]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/linux-2.6/xfs_aops.c
Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
34a52c6c
CH
41/*
42 * Types of I/O for bmap clustering and I/O completion tracking.
43 */
44enum {
45 IO_READ, /* mapping for a read */
46 IO_DELAY, /* mapping covers delalloc region */
47 IO_UNWRITTEN, /* mapping covers allocated but uninitialized data */
48 IO_NEW /* just allocated */
49};
25e41b3d
CH
50
51/*
52 * Prime number of hash buckets since address is used as the key.
53 */
54#define NVSYNC 37
55#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
56static wait_queue_head_t xfs_ioend_wq[NVSYNC];
57
58void __init
59xfs_ioend_init(void)
60{
61 int i;
62
63 for (i = 0; i < NVSYNC; i++)
64 init_waitqueue_head(&xfs_ioend_wq[i]);
65}
66
67void
68xfs_ioend_wait(
69 xfs_inode_t *ip)
70{
71 wait_queue_head_t *wq = to_ioend_wq(ip);
72
73 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
74}
75
76STATIC void
77xfs_ioend_wake(
78 xfs_inode_t *ip)
79{
80 if (atomic_dec_and_test(&ip->i_iocount))
81 wake_up(to_ioend_wq(ip));
82}
83
0b1b213f 84void
f51623b2
NS
85xfs_count_page_state(
86 struct page *page,
87 int *delalloc,
f51623b2
NS
88 int *unwritten)
89{
90 struct buffer_head *bh, *head;
91
20cb52eb 92 *delalloc = *unwritten = 0;
f51623b2
NS
93
94 bh = head = page_buffers(page);
95 do {
20cb52eb 96 if (buffer_unwritten(bh))
f51623b2
NS
97 (*unwritten) = 1;
98 else if (buffer_delay(bh))
99 (*delalloc) = 1;
100 } while ((bh = bh->b_this_page) != head);
101}
102
6214ed44
CH
103STATIC struct block_device *
104xfs_find_bdev_for_inode(
046f1685 105 struct inode *inode)
6214ed44 106{
046f1685 107 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
108 struct xfs_mount *mp = ip->i_mount;
109
71ddabb9 110 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
111 return mp->m_rtdev_targp->bt_bdev;
112 else
113 return mp->m_ddev_targp->bt_bdev;
114}
115
f6d6d4fc
CH
116/*
117 * We're now finished for good with this ioend structure.
118 * Update the page state via the associated buffer_heads,
119 * release holds on the inode and bio, and finally free
120 * up memory. Do not use the ioend after this.
121 */
0829c360
CH
122STATIC void
123xfs_destroy_ioend(
124 xfs_ioend_t *ioend)
125{
f6d6d4fc 126 struct buffer_head *bh, *next;
583fa586 127 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
128
129 for (bh = ioend->io_buffer_head; bh; bh = next) {
130 next = bh->b_private;
7d04a335 131 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 132 }
583fa586
CH
133
134 /*
135 * Volume managers supporting multiple paths can send back ENODEV
136 * when the final path disappears. In this case continuing to fill
137 * the page cache with dirty data which cannot be written out is
138 * evil, so prevent that.
139 */
140 if (unlikely(ioend->io_error == -ENODEV)) {
141 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
142 __FILE__, __LINE__);
b677c210 143 }
583fa586 144
25e41b3d 145 xfs_ioend_wake(ip);
0829c360
CH
146 mempool_free(ioend, xfs_ioend_pool);
147}
148
932640e8
DC
149/*
150 * If the end of the current ioend is beyond the current EOF,
151 * return the new EOF value, otherwise zero.
152 */
153STATIC xfs_fsize_t
154xfs_ioend_new_eof(
155 xfs_ioend_t *ioend)
156{
157 xfs_inode_t *ip = XFS_I(ioend->io_inode);
158 xfs_fsize_t isize;
159 xfs_fsize_t bsize;
160
161 bsize = ioend->io_offset + ioend->io_size;
162 isize = MAX(ip->i_size, ip->i_new_size);
163 isize = MIN(isize, bsize);
164 return isize > ip->i_d.di_size ? isize : 0;
165}
166
ba87ea69 167/*
77d7a0c2
DC
168 * Update on-disk file size now that data has been written to disk. The
169 * current in-memory file size is i_size. If a write is beyond eof i_new_size
170 * will be the intended file size until i_size is updated. If this write does
171 * not extend all the way to the valid file size then restrict this update to
172 * the end of the write.
173 *
174 * This function does not block as blocking on the inode lock in IO completion
175 * can lead to IO completion order dependency deadlocks.. If it can't get the
176 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 177 */
77d7a0c2 178STATIC int
ba87ea69
LM
179xfs_setfilesize(
180 xfs_ioend_t *ioend)
181{
b677c210 182 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 183 xfs_fsize_t isize;
ba87ea69 184
ba87ea69 185 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
34a52c6c 186 ASSERT(ioend->io_type != IO_READ);
ba87ea69
LM
187
188 if (unlikely(ioend->io_error))
77d7a0c2
DC
189 return 0;
190
191 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
192 return EAGAIN;
ba87ea69 193
932640e8
DC
194 isize = xfs_ioend_new_eof(ioend);
195 if (isize) {
ba87ea69 196 ip->i_d.di_size = isize;
66d834ea 197 xfs_mark_inode_dirty(ip);
ba87ea69
LM
198 }
199
200 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
201 return 0;
202}
203
204/*
209fb87a 205 * Schedule IO completion handling on the final put of an ioend.
77d7a0c2
DC
206 */
207STATIC void
208xfs_finish_ioend(
209fb87a 209 struct xfs_ioend *ioend)
77d7a0c2
DC
210{
211 if (atomic_dec_and_test(&ioend->io_remaining)) {
209fb87a
CH
212 if (ioend->io_type == IO_UNWRITTEN)
213 queue_work(xfsconvertd_workqueue, &ioend->io_work);
214 else
215 queue_work(xfsdatad_workqueue, &ioend->io_work);
77d7a0c2 216 }
ba87ea69
LM
217}
218
0829c360 219/*
5ec4fabb 220 * IO write completion.
f6d6d4fc
CH
221 */
222STATIC void
5ec4fabb 223xfs_end_io(
77d7a0c2 224 struct work_struct *work)
0829c360 225{
77d7a0c2
DC
226 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
227 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 228 int error = 0;
ba87ea69 229
5ec4fabb
CH
230 /*
231 * For unwritten extents we need to issue transactions to convert a
232 * range to normal written extens after the data I/O has finished.
233 */
34a52c6c 234 if (ioend->io_type == IO_UNWRITTEN &&
5ec4fabb 235 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
236
237 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
238 ioend->io_size);
239 if (error)
240 ioend->io_error = error;
241 }
ba87ea69 242
5ec4fabb
CH
243 /*
244 * We might have to update the on-disk file size after extending
245 * writes.
246 */
34a52c6c 247 if (ioend->io_type != IO_READ) {
77d7a0c2
DC
248 error = xfs_setfilesize(ioend);
249 ASSERT(!error || error == EAGAIN);
c626d174 250 }
77d7a0c2
DC
251
252 /*
253 * If we didn't complete processing of the ioend, requeue it to the
254 * tail of the workqueue for another attempt later. Otherwise destroy
255 * it.
256 */
257 if (error == EAGAIN) {
258 atomic_inc(&ioend->io_remaining);
209fb87a 259 xfs_finish_ioend(ioend);
77d7a0c2
DC
260 /* ensure we don't spin on blocked ioends */
261 delay(1);
fb511f21
CH
262 } else {
263 if (ioend->io_iocb)
264 aio_complete(ioend->io_iocb, ioend->io_result, 0);
77d7a0c2 265 xfs_destroy_ioend(ioend);
fb511f21 266 }
c626d174
DC
267}
268
209fb87a
CH
269/*
270 * Call IO completion handling in caller context on the final put of an ioend.
271 */
272STATIC void
273xfs_finish_ioend_sync(
274 struct xfs_ioend *ioend)
275{
276 if (atomic_dec_and_test(&ioend->io_remaining))
277 xfs_end_io(&ioend->io_work);
278}
279
0829c360
CH
280/*
281 * Allocate and initialise an IO completion structure.
282 * We need to track unwritten extent write completion here initially.
283 * We'll need to extend this for updating the ondisk inode size later
284 * (vs. incore size).
285 */
286STATIC xfs_ioend_t *
287xfs_alloc_ioend(
f6d6d4fc
CH
288 struct inode *inode,
289 unsigned int type)
0829c360
CH
290{
291 xfs_ioend_t *ioend;
292
293 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
294
295 /*
296 * Set the count to 1 initially, which will prevent an I/O
297 * completion callback from happening before we have started
298 * all the I/O from calling the completion routine too early.
299 */
300 atomic_set(&ioend->io_remaining, 1);
7d04a335 301 ioend->io_error = 0;
f6d6d4fc
CH
302 ioend->io_list = NULL;
303 ioend->io_type = type;
b677c210 304 ioend->io_inode = inode;
c1a073bd 305 ioend->io_buffer_head = NULL;
f6d6d4fc 306 ioend->io_buffer_tail = NULL;
b677c210 307 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
308 ioend->io_offset = 0;
309 ioend->io_size = 0;
fb511f21
CH
310 ioend->io_iocb = NULL;
311 ioend->io_result = 0;
0829c360 312
5ec4fabb 313 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
314 return ioend;
315}
316
1da177e4
LT
317STATIC int
318xfs_map_blocks(
319 struct inode *inode,
320 loff_t offset,
321 ssize_t count,
207d0416 322 struct xfs_bmbt_irec *imap,
1da177e4
LT
323 int flags)
324{
6bd16ff2 325 int nmaps = 1;
207d0416 326 int new = 0;
6bd16ff2 327
207d0416 328 return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
1da177e4
LT
329}
330
b8f82a4a 331STATIC int
558e6891 332xfs_imap_valid(
8699bb0a 333 struct inode *inode,
207d0416 334 struct xfs_bmbt_irec *imap,
558e6891 335 xfs_off_t offset)
1da177e4 336{
558e6891 337 offset >>= inode->i_blkbits;
8699bb0a 338
558e6891
CH
339 return offset >= imap->br_startoff &&
340 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
341}
342
f6d6d4fc
CH
343/*
344 * BIO completion handler for buffered IO.
345 */
782e3b3b 346STATIC void
f6d6d4fc
CH
347xfs_end_bio(
348 struct bio *bio,
f6d6d4fc
CH
349 int error)
350{
351 xfs_ioend_t *ioend = bio->bi_private;
352
f6d6d4fc 353 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 354 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
355
356 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
357 bio->bi_private = NULL;
358 bio->bi_end_io = NULL;
f6d6d4fc 359 bio_put(bio);
7d04a335 360
209fb87a 361 xfs_finish_ioend(ioend);
f6d6d4fc
CH
362}
363
364STATIC void
365xfs_submit_ioend_bio(
06342cf8
CH
366 struct writeback_control *wbc,
367 xfs_ioend_t *ioend,
368 struct bio *bio)
f6d6d4fc
CH
369{
370 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
371 bio->bi_private = ioend;
372 bio->bi_end_io = xfs_end_bio;
373
932640e8
DC
374 /*
375 * If the I/O is beyond EOF we mark the inode dirty immediately
376 * but don't update the inode size until I/O completion.
377 */
378 if (xfs_ioend_new_eof(ioend))
66d834ea 379 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 380
06342cf8
CH
381 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
382 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
383 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
384 bio_put(bio);
385}
386
387STATIC struct bio *
388xfs_alloc_ioend_bio(
389 struct buffer_head *bh)
390{
391 struct bio *bio;
392 int nvecs = bio_get_nr_vecs(bh->b_bdev);
393
394 do {
395 bio = bio_alloc(GFP_NOIO, nvecs);
396 nvecs >>= 1;
397 } while (!bio);
398
399 ASSERT(bio->bi_private == NULL);
400 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
401 bio->bi_bdev = bh->b_bdev;
402 bio_get(bio);
403 return bio;
404}
405
406STATIC void
407xfs_start_buffer_writeback(
408 struct buffer_head *bh)
409{
410 ASSERT(buffer_mapped(bh));
411 ASSERT(buffer_locked(bh));
412 ASSERT(!buffer_delay(bh));
413 ASSERT(!buffer_unwritten(bh));
414
415 mark_buffer_async_write(bh);
416 set_buffer_uptodate(bh);
417 clear_buffer_dirty(bh);
418}
419
420STATIC void
421xfs_start_page_writeback(
422 struct page *page,
f6d6d4fc
CH
423 int clear_dirty,
424 int buffers)
425{
426 ASSERT(PageLocked(page));
427 ASSERT(!PageWriteback(page));
f6d6d4fc 428 if (clear_dirty)
92132021
DC
429 clear_page_dirty_for_io(page);
430 set_page_writeback(page);
f6d6d4fc 431 unlock_page(page);
1f7decf6
FW
432 /* If no buffers on the page are to be written, finish it here */
433 if (!buffers)
f6d6d4fc 434 end_page_writeback(page);
f6d6d4fc
CH
435}
436
437static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
438{
439 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
440}
441
442/*
d88992f6
DC
443 * Submit all of the bios for all of the ioends we have saved up, covering the
444 * initial writepage page and also any probed pages.
445 *
446 * Because we may have multiple ioends spanning a page, we need to start
447 * writeback on all the buffers before we submit them for I/O. If we mark the
448 * buffers as we got, then we can end up with a page that only has buffers
449 * marked async write and I/O complete on can occur before we mark the other
450 * buffers async write.
451 *
452 * The end result of this is that we trip a bug in end_page_writeback() because
453 * we call it twice for the one page as the code in end_buffer_async_write()
454 * assumes that all buffers on the page are started at the same time.
455 *
456 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 457 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
458 */
459STATIC void
460xfs_submit_ioend(
06342cf8 461 struct writeback_control *wbc,
f6d6d4fc
CH
462 xfs_ioend_t *ioend)
463{
d88992f6 464 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
465 xfs_ioend_t *next;
466 struct buffer_head *bh;
467 struct bio *bio;
468 sector_t lastblock = 0;
469
d88992f6
DC
470 /* Pass 1 - start writeback */
471 do {
472 next = ioend->io_list;
473 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
474 xfs_start_buffer_writeback(bh);
475 }
476 } while ((ioend = next) != NULL);
477
478 /* Pass 2 - submit I/O */
479 ioend = head;
f6d6d4fc
CH
480 do {
481 next = ioend->io_list;
482 bio = NULL;
483
484 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
485
486 if (!bio) {
487 retry:
488 bio = xfs_alloc_ioend_bio(bh);
489 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 490 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
491 goto retry;
492 }
493
494 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 495 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
496 goto retry;
497 }
498
499 lastblock = bh->b_blocknr;
500 }
501 if (bio)
06342cf8 502 xfs_submit_ioend_bio(wbc, ioend, bio);
209fb87a 503 xfs_finish_ioend(ioend);
f6d6d4fc
CH
504 } while ((ioend = next) != NULL);
505}
506
507/*
508 * Cancel submission of all buffer_heads so far in this endio.
509 * Toss the endio too. Only ever called for the initial page
510 * in a writepage request, so only ever one page.
511 */
512STATIC void
513xfs_cancel_ioend(
514 xfs_ioend_t *ioend)
515{
516 xfs_ioend_t *next;
517 struct buffer_head *bh, *next_bh;
518
519 do {
520 next = ioend->io_list;
521 bh = ioend->io_buffer_head;
522 do {
523 next_bh = bh->b_private;
524 clear_buffer_async_write(bh);
525 unlock_buffer(bh);
526 } while ((bh = next_bh) != NULL);
527
25e41b3d 528 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
529 mempool_free(ioend, xfs_ioend_pool);
530 } while ((ioend = next) != NULL);
531}
532
533/*
534 * Test to see if we've been building up a completion structure for
535 * earlier buffers -- if so, we try to append to this ioend if we
536 * can, otherwise we finish off any current ioend and start another.
537 * Return true if we've finished the given ioend.
538 */
539STATIC void
540xfs_add_to_ioend(
541 struct inode *inode,
542 struct buffer_head *bh,
7336cea8 543 xfs_off_t offset,
f6d6d4fc
CH
544 unsigned int type,
545 xfs_ioend_t **result,
546 int need_ioend)
547{
548 xfs_ioend_t *ioend = *result;
549
550 if (!ioend || need_ioend || type != ioend->io_type) {
551 xfs_ioend_t *previous = *result;
f6d6d4fc 552
f6d6d4fc
CH
553 ioend = xfs_alloc_ioend(inode, type);
554 ioend->io_offset = offset;
555 ioend->io_buffer_head = bh;
556 ioend->io_buffer_tail = bh;
557 if (previous)
558 previous->io_list = ioend;
559 *result = ioend;
560 } else {
561 ioend->io_buffer_tail->b_private = bh;
562 ioend->io_buffer_tail = bh;
563 }
564
565 bh->b_private = NULL;
566 ioend->io_size += bh->b_size;
567}
568
87cbc49c
NS
569STATIC void
570xfs_map_buffer(
046f1685 571 struct inode *inode,
87cbc49c 572 struct buffer_head *bh,
207d0416 573 struct xfs_bmbt_irec *imap,
046f1685 574 xfs_off_t offset)
87cbc49c
NS
575{
576 sector_t bn;
8699bb0a 577 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
578 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
579 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 580
207d0416
CH
581 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
582 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 583
e513182d 584 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 585 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 586
046f1685 587 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
588
589 bh->b_blocknr = bn;
590 set_buffer_mapped(bh);
591}
592
1da177e4
LT
593STATIC void
594xfs_map_at_offset(
046f1685 595 struct inode *inode,
1da177e4 596 struct buffer_head *bh,
207d0416 597 struct xfs_bmbt_irec *imap,
046f1685 598 xfs_off_t offset)
1da177e4 599{
207d0416
CH
600 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
601 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4
LT
602
603 lock_buffer(bh);
207d0416 604 xfs_map_buffer(inode, bh, imap, offset);
046f1685 605 bh->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4
LT
606 set_buffer_mapped(bh);
607 clear_buffer_delay(bh);
f6d6d4fc 608 clear_buffer_unwritten(bh);
1da177e4
LT
609}
610
611/*
6c4fe19f 612 * Look for a page at index that is suitable for clustering.
1da177e4
LT
613 */
614STATIC unsigned int
6c4fe19f 615xfs_probe_page(
10ce4444 616 struct page *page,
20cb52eb 617 unsigned int pg_offset)
1da177e4 618{
20cb52eb 619 struct buffer_head *bh, *head;
1da177e4
LT
620 int ret = 0;
621
1da177e4 622 if (PageWriteback(page))
10ce4444 623 return 0;
20cb52eb
CH
624 if (!PageDirty(page))
625 return 0;
626 if (!page->mapping)
627 return 0;
628 if (!page_has_buffers(page))
629 return 0;
1da177e4 630
20cb52eb
CH
631 bh = head = page_buffers(page);
632 do {
633 if (!buffer_uptodate(bh))
634 break;
635 if (!buffer_mapped(bh))
636 break;
637 ret += bh->b_size;
638 if (ret >= pg_offset)
639 break;
640 } while ((bh = bh->b_this_page) != head);
1da177e4 641
1da177e4
LT
642 return ret;
643}
644
f6d6d4fc 645STATIC size_t
6c4fe19f 646xfs_probe_cluster(
1da177e4
LT
647 struct inode *inode,
648 struct page *startpage,
649 struct buffer_head *bh,
20cb52eb 650 struct buffer_head *head)
1da177e4 651{
10ce4444 652 struct pagevec pvec;
1da177e4 653 pgoff_t tindex, tlast, tloff;
10ce4444
CH
654 size_t total = 0;
655 int done = 0, i;
1da177e4
LT
656
657 /* First sum forwards in this page */
658 do {
20cb52eb 659 if (!buffer_uptodate(bh) || !buffer_mapped(bh))
10ce4444 660 return total;
1da177e4
LT
661 total += bh->b_size;
662 } while ((bh = bh->b_this_page) != head);
663
10ce4444
CH
664 /* if we reached the end of the page, sum forwards in following pages */
665 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
666 tindex = startpage->index + 1;
667
668 /* Prune this back to avoid pathological behavior */
669 tloff = min(tlast, startpage->index + 64);
670
671 pagevec_init(&pvec, 0);
672 while (!done && tindex <= tloff) {
673 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
674
675 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
676 break;
677
678 for (i = 0; i < pagevec_count(&pvec); i++) {
679 struct page *page = pvec.pages[i];
265c1fac 680 size_t pg_offset, pg_len = 0;
10ce4444
CH
681
682 if (tindex == tlast) {
683 pg_offset =
684 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
685 if (!pg_offset) {
686 done = 1;
10ce4444 687 break;
1defeac9 688 }
10ce4444
CH
689 } else
690 pg_offset = PAGE_CACHE_SIZE;
691
529ae9aa 692 if (page->index == tindex && trylock_page(page)) {
20cb52eb 693 pg_len = xfs_probe_page(page, pg_offset);
10ce4444
CH
694 unlock_page(page);
695 }
696
265c1fac 697 if (!pg_len) {
10ce4444
CH
698 done = 1;
699 break;
700 }
701
265c1fac 702 total += pg_len;
1defeac9 703 tindex++;
1da177e4 704 }
10ce4444
CH
705
706 pagevec_release(&pvec);
707 cond_resched();
1da177e4 708 }
10ce4444 709
1da177e4
LT
710 return total;
711}
712
713/*
10ce4444
CH
714 * Test if a given page is suitable for writing as part of an unwritten
715 * or delayed allocate extent.
1da177e4 716 */
10ce4444
CH
717STATIC int
718xfs_is_delayed_page(
719 struct page *page,
f6d6d4fc 720 unsigned int type)
1da177e4 721{
1da177e4 722 if (PageWriteback(page))
10ce4444 723 return 0;
1da177e4
LT
724
725 if (page->mapping && page_has_buffers(page)) {
726 struct buffer_head *bh, *head;
727 int acceptable = 0;
728
729 bh = head = page_buffers(page);
730 do {
f6d6d4fc 731 if (buffer_unwritten(bh))
34a52c6c 732 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 733 else if (buffer_delay(bh))
34a52c6c 734 acceptable = (type == IO_DELAY);
2ddee844 735 else if (buffer_dirty(bh) && buffer_mapped(bh))
34a52c6c 736 acceptable = (type == IO_NEW);
f6d6d4fc 737 else
1da177e4 738 break;
1da177e4
LT
739 } while ((bh = bh->b_this_page) != head);
740
741 if (acceptable)
10ce4444 742 return 1;
1da177e4
LT
743 }
744
10ce4444 745 return 0;
1da177e4
LT
746}
747
1da177e4
LT
748/*
749 * Allocate & map buffers for page given the extent map. Write it out.
750 * except for the original page of a writepage, this is called on
751 * delalloc/unwritten pages only, for the original page it is possible
752 * that the page has no mapping at all.
753 */
f6d6d4fc 754STATIC int
1da177e4
LT
755xfs_convert_page(
756 struct inode *inode,
757 struct page *page,
10ce4444 758 loff_t tindex,
207d0416 759 struct xfs_bmbt_irec *imap,
f6d6d4fc 760 xfs_ioend_t **ioendp,
1da177e4 761 struct writeback_control *wbc,
1da177e4
LT
762 int all_bh)
763{
f6d6d4fc 764 struct buffer_head *bh, *head;
9260dc6b
CH
765 xfs_off_t end_offset;
766 unsigned long p_offset;
f6d6d4fc 767 unsigned int type;
24e17b5f 768 int len, page_dirty;
f6d6d4fc 769 int count = 0, done = 0, uptodate = 1;
9260dc6b 770 xfs_off_t offset = page_offset(page);
1da177e4 771
10ce4444
CH
772 if (page->index != tindex)
773 goto fail;
529ae9aa 774 if (!trylock_page(page))
10ce4444
CH
775 goto fail;
776 if (PageWriteback(page))
777 goto fail_unlock_page;
778 if (page->mapping != inode->i_mapping)
779 goto fail_unlock_page;
780 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
781 goto fail_unlock_page;
782
24e17b5f
NS
783 /*
784 * page_dirty is initially a count of buffers on the page before
c41564b5 785 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
786 *
787 * Derivation:
788 *
789 * End offset is the highest offset that this page should represent.
790 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
791 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
792 * hence give us the correct page_dirty count. On any other page,
793 * it will be zero and in that case we need page_dirty to be the
794 * count of buffers on the page.
24e17b5f 795 */
9260dc6b
CH
796 end_offset = min_t(unsigned long long,
797 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
798 i_size_read(inode));
799
24e17b5f 800 len = 1 << inode->i_blkbits;
9260dc6b
CH
801 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
802 PAGE_CACHE_SIZE);
803 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
804 page_dirty = p_offset / len;
24e17b5f 805
1da177e4
LT
806 bh = head = page_buffers(page);
807 do {
9260dc6b 808 if (offset >= end_offset)
1da177e4 809 break;
f6d6d4fc
CH
810 if (!buffer_uptodate(bh))
811 uptodate = 0;
812 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
813 done = 1;
1da177e4 814 continue;
f6d6d4fc
CH
815 }
816
9260dc6b
CH
817 if (buffer_unwritten(bh) || buffer_delay(bh)) {
818 if (buffer_unwritten(bh))
34a52c6c 819 type = IO_UNWRITTEN;
9260dc6b 820 else
34a52c6c 821 type = IO_DELAY;
9260dc6b 822
558e6891 823 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 824 done = 1;
9260dc6b
CH
825 continue;
826 }
827
207d0416
CH
828 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
829 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
9260dc6b 830
207d0416 831 xfs_map_at_offset(inode, bh, imap, offset);
89f3b363
CH
832 xfs_add_to_ioend(inode, bh, offset, type,
833 ioendp, done);
834
9260dc6b
CH
835 page_dirty--;
836 count++;
837 } else {
34a52c6c 838 type = IO_NEW;
89f3b363 839 if (buffer_mapped(bh) && all_bh) {
1da177e4 840 lock_buffer(bh);
7336cea8 841 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
842 type, ioendp, done);
843 count++;
24e17b5f 844 page_dirty--;
9260dc6b
CH
845 } else {
846 done = 1;
1da177e4 847 }
1da177e4 848 }
7336cea8 849 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 850
f6d6d4fc
CH
851 if (uptodate && bh == head)
852 SetPageUptodate(page);
853
89f3b363 854 if (count) {
efceab1d
DC
855 if (--wbc->nr_to_write <= 0 &&
856 wbc->sync_mode == WB_SYNC_NONE)
89f3b363 857 done = 1;
1da177e4 858 }
89f3b363 859 xfs_start_page_writeback(page, !page_dirty, count);
f6d6d4fc
CH
860
861 return done;
10ce4444
CH
862 fail_unlock_page:
863 unlock_page(page);
864 fail:
865 return 1;
1da177e4
LT
866}
867
868/*
869 * Convert & write out a cluster of pages in the same extent as defined
870 * by mp and following the start page.
871 */
872STATIC void
873xfs_cluster_write(
874 struct inode *inode,
875 pgoff_t tindex,
207d0416 876 struct xfs_bmbt_irec *imap,
f6d6d4fc 877 xfs_ioend_t **ioendp,
1da177e4 878 struct writeback_control *wbc,
1da177e4
LT
879 int all_bh,
880 pgoff_t tlast)
881{
10ce4444
CH
882 struct pagevec pvec;
883 int done = 0, i;
1da177e4 884
10ce4444
CH
885 pagevec_init(&pvec, 0);
886 while (!done && tindex <= tlast) {
887 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
888
889 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 890 break;
10ce4444
CH
891
892 for (i = 0; i < pagevec_count(&pvec); i++) {
893 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
89f3b363 894 imap, ioendp, wbc, all_bh);
10ce4444
CH
895 if (done)
896 break;
897 }
898
899 pagevec_release(&pvec);
900 cond_resched();
1da177e4
LT
901 }
902}
903
3ed3a434
DC
904STATIC void
905xfs_vm_invalidatepage(
906 struct page *page,
907 unsigned long offset)
908{
909 trace_xfs_invalidatepage(page->mapping->host, page, offset);
910 block_invalidatepage(page, offset);
911}
912
913/*
914 * If the page has delalloc buffers on it, we need to punch them out before we
915 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
916 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
917 * is done on that same region - the delalloc extent is returned when none is
918 * supposed to be there.
919 *
920 * We prevent this by truncating away the delalloc regions on the page before
921 * invalidating it. Because they are delalloc, we can do this without needing a
922 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
923 * truncation without a transaction as there is no space left for block
924 * reservation (typically why we see a ENOSPC in writeback).
925 *
926 * This is not a performance critical path, so for now just do the punching a
927 * buffer head at a time.
928 */
929STATIC void
930xfs_aops_discard_page(
931 struct page *page)
932{
933 struct inode *inode = page->mapping->host;
934 struct xfs_inode *ip = XFS_I(inode);
935 struct buffer_head *bh, *head;
936 loff_t offset = page_offset(page);
937 ssize_t len = 1 << inode->i_blkbits;
938
34a52c6c 939 if (!xfs_is_delayed_page(page, IO_DELAY))
3ed3a434
DC
940 goto out_invalidate;
941
e8c3753c
DC
942 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
943 goto out_invalidate;
944
3ed3a434
DC
945 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
946 "page discard on page %p, inode 0x%llx, offset %llu.",
947 page, ip->i_ino, offset);
948
949 xfs_ilock(ip, XFS_ILOCK_EXCL);
950 bh = head = page_buffers(page);
951 do {
952 int done;
953 xfs_fileoff_t offset_fsb;
954 xfs_bmbt_irec_t imap;
955 int nimaps = 1;
956 int error;
957 xfs_fsblock_t firstblock;
958 xfs_bmap_free_t flist;
959
960 if (!buffer_delay(bh))
961 goto next_buffer;
962
963 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
964
965 /*
966 * Map the range first and check that it is a delalloc extent
967 * before trying to unmap the range. Otherwise we will be
968 * trying to remove a real extent (which requires a
969 * transaction) or a hole, which is probably a bad idea...
970 */
971 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
972 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
b4e9181e 973 &nimaps, NULL);
3ed3a434
DC
974
975 if (error) {
976 /* something screwed, just bail */
e8c3753c
DC
977 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
978 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
979 "page discard failed delalloc mapping lookup.");
980 }
3ed3a434
DC
981 break;
982 }
983 if (!nimaps) {
984 /* nothing there */
985 goto next_buffer;
986 }
987 if (imap.br_startblock != DELAYSTARTBLOCK) {
988 /* been converted, ignore */
989 goto next_buffer;
990 }
991 WARN_ON(imap.br_blockcount == 0);
992
993 /*
994 * Note: while we initialise the firstblock/flist pair, they
995 * should never be used because blocks should never be
996 * allocated or freed for a delalloc extent and hence we need
997 * don't cancel or finish them after the xfs_bunmapi() call.
998 */
999 xfs_bmap_init(&flist, &firstblock);
1000 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
b4e9181e 1001 &flist, &done);
3ed3a434
DC
1002
1003 ASSERT(!flist.xbf_count && !flist.xbf_first);
1004 if (error) {
1005 /* something screwed, just bail */
e8c3753c
DC
1006 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1007 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 1008 "page discard unable to remove delalloc mapping.");
e8c3753c 1009 }
3ed3a434
DC
1010 break;
1011 }
1012next_buffer:
1013 offset += len;
1014
1015 } while ((bh = bh->b_this_page) != head);
1016
1017 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1018out_invalidate:
1019 xfs_vm_invalidatepage(page, 0);
1020 return;
1021}
1022
1da177e4 1023/*
89f3b363
CH
1024 * Write out a dirty page.
1025 *
1026 * For delalloc space on the page we need to allocate space and flush it.
1027 * For unwritten space on the page we need to start the conversion to
1028 * regular allocated space.
89f3b363 1029 * For any other dirty buffer heads on the page we should flush them.
1da177e4 1030 *
89f3b363
CH
1031 * If we detect that a transaction would be required to flush the page, we
1032 * have to check the process flags first, if we are already in a transaction
1033 * or disk I/O during allocations is off, we need to fail the writepage and
1034 * redirty the page.
1da177e4 1035 */
1da177e4 1036STATIC int
89f3b363
CH
1037xfs_vm_writepage(
1038 struct page *page,
1039 struct writeback_control *wbc)
1da177e4 1040{
89f3b363 1041 struct inode *inode = page->mapping->host;
20cb52eb 1042 int delalloc, unwritten;
f6d6d4fc 1043 struct buffer_head *bh, *head;
207d0416 1044 struct xfs_bmbt_irec imap;
f6d6d4fc 1045 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4 1046 loff_t offset;
f6d6d4fc 1047 unsigned int type;
1da177e4 1048 __uint64_t end_offset;
bd1556a1 1049 pgoff_t end_index, last_index;
d5cb48aa 1050 ssize_t size, len;
558e6891 1051 int flags, err, imap_valid = 0, uptodate = 1;
89f3b363 1052 int count = 0;
20cb52eb 1053 int all_bh = 0;
89f3b363
CH
1054
1055 trace_xfs_writepage(inode, page, 0);
1056
20cb52eb
CH
1057 ASSERT(page_has_buffers(page));
1058
89f3b363
CH
1059 /*
1060 * Refuse to write the page out if we are called from reclaim context.
1061 *
d4f7a5cb
CH
1062 * This avoids stack overflows when called from deeply used stacks in
1063 * random callers for direct reclaim or memcg reclaim. We explicitly
1064 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363
CH
1065 *
1066 * This should really be done by the core VM, but until that happens
1067 * filesystems like XFS, btrfs and ext4 have to take care of this
1068 * by themselves.
1069 */
d4f7a5cb 1070 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
b5420f23 1071 goto redirty;
1da177e4 1072
89f3b363 1073 /*
20cb52eb
CH
1074 * We need a transaction if there are delalloc or unwritten buffers
1075 * on the page.
1076 *
1077 * If we need a transaction and the process flags say we are already
1078 * in a transaction, or no IO is allowed then mark the page dirty
1079 * again and leave the page as is.
89f3b363 1080 */
20cb52eb
CH
1081 xfs_count_page_state(page, &delalloc, &unwritten);
1082 if ((current->flags & PF_FSTRANS) && (delalloc || unwritten))
b5420f23 1083 goto redirty;
89f3b363 1084
1da177e4
LT
1085 /* Is this page beyond the end of the file? */
1086 offset = i_size_read(inode);
1087 end_index = offset >> PAGE_CACHE_SHIFT;
1088 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1089 if (page->index >= end_index) {
1090 if ((page->index >= end_index + 1) ||
1091 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
89f3b363 1092 unlock_page(page);
19d5bcf3 1093 return 0;
1da177e4
LT
1094 }
1095 }
1096
f6d6d4fc 1097 end_offset = min_t(unsigned long long,
20cb52eb
CH
1098 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1099 offset);
24e17b5f 1100 len = 1 << inode->i_blkbits;
24e17b5f 1101
24e17b5f 1102 bh = head = page_buffers(page);
f6d6d4fc 1103 offset = page_offset(page);
df3c7244 1104 flags = BMAPI_READ;
34a52c6c 1105 type = IO_NEW;
f6d6d4fc 1106
1da177e4
LT
1107 do {
1108 if (offset >= end_offset)
1109 break;
1110 if (!buffer_uptodate(bh))
1111 uptodate = 0;
1da177e4 1112
3d9b02e3 1113 /*
ece413f5
CH
1114 * set_page_dirty dirties all buffers in a page, independent
1115 * of their state. The dirty state however is entirely
1116 * meaningless for holes (!mapped && uptodate), so skip
1117 * buffers covering holes here.
3d9b02e3
ES
1118 */
1119 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
3d9b02e3
ES
1120 imap_valid = 0;
1121 continue;
1122 }
1123
558e6891
CH
1124 if (imap_valid)
1125 imap_valid = xfs_imap_valid(inode, &imap, offset);
1da177e4 1126
20cb52eb 1127 if (buffer_unwritten(bh) || buffer_delay(bh)) {
effd120e
DC
1128 int new_ioend = 0;
1129
df3c7244 1130 /*
6c4fe19f
CH
1131 * Make sure we don't use a read-only iomap
1132 */
df3c7244 1133 if (flags == BMAPI_READ)
558e6891 1134 imap_valid = 0;
6c4fe19f 1135
f6d6d4fc 1136 if (buffer_unwritten(bh)) {
34a52c6c 1137 type = IO_UNWRITTEN;
8272145c 1138 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1139 } else if (buffer_delay(bh)) {
34a52c6c 1140 type = IO_DELAY;
89f3b363
CH
1141 flags = BMAPI_ALLOCATE;
1142
1b430bee 1143 if (wbc->sync_mode == WB_SYNC_NONE)
89f3b363 1144 flags |= BMAPI_TRYLOCK;
f6d6d4fc
CH
1145 }
1146
558e6891 1147 if (!imap_valid) {
effd120e 1148 /*
20cb52eb 1149 * If we didn't have a valid mapping then we
effd120e
DC
1150 * need to ensure that we put the new mapping
1151 * in a new ioend structure. This needs to be
1152 * done to ensure that the ioends correctly
1153 * reflect the block mappings at io completion
1154 * for unwritten extent conversion.
1155 */
1156 new_ioend = 1;
20cb52eb 1157 err = xfs_map_blocks(inode, offset, len,
207d0416 1158 &imap, flags);
f6d6d4fc 1159 if (err)
1da177e4 1160 goto error;
558e6891
CH
1161 imap_valid = xfs_imap_valid(inode, &imap,
1162 offset);
1da177e4 1163 }
558e6891 1164 if (imap_valid) {
207d0416 1165 xfs_map_at_offset(inode, bh, &imap, offset);
89f3b363
CH
1166 xfs_add_to_ioend(inode, bh, offset, type,
1167 &ioend, new_ioend);
f6d6d4fc 1168 count++;
1da177e4 1169 }
89f3b363 1170 } else if (buffer_uptodate(bh)) {
6c4fe19f
CH
1171 /*
1172 * we got here because the buffer is already mapped.
1173 * That means it must already have extents allocated
1174 * underneath it. Map the extent by reading it.
1175 */
558e6891 1176 if (!imap_valid || flags != BMAPI_READ) {
6c4fe19f 1177 flags = BMAPI_READ;
20cb52eb 1178 size = xfs_probe_cluster(inode, page, bh, head);
6c4fe19f 1179 err = xfs_map_blocks(inode, offset, size,
207d0416 1180 &imap, flags);
6c4fe19f
CH
1181 if (err)
1182 goto error;
558e6891
CH
1183 imap_valid = xfs_imap_valid(inode, &imap,
1184 offset);
6c4fe19f 1185 }
d5cb48aa 1186
df3c7244 1187 /*
34a52c6c 1188 * We set the type to IO_NEW in case we are doing a
df3c7244
DC
1189 * small write at EOF that is extending the file but
1190 * without needing an allocation. We need to update the
1191 * file size on I/O completion in this case so it is
1192 * the same case as having just allocated a new extent
1193 * that we are writing into for the first time.
1194 */
34a52c6c 1195 type = IO_NEW;
ca5de404 1196 if (trylock_buffer(bh)) {
558e6891 1197 if (imap_valid)
6c4fe19f 1198 all_bh = 1;
7336cea8 1199 xfs_add_to_ioend(inode, bh, offset, type,
558e6891 1200 &ioend, !imap_valid);
d5cb48aa 1201 count++;
f6d6d4fc 1202 } else {
558e6891 1203 imap_valid = 0;
1da177e4 1204 }
89f3b363 1205 } else if (PageUptodate(page)) {
20cb52eb 1206 ASSERT(buffer_mapped(bh));
558e6891 1207 imap_valid = 0;
1da177e4 1208 }
f6d6d4fc
CH
1209
1210 if (!iohead)
1211 iohead = ioend;
1212
1213 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1214
1215 if (uptodate && bh == head)
1216 SetPageUptodate(page);
1217
89f3b363 1218 xfs_start_page_writeback(page, 1, count);
1da177e4 1219
558e6891 1220 if (ioend && imap_valid) {
bd1556a1
CH
1221 xfs_off_t end_index;
1222
1223 end_index = imap.br_startoff + imap.br_blockcount;
1224
1225 /* to bytes */
1226 end_index <<= inode->i_blkbits;
1227
1228 /* to pages */
1229 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1230
1231 /* check against file size */
1232 if (end_index > last_index)
1233 end_index = last_index;
8699bb0a 1234
207d0416 1235 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
89f3b363 1236 wbc, all_bh, end_index);
1da177e4
LT
1237 }
1238
f6d6d4fc 1239 if (iohead)
06342cf8 1240 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1241
89f3b363 1242 return 0;
1da177e4
LT
1243
1244error:
f6d6d4fc
CH
1245 if (iohead)
1246 xfs_cancel_ioend(iohead);
1da177e4 1247
b5420f23
CH
1248 if (err == -EAGAIN)
1249 goto redirty;
1250
20cb52eb 1251 xfs_aops_discard_page(page);
89f3b363
CH
1252 ClearPageUptodate(page);
1253 unlock_page(page);
1da177e4 1254 return err;
f51623b2 1255
b5420f23 1256redirty:
f51623b2
NS
1257 redirty_page_for_writepage(wbc, page);
1258 unlock_page(page);
1259 return 0;
f51623b2
NS
1260}
1261
7d4fb40a
NS
1262STATIC int
1263xfs_vm_writepages(
1264 struct address_space *mapping,
1265 struct writeback_control *wbc)
1266{
b3aea4ed 1267 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1268 return generic_writepages(mapping, wbc);
1269}
1270
f51623b2
NS
1271/*
1272 * Called to move a page into cleanable state - and from there
89f3b363 1273 * to be released. The page should already be clean. We always
f51623b2
NS
1274 * have buffer heads in this call.
1275 *
89f3b363 1276 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1277 */
1278STATIC int
238f4c54 1279xfs_vm_releasepage(
f51623b2
NS
1280 struct page *page,
1281 gfp_t gfp_mask)
1282{
20cb52eb 1283 int delalloc, unwritten;
f51623b2 1284
89f3b363 1285 trace_xfs_releasepage(page->mapping->host, page, 0);
238f4c54 1286
20cb52eb 1287 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1288
89f3b363 1289 if (WARN_ON(delalloc))
f51623b2 1290 return 0;
89f3b363 1291 if (WARN_ON(unwritten))
f51623b2
NS
1292 return 0;
1293
f51623b2
NS
1294 return try_to_free_buffers(page);
1295}
1296
1da177e4 1297STATIC int
c2536668 1298__xfs_get_blocks(
1da177e4
LT
1299 struct inode *inode,
1300 sector_t iblock,
1da177e4
LT
1301 struct buffer_head *bh_result,
1302 int create,
f2bde9b8 1303 int direct)
1da177e4 1304{
f2bde9b8 1305 int flags = create ? BMAPI_WRITE : BMAPI_READ;
207d0416 1306 struct xfs_bmbt_irec imap;
fdc7ed75
NS
1307 xfs_off_t offset;
1308 ssize_t size;
207d0416
CH
1309 int nimap = 1;
1310 int new = 0;
1da177e4 1311 int error;
1da177e4 1312
fdc7ed75 1313 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1314 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1315 size = bh_result->b_size;
364f358a
LM
1316
1317 if (!create && direct && offset >= i_size_read(inode))
1318 return 0;
1319
f2bde9b8
CH
1320 if (direct && create)
1321 flags |= BMAPI_DIRECT;
1322
1323 error = xfs_iomap(XFS_I(inode), offset, size, flags, &imap, &nimap,
1324 &new);
1da177e4
LT
1325 if (error)
1326 return -error;
207d0416 1327 if (nimap == 0)
1da177e4
LT
1328 return 0;
1329
207d0416
CH
1330 if (imap.br_startblock != HOLESTARTBLOCK &&
1331 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1332 /*
1333 * For unwritten extents do not report a disk address on
1da177e4
LT
1334 * the read case (treat as if we're reading into a hole).
1335 */
207d0416
CH
1336 if (create || !ISUNWRITTEN(&imap))
1337 xfs_map_buffer(inode, bh_result, &imap, offset);
1338 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1339 if (direct)
1340 bh_result->b_private = inode;
1341 set_buffer_unwritten(bh_result);
1da177e4
LT
1342 }
1343 }
1344
c2536668
NS
1345 /*
1346 * If this is a realtime file, data may be on a different device.
1347 * to that pointed to from the buffer_head b_bdev currently.
1348 */
046f1685 1349 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1350
c2536668 1351 /*
549054af
DC
1352 * If we previously allocated a block out beyond eof and we are now
1353 * coming back to use it then we will need to flag it as new even if it
1354 * has a disk address.
1355 *
1356 * With sub-block writes into unwritten extents we also need to mark
1357 * the buffer as new so that the unwritten parts of the buffer gets
1358 * correctly zeroed.
1da177e4
LT
1359 */
1360 if (create &&
1361 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1362 (offset >= i_size_read(inode)) ||
207d0416 1363 (new || ISUNWRITTEN(&imap))))
1da177e4 1364 set_buffer_new(bh_result);
1da177e4 1365
207d0416 1366 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1367 BUG_ON(direct);
1368 if (create) {
1369 set_buffer_uptodate(bh_result);
1370 set_buffer_mapped(bh_result);
1371 set_buffer_delay(bh_result);
1372 }
1373 }
1374
2b8f12b7
CH
1375 /*
1376 * If this is O_DIRECT or the mpage code calling tell them how large
1377 * the mapping is, so that we can avoid repeated get_blocks calls.
1378 */
c2536668 1379 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1380 xfs_off_t mapping_size;
1381
1382 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1383 mapping_size <<= inode->i_blkbits;
1384
1385 ASSERT(mapping_size > 0);
1386 if (mapping_size > size)
1387 mapping_size = size;
1388 if (mapping_size > LONG_MAX)
1389 mapping_size = LONG_MAX;
1390
1391 bh_result->b_size = mapping_size;
1da177e4
LT
1392 }
1393
1394 return 0;
1395}
1396
1397int
c2536668 1398xfs_get_blocks(
1da177e4
LT
1399 struct inode *inode,
1400 sector_t iblock,
1401 struct buffer_head *bh_result,
1402 int create)
1403{
f2bde9b8 1404 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1da177e4
LT
1405}
1406
1407STATIC int
e4c573bb 1408xfs_get_blocks_direct(
1da177e4
LT
1409 struct inode *inode,
1410 sector_t iblock,
1da177e4
LT
1411 struct buffer_head *bh_result,
1412 int create)
1413{
f2bde9b8 1414 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1da177e4
LT
1415}
1416
209fb87a
CH
1417/*
1418 * Complete a direct I/O write request.
1419 *
1420 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1421 * need to issue a transaction to convert the range from unwritten to written
1422 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1423 * to do this and we are done. But in case this was a successfull AIO
1424 * request this handler is called from interrupt context, from which we
1425 * can't start transactions. In that case offload the I/O completion to
1426 * the workqueues we also use for buffered I/O completion.
1427 */
f0973863 1428STATIC void
209fb87a
CH
1429xfs_end_io_direct_write(
1430 struct kiocb *iocb,
1431 loff_t offset,
1432 ssize_t size,
1433 void *private,
1434 int ret,
1435 bool is_async)
f0973863 1436{
209fb87a 1437 struct xfs_ioend *ioend = iocb->private;
f0973863
CH
1438
1439 /*
209fb87a
CH
1440 * blockdev_direct_IO can return an error even after the I/O
1441 * completion handler was called. Thus we need to protect
1442 * against double-freeing.
f0973863 1443 */
209fb87a
CH
1444 iocb->private = NULL;
1445
ba87ea69
LM
1446 ioend->io_offset = offset;
1447 ioend->io_size = size;
209fb87a
CH
1448 if (private && size > 0)
1449 ioend->io_type = IO_UNWRITTEN;
1450
1451 if (is_async) {
1452 /*
1453 * If we are converting an unwritten extent we need to delay
1454 * the AIO completion until after the unwrittent extent
1455 * conversion has completed, otherwise do it ASAP.
1456 */
1457 if (ioend->io_type == IO_UNWRITTEN) {
fb511f21
CH
1458 ioend->io_iocb = iocb;
1459 ioend->io_result = ret;
fb511f21 1460 } else {
209fb87a 1461 aio_complete(iocb, ret, 0);
fb511f21 1462 }
209fb87a 1463 xfs_finish_ioend(ioend);
f0973863 1464 } else {
209fb87a 1465 xfs_finish_ioend_sync(ioend);
f0973863 1466 }
f0973863
CH
1467}
1468
1da177e4 1469STATIC ssize_t
e4c573bb 1470xfs_vm_direct_IO(
1da177e4
LT
1471 int rw,
1472 struct kiocb *iocb,
1473 const struct iovec *iov,
1474 loff_t offset,
1475 unsigned long nr_segs)
1476{
209fb87a
CH
1477 struct inode *inode = iocb->ki_filp->f_mapping->host;
1478 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1479 ssize_t ret;
1480
1481 if (rw & WRITE) {
1482 iocb->private = xfs_alloc_ioend(inode, IO_NEW);
1483
eafdc7d1
CH
1484 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1485 offset, nr_segs,
1486 xfs_get_blocks_direct,
1487 xfs_end_io_direct_write, NULL, 0);
209fb87a
CH
1488 if (ret != -EIOCBQUEUED && iocb->private)
1489 xfs_destroy_ioend(iocb->private);
1490 } else {
eafdc7d1
CH
1491 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1492 offset, nr_segs,
1493 xfs_get_blocks_direct,
1494 NULL, NULL, 0);
209fb87a 1495 }
f0973863 1496
f0973863 1497 return ret;
1da177e4
LT
1498}
1499
fa9b227e
CH
1500STATIC void
1501xfs_vm_write_failed(
1502 struct address_space *mapping,
1503 loff_t to)
1504{
1505 struct inode *inode = mapping->host;
1506
1507 if (to > inode->i_size) {
1508 struct iattr ia = {
1509 .ia_valid = ATTR_SIZE | ATTR_FORCE,
1510 .ia_size = inode->i_size,
1511 };
1512 xfs_setattr(XFS_I(inode), &ia, XFS_ATTR_NOLOCK);
1513 }
1514}
1515
f51623b2 1516STATIC int
d79689c7 1517xfs_vm_write_begin(
f51623b2 1518 struct file *file,
d79689c7
NP
1519 struct address_space *mapping,
1520 loff_t pos,
1521 unsigned len,
1522 unsigned flags,
1523 struct page **pagep,
1524 void **fsdata)
f51623b2 1525{
155130a4
CH
1526 int ret;
1527
1528 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1529 pagep, xfs_get_blocks);
fa9b227e
CH
1530 if (unlikely(ret))
1531 xfs_vm_write_failed(mapping, pos + len);
1532 return ret;
1533}
1534
1535STATIC int
1536xfs_vm_write_end(
1537 struct file *file,
1538 struct address_space *mapping,
1539 loff_t pos,
1540 unsigned len,
1541 unsigned copied,
1542 struct page *page,
1543 void *fsdata)
1544{
1545 int ret;
155130a4 1546
fa9b227e
CH
1547 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1548 if (unlikely(ret < len))
1549 xfs_vm_write_failed(mapping, pos + len);
155130a4 1550 return ret;
f51623b2 1551}
1da177e4
LT
1552
1553STATIC sector_t
e4c573bb 1554xfs_vm_bmap(
1da177e4
LT
1555 struct address_space *mapping,
1556 sector_t block)
1557{
1558 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1559 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1560
cca28fb8 1561 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1562 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1563 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1564 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1565 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1566}
1567
1568STATIC int
e4c573bb 1569xfs_vm_readpage(
1da177e4
LT
1570 struct file *unused,
1571 struct page *page)
1572{
c2536668 1573 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1574}
1575
1576STATIC int
e4c573bb 1577xfs_vm_readpages(
1da177e4
LT
1578 struct file *unused,
1579 struct address_space *mapping,
1580 struct list_head *pages,
1581 unsigned nr_pages)
1582{
c2536668 1583 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1584}
1585
f5e54d6e 1586const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1587 .readpage = xfs_vm_readpage,
1588 .readpages = xfs_vm_readpages,
1589 .writepage = xfs_vm_writepage,
7d4fb40a 1590 .writepages = xfs_vm_writepages,
1da177e4 1591 .sync_page = block_sync_page,
238f4c54
NS
1592 .releasepage = xfs_vm_releasepage,
1593 .invalidatepage = xfs_vm_invalidatepage,
d79689c7 1594 .write_begin = xfs_vm_write_begin,
fa9b227e 1595 .write_end = xfs_vm_write_end,
e4c573bb
NS
1596 .bmap = xfs_vm_bmap,
1597 .direct_IO = xfs_vm_direct_IO,
e965f963 1598 .migratepage = buffer_migrate_page,
bddaafa1 1599 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1600 .error_remove_page = generic_error_remove_page,
1da177e4 1601};