4
LT
813 fail:
814 return NULL;
815}
816
817/*
1da177e4
LT
818 * Increment reference count on buffer, to hold the buffer concurrently
819 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
820 * Must hold the buffer already to call this function.
821 */
822void
ce8e922c
NS
823xfs_buf_hold(
824 xfs_buf_t *bp)
1da177e4 825{
0b1b213f 826 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 827 atomic_inc(&bp->b_hold);
1da177e4
LT
828}
829
830/*
ce8e922c
NS
831 * Releases a hold on the specified buffer. If the
832 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
833 */
834void
ce8e922c
NS
835xfs_buf_rele(
836 xfs_buf_t *bp)
1da177e4 837{
74f75a0c 838 struct xfs_perag *pag = bp->b_pag;
1da177e4 839
0b1b213f 840 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 841
74f75a0c 842 if (!pag) {
fad3aa1e 843 ASSERT(!bp->b_relse);
74f75a0c 844 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
845 if (atomic_dec_and_test(&bp->b_hold))
846 xfs_buf_free(bp);
847 return;
848 }
849
74f75a0c 850 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
3790689f 851 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 852 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
ce8e922c
NS
853 if (bp->b_relse) {
854 atomic_inc(&bp->b_hold);
74f75a0c
DC
855 spin_unlock(&pag->pag_buf_lock);
856 bp->b_relse(bp);
1da177e4 857 } else {
ce8e922c 858 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
74f75a0c
DC
859 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
860 spin_unlock(&pag->pag_buf_lock);
861 xfs_perag_put(pag);
ce8e922c 862 xfs_buf_free(bp);
1da177e4
LT
863 }
864 }
865}
866
867
868/*
869 * Mutual exclusion on buffers. Locking model:
870 *
871 * Buffers associated with inodes for which buffer locking
872 * is not enabled are not protected by semaphores, and are
873 * assumed to be exclusively owned by the caller. There is a
874 * spinlock in the buffer, used by the caller when concurrent
875 * access is possible.
876 */
877
878/*
ce8e922c
NS
879 * Locks a buffer object, if it is not already locked.
880 * Note that this in no way locks the underlying pages, so it is only
881 * useful for synchronizing concurrent use of buffer objects, not for
882 * synchronizing independent access to the underlying pages.
1da177e4
LT
883 */
884int
ce8e922c
NS
885xfs_buf_cond_lock(
886 xfs_buf_t *bp)
1da177e4
LT
887{
888 int locked;
889
ce8e922c 890 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 891 if (locked)
ce8e922c 892 XB_SET_OWNER(bp);
0b1b213f
CH
893
894 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 895 return locked ? 0 : -EBUSY;
1da177e4
LT
896}
897
1da177e4 898int
ce8e922c
NS
899xfs_buf_lock_value(
900 xfs_buf_t *bp)
1da177e4 901{
adaa693b 902 return bp->b_sema.count;
1da177e4 903}
1da177e4
LT
904
905/*
ce8e922c
NS
906 * Locks a buffer object.
907 * Note that this in no way locks the underlying pages, so it is only
908 * useful for synchronizing concurrent use of buffer objects, not for
909 * synchronizing independent access to the underlying pages.
ed3b4d6c
DC
910 *
911 * If we come across a stale, pinned, locked buffer, we know that we
912 * are being asked to lock a buffer that has been reallocated. Because
913 * it is pinned, we know that the log has not been pushed to disk and
914 * hence it will still be locked. Rather than sleeping until someone
915 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 916 */
ce8e922c
NS
917void
918xfs_buf_lock(
919 xfs_buf_t *bp)
1da177e4 920{
0b1b213f
CH
921 trace_xfs_buf_lock(bp, _RET_IP_);
922
ed3b4d6c 923 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 924 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
925 if (atomic_read(&bp->b_io_remaining))
926 blk_run_address_space(bp->b_target->bt_mapping);
927 down(&bp->b_sema);
928 XB_SET_OWNER(bp);
0b1b213f
CH
929
930 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
931}
932
933/*
ce8e922c 934 * Releases the lock on the buffer object.
2f926587 935 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 936 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
937 * take a reference for the delwri queue because the unlocker is going to
938 * drop their's and they don't know we just queued it.
1da177e4
LT
939 */
940void
ce8e922c
NS
941xfs_buf_unlock(
942 xfs_buf_t *bp)
1da177e4 943{
ce8e922c
NS
944 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
945 atomic_inc(&bp->b_hold);
946 bp->b_flags |= XBF_ASYNC;
947 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
948 }
949
ce8e922c
NS
950 XB_CLEAR_OWNER(bp);
951 up(&bp->b_sema);
0b1b213f
CH
952
953 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
954}
955
ce8e922c
NS
956STATIC void
957xfs_buf_wait_unpin(
958 xfs_buf_t *bp)
1da177e4
LT
959{
960 DECLARE_WAITQUEUE (wait, current);
961
ce8e922c 962 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
963 return;
964
ce8e922c 965 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
966 for (;;) {
967 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 968 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 969 break;
ce8e922c
NS
970 if (atomic_read(&bp->b_io_remaining))
971 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
972 schedule();
973 }
ce8e922c 974 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
975 set_current_state(TASK_RUNNING);
976}
977
978/*
979 * Buffer Utility Routines
980 */
981
1da177e4 982STATIC void
ce8e922c 983xfs_buf_iodone_work(
c4028958 984 struct work_struct *work)
1da177e4 985{
c4028958
DH
986 xfs_buf_t *bp =
987 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 988
80f6c29d 989 if (bp->b_iodone)
ce8e922c
NS
990 (*(bp->b_iodone))(bp);
991 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
992 xfs_buf_relse(bp);
993}
994
995void
ce8e922c
NS
996xfs_buf_ioend(
997 xfs_buf_t *bp,
1da177e4
LT
998 int schedule)
999{
0b1b213f
CH
1000 trace_xfs_buf_iodone(bp, _RET_IP_);
1001
77be55a5 1002 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
1003 if (bp->b_error == 0)
1004 bp->b_flags |= XBF_DONE;
1da177e4 1005
ce8e922c 1006 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1007 if (schedule) {
c4028958 1008 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1009 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1010 } else {
c4028958 1011 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1012 }
1013 } else {
b4dd330b 1014 complete(&bp->b_iowait);
1da177e4
LT
1015 }
1016}
1017
1da177e4 1018void
ce8e922c
NS
1019xfs_buf_ioerror(
1020 xfs_buf_t *bp,
1021 int error)
1da177e4
LT
1022{
1023 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1024 bp->b_error = (unsigned short)error;
0b1b213f 1025 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1026}
1027
1da177e4 1028int
64e0bc7d
CH
1029xfs_bwrite(
1030 struct xfs_mount *mp,
5d765b97 1031 struct xfs_buf *bp)
1da177e4 1032{
8c38366f 1033 int error;
1da177e4 1034
64e0bc7d 1035 bp->b_flags |= XBF_WRITE;
8c38366f 1036 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 1037
5d765b97 1038 xfs_buf_delwri_dequeue(bp);
939d723b 1039 xfs_bdstrat_cb(bp);
1da177e4 1040
8c38366f
CH
1041 error = xfs_buf_iowait(bp);
1042 if (error)
1043 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1044 xfs_buf_relse(bp);
64e0bc7d 1045 return error;
5d765b97 1046}
1da177e4 1047
5d765b97
CH
1048void
1049xfs_bdwrite(
1050 void *mp,
1051 struct xfs_buf *bp)
1052{
0b1b213f 1053 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1054
5d765b97
CH
1055 bp->b_flags &= ~XBF_READ;
1056 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1057
1058 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1059}
1060
4e23471a
CH
1061/*
1062 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1063 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1064 * so that the proper iodone callbacks get called.
1065 */
1066STATIC int
1067xfs_bioerror(
1068 xfs_buf_t *bp)
1069{
1070#ifdef XFSERRORDEBUG
1071 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1072#endif
1073
1074 /*
1075 * No need to wait until the buffer is unpinned, we aren't flushing it.
1076 */
1077 XFS_BUF_ERROR(bp, EIO);
1078
1079 /*
1a1a3e97 1080 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1081 */
1082 XFS_BUF_UNREAD(bp);
1083 XFS_BUF_UNDELAYWRITE(bp);
1084 XFS_BUF_UNDONE(bp);
1085 XFS_BUF_STALE(bp);
1086
1a1a3e97 1087 xfs_buf_ioend(bp, 0);
4e23471a
CH
1088
1089 return EIO;
1090}
1091
1092/*
1093 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1094 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1095 * This is meant for userdata errors; metadata bufs come with
1096 * iodone functions attached, so that we can track down errors.
1097 */
1098STATIC int
1099xfs_bioerror_relse(
1100 struct xfs_buf *bp)
1101{
1102 int64_t fl = XFS_BUF_BFLAGS(bp);
1103 /*
1104 * No need to wait until the buffer is unpinned.
1105 * We aren't flushing it.
1106 *
1107 * chunkhold expects B_DONE to be set, whether
1108 * we actually finish the I/O or not. We don't want to
1109 * change that interface.
1110 */
1111 XFS_BUF_UNREAD(bp);
1112 XFS_BUF_UNDELAYWRITE(bp);
1113 XFS_BUF_DONE(bp);
1114 XFS_BUF_STALE(bp);
1115 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1116 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1117 /*
1118 * Mark b_error and B_ERROR _both_.
1119 * Lot's of chunkcache code assumes that.
1120 * There's no reason to mark error for
1121 * ASYNC buffers.
1122 */
1123 XFS_BUF_ERROR(bp, EIO);
1124 XFS_BUF_FINISH_IOWAIT(bp);
1125 } else {
1126 xfs_buf_relse(bp);
1127 }
1128
1129 return EIO;
1130}
1131
1132
1133/*
1134 * All xfs metadata buffers except log state machine buffers
1135 * get this attached as their b_bdstrat callback function.
1136 * This is so that we can catch a buffer
1137 * after prematurely unpinning it to forcibly shutdown the filesystem.
1138 */
1139int
1140xfs_bdstrat_cb(
1141 struct xfs_buf *bp)
1142{
ebad861b 1143 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1144 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1145 /*
1146 * Metadata write that didn't get logged but
1147 * written delayed anyway. These aren't associated
1148 * with a transaction, and can be ignored.
1149 */
1150 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1151 return xfs_bioerror_relse(bp);
1152 else
1153 return xfs_bioerror(bp);
1154 }
1155
1156 xfs_buf_iorequest(bp);
1157 return 0;
1158}
1159
1160/*
1161 * Wrapper around bdstrat so that we can stop data from going to disk in case
1162 * we are shutting down the filesystem. Typically user data goes thru this
1163 * path; one of the exceptions is the superblock.
1164 */
1165void
1166xfsbdstrat(
1167 struct xfs_mount *mp,
1168 struct xfs_buf *bp)
1169{
1170 if (XFS_FORCED_SHUTDOWN(mp)) {
1171 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1172 xfs_bioerror_relse(bp);
1173 return;
1174 }
1175
1176 xfs_buf_iorequest(bp);
1177}
1178
b8f82a4a 1179STATIC void
ce8e922c
NS
1180_xfs_buf_ioend(
1181 xfs_buf_t *bp,
1da177e4
LT
1182 int schedule)
1183{
6ab455ee
CH
1184 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1185 bp->b_flags &= ~_XBF_PAGE_LOCKED;
ce8e922c 1186 xfs_buf_ioend(bp, schedule);
6ab455ee 1187 }
1da177e4
LT
1188}
1189
782e3b3b 1190STATIC void
ce8e922c 1191xfs_buf_bio_end_io(
1da177e4 1192 struct bio *bio,
1da177e4
LT
1193 int error)
1194{
ce8e922c
NS
1195 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1196 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1197 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1198
cfbe5267 1199 xfs_buf_ioerror(bp, -error);
1da177e4 1200
73c77e2c
JB
1201 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1202 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1203
eedb5530 1204 do {
1da177e4
LT
1205 struct page *page = bvec->bv_page;
1206
948ecdb4 1207 ASSERT(!PagePrivate(page));
ce8e922c
NS
1208 if (unlikely(bp->b_error)) {
1209 if (bp->b_flags & XBF_READ)
eedb5530 1210 ClearPageUptodate(page);
ce8e922c 1211 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1212 SetPageUptodate(page);
1213 } else if (!PagePrivate(page) &&
ce8e922c 1214 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1215 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1216 }
1217
eedb5530
NS
1218 if (--bvec >= bio->bi_io_vec)
1219 prefetchw(&bvec->bv_page->flags);
6ab455ee
CH
1220
1221 if (bp->b_flags & _XBF_PAGE_LOCKED)
1222 unlock_page(page);
eedb5530 1223 } while (bvec >= bio->bi_io_vec);
1da177e4 1224
ce8e922c 1225 _xfs_buf_ioend(bp, 1);
1da177e4 1226 bio_put(bio);
1da177e4
LT
1227}
1228
1229STATIC void
ce8e922c
NS
1230_xfs_buf_ioapply(
1231 xfs_buf_t *bp)
1da177e4 1232{
a9759f2d 1233 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1234 struct bio *bio;
ce8e922c
NS
1235 int offset = bp->b_offset;
1236 int size = bp->b_count_desired;
1237 sector_t sector = bp->b_bn;
1238 unsigned int blocksize = bp->b_target->bt_bsize;
1da177e4 1239
ce8e922c 1240 total_nr_pages = bp->b_page_count;
1da177e4
LT
1241 map_i = 0;
1242
ce8e922c
NS
1243 if (bp->b_flags & XBF_ORDERED) {
1244 ASSERT(!(bp->b_flags & XBF_READ));
80f6c29d 1245 rw = WRITE_FLUSH_FUA;
2ee1abad 1246 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1247 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1248 bp->b_flags &= ~_XBF_RUN_QUEUES;
1249 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1250 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1251 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1252 bp->b_flags &= ~_XBF_RUN_QUEUES;
1253 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1254 } else {
1255 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1256 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1257 }
1258
ce8e922c 1259 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1260 * we populate up the whole page, and hence the other metadata
1261 * in the same page. This optimization is only valid when the
ce8e922c 1262 * filesystem block size is not smaller than the page size.
1da177e4 1263 */
ce8e922c 1264 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
6ab455ee
CH
1265 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1266 (XBF_READ|_XBF_PAGE_LOCKED)) &&
ce8e922c 1267 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1268 bio = bio_alloc(GFP_NOIO, 1);
1269
ce8e922c 1270 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1271 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1272 bio->bi_end_io = xfs_buf_bio_end_io;
1273 bio->bi_private = bp;
1da177e4 1274
ce8e922c 1275 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1276 size = 0;
1277
ce8e922c 1278 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1279
1280 goto submit_io;
1281 }
1282
1da177e4 1283next_chunk:
ce8e922c 1284 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1285 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1286 if (nr_pages > total_nr_pages)
1287 nr_pages = total_nr_pages;
1288
1289 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1290 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1291 bio->bi_sector = sector;
ce8e922c
NS
1292 bio->bi_end_io = xfs_buf_bio_end_io;
1293 bio->bi_private = bp;
1da177e4
LT
1294
1295 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1296 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1297
1298 if (nbytes > size)
1299 nbytes = size;
1300
ce8e922c
NS
1301 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1302 if (rbytes < nbytes)
1da177e4
LT
1303 break;
1304
1305 offset = 0;
1306 sector += nbytes >> BBSHIFT;
1307 size -= nbytes;
1308 total_nr_pages--;
1309 }
1310
1311submit_io:
1312 if (likely(bio->bi_size)) {
73c77e2c
JB
1313 if (xfs_buf_is_vmapped(bp)) {
1314 flush_kernel_vmap_range(bp->b_addr,
1315 xfs_buf_vmap_len(bp));
1316 }
1da177e4
LT
1317 submit_bio(rw, bio);
1318 if (size)
1319 goto next_chunk;
1320 } else {
ec53d1db
DC
1321 /*
1322 * if we get here, no pages were added to the bio. However,
1323 * we can't just error out here - if the pages are locked then
1324 * we have to unlock them otherwise we can hang on a later
1325 * access to the page.
1326 */
ce8e922c 1327 xfs_buf_ioerror(bp, EIO);
ec53d1db
DC
1328 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1329 int i;
1330 for (i = 0; i < bp->b_page_count; i++)
1331 unlock_page(bp->b_pages[i]);
1332 }
1333 bio_put(bio);
1da177e4
LT
1334 }
1335}
1336
1da177e4 1337int
ce8e922c
NS
1338xfs_buf_iorequest(
1339 xfs_buf_t *bp)
1da177e4 1340{
0b1b213f 1341 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1342
ce8e922c
NS
1343 if (bp->b_flags & XBF_DELWRI) {
1344 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1345 return 0;
1346 }
1347
ce8e922c
NS
1348 if (bp->b_flags & XBF_WRITE) {
1349 xfs_buf_wait_unpin(bp);
1da177e4
LT
1350 }
1351
ce8e922c 1352 xfs_buf_hold(bp);
1da177e4
LT
1353
1354 /* Set the count to 1 initially, this will stop an I/O
1355 * completion callout which happens before we have started
ce8e922c 1356 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1357 */
ce8e922c
NS
1358 atomic_set(&bp->b_io_remaining, 1);
1359 _xfs_buf_ioapply(bp);
1360 _xfs_buf_ioend(bp, 0);
1da177e4 1361
ce8e922c 1362 xfs_buf_rele(bp);
1da177e4
LT
1363 return 0;
1364}
1365
1366/*
ce8e922c
NS
1367 * Waits for I/O to complete on the buffer supplied.
1368 * It returns immediately if no I/O is pending.
1369 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1370 */
1371int
ce8e922c
NS
1372xfs_buf_iowait(
1373 xfs_buf_t *bp)
1da177e4 1374{
0b1b213f
CH
1375 trace_xfs_buf_iowait(bp, _RET_IP_);
1376
ce8e922c
NS
1377 if (atomic_read(&bp->b_io_remaining))
1378 blk_run_address_space(bp->b_target->bt_mapping);
b4dd330b 1379 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1380
1381 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1382 return bp->b_error;
1da177e4
LT
1383}
1384
ce8e922c
NS
1385xfs_caddr_t
1386xfs_buf_offset(
1387 xfs_buf_t *bp,
1da177e4
LT
1388 size_t offset)
1389{
1390 struct page *page;
1391
ce8e922c
NS
1392 if (bp->b_flags & XBF_MAPPED)
1393 return XFS_BUF_PTR(bp) + offset;
1da177e4 1394
ce8e922c
NS
1395 offset += bp->b_offset;
1396 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1397 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1398}
1399
1400/*
1da177e4
LT
1401 * Move data into or out of a buffer.
1402 */
1403void
ce8e922c
NS
1404xfs_buf_iomove(
1405 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1406 size_t boff, /* starting buffer offset */
1407 size_t bsize, /* length to copy */
b9c48649 1408 void *data, /* data address */
ce8e922c 1409 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1410{
1411 size_t bend, cpoff, csize;
1412 struct page *page;
1413
1414 bend = boff + bsize;
1415 while (boff < bend) {
ce8e922c
NS
1416 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1417 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1418 csize = min_t(size_t,
ce8e922c 1419 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1420
1421 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1422
1423 switch (mode) {
ce8e922c 1424 case XBRW_ZERO:
1da177e4
LT
1425 memset(page_address(page) + cpoff, 0, csize);
1426 break;
ce8e922c 1427 case XBRW_READ:
1da177e4
LT
1428 memcpy(data, page_address(page) + cpoff, csize);
1429 break;
ce8e922c 1430 case XBRW_WRITE:
1da177e4
LT
1431 memcpy(page_address(page) + cpoff, data, csize);
1432 }
1433
1434 boff += csize;
1435 data += csize;
1436 }
1437}
1438
1439/*
ce8e922c 1440 * Handling of buffer targets (buftargs).
1da177e4
LT
1441 */
1442
1443/*
ce8e922c
NS
1444 * Wait for any bufs with callbacks that have been submitted but
1445 * have not yet returned... walk the hash list for the target.
1da177e4
LT
1446 */
1447void
1448xfs_wait_buftarg(
74f75a0c 1449 struct xfs_buftarg *btp)
1da177e4 1450{
74f75a0c
DC
1451 struct xfs_perag *pag;
1452 uint i;
1da177e4 1453
74f75a0c
DC
1454 for (i = 0; i < btp->bt_mount->m_sb.sb_agcount; i++) {
1455 pag = xfs_perag_get(btp->bt_mount, i);
1456 spin_lock(&pag->pag_buf_lock);
1457 while (rb_first(&pag->pag_buf_tree)) {
1458 spin_unlock(&pag->pag_buf_lock);
26af6552 1459 delay(100);
74f75a0c 1460 spin_lock(&pag->pag_buf_lock);
1da177e4 1461 }
74f75a0c
DC
1462 spin_unlock(&pag->pag_buf_lock);
1463 xfs_perag_put(pag);
1da177e4
LT
1464 }
1465}
1466
a6867a68 1467/*
ce8e922c 1468 * buftarg list for delwrite queue processing
a6867a68 1469 */
e6a0e9cd 1470static LIST_HEAD(xfs_buftarg_list);
7989cb8e 1471static DEFINE_SPINLOCK(xfs_buftarg_lock);
a6867a68
DC
1472
1473STATIC void
1474xfs_register_buftarg(
1475 xfs_buftarg_t *btp)
1476{
1477 spin_lock(&xfs_buftarg_lock);
1478 list_add(&btp->bt_list, &xfs_buftarg_list);
1479 spin_unlock(&xfs_buftarg_lock);
1480}
1481
1482STATIC void
1483xfs_unregister_buftarg(
1484 xfs_buftarg_t *btp)
1485{
1486 spin_lock(&xfs_buftarg_lock);
1487 list_del(&btp->bt_list);
1488 spin_unlock(&xfs_buftarg_lock);
1489}
1490
1da177e4
LT
1491void
1492xfs_free_buftarg(
b7963133
CH
1493 struct xfs_mount *mp,
1494 struct xfs_buftarg *btp)
1da177e4
LT
1495{
1496 xfs_flush_buftarg(btp, 1);
b7963133
CH
1497 if (mp->m_flags & XFS_MOUNT_BARRIER)
1498 xfs_blkdev_issue_flush(btp);
ce8e922c 1499 iput(btp->bt_mapping->host);
a6867a68 1500
ce8e922c
NS
1501 /* Unregister the buftarg first so that we don't get a
1502 * wakeup finding a non-existent task
1503 */
a6867a68
DC
1504 xfs_unregister_buftarg(btp);
1505 kthread_stop(btp->bt_task);
1506
f0e2d93c 1507 kmem_free(btp);
1da177e4
LT
1508}
1509
1da177e4
LT
1510STATIC int
1511xfs_setsize_buftarg_flags(
1512 xfs_buftarg_t *btp,
1513 unsigned int blocksize,
1514 unsigned int sectorsize,
1515 int verbose)
1516{
ce8e922c
NS
1517 btp->bt_bsize = blocksize;
1518 btp->bt_sshift = ffs(sectorsize) - 1;
1519 btp->bt_smask = sectorsize - 1;
1da177e4 1520
ce8e922c 1521 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1522 printk(KERN_WARNING
1523 "XFS: Cannot set_blocksize to %u on device %s\n",
1524 sectorsize, XFS_BUFTARG_NAME(btp));
1525 return EINVAL;
1526 }
1527
1528 if (verbose &&
1529 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1530 printk(KERN_WARNING
1531 "XFS: %u byte sectors in use on device %s. "
1532 "This is suboptimal; %u or greater is ideal.\n",
1533 sectorsize, XFS_BUFTARG_NAME(btp),
1534 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1535 }
1536
1537 return 0;
1538}
1539
1540/*
ce8e922c
NS
1541 * When allocating the initial buffer target we have not yet
1542 * read in the superblock, so don't know what sized sectors
1543 * are being used is at this early stage. Play safe.
1544 */
1da177e4
LT
1545STATIC int
1546xfs_setsize_buftarg_early(
1547 xfs_buftarg_t *btp,
1548 struct block_device *bdev)
1549{
1550 return xfs_setsize_buftarg_flags(btp,
e1defc4f 1551 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1552}
1553
1554int
1555xfs_setsize_buftarg(
1556 xfs_buftarg_t *btp,
1557 unsigned int blocksize,
1558 unsigned int sectorsize)
1559{
1560 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1561}
1562
1563STATIC int
1564xfs_mapping_buftarg(
1565 xfs_buftarg_t *btp,
1566 struct block_device *bdev)
1567{
1568 struct backing_dev_info *bdi;
1569 struct inode *inode;
1570 struct address_space *mapping;
f5e54d6e 1571 static const struct address_space_operations mapping_aops = {
1da177e4 1572 .sync_page = block_sync_page,
e965f963 1573 .migratepage = fail_migrate_page,
1da177e4
LT
1574 };
1575
1576 inode = new_inode(bdev->bd_inode->i_sb);
1577 if (!inode) {
1578 printk(KERN_WARNING
1579 "XFS: Cannot allocate mapping inode for device %s\n",
1580 XFS_BUFTARG_NAME(btp));
1581 return ENOMEM;
1582 }
85fe4025 1583 inode->i_ino = get_next_ino();
1da177e4
LT
1584 inode->i_mode = S_IFBLK;
1585 inode->i_bdev = bdev;
1586 inode->i_rdev = bdev->bd_dev;
1587 bdi = blk_get_backing_dev_info(bdev);
1588 if (!bdi)
1589 bdi = &default_backing_dev_info;
1590 mapping = &inode->i_data;
1591 mapping->a_ops = &mapping_aops;
1592 mapping->backing_dev_info = bdi;
1593 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1594 btp->bt_mapping = mapping;
1da177e4
LT
1595 return 0;
1596}
1597
a6867a68
DC
1598STATIC int
1599xfs_alloc_delwrite_queue(
e2a07812
JE
1600 xfs_buftarg_t *btp,
1601 const char *fsname)
a6867a68
DC
1602{
1603 int error = 0;
1604
1605 INIT_LIST_HEAD(&btp->bt_list);
1606 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1607 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1608 btp->bt_flags = 0;
e2a07812 1609 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
a6867a68
DC
1610 if (IS_ERR(btp->bt_task)) {
1611 error = PTR_ERR(btp->bt_task);
1612 goto out_error;
1613 }
1614 xfs_register_buftarg(btp);
1615out_error:
1616 return error;
1617}
1618
1da177e4
LT
1619xfs_buftarg_t *
1620xfs_alloc_buftarg(
ebad861b 1621 struct xfs_mount *mp,
1da177e4 1622 struct block_device *bdev,
e2a07812
JE
1623 int external,
1624 const char *fsname)
1da177e4
LT
1625{
1626 xfs_buftarg_t *btp;
1627
1628 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1629
ebad861b 1630 btp->bt_mount = mp;
ce8e922c
NS
1631 btp->bt_dev = bdev->bd_dev;
1632 btp->bt_bdev = bdev;
1da177e4
LT
1633 if (xfs_setsize_buftarg_early(btp, bdev))
1634 goto error;
1635 if (xfs_mapping_buftarg(btp, bdev))
1636 goto error;
e2a07812 1637 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1638 goto error;
1da177e4
LT
1639 return btp;
1640
1641error:
f0e2d93c 1642 kmem_free(btp);
1da177e4
LT
1643 return NULL;
1644}
1645
1646
1647/*
ce8e922c 1648 * Delayed write buffer handling
1da177e4 1649 */
1da177e4 1650STATIC void
ce8e922c
NS
1651xfs_buf_delwri_queue(
1652 xfs_buf_t *bp,
1da177e4
LT
1653 int unlock)
1654{
ce8e922c
NS
1655 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1656 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1657
0b1b213f
CH
1658 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1659
ce8e922c 1660 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1661
a6867a68 1662 spin_lock(dwlk);
1da177e4 1663 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1664 if (!list_empty(&bp->b_list)) {
1665 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1666 if (unlock)
1667 atomic_dec(&bp->b_hold);
1668 list_del(&bp->b_list);
1da177e4
LT
1669 }
1670
c9c12971
DC
1671 if (list_empty(dwq)) {
1672 /* start xfsbufd as it is about to have something to do */
1673 wake_up_process(bp->b_target->bt_task);
1674 }
1675
ce8e922c
NS
1676 bp->b_flags |= _XBF_DELWRI_Q;
1677 list_add_tail(&bp->b_list, dwq);
1678 bp->b_queuetime = jiffies;
a6867a68 1679 spin_unlock(dwlk);
1da177e4
LT
1680
1681 if (unlock)
ce8e922c 1682 xfs_buf_unlock(bp);
1da177e4
LT
1683}
1684
1685void
ce8e922c
NS
1686xfs_buf_delwri_dequeue(
1687 xfs_buf_t *bp)
1da177e4 1688{
ce8e922c 1689 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1690 int dequeued = 0;
1691
a6867a68 1692 spin_lock(dwlk);
ce8e922c
NS
1693 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1694 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1695 list_del_init(&bp->b_list);
1da177e4
LT
1696 dequeued = 1;
1697 }
ce8e922c 1698 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1699 spin_unlock(dwlk);
1da177e4
LT
1700
1701 if (dequeued)
ce8e922c 1702 xfs_buf_rele(bp);
1da177e4 1703
0b1b213f 1704 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1705}
1706
d808f617
DC
1707/*
1708 * If a delwri buffer needs to be pushed before it has aged out, then promote
1709 * it to the head of the delwri queue so that it will be flushed on the next
1710 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1711 * than the age currently needed to flush the buffer. Hence the next time the
1712 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1713 */
1714void
1715xfs_buf_delwri_promote(
1716 struct xfs_buf *bp)
1717{
1718 struct xfs_buftarg *btp = bp->b_target;
1719 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1720
1721 ASSERT(bp->b_flags & XBF_DELWRI);
1722 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1723
1724 /*
1725 * Check the buffer age before locking the delayed write queue as we
1726 * don't need to promote buffers that are already past the flush age.
1727 */
1728 if (bp->b_queuetime < jiffies - age)
1729 return;
1730 bp->b_queuetime = jiffies - age;
1731 spin_lock(&btp->bt_delwrite_lock);
1732 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1733 spin_unlock(&btp->bt_delwrite_lock);
1734}
1735
1da177e4 1736STATIC void
ce8e922c 1737xfs_buf_runall_queues(
1da177e4
LT
1738 struct workqueue_struct *queue)
1739{
1740 flush_workqueue(queue);
1741}
1742
1da177e4 1743STATIC int
23ea4032 1744xfsbufd_wakeup(
7f8275d0 1745 struct shrinker *shrink,
15c84a47
NS
1746 int priority,
1747 gfp_t mask)
1da177e4 1748{
da7f93e9 1749 xfs_buftarg_t *btp;
a6867a68
DC
1750
1751 spin_lock(&xfs_buftarg_lock);
da7f93e9 1752 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
ce8e922c 1753 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
a6867a68 1754 continue;
c9c12971
DC
1755 if (list_empty(&btp->bt_delwrite_queue))
1756 continue;
ce8e922c 1757 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
a6867a68
DC
1758 wake_up_process(btp->bt_task);
1759 }
1760 spin_unlock(&xfs_buftarg_lock);
1da177e4
LT
1761 return 0;
1762}
1763
585e6d88
DC
1764/*
1765 * Move as many buffers as specified to the supplied list
1766 * idicating if we skipped any buffers to prevent deadlocks.
1767 */
1768STATIC int
1769xfs_buf_delwri_split(
1770 xfs_buftarg_t *target,
1771 struct list_head *list,
5e6a07df 1772 unsigned long age)
585e6d88
DC
1773{
1774 xfs_buf_t *bp, *n;
1775 struct list_head *dwq = &target->bt_delwrite_queue;
1776 spinlock_t *dwlk = &target->bt_delwrite_lock;
1777 int skipped = 0;
5e6a07df 1778 int force;
585e6d88 1779
5e6a07df 1780 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1781 INIT_LIST_HEAD(list);
1782 spin_lock(dwlk);
1783 list_for_each_entry_safe(bp, n, dwq, b_list) {
585e6d88
DC
1784 ASSERT(bp->b_flags & XBF_DELWRI);
1785
4d16e924 1786 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1787 if (!force &&
585e6d88
DC
1788 time_before(jiffies, bp->b_queuetime + age)) {
1789 xfs_buf_unlock(bp);
1790 break;
1791 }
1792
1793 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1794 _XBF_RUN_QUEUES);
1795 bp->b_flags |= XBF_WRITE;
1796 list_move_tail(&bp->b_list, list);
bfe27419 1797 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1798 } else
1799 skipped++;
1800 }
1801 spin_unlock(dwlk);
1802
1803 return skipped;
1804
1805}
1806
089716aa
DC
1807/*
1808 * Compare function is more complex than it needs to be because
1809 * the return value is only 32 bits and we are doing comparisons
1810 * on 64 bit values
1811 */
1812static int
1813xfs_buf_cmp(
1814 void *priv,
1815 struct list_head *a,
1816 struct list_head *b)
1817{
1818 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1819 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1820 xfs_daddr_t diff;
1821
1822 diff = ap->b_bn - bp->b_bn;
1823 if (diff < 0)
1824 return -1;
1825 if (diff > 0)
1826 return 1;
1827 return 0;
1828}
1829
1830void
1831xfs_buf_delwri_sort(
1832 xfs_buftarg_t *target,
1833 struct list_head *list)
1834{
1835 list_sort(NULL, list, xfs_buf_cmp);
1836}
1837
1da177e4 1838STATIC int
23ea4032 1839xfsbufd(
585e6d88 1840 void *data)
1da177e4 1841{
089716aa 1842 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1843
1da177e4
LT
1844 current->flags |= PF_MEMALLOC;
1845
978c7b2f
RW
1846 set_freezable();
1847
1da177e4 1848 do {
c9c12971
DC
1849 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1850 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1851 int count = 0;
1852 struct list_head tmp;
c9c12971 1853
3e1d1d28 1854 if (unlikely(freezing(current))) {
ce8e922c 1855 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1856 refrigerator();
abd0cf7a 1857 } else {
ce8e922c 1858 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1859 }
1da177e4 1860
c9c12971
DC
1861 /* sleep for a long time if there is nothing to do. */
1862 if (list_empty(&target->bt_delwrite_queue))
1863 tout = MAX_SCHEDULE_TIMEOUT;
1864 schedule_timeout_interruptible(tout);
1da177e4 1865
c9c12971 1866 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1867 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1868 while (!list_empty(&tmp)) {
089716aa
DC
1869 struct xfs_buf *bp;
1870 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1871 list_del_init(&bp->b_list);
939d723b 1872 xfs_bdstrat_cb(bp);
585e6d88 1873 count++;
1da177e4 1874 }
f07c2250
NS
1875 if (count)
1876 blk_run_address_space(target->bt_mapping);
1da177e4 1877
4df08c52 1878 } while (!kthread_should_stop());
1da177e4 1879
4df08c52 1880 return 0;
1da177e4
LT
1881}
1882
1883/*
ce8e922c
NS
1884 * Go through all incore buffers, and release buffers if they belong to
1885 * the given device. This is used in filesystem error handling to
1886 * preserve the consistency of its metadata.
1da177e4
LT
1887 */
1888int
1889xfs_flush_buftarg(
585e6d88
DC
1890 xfs_buftarg_t *target,
1891 int wait)
1da177e4 1892{
089716aa 1893 xfs_buf_t *bp;
585e6d88 1894 int pincount = 0;
089716aa
DC
1895 LIST_HEAD(tmp_list);
1896 LIST_HEAD(wait_list);
1da177e4 1897
c626d174 1898 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1899 xfs_buf_runall_queues(xfsdatad_workqueue);
1900 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1901
5e6a07df 1902 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1903 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1904
1905 /*
089716aa
DC
1906 * Dropped the delayed write list lock, now walk the temporary list.
1907 * All I/O is issued async and then if we need to wait for completion
1908 * we do that after issuing all the IO.
1da177e4 1909 */
089716aa
DC
1910 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1911 while (!list_empty(&tmp_list)) {
1912 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1913 ASSERT(target == bp->b_target);
089716aa
DC
1914 list_del_init(&bp->b_list);
1915 if (wait) {
ce8e922c 1916 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1917 list_add(&bp->b_list, &wait_list);
1918 }
939d723b 1919 xfs_bdstrat_cb(bp);
1da177e4
LT
1920 }
1921
089716aa
DC
1922 if (wait) {
1923 /* Expedite and wait for IO to complete. */
f07c2250 1924 blk_run_address_space(target->bt_mapping);
089716aa
DC
1925 while (!list_empty(&wait_list)) {
1926 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1927
089716aa 1928 list_del_init(&bp->b_list);
1a1a3e97 1929 xfs_buf_iowait(bp);
089716aa
DC
1930 xfs_buf_relse(bp);
1931 }
1da177e4
LT
1932 }
1933
1da177e4
LT
1934 return pincount;
1935}
1936
04d8b284 1937int __init
ce8e922c 1938xfs_buf_init(void)
1da177e4 1939{
8758280f
NS
1940 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1941 KM_ZONE_HWALIGN, NULL);
ce8e922c 1942 if (!xfs_buf_zone)
0b1b213f 1943 goto out;
04d8b284 1944
51749e47 1945 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1946 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1947 if (!xfslogd_workqueue)
04d8b284 1948 goto out_free_buf_zone;
1da177e4 1949
b4337692 1950 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
1951 if (!xfsdatad_workqueue)
1952 goto out_destroy_xfslogd_workqueue;
1da177e4 1953
c626d174
DC
1954 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1955 if (!xfsconvertd_workqueue)
1956 goto out_destroy_xfsdatad_workqueue;
1957
8e1f936b 1958 register_shrinker(&xfs_buf_shake);
23ea4032 1959 return 0;
1da177e4 1960
c626d174
DC
1961 out_destroy_xfsdatad_workqueue:
1962 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1963 out_destroy_xfslogd_workqueue:
1964 destroy_workqueue(xfslogd_workqueue);
23ea4032 1965 out_free_buf_zone:
ce8e922c 1966 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1967 out:
8758280f 1968 return -ENOMEM;
1da177e4
LT
1969}
1970
1da177e4 1971void
ce8e922c 1972xfs_buf_terminate(void)
1da177e4 1973{
8e1f936b 1974 unregister_shrinker(&xfs_buf_shake);
c626d174 1975 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1976 destroy_workqueue(xfsdatad_workqueue);
1977 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1978 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1979}
e6a0e9cd
TS
1980
1981#ifdef CONFIG_KDB_MODULES
1982struct list_head *
1983xfs_get_buftarg_list(void)
1984{
1985 return &xfs_buftarg_list;
1986}
1987#endif