]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/linux-2.6/xfs_aops.c
fs: rename buffer trylock
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
1da177e4 41#include <linux/mpage.h>
10ce4444 42#include <linux/pagevec.h>
1da177e4
LT
43#include <linux/writeback.h>
44
f51623b2
NS
45STATIC void
46xfs_count_page_state(
47 struct page *page,
48 int *delalloc,
49 int *unmapped,
50 int *unwritten)
51{
52 struct buffer_head *bh, *head;
53
54 *delalloc = *unmapped = *unwritten = 0;
55
56 bh = head = page_buffers(page);
57 do {
58 if (buffer_uptodate(bh) && !buffer_mapped(bh))
59 (*unmapped) = 1;
f51623b2
NS
60 else if (buffer_unwritten(bh))
61 (*unwritten) = 1;
62 else if (buffer_delay(bh))
63 (*delalloc) = 1;
64 } while ((bh = bh->b_this_page) != head);
65}
66
1da177e4
LT
67#if defined(XFS_RW_TRACE)
68void
69xfs_page_trace(
70 int tag,
71 struct inode *inode,
72 struct page *page,
ed9d88f7 73 unsigned long pgoff)
1da177e4
LT
74{
75 xfs_inode_t *ip;
67fcaa73 76 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4 77 loff_t isize = i_size_read(inode);
f6d6d4fc 78 loff_t offset = page_offset(page);
1da177e4
LT
79 int delalloc = -1, unmapped = -1, unwritten = -1;
80
81 if (page_has_buffers(page))
82 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
83
75e17b3c 84 ip = xfs_vtoi(vp);
1da177e4
LT
85 if (!ip->i_rwtrace)
86 return;
87
88 ktrace_enter(ip->i_rwtrace,
89 (void *)((unsigned long)tag),
90 (void *)ip,
91 (void *)inode,
92 (void *)page,
ed9d88f7 93 (void *)pgoff,
1da177e4
LT
94 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
95 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
96 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
97 (void *)((unsigned long)(isize & 0xffffffff)),
98 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
99 (void *)((unsigned long)(offset & 0xffffffff)),
100 (void *)((unsigned long)delalloc),
101 (void *)((unsigned long)unmapped),
102 (void *)((unsigned long)unwritten),
f1fdc848 103 (void *)((unsigned long)current_pid()),
1da177e4
LT
104 (void *)NULL);
105}
106#else
ed9d88f7 107#define xfs_page_trace(tag, inode, page, pgoff)
1da177e4
LT
108#endif
109
6214ed44
CH
110STATIC struct block_device *
111xfs_find_bdev_for_inode(
112 struct xfs_inode *ip)
113{
114 struct xfs_mount *mp = ip->i_mount;
115
71ddabb9 116 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
117 return mp->m_rtdev_targp->bt_bdev;
118 else
119 return mp->m_ddev_targp->bt_bdev;
120}
121
0829c360
CH
122/*
123 * Schedule IO completion handling on a xfsdatad if this was
e927af90
DC
124 * the final hold on this ioend. If we are asked to wait,
125 * flush the workqueue.
0829c360
CH
126 */
127STATIC void
128xfs_finish_ioend(
e927af90
DC
129 xfs_ioend_t *ioend,
130 int wait)
0829c360 131{
e927af90 132 if (atomic_dec_and_test(&ioend->io_remaining)) {
0829c360 133 queue_work(xfsdatad_workqueue, &ioend->io_work);
e927af90
DC
134 if (wait)
135 flush_workqueue(xfsdatad_workqueue);
136 }
0829c360
CH
137}
138
f6d6d4fc
CH
139/*
140 * We're now finished for good with this ioend structure.
141 * Update the page state via the associated buffer_heads,
142 * release holds on the inode and bio, and finally free
143 * up memory. Do not use the ioend after this.
144 */
0829c360
CH
145STATIC void
146xfs_destroy_ioend(
147 xfs_ioend_t *ioend)
148{
f6d6d4fc
CH
149 struct buffer_head *bh, *next;
150
151 for (bh = ioend->io_buffer_head; bh; bh = next) {
152 next = bh->b_private;
7d04a335 153 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 154 }
b677c210
CH
155 if (unlikely(ioend->io_error)) {
156 vn_ioerror(XFS_I(ioend->io_inode), ioend->io_error,
157 __FILE__,__LINE__);
158 }
159 vn_iowake(XFS_I(ioend->io_inode));
0829c360
CH
160 mempool_free(ioend, xfs_ioend_pool);
161}
162
ba87ea69
LM
163/*
164 * Update on-disk file size now that data has been written to disk.
165 * The current in-memory file size is i_size. If a write is beyond
613d7043 166 * eof i_new_size will be the intended file size until i_size is
ba87ea69
LM
167 * updated. If this write does not extend all the way to the valid
168 * file size then restrict this update to the end of the write.
169 */
170STATIC void
171xfs_setfilesize(
172 xfs_ioend_t *ioend)
173{
b677c210 174 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69
LM
175 xfs_fsize_t isize;
176 xfs_fsize_t bsize;
177
ba87ea69
LM
178 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
179 ASSERT(ioend->io_type != IOMAP_READ);
180
181 if (unlikely(ioend->io_error))
182 return;
183
184 bsize = ioend->io_offset + ioend->io_size;
185
186 xfs_ilock(ip, XFS_ILOCK_EXCL);
187
613d7043 188 isize = MAX(ip->i_size, ip->i_new_size);
ba87ea69
LM
189 isize = MIN(isize, bsize);
190
191 if (ip->i_d.di_size < isize) {
192 ip->i_d.di_size = isize;
193 ip->i_update_core = 1;
194 ip->i_update_size = 1;
150f29ef 195 mark_inode_dirty_sync(ioend->io_inode);
ba87ea69
LM
196 }
197
198 xfs_iunlock(ip, XFS_ILOCK_EXCL);
199}
200
0829c360 201/*
f6d6d4fc 202 * Buffered IO write completion for delayed allocate extents.
f6d6d4fc
CH
203 */
204STATIC void
205xfs_end_bio_delalloc(
c4028958 206 struct work_struct *work)
f6d6d4fc 207{
c4028958
DH
208 xfs_ioend_t *ioend =
209 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 210
ba87ea69 211 xfs_setfilesize(ioend);
f6d6d4fc
CH
212 xfs_destroy_ioend(ioend);
213}
214
215/*
216 * Buffered IO write completion for regular, written extents.
217 */
218STATIC void
219xfs_end_bio_written(
c4028958 220 struct work_struct *work)
f6d6d4fc 221{
c4028958
DH
222 xfs_ioend_t *ioend =
223 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 224
ba87ea69 225 xfs_setfilesize(ioend);
f6d6d4fc
CH
226 xfs_destroy_ioend(ioend);
227}
228
229/*
230 * IO write completion for unwritten extents.
231 *
0829c360 232 * Issue transactions to convert a buffer range from unwritten
f0973863 233 * to written extents.
0829c360
CH
234 */
235STATIC void
236xfs_end_bio_unwritten(
c4028958 237 struct work_struct *work)
0829c360 238{
c4028958
DH
239 xfs_ioend_t *ioend =
240 container_of(work, xfs_ioend_t, io_work);
7642861b 241 struct xfs_inode *ip = XFS_I(ioend->io_inode);
0829c360
CH
242 xfs_off_t offset = ioend->io_offset;
243 size_t size = ioend->io_size;
0829c360 244
ba87ea69 245 if (likely(!ioend->io_error)) {
cc88466f
DC
246 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
247 int error;
248 error = xfs_iomap_write_unwritten(ip, offset, size);
249 if (error)
250 ioend->io_error = error;
251 }
ba87ea69
LM
252 xfs_setfilesize(ioend);
253 }
254 xfs_destroy_ioend(ioend);
255}
256
257/*
258 * IO read completion for regular, written extents.
259 */
260STATIC void
261xfs_end_bio_read(
262 struct work_struct *work)
263{
264 xfs_ioend_t *ioend =
265 container_of(work, xfs_ioend_t, io_work);
266
0829c360
CH
267 xfs_destroy_ioend(ioend);
268}
269
270/*
271 * Allocate and initialise an IO completion structure.
272 * We need to track unwritten extent write completion here initially.
273 * We'll need to extend this for updating the ondisk inode size later
274 * (vs. incore size).
275 */
276STATIC xfs_ioend_t *
277xfs_alloc_ioend(
f6d6d4fc
CH
278 struct inode *inode,
279 unsigned int type)
0829c360
CH
280{
281 xfs_ioend_t *ioend;
282
283 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
284
285 /*
286 * Set the count to 1 initially, which will prevent an I/O
287 * completion callback from happening before we have started
288 * all the I/O from calling the completion routine too early.
289 */
290 atomic_set(&ioend->io_remaining, 1);
7d04a335 291 ioend->io_error = 0;
f6d6d4fc
CH
292 ioend->io_list = NULL;
293 ioend->io_type = type;
b677c210 294 ioend->io_inode = inode;
c1a073bd 295 ioend->io_buffer_head = NULL;
f6d6d4fc 296 ioend->io_buffer_tail = NULL;
b677c210 297 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
298 ioend->io_offset = 0;
299 ioend->io_size = 0;
300
f6d6d4fc 301 if (type == IOMAP_UNWRITTEN)
c4028958 302 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
f6d6d4fc 303 else if (type == IOMAP_DELAY)
c4028958 304 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
ba87ea69
LM
305 else if (type == IOMAP_READ)
306 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
f6d6d4fc 307 else
c4028958 308 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
0829c360
CH
309
310 return ioend;
311}
312
1da177e4
LT
313STATIC int
314xfs_map_blocks(
315 struct inode *inode,
316 loff_t offset,
317 ssize_t count,
318 xfs_iomap_t *mapp,
319 int flags)
320{
b3aea4ed 321 xfs_inode_t *ip = XFS_I(inode);
1da177e4
LT
322 int error, nmaps = 1;
323
541d7d3c 324 error = xfs_iomap(ip, offset, count,
739bfb2a 325 flags, mapp, &nmaps);
1da177e4 326 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
b3aea4ed 327 xfs_iflags_set(ip, XFS_IMODIFIED);
1da177e4
LT
328 return -error;
329}
330
7989cb8e 331STATIC_INLINE int
1defeac9 332xfs_iomap_valid(
1da177e4 333 xfs_iomap_t *iomapp,
1defeac9 334 loff_t offset)
1da177e4 335{
1defeac9
CH
336 return offset >= iomapp->iomap_offset &&
337 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
338}
339
f6d6d4fc
CH
340/*
341 * BIO completion handler for buffered IO.
342 */
782e3b3b 343STATIC void
f6d6d4fc
CH
344xfs_end_bio(
345 struct bio *bio,
f6d6d4fc
CH
346 int error)
347{
348 xfs_ioend_t *ioend = bio->bi_private;
349
f6d6d4fc 350 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 351 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
352
353 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
354 bio->bi_private = NULL;
355 bio->bi_end_io = NULL;
f6d6d4fc 356 bio_put(bio);
7d04a335 357
e927af90 358 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
359}
360
361STATIC void
362xfs_submit_ioend_bio(
363 xfs_ioend_t *ioend,
364 struct bio *bio)
365{
366 atomic_inc(&ioend->io_remaining);
367
368 bio->bi_private = ioend;
369 bio->bi_end_io = xfs_end_bio;
370
371 submit_bio(WRITE, bio);
372 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
373 bio_put(bio);
374}
375
376STATIC struct bio *
377xfs_alloc_ioend_bio(
378 struct buffer_head *bh)
379{
380 struct bio *bio;
381 int nvecs = bio_get_nr_vecs(bh->b_bdev);
382
383 do {
384 bio = bio_alloc(GFP_NOIO, nvecs);
385 nvecs >>= 1;
386 } while (!bio);
387
388 ASSERT(bio->bi_private == NULL);
389 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
390 bio->bi_bdev = bh->b_bdev;
391 bio_get(bio);
392 return bio;
393}
394
395STATIC void
396xfs_start_buffer_writeback(
397 struct buffer_head *bh)
398{
399 ASSERT(buffer_mapped(bh));
400 ASSERT(buffer_locked(bh));
401 ASSERT(!buffer_delay(bh));
402 ASSERT(!buffer_unwritten(bh));
403
404 mark_buffer_async_write(bh);
405 set_buffer_uptodate(bh);
406 clear_buffer_dirty(bh);
407}
408
409STATIC void
410xfs_start_page_writeback(
411 struct page *page,
f6d6d4fc
CH
412 int clear_dirty,
413 int buffers)
414{
415 ASSERT(PageLocked(page));
416 ASSERT(!PageWriteback(page));
f6d6d4fc 417 if (clear_dirty)
92132021
DC
418 clear_page_dirty_for_io(page);
419 set_page_writeback(page);
f6d6d4fc 420 unlock_page(page);
1f7decf6
FW
421 /* If no buffers on the page are to be written, finish it here */
422 if (!buffers)
f6d6d4fc 423 end_page_writeback(page);
f6d6d4fc
CH
424}
425
426static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
427{
428 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
429}
430
431/*
d88992f6
DC
432 * Submit all of the bios for all of the ioends we have saved up, covering the
433 * initial writepage page and also any probed pages.
434 *
435 * Because we may have multiple ioends spanning a page, we need to start
436 * writeback on all the buffers before we submit them for I/O. If we mark the
437 * buffers as we got, then we can end up with a page that only has buffers
438 * marked async write and I/O complete on can occur before we mark the other
439 * buffers async write.
440 *
441 * The end result of this is that we trip a bug in end_page_writeback() because
442 * we call it twice for the one page as the code in end_buffer_async_write()
443 * assumes that all buffers on the page are started at the same time.
444 *
445 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 446 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
447 */
448STATIC void
449xfs_submit_ioend(
450 xfs_ioend_t *ioend)
451{
d88992f6 452 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
453 xfs_ioend_t *next;
454 struct buffer_head *bh;
455 struct bio *bio;
456 sector_t lastblock = 0;
457
d88992f6
DC
458 /* Pass 1 - start writeback */
459 do {
460 next = ioend->io_list;
461 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
462 xfs_start_buffer_writeback(bh);
463 }
464 } while ((ioend = next) != NULL);
465
466 /* Pass 2 - submit I/O */
467 ioend = head;
f6d6d4fc
CH
468 do {
469 next = ioend->io_list;
470 bio = NULL;
471
472 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
473
474 if (!bio) {
475 retry:
476 bio = xfs_alloc_ioend_bio(bh);
477 } else if (bh->b_blocknr != lastblock + 1) {
478 xfs_submit_ioend_bio(ioend, bio);
479 goto retry;
480 }
481
482 if (bio_add_buffer(bio, bh) != bh->b_size) {
483 xfs_submit_ioend_bio(ioend, bio);
484 goto retry;
485 }
486
487 lastblock = bh->b_blocknr;
488 }
489 if (bio)
490 xfs_submit_ioend_bio(ioend, bio);
e927af90 491 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
492 } while ((ioend = next) != NULL);
493}
494
495/*
496 * Cancel submission of all buffer_heads so far in this endio.
497 * Toss the endio too. Only ever called for the initial page
498 * in a writepage request, so only ever one page.
499 */
500STATIC void
501xfs_cancel_ioend(
502 xfs_ioend_t *ioend)
503{
504 xfs_ioend_t *next;
505 struct buffer_head *bh, *next_bh;
506
507 do {
508 next = ioend->io_list;
509 bh = ioend->io_buffer_head;
510 do {
511 next_bh = bh->b_private;
512 clear_buffer_async_write(bh);
513 unlock_buffer(bh);
514 } while ((bh = next_bh) != NULL);
515
b677c210 516 vn_iowake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
517 mempool_free(ioend, xfs_ioend_pool);
518 } while ((ioend = next) != NULL);
519}
520
521/*
522 * Test to see if we've been building up a completion structure for
523 * earlier buffers -- if so, we try to append to this ioend if we
524 * can, otherwise we finish off any current ioend and start another.
525 * Return true if we've finished the given ioend.
526 */
527STATIC void
528xfs_add_to_ioend(
529 struct inode *inode,
530 struct buffer_head *bh,
7336cea8 531 xfs_off_t offset,
f6d6d4fc
CH
532 unsigned int type,
533 xfs_ioend_t **result,
534 int need_ioend)
535{
536 xfs_ioend_t *ioend = *result;
537
538 if (!ioend || need_ioend || type != ioend->io_type) {
539 xfs_ioend_t *previous = *result;
f6d6d4fc 540
f6d6d4fc
CH
541 ioend = xfs_alloc_ioend(inode, type);
542 ioend->io_offset = offset;
543 ioend->io_buffer_head = bh;
544 ioend->io_buffer_tail = bh;
545 if (previous)
546 previous->io_list = ioend;
547 *result = ioend;
548 } else {
549 ioend->io_buffer_tail->b_private = bh;
550 ioend->io_buffer_tail = bh;
551 }
552
553 bh->b_private = NULL;
554 ioend->io_size += bh->b_size;
555}
556
87cbc49c
NS
557STATIC void
558xfs_map_buffer(
559 struct buffer_head *bh,
560 xfs_iomap_t *mp,
561 xfs_off_t offset,
562 uint block_bits)
563{
564 sector_t bn;
565
566 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
567
568 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
569 ((offset - mp->iomap_offset) >> block_bits);
570
571 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
572
573 bh->b_blocknr = bn;
574 set_buffer_mapped(bh);
575}
576
1da177e4
LT
577STATIC void
578xfs_map_at_offset(
1da177e4 579 struct buffer_head *bh,
1defeac9 580 loff_t offset,
1da177e4 581 int block_bits,
1defeac9 582 xfs_iomap_t *iomapp)
1da177e4 583{
1da177e4
LT
584 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
585 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
586
587 lock_buffer(bh);
87cbc49c 588 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 589 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
590 set_buffer_mapped(bh);
591 clear_buffer_delay(bh);
f6d6d4fc 592 clear_buffer_unwritten(bh);
1da177e4
LT
593}
594
595/*
6c4fe19f 596 * Look for a page at index that is suitable for clustering.
1da177e4
LT
597 */
598STATIC unsigned int
6c4fe19f 599xfs_probe_page(
10ce4444 600 struct page *page,
6c4fe19f
CH
601 unsigned int pg_offset,
602 int mapped)
1da177e4 603{
1da177e4
LT
604 int ret = 0;
605
1da177e4 606 if (PageWriteback(page))
10ce4444 607 return 0;
1da177e4
LT
608
609 if (page->mapping && PageDirty(page)) {
610 if (page_has_buffers(page)) {
611 struct buffer_head *bh, *head;
612
613 bh = head = page_buffers(page);
614 do {
6c4fe19f
CH
615 if (!buffer_uptodate(bh))
616 break;
617 if (mapped != buffer_mapped(bh))
1da177e4
LT
618 break;
619 ret += bh->b_size;
620 if (ret >= pg_offset)
621 break;
622 } while ((bh = bh->b_this_page) != head);
623 } else
6c4fe19f 624 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
625 }
626
1da177e4
LT
627 return ret;
628}
629
f6d6d4fc 630STATIC size_t
6c4fe19f 631xfs_probe_cluster(
1da177e4
LT
632 struct inode *inode,
633 struct page *startpage,
634 struct buffer_head *bh,
6c4fe19f
CH
635 struct buffer_head *head,
636 int mapped)
1da177e4 637{
10ce4444 638 struct pagevec pvec;
1da177e4 639 pgoff_t tindex, tlast, tloff;
10ce4444
CH
640 size_t total = 0;
641 int done = 0, i;
1da177e4
LT
642
643 /* First sum forwards in this page */
644 do {
2353e8e9 645 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 646 return total;
1da177e4
LT
647 total += bh->b_size;
648 } while ((bh = bh->b_this_page) != head);
649
10ce4444
CH
650 /* if we reached the end of the page, sum forwards in following pages */
651 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
652 tindex = startpage->index + 1;
653
654 /* Prune this back to avoid pathological behavior */
655 tloff = min(tlast, startpage->index + 64);
656
657 pagevec_init(&pvec, 0);
658 while (!done && tindex <= tloff) {
659 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
660
661 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
662 break;
663
664 for (i = 0; i < pagevec_count(&pvec); i++) {
665 struct page *page = pvec.pages[i];
265c1fac 666 size_t pg_offset, pg_len = 0;
10ce4444
CH
667
668 if (tindex == tlast) {
669 pg_offset =
670 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
671 if (!pg_offset) {
672 done = 1;
10ce4444 673 break;
1defeac9 674 }
10ce4444
CH
675 } else
676 pg_offset = PAGE_CACHE_SIZE;
677
529ae9aa 678 if (page->index == tindex && trylock_page(page)) {
265c1fac 679 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
680 unlock_page(page);
681 }
682
265c1fac 683 if (!pg_len) {
10ce4444
CH
684 done = 1;
685 break;
686 }
687
265c1fac 688 total += pg_len;
1defeac9 689 tindex++;
1da177e4 690 }
10ce4444
CH
691
692 pagevec_release(&pvec);
693 cond_resched();
1da177e4 694 }
10ce4444 695
1da177e4
LT
696 return total;
697}
698
699/*
10ce4444
CH
700 * Test if a given page is suitable for writing as part of an unwritten
701 * or delayed allocate extent.
1da177e4 702 */
10ce4444
CH
703STATIC int
704xfs_is_delayed_page(
705 struct page *page,
f6d6d4fc 706 unsigned int type)
1da177e4 707{
1da177e4 708 if (PageWriteback(page))
10ce4444 709 return 0;
1da177e4
LT
710
711 if (page->mapping && page_has_buffers(page)) {
712 struct buffer_head *bh, *head;
713 int acceptable = 0;
714
715 bh = head = page_buffers(page);
716 do {
f6d6d4fc
CH
717 if (buffer_unwritten(bh))
718 acceptable = (type == IOMAP_UNWRITTEN);
719 else if (buffer_delay(bh))
720 acceptable = (type == IOMAP_DELAY);
2ddee844 721 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 722 acceptable = (type == IOMAP_NEW);
f6d6d4fc 723 else
1da177e4 724 break;
1da177e4
LT
725 } while ((bh = bh->b_this_page) != head);
726
727 if (acceptable)
10ce4444 728 return 1;
1da177e4
LT
729 }
730
10ce4444 731 return 0;
1da177e4
LT
732}
733
1da177e4
LT
734/*
735 * Allocate & map buffers for page given the extent map. Write it out.
736 * except for the original page of a writepage, this is called on
737 * delalloc/unwritten pages only, for the original page it is possible
738 * that the page has no mapping at all.
739 */
f6d6d4fc 740STATIC int
1da177e4
LT
741xfs_convert_page(
742 struct inode *inode,
743 struct page *page,
10ce4444 744 loff_t tindex,
1defeac9 745 xfs_iomap_t *mp,
f6d6d4fc 746 xfs_ioend_t **ioendp,
1da177e4 747 struct writeback_control *wbc,
1da177e4
LT
748 int startio,
749 int all_bh)
750{
f6d6d4fc 751 struct buffer_head *bh, *head;
9260dc6b
CH
752 xfs_off_t end_offset;
753 unsigned long p_offset;
f6d6d4fc 754 unsigned int type;
1da177e4 755 int bbits = inode->i_blkbits;
24e17b5f 756 int len, page_dirty;
f6d6d4fc 757 int count = 0, done = 0, uptodate = 1;
9260dc6b 758 xfs_off_t offset = page_offset(page);
1da177e4 759
10ce4444
CH
760 if (page->index != tindex)
761 goto fail;
529ae9aa 762 if (!trylock_page(page))
10ce4444
CH
763 goto fail;
764 if (PageWriteback(page))
765 goto fail_unlock_page;
766 if (page->mapping != inode->i_mapping)
767 goto fail_unlock_page;
768 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
769 goto fail_unlock_page;
770
24e17b5f
NS
771 /*
772 * page_dirty is initially a count of buffers on the page before
c41564b5 773 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
774 *
775 * Derivation:
776 *
777 * End offset is the highest offset that this page should represent.
778 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
779 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
780 * hence give us the correct page_dirty count. On any other page,
781 * it will be zero and in that case we need page_dirty to be the
782 * count of buffers on the page.
24e17b5f 783 */
9260dc6b
CH
784 end_offset = min_t(unsigned long long,
785 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
786 i_size_read(inode));
787
24e17b5f 788 len = 1 << inode->i_blkbits;
9260dc6b
CH
789 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
790 PAGE_CACHE_SIZE);
791 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
792 page_dirty = p_offset / len;
24e17b5f 793
1da177e4
LT
794 bh = head = page_buffers(page);
795 do {
9260dc6b 796 if (offset >= end_offset)
1da177e4 797 break;
f6d6d4fc
CH
798 if (!buffer_uptodate(bh))
799 uptodate = 0;
800 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
801 done = 1;
1da177e4 802 continue;
f6d6d4fc
CH
803 }
804
9260dc6b
CH
805 if (buffer_unwritten(bh) || buffer_delay(bh)) {
806 if (buffer_unwritten(bh))
807 type = IOMAP_UNWRITTEN;
808 else
809 type = IOMAP_DELAY;
810
811 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 812 done = 1;
9260dc6b
CH
813 continue;
814 }
815
816 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
817 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
818
819 xfs_map_at_offset(bh, offset, bbits, mp);
820 if (startio) {
7336cea8 821 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
822 type, ioendp, done);
823 } else {
824 set_buffer_dirty(bh);
825 unlock_buffer(bh);
826 mark_buffer_dirty(bh);
827 }
828 page_dirty--;
829 count++;
830 } else {
df3c7244 831 type = IOMAP_NEW;
9260dc6b 832 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 833 lock_buffer(bh);
7336cea8 834 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
835 type, ioendp, done);
836 count++;
24e17b5f 837 page_dirty--;
9260dc6b
CH
838 } else {
839 done = 1;
1da177e4 840 }
1da177e4 841 }
7336cea8 842 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 843
f6d6d4fc
CH
844 if (uptodate && bh == head)
845 SetPageUptodate(page);
846
847 if (startio) {
f5e596bb
CH
848 if (count) {
849 struct backing_dev_info *bdi;
850
851 bdi = inode->i_mapping->backing_dev_info;
9fddaca2 852 wbc->nr_to_write--;
f5e596bb
CH
853 if (bdi_write_congested(bdi)) {
854 wbc->encountered_congestion = 1;
855 done = 1;
9fddaca2 856 } else if (wbc->nr_to_write <= 0) {
f5e596bb
CH
857 done = 1;
858 }
859 }
b41759cf 860 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 861 }
f6d6d4fc
CH
862
863 return done;
10ce4444
CH
864 fail_unlock_page:
865 unlock_page(page);
866 fail:
867 return 1;
1da177e4
LT
868}
869
870/*
871 * Convert & write out a cluster of pages in the same extent as defined
872 * by mp and following the start page.
873 */
874STATIC void
875xfs_cluster_write(
876 struct inode *inode,
877 pgoff_t tindex,
878 xfs_iomap_t *iomapp,
f6d6d4fc 879 xfs_ioend_t **ioendp,
1da177e4
LT
880 struct writeback_control *wbc,
881 int startio,
882 int all_bh,
883 pgoff_t tlast)
884{
10ce4444
CH
885 struct pagevec pvec;
886 int done = 0, i;
1da177e4 887
10ce4444
CH
888 pagevec_init(&pvec, 0);
889 while (!done && tindex <= tlast) {
890 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
891
892 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 893 break;
10ce4444
CH
894
895 for (i = 0; i < pagevec_count(&pvec); i++) {
896 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
897 iomapp, ioendp, wbc, startio, all_bh);
898 if (done)
899 break;
900 }
901
902 pagevec_release(&pvec);
903 cond_resched();
1da177e4
LT
904 }
905}
906
907/*
908 * Calling this without startio set means we are being asked to make a dirty
909 * page ready for freeing it's buffers. When called with startio set then
910 * we are coming from writepage.
911 *
912 * When called with startio set it is important that we write the WHOLE
913 * page if possible.
914 * The bh->b_state's cannot know if any of the blocks or which block for
915 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 916 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
917 * may clear the page dirty flag prior to calling write page, under the
918 * assumption the entire page will be written out; by not writing out the
919 * whole page the page can be reused before all valid dirty data is
920 * written out. Note: in the case of a page that has been dirty'd by
921 * mapwrite and but partially setup by block_prepare_write the
922 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
923 * valid state, thus the whole page must be written out thing.
924 */
925
926STATIC int
927xfs_page_state_convert(
928 struct inode *inode,
929 struct page *page,
930 struct writeback_control *wbc,
931 int startio,
932 int unmapped) /* also implies page uptodate */
933{
f6d6d4fc 934 struct buffer_head *bh, *head;
1defeac9 935 xfs_iomap_t iomap;
f6d6d4fc 936 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
937 loff_t offset;
938 unsigned long p_offset = 0;
f6d6d4fc 939 unsigned int type;
1da177e4
LT
940 __uint64_t end_offset;
941 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
942 ssize_t size, len;
943 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
944 int page_dirty, count = 0;
945 int trylock = 0;
6c4fe19f 946 int all_bh = unmapped;
1da177e4 947
8272145c
NS
948 if (startio) {
949 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
950 trylock |= BMAPI_TRYLOCK;
951 }
3ba0815a 952
1da177e4
LT
953 /* Is this page beyond the end of the file? */
954 offset = i_size_read(inode);
955 end_index = offset >> PAGE_CACHE_SHIFT;
956 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
957 if (page->index >= end_index) {
958 if ((page->index >= end_index + 1) ||
959 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
960 if (startio)
961 unlock_page(page);
962 return 0;
1da177e4
LT
963 }
964 }
965
1da177e4 966 /*
24e17b5f 967 * page_dirty is initially a count of buffers on the page before
c41564b5 968 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
969 *
970 * Derivation:
971 *
972 * End offset is the highest offset that this page should represent.
973 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
974 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
975 * hence give us the correct page_dirty count. On any other page,
976 * it will be zero and in that case we need page_dirty to be the
977 * count of buffers on the page.
978 */
979 end_offset = min_t(unsigned long long,
980 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 981 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
982 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
983 PAGE_CACHE_SIZE);
984 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
985 page_dirty = p_offset / len;
986
24e17b5f 987 bh = head = page_buffers(page);
f6d6d4fc 988 offset = page_offset(page);
df3c7244
DC
989 flags = BMAPI_READ;
990 type = IOMAP_NEW;
f6d6d4fc 991
f6d6d4fc 992 /* TODO: cleanup count and page_dirty */
1da177e4
LT
993
994 do {
995 if (offset >= end_offset)
996 break;
997 if (!buffer_uptodate(bh))
998 uptodate = 0;
f6d6d4fc 999 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1000 /*
1001 * the iomap is actually still valid, but the ioend
1002 * isn't. shouldn't happen too often.
1003 */
1004 iomap_valid = 0;
1da177e4 1005 continue;
f6d6d4fc 1006 }
1da177e4 1007
1defeac9
CH
1008 if (iomap_valid)
1009 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
1010
1011 /*
1012 * First case, map an unwritten extent and prepare for
1013 * extent state conversion transaction on completion.
f6d6d4fc 1014 *
1da177e4
LT
1015 * Second case, allocate space for a delalloc buffer.
1016 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1017 *
1018 * Third case, an unmapped buffer was found, and we are
1019 * in a path where we need to write the whole page out.
df3c7244 1020 */
d5cb48aa
CH
1021 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1022 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1023 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1024 int new_ioend = 0;
1025
df3c7244 1026 /*
6c4fe19f
CH
1027 * Make sure we don't use a read-only iomap
1028 */
df3c7244 1029 if (flags == BMAPI_READ)
6c4fe19f
CH
1030 iomap_valid = 0;
1031
f6d6d4fc
CH
1032 if (buffer_unwritten(bh)) {
1033 type = IOMAP_UNWRITTEN;
8272145c 1034 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1035 } else if (buffer_delay(bh)) {
f6d6d4fc 1036 type = IOMAP_DELAY;
8272145c 1037 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1038 } else {
6c4fe19f 1039 type = IOMAP_NEW;
8272145c 1040 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1041 }
1042
1defeac9 1043 if (!iomap_valid) {
effd120e
DC
1044 /*
1045 * if we didn't have a valid mapping then we
1046 * need to ensure that we put the new mapping
1047 * in a new ioend structure. This needs to be
1048 * done to ensure that the ioends correctly
1049 * reflect the block mappings at io completion
1050 * for unwritten extent conversion.
1051 */
1052 new_ioend = 1;
6c4fe19f
CH
1053 if (type == IOMAP_NEW) {
1054 size = xfs_probe_cluster(inode,
1055 page, bh, head, 0);
d5cb48aa
CH
1056 } else {
1057 size = len;
1058 }
1059
1060 err = xfs_map_blocks(inode, offset, size,
1061 &iomap, flags);
f6d6d4fc 1062 if (err)
1da177e4 1063 goto error;
1defeac9 1064 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1065 }
1defeac9
CH
1066 if (iomap_valid) {
1067 xfs_map_at_offset(bh, offset,
1068 inode->i_blkbits, &iomap);
1da177e4 1069 if (startio) {
7336cea8 1070 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1071 type, &ioend,
effd120e 1072 new_ioend);
1da177e4
LT
1073 } else {
1074 set_buffer_dirty(bh);
1075 unlock_buffer(bh);
1076 mark_buffer_dirty(bh);
1077 }
1078 page_dirty--;
f6d6d4fc 1079 count++;
1da177e4 1080 }
d5cb48aa 1081 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1082 /*
1083 * we got here because the buffer is already mapped.
1084 * That means it must already have extents allocated
1085 * underneath it. Map the extent by reading it.
1086 */
df3c7244 1087 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1088 flags = BMAPI_READ;
1089 size = xfs_probe_cluster(inode, page, bh,
1090 head, 1);
1091 err = xfs_map_blocks(inode, offset, size,
1092 &iomap, flags);
1093 if (err)
1094 goto error;
1095 iomap_valid = xfs_iomap_valid(&iomap, offset);
1096 }
d5cb48aa 1097
df3c7244
DC
1098 /*
1099 * We set the type to IOMAP_NEW in case we are doing a
1100 * small write at EOF that is extending the file but
1101 * without needing an allocation. We need to update the
1102 * file size on I/O completion in this case so it is
1103 * the same case as having just allocated a new extent
1104 * that we are writing into for the first time.
1105 */
1106 type = IOMAP_NEW;
ca5de404 1107 if (trylock_buffer(bh)) {
d5cb48aa 1108 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1109 if (iomap_valid)
1110 all_bh = 1;
7336cea8 1111 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1112 &ioend, !iomap_valid);
1113 page_dirty--;
1114 count++;
f6d6d4fc 1115 } else {
1defeac9 1116 iomap_valid = 0;
1da177e4 1117 }
d5cb48aa
CH
1118 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1119 (unmapped || startio)) {
1120 iomap_valid = 0;
1da177e4 1121 }
f6d6d4fc
CH
1122
1123 if (!iohead)
1124 iohead = ioend;
1125
1126 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1127
1128 if (uptodate && bh == head)
1129 SetPageUptodate(page);
1130
f6d6d4fc 1131 if (startio)
b41759cf 1132 xfs_start_page_writeback(page, 1, count);
1da177e4 1133
1defeac9
CH
1134 if (ioend && iomap_valid) {
1135 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1136 PAGE_CACHE_SHIFT;
775bf6c9 1137 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1138 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1139 wbc, startio, all_bh, tlast);
1da177e4
LT
1140 }
1141
f6d6d4fc
CH
1142 if (iohead)
1143 xfs_submit_ioend(iohead);
1144
1da177e4
LT
1145 return page_dirty;
1146
1147error:
f6d6d4fc
CH
1148 if (iohead)
1149 xfs_cancel_ioend(iohead);
1da177e4
LT
1150
1151 /*
1152 * If it's delalloc and we have nowhere to put it,
1153 * throw it away, unless the lower layers told
1154 * us to try again.
1155 */
1156 if (err != -EAGAIN) {
f6d6d4fc 1157 if (!unmapped)
1da177e4 1158 block_invalidatepage(page, 0);
1da177e4
LT
1159 ClearPageUptodate(page);
1160 }
1161 return err;
1162}
1163
f51623b2
NS
1164/*
1165 * writepage: Called from one of two places:
1166 *
1167 * 1. we are flushing a delalloc buffer head.
1168 *
1169 * 2. we are writing out a dirty page. Typically the page dirty
1170 * state is cleared before we get here. In this case is it
1171 * conceivable we have no buffer heads.
1172 *
1173 * For delalloc space on the page we need to allocate space and
1174 * flush it. For unmapped buffer heads on the page we should
1175 * allocate space if the page is uptodate. For any other dirty
1176 * buffer heads on the page we should flush them.
1177 *
1178 * If we detect that a transaction would be required to flush
1179 * the page, we have to check the process flags first, if we
1180 * are already in a transaction or disk I/O during allocations
1181 * is off, we need to fail the writepage and redirty the page.
1182 */
1183
1184STATIC int
e4c573bb 1185xfs_vm_writepage(
f51623b2
NS
1186 struct page *page,
1187 struct writeback_control *wbc)
1188{
1189 int error;
1190 int need_trans;
1191 int delalloc, unmapped, unwritten;
1192 struct inode *inode = page->mapping->host;
1193
1194 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1195
1196 /*
1197 * We need a transaction if:
1198 * 1. There are delalloc buffers on the page
1199 * 2. The page is uptodate and we have unmapped buffers
1200 * 3. The page is uptodate and we have no buffers
1201 * 4. There are unwritten buffers on the page
1202 */
1203
1204 if (!page_has_buffers(page)) {
1205 unmapped = 1;
1206 need_trans = 1;
1207 } else {
1208 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1209 if (!PageUptodate(page))
1210 unmapped = 0;
1211 need_trans = delalloc + unmapped + unwritten;
1212 }
1213
1214 /*
1215 * If we need a transaction and the process flags say
1216 * we are already in a transaction, or no IO is allowed
1217 * then mark the page dirty again and leave the page
1218 * as is.
1219 */
59c1b082 1220 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1221 goto out_fail;
1222
1223 /*
1224 * Delay hooking up buffer heads until we have
1225 * made our go/no-go decision.
1226 */
1227 if (!page_has_buffers(page))
1228 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1229
1230 /*
1231 * Convert delayed allocate, unwritten or unmapped space
1232 * to real space and flush out to disk.
1233 */
1234 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1235 if (error == -EAGAIN)
1236 goto out_fail;
1237 if (unlikely(error < 0))
1238 goto out_unlock;
1239
1240 return 0;
1241
1242out_fail:
1243 redirty_page_for_writepage(wbc, page);
1244 unlock_page(page);
1245 return 0;
1246out_unlock:
1247 unlock_page(page);
1248 return error;
1249}
1250
7d4fb40a
NS
1251STATIC int
1252xfs_vm_writepages(
1253 struct address_space *mapping,
1254 struct writeback_control *wbc)
1255{
b3aea4ed 1256 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1257 return generic_writepages(mapping, wbc);
1258}
1259
f51623b2
NS
1260/*
1261 * Called to move a page into cleanable state - and from there
1262 * to be released. Possibly the page is already clean. We always
1263 * have buffer heads in this call.
1264 *
1265 * Returns 0 if the page is ok to release, 1 otherwise.
1266 *
1267 * Possible scenarios are:
1268 *
1269 * 1. We are being called to release a page which has been written
1270 * to via regular I/O. buffer heads will be dirty and possibly
1271 * delalloc. If no delalloc buffer heads in this case then we
1272 * can just return zero.
1273 *
1274 * 2. We are called to release a page which has been written via
1275 * mmap, all we need to do is ensure there is no delalloc
1276 * state in the buffer heads, if not we can let the caller
1277 * free them and we should come back later via writepage.
1278 */
1279STATIC int
238f4c54 1280xfs_vm_releasepage(
f51623b2
NS
1281 struct page *page,
1282 gfp_t gfp_mask)
1283{
1284 struct inode *inode = page->mapping->host;
1285 int dirty, delalloc, unmapped, unwritten;
1286 struct writeback_control wbc = {
1287 .sync_mode = WB_SYNC_ALL,
1288 .nr_to_write = 1,
1289 };
1290
ed9d88f7 1291 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
f51623b2 1292
238f4c54
NS
1293 if (!page_has_buffers(page))
1294 return 0;
1295
f51623b2
NS
1296 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1297 if (!delalloc && !unwritten)
1298 goto free_buffers;
1299
1300 if (!(gfp_mask & __GFP_FS))
1301 return 0;
1302
1303 /* If we are already inside a transaction or the thread cannot
1304 * do I/O, we cannot release this page.
1305 */
59c1b082 1306 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1307 return 0;
1308
1309 /*
1310 * Convert delalloc space to real space, do not flush the
1311 * data out to disk, that will be done by the caller.
1312 * Never need to allocate space here - we will always
1313 * come back to writepage in that case.
1314 */
1315 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1316 if (dirty == 0 && !unwritten)
1317 goto free_buffers;
1318 return 0;
1319
1320free_buffers:
1321 return try_to_free_buffers(page);
1322}
1323
1da177e4 1324STATIC int
c2536668 1325__xfs_get_blocks(
1da177e4
LT
1326 struct inode *inode,
1327 sector_t iblock,
1da177e4
LT
1328 struct buffer_head *bh_result,
1329 int create,
1330 int direct,
1331 bmapi_flags_t flags)
1332{
1da177e4 1333 xfs_iomap_t iomap;
fdc7ed75
NS
1334 xfs_off_t offset;
1335 ssize_t size;
c2536668 1336 int niomap = 1;
1da177e4 1337 int error;
1da177e4 1338
fdc7ed75 1339 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1340 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1341 size = bh_result->b_size;
541d7d3c 1342 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1343 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1344 if (error)
1345 return -error;
c2536668 1346 if (niomap == 0)
1da177e4
LT
1347 return 0;
1348
1349 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1350 /*
1351 * For unwritten extents do not report a disk address on
1da177e4
LT
1352 * the read case (treat as if we're reading into a hole).
1353 */
1354 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1355 xfs_map_buffer(bh_result, &iomap, offset,
1356 inode->i_blkbits);
1da177e4
LT
1357 }
1358 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1359 if (direct)
1360 bh_result->b_private = inode;
1361 set_buffer_unwritten(bh_result);
1da177e4
LT
1362 }
1363 }
1364
c2536668
NS
1365 /*
1366 * If this is a realtime file, data may be on a different device.
1367 * to that pointed to from the buffer_head b_bdev currently.
1368 */
ce8e922c 1369 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1370
c2536668 1371 /*
549054af
DC
1372 * If we previously allocated a block out beyond eof and we are now
1373 * coming back to use it then we will need to flag it as new even if it
1374 * has a disk address.
1375 *
1376 * With sub-block writes into unwritten extents we also need to mark
1377 * the buffer as new so that the unwritten parts of the buffer gets
1378 * correctly zeroed.
1da177e4
LT
1379 */
1380 if (create &&
1381 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1382 (offset >= i_size_read(inode)) ||
1383 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1384 set_buffer_new(bh_result);
1da177e4
LT
1385
1386 if (iomap.iomap_flags & IOMAP_DELAY) {
1387 BUG_ON(direct);
1388 if (create) {
1389 set_buffer_uptodate(bh_result);
1390 set_buffer_mapped(bh_result);
1391 set_buffer_delay(bh_result);
1392 }
1393 }
1394
c2536668 1395 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1396 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1397 offset = min_t(xfs_off_t,
c2536668
NS
1398 iomap.iomap_bsize - iomap.iomap_delta, size);
1399 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1400 }
1401
1402 return 0;
1403}
1404
1405int
c2536668 1406xfs_get_blocks(
1da177e4
LT
1407 struct inode *inode,
1408 sector_t iblock,
1409 struct buffer_head *bh_result,
1410 int create)
1411{
c2536668 1412 return __xfs_get_blocks(inode, iblock,
fa30bd05 1413 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1414}
1415
1416STATIC int
e4c573bb 1417xfs_get_blocks_direct(
1da177e4
LT
1418 struct inode *inode,
1419 sector_t iblock,
1da177e4
LT
1420 struct buffer_head *bh_result,
1421 int create)
1422{
c2536668 1423 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1424 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1425}
1426
f0973863 1427STATIC void
e4c573bb 1428xfs_end_io_direct(
f0973863
CH
1429 struct kiocb *iocb,
1430 loff_t offset,
1431 ssize_t size,
1432 void *private)
1433{
1434 xfs_ioend_t *ioend = iocb->private;
1435
1436 /*
1437 * Non-NULL private data means we need to issue a transaction to
1438 * convert a range from unwritten to written extents. This needs
c41564b5 1439 * to happen from process context but aio+dio I/O completion
f0973863 1440 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1441 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1442 * it anyway to keep the code uniform and simpler.
1443 *
e927af90
DC
1444 * Well, if only it were that simple. Because synchronous direct I/O
1445 * requires extent conversion to occur *before* we return to userspace,
1446 * we have to wait for extent conversion to complete. Look at the
1447 * iocb that has been passed to us to determine if this is AIO or
1448 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1449 * workqueue and wait for it to complete.
1450 *
f0973863
CH
1451 * The core direct I/O code might be changed to always call the
1452 * completion handler in the future, in which case all this can
1453 * go away.
1454 */
ba87ea69
LM
1455 ioend->io_offset = offset;
1456 ioend->io_size = size;
1457 if (ioend->io_type == IOMAP_READ) {
e927af90 1458 xfs_finish_ioend(ioend, 0);
ba87ea69 1459 } else if (private && size > 0) {
e927af90 1460 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1461 } else {
ba87ea69
LM
1462 /*
1463 * A direct I/O write ioend starts it's life in unwritten
1464 * state in case they map an unwritten extent. This write
1465 * didn't map an unwritten extent so switch it's completion
1466 * handler.
1467 */
1468 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
e927af90 1469 xfs_finish_ioend(ioend, 0);
f0973863
CH
1470 }
1471
1472 /*
c41564b5 1473 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1474 * completion handler was called. Thus we need to protect
1475 * against double-freeing.
1476 */
1477 iocb->private = NULL;
1478}
1479
1da177e4 1480STATIC ssize_t
e4c573bb 1481xfs_vm_direct_IO(
1da177e4
LT
1482 int rw,
1483 struct kiocb *iocb,
1484 const struct iovec *iov,
1485 loff_t offset,
1486 unsigned long nr_segs)
1487{
1488 struct file *file = iocb->ki_filp;
1489 struct inode *inode = file->f_mapping->host;
6214ed44 1490 struct block_device *bdev;
f0973863 1491 ssize_t ret;
1da177e4 1492
6214ed44 1493 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1da177e4 1494
721259bc 1495 if (rw == WRITE) {
ba87ea69 1496 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
721259bc 1497 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
6214ed44 1498 bdev, iov, offset, nr_segs,
721259bc
LM
1499 xfs_get_blocks_direct,
1500 xfs_end_io_direct);
1501 } else {
ba87ea69 1502 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
721259bc 1503 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
6214ed44 1504 bdev, iov, offset, nr_segs,
721259bc
LM
1505 xfs_get_blocks_direct,
1506 xfs_end_io_direct);
1507 }
f0973863 1508
8459d86a 1509 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1510 xfs_destroy_ioend(iocb->private);
1511 return ret;
1da177e4
LT
1512}
1513
f51623b2 1514STATIC int
d79689c7 1515xfs_vm_write_begin(
f51623b2 1516 struct file *file,
d79689c7
NP
1517 struct address_space *mapping,
1518 loff_t pos,
1519 unsigned len,
1520 unsigned flags,
1521 struct page **pagep,
1522 void **fsdata)
f51623b2 1523{
d79689c7
NP
1524 *pagep = NULL;
1525 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1526 xfs_get_blocks);
f51623b2 1527}
1da177e4
LT
1528
1529STATIC sector_t
e4c573bb 1530xfs_vm_bmap(
1da177e4
LT
1531 struct address_space *mapping,
1532 sector_t block)
1533{
1534 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1535 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1536
cf441eeb 1537 xfs_itrace_entry(XFS_I(inode));
126468b1 1538 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1539 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1540 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1541 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1542}
1543
1544STATIC int
e4c573bb 1545xfs_vm_readpage(
1da177e4
LT
1546 struct file *unused,
1547 struct page *page)
1548{
c2536668 1549 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1550}
1551
1552STATIC int
e4c573bb 1553xfs_vm_readpages(
1da177e4
LT
1554 struct file *unused,
1555 struct address_space *mapping,
1556 struct list_head *pages,
1557 unsigned nr_pages)
1558{
c2536668 1559 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1560}
1561
2ff28e22 1562STATIC void
238f4c54 1563xfs_vm_invalidatepage(
bcec2b7f
NS
1564 struct page *page,
1565 unsigned long offset)
1566{
1567 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1568 page->mapping->host, page, offset);
2ff28e22 1569 block_invalidatepage(page, offset);
bcec2b7f
NS
1570}
1571
f5e54d6e 1572const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1573 .readpage = xfs_vm_readpage,
1574 .readpages = xfs_vm_readpages,
1575 .writepage = xfs_vm_writepage,
7d4fb40a 1576 .writepages = xfs_vm_writepages,
1da177e4 1577 .sync_page = block_sync_page,
238f4c54
NS
1578 .releasepage = xfs_vm_releasepage,
1579 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1580 .write_begin = xfs_vm_write_begin,
1581 .write_end = generic_write_end,
e4c573bb
NS
1582 .bmap = xfs_vm_bmap,
1583 .direct_IO = xfs_vm_direct_IO,
e965f963 1584 .migratepage = buffer_migrate_page,
1da177e4 1585};