]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ubifs/tnc.c
UBIFS: add no_chk_data_crc mount option
[net-next-2.6.git] / fs / ubifs / tnc.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33#include <linux/crc32.h>
34#include "ubifs.h"
35
36/*
37 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
38 * @NAME_LESS: name corresponding to the first argument is less than second
39 * @NAME_MATCHES: names match
40 * @NAME_GREATER: name corresponding to the second argument is greater than
41 * first
42 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
43 *
44 * These constants were introduce to improve readability.
45 */
46enum {
47 NAME_LESS = 0,
48 NAME_MATCHES = 1,
49 NAME_GREATER = 2,
50 NOT_ON_MEDIA = 3,
51};
52
53/**
54 * insert_old_idx - record an index node obsoleted since the last commit start.
55 * @c: UBIFS file-system description object
56 * @lnum: LEB number of obsoleted index node
57 * @offs: offset of obsoleted index node
58 *
59 * Returns %0 on success, and a negative error code on failure.
60 *
61 * For recovery, there must always be a complete intact version of the index on
62 * flash at all times. That is called the "old index". It is the index as at the
63 * time of the last successful commit. Many of the index nodes in the old index
64 * may be dirty, but they must not be erased until the next successful commit
65 * (at which point that index becomes the old index).
66 *
67 * That means that the garbage collection and the in-the-gaps method of
68 * committing must be able to determine if an index node is in the old index.
69 * Most of the old index nodes can be found by looking up the TNC using the
70 * 'lookup_znode()' function. However, some of the old index nodes may have
71 * been deleted from the current index or may have been changed so much that
72 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
73 * That is what this function does. The RB-tree is ordered by LEB number and
74 * offset because they uniquely identify the old index node.
75 */
76static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
77{
78 struct ubifs_old_idx *old_idx, *o;
79 struct rb_node **p, *parent = NULL;
80
81 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
82 if (unlikely(!old_idx))
83 return -ENOMEM;
84 old_idx->lnum = lnum;
85 old_idx->offs = offs;
86
87 p = &c->old_idx.rb_node;
88 while (*p) {
89 parent = *p;
90 o = rb_entry(parent, struct ubifs_old_idx, rb);
91 if (lnum < o->lnum)
92 p = &(*p)->rb_left;
93 else if (lnum > o->lnum)
94 p = &(*p)->rb_right;
95 else if (offs < o->offs)
96 p = &(*p)->rb_left;
97 else if (offs > o->offs)
98 p = &(*p)->rb_right;
99 else {
100 ubifs_err("old idx added twice!");
101 kfree(old_idx);
102 return 0;
103 }
104 }
105 rb_link_node(&old_idx->rb, parent, p);
106 rb_insert_color(&old_idx->rb, &c->old_idx);
107 return 0;
108}
109
110/**
111 * insert_old_idx_znode - record a znode obsoleted since last commit start.
112 * @c: UBIFS file-system description object
113 * @znode: znode of obsoleted index node
114 *
115 * Returns %0 on success, and a negative error code on failure.
116 */
117int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
118{
119 if (znode->parent) {
120 struct ubifs_zbranch *zbr;
121
122 zbr = &znode->parent->zbranch[znode->iip];
123 if (zbr->len)
124 return insert_old_idx(c, zbr->lnum, zbr->offs);
125 } else
126 if (c->zroot.len)
127 return insert_old_idx(c, c->zroot.lnum,
128 c->zroot.offs);
129 return 0;
130}
131
132/**
133 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
134 * @c: UBIFS file-system description object
135 * @znode: znode of obsoleted index node
136 *
137 * Returns %0 on success, and a negative error code on failure.
138 */
139static int ins_clr_old_idx_znode(struct ubifs_info *c,
140 struct ubifs_znode *znode)
141{
142 int err;
143
144 if (znode->parent) {
145 struct ubifs_zbranch *zbr;
146
147 zbr = &znode->parent->zbranch[znode->iip];
148 if (zbr->len) {
149 err = insert_old_idx(c, zbr->lnum, zbr->offs);
150 if (err)
151 return err;
152 zbr->lnum = 0;
153 zbr->offs = 0;
154 zbr->len = 0;
155 }
156 } else
157 if (c->zroot.len) {
158 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
159 if (err)
160 return err;
161 c->zroot.lnum = 0;
162 c->zroot.offs = 0;
163 c->zroot.len = 0;
164 }
165 return 0;
166}
167
168/**
169 * destroy_old_idx - destroy the old_idx RB-tree.
170 * @c: UBIFS file-system description object
171 *
172 * During start commit, the old_idx RB-tree is used to avoid overwriting index
173 * nodes that were in the index last commit but have since been deleted. This
174 * is necessary for recovery i.e. the old index must be kept intact until the
175 * new index is successfully written. The old-idx RB-tree is used for the
176 * in-the-gaps method of writing index nodes and is destroyed every commit.
177 */
178void destroy_old_idx(struct ubifs_info *c)
179{
180 struct rb_node *this = c->old_idx.rb_node;
181 struct ubifs_old_idx *old_idx;
182
183 while (this) {
184 if (this->rb_left) {
185 this = this->rb_left;
186 continue;
187 } else if (this->rb_right) {
188 this = this->rb_right;
189 continue;
190 }
191 old_idx = rb_entry(this, struct ubifs_old_idx, rb);
192 this = rb_parent(this);
193 if (this) {
194 if (this->rb_left == &old_idx->rb)
195 this->rb_left = NULL;
196 else
197 this->rb_right = NULL;
198 }
199 kfree(old_idx);
200 }
201 c->old_idx = RB_ROOT;
202}
203
204/**
205 * copy_znode - copy a dirty znode.
206 * @c: UBIFS file-system description object
207 * @znode: znode to copy
208 *
209 * A dirty znode being committed may not be changed, so it is copied.
210 */
211static struct ubifs_znode *copy_znode(struct ubifs_info *c,
212 struct ubifs_znode *znode)
213{
214 struct ubifs_znode *zn;
215
216 zn = kmalloc(c->max_znode_sz, GFP_NOFS);
217 if (unlikely(!zn))
218 return ERR_PTR(-ENOMEM);
219
220 memcpy(zn, znode, c->max_znode_sz);
221 zn->cnext = NULL;
222 __set_bit(DIRTY_ZNODE, &zn->flags);
223 __clear_bit(COW_ZNODE, &zn->flags);
224
225 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
226 __set_bit(OBSOLETE_ZNODE, &znode->flags);
227
228 if (znode->level != 0) {
229 int i;
230 const int n = zn->child_cnt;
231
232 /* The children now have new parent */
233 for (i = 0; i < n; i++) {
234 struct ubifs_zbranch *zbr = &zn->zbranch[i];
235
236 if (zbr->znode)
237 zbr->znode->parent = zn;
238 }
239 }
240
241 atomic_long_inc(&c->dirty_zn_cnt);
242 return zn;
243}
244
245/**
246 * add_idx_dirt - add dirt due to a dirty znode.
247 * @c: UBIFS file-system description object
248 * @lnum: LEB number of index node
249 * @dirt: size of index node
250 *
251 * This function updates lprops dirty space and the new size of the index.
252 */
253static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
254{
255 c->calc_idx_sz -= ALIGN(dirt, 8);
256 return ubifs_add_dirt(c, lnum, dirt);
257}
258
259/**
260 * dirty_cow_znode - ensure a znode is not being committed.
261 * @c: UBIFS file-system description object
262 * @zbr: branch of znode to check
263 *
264 * Returns dirtied znode on success or negative error code on failure.
265 */
266static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
267 struct ubifs_zbranch *zbr)
268{
269 struct ubifs_znode *znode = zbr->znode;
270 struct ubifs_znode *zn;
271 int err;
272
273 if (!test_bit(COW_ZNODE, &znode->flags)) {
274 /* znode is not being committed */
275 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
276 atomic_long_inc(&c->dirty_zn_cnt);
277 atomic_long_dec(&c->clean_zn_cnt);
278 atomic_long_dec(&ubifs_clean_zn_cnt);
279 err = add_idx_dirt(c, zbr->lnum, zbr->len);
280 if (unlikely(err))
281 return ERR_PTR(err);
282 }
283 return znode;
284 }
285
286 zn = copy_znode(c, znode);
8d47aef4 287 if (IS_ERR(zn))
1e51764a
AB
288 return zn;
289
290 if (zbr->len) {
291 err = insert_old_idx(c, zbr->lnum, zbr->offs);
292 if (unlikely(err))
293 return ERR_PTR(err);
294 err = add_idx_dirt(c, zbr->lnum, zbr->len);
295 } else
296 err = 0;
297
298 zbr->znode = zn;
299 zbr->lnum = 0;
300 zbr->offs = 0;
301 zbr->len = 0;
302
303 if (unlikely(err))
304 return ERR_PTR(err);
305 return zn;
306}
307
308/**
309 * lnc_add - add a leaf node to the leaf node cache.
310 * @c: UBIFS file-system description object
311 * @zbr: zbranch of leaf node
312 * @node: leaf node
313 *
314 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
315 * purpose of the leaf node cache is to save re-reading the same leaf node over
316 * and over again. Most things are cached by VFS, however the file system must
317 * cache directory entries for readdir and for resolving hash collisions. The
318 * present implementation of the leaf node cache is extremely simple, and
319 * allows for error returns that are not used but that may be needed if a more
320 * complex implementation is created.
321 *
322 * Note, this function does not add the @node object to LNC directly, but
323 * allocates a copy of the object and adds the copy to LNC. The reason for this
324 * is that @node has been allocated outside of the TNC subsystem and will be
325 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
326 * may be changed at any time, e.g. freed by the shrinker.
327 */
328static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
329 const void *node)
330{
331 int err;
332 void *lnc_node;
333 const struct ubifs_dent_node *dent = node;
334
335 ubifs_assert(!zbr->leaf);
336 ubifs_assert(zbr->len != 0);
337 ubifs_assert(is_hash_key(c, &zbr->key));
338
339 err = ubifs_validate_entry(c, dent);
340 if (err) {
341 dbg_dump_stack();
342 dbg_dump_node(c, dent);
343 return err;
344 }
345
346 lnc_node = kmalloc(zbr->len, GFP_NOFS);
347 if (!lnc_node)
348 /* We don't have to have the cache, so no error */
349 return 0;
350
351 memcpy(lnc_node, node, zbr->len);
352 zbr->leaf = lnc_node;
353 return 0;
354}
355
356 /**
357 * lnc_add_directly - add a leaf node to the leaf-node-cache.
358 * @c: UBIFS file-system description object
359 * @zbr: zbranch of leaf node
360 * @node: leaf node
361 *
362 * This function is similar to 'lnc_add()', but it does not create a copy of
363 * @node but inserts @node to TNC directly.
364 */
365static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
366 void *node)
367{
368 int err;
369
370 ubifs_assert(!zbr->leaf);
371 ubifs_assert(zbr->len != 0);
372
373 err = ubifs_validate_entry(c, node);
374 if (err) {
375 dbg_dump_stack();
376 dbg_dump_node(c, node);
377 return err;
378 }
379
380 zbr->leaf = node;
381 return 0;
382}
383
384/**
385 * lnc_free - remove a leaf node from the leaf node cache.
386 * @zbr: zbranch of leaf node
387 * @node: leaf node
388 */
389static void lnc_free(struct ubifs_zbranch *zbr)
390{
391 if (!zbr->leaf)
392 return;
393 kfree(zbr->leaf);
394 zbr->leaf = NULL;
395}
396
397/**
398 * tnc_read_node_nm - read a "hashed" leaf node.
399 * @c: UBIFS file-system description object
400 * @zbr: key and position of the node
401 * @node: node is returned here
402 *
403 * This function reads a "hashed" node defined by @zbr from the leaf node cache
404 * (in it is there) or from the hash media, in which case the node is also
405 * added to LNC. Returns zero in case of success or a negative negative error
406 * code in case of failure.
407 */
408static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
409 void *node)
410{
411 int err;
412
413 ubifs_assert(is_hash_key(c, &zbr->key));
414
415 if (zbr->leaf) {
416 /* Read from the leaf node cache */
417 ubifs_assert(zbr->len != 0);
418 memcpy(node, zbr->leaf, zbr->len);
419 return 0;
420 }
421
422 err = ubifs_tnc_read_node(c, zbr, node);
423 if (err)
424 return err;
425
426 /* Add the node to the leaf node cache */
427 err = lnc_add(c, zbr, node);
428 return err;
429}
430
431/**
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
435 * @type: node type
436 * @len: node length (not aligned)
437 * @lnum: LEB number of node to read
438 * @offs: offset of node to read
439 *
440 * This function tries to read a node of known type and length, checks it and
441 * stores it in @buf. This function returns %1 if a node is present and %0 if
442 * a node is not present. A negative error code is returned for I/O errors.
443 * This function performs that same function as ubifs_read_node except that
444 * it does not require that there is actually a node present and instead
445 * the return code indicates if a node was read.
446 */
447static int try_read_node(const struct ubifs_info *c, void *buf, int type,
448 int len, int lnum, int offs)
449{
450 int err, node_len;
451 struct ubifs_ch *ch = buf;
452 uint32_t crc, node_crc;
453
454 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
455
456 err = ubi_read(c->ubi, lnum, buf, offs, len);
457 if (err) {
458 ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
459 type, lnum, offs, err);
460 return err;
461 }
462
463 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
464 return 0;
465
466 if (ch->node_type != type)
467 return 0;
468
469 node_len = le32_to_cpu(ch->len);
470 if (node_len != len)
471 return 0;
472
2953e73f
AH
473 if (type == UBIFS_DATA_NODE && !c->always_chk_crc)
474 if (c->no_chk_data_crc)
475 return 0;
476
1e51764a
AB
477 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
478 node_crc = le32_to_cpu(ch->crc);
479 if (crc != node_crc)
480 return 0;
481
482 return 1;
483}
484
485/**
486 * fallible_read_node - try to read a leaf node.
487 * @c: UBIFS file-system description object
488 * @key: key of node to read
489 * @zbr: position of node
490 * @node: node returned
491 *
492 * This function tries to read a node and returns %1 if the node is read, %0
493 * if the node is not present, and a negative error code in the case of error.
494 */
495static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
496 struct ubifs_zbranch *zbr, void *node)
497{
498 int ret;
499
500 dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
501
502 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
503 zbr->offs);
504 if (ret == 1) {
505 union ubifs_key node_key;
506 struct ubifs_dent_node *dent = node;
507
508 /* All nodes have key in the same place */
509 key_read(c, &dent->key, &node_key);
510 if (keys_cmp(c, key, &node_key) != 0)
511 ret = 0;
512 }
601c0bc4 513 if (ret == 0 && c->replaying)
1e51764a
AB
514 dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
515 zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
516 return ret;
517}
518
519/**
520 * matches_name - determine if a direntry or xattr entry matches a given name.
521 * @c: UBIFS file-system description object
522 * @zbr: zbranch of dent
523 * @nm: name to match
524 *
525 * This function checks if xentry/direntry referred by zbranch @zbr matches name
526 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
527 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
528 * of failure, a negative error code is returned.
529 */
530static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
531 const struct qstr *nm)
532{
533 struct ubifs_dent_node *dent;
534 int nlen, err;
535
536 /* If possible, match against the dent in the leaf node cache */
537 if (!zbr->leaf) {
538 dent = kmalloc(zbr->len, GFP_NOFS);
539 if (!dent)
540 return -ENOMEM;
541
542 err = ubifs_tnc_read_node(c, zbr, dent);
543 if (err)
544 goto out_free;
545
546 /* Add the node to the leaf node cache */
547 err = lnc_add_directly(c, zbr, dent);
548 if (err)
549 goto out_free;
550 } else
551 dent = zbr->leaf;
552
553 nlen = le16_to_cpu(dent->nlen);
554 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
555 if (err == 0) {
556 if (nlen == nm->len)
557 return NAME_MATCHES;
558 else if (nlen < nm->len)
559 return NAME_LESS;
560 else
561 return NAME_GREATER;
562 } else if (err < 0)
563 return NAME_LESS;
564 else
565 return NAME_GREATER;
566
567out_free:
568 kfree(dent);
569 return err;
570}
571
572/**
573 * get_znode - get a TNC znode that may not be loaded yet.
574 * @c: UBIFS file-system description object
575 * @znode: parent znode
576 * @n: znode branch slot number
577 *
578 * This function returns the znode or a negative error code.
579 */
580static struct ubifs_znode *get_znode(struct ubifs_info *c,
581 struct ubifs_znode *znode, int n)
582{
583 struct ubifs_zbranch *zbr;
584
585 zbr = &znode->zbranch[n];
586 if (zbr->znode)
587 znode = zbr->znode;
588 else
589 znode = ubifs_load_znode(c, zbr, znode, n);
590 return znode;
591}
592
593/**
594 * tnc_next - find next TNC entry.
595 * @c: UBIFS file-system description object
596 * @zn: znode is passed and returned here
597 * @n: znode branch slot number is passed and returned here
598 *
599 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
600 * no next entry, or a negative error code otherwise.
601 */
602static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
603{
604 struct ubifs_znode *znode = *zn;
605 int nn = *n;
606
607 nn += 1;
608 if (nn < znode->child_cnt) {
609 *n = nn;
610 return 0;
611 }
612 while (1) {
613 struct ubifs_znode *zp;
614
615 zp = znode->parent;
616 if (!zp)
617 return -ENOENT;
618 nn = znode->iip + 1;
619 znode = zp;
620 if (nn < znode->child_cnt) {
621 znode = get_znode(c, znode, nn);
622 if (IS_ERR(znode))
623 return PTR_ERR(znode);
624 while (znode->level != 0) {
625 znode = get_znode(c, znode, 0);
626 if (IS_ERR(znode))
627 return PTR_ERR(znode);
628 }
629 nn = 0;
630 break;
631 }
632 }
633 *zn = znode;
634 *n = nn;
635 return 0;
636}
637
638/**
639 * tnc_prev - find previous TNC entry.
640 * @c: UBIFS file-system description object
641 * @zn: znode is returned here
642 * @n: znode branch slot number is passed and returned here
643 *
644 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
645 * there is no next entry, or a negative error code otherwise.
646 */
647static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
648{
649 struct ubifs_znode *znode = *zn;
650 int nn = *n;
651
652 if (nn > 0) {
653 *n = nn - 1;
654 return 0;
655 }
656 while (1) {
657 struct ubifs_znode *zp;
658
659 zp = znode->parent;
660 if (!zp)
661 return -ENOENT;
662 nn = znode->iip - 1;
663 znode = zp;
664 if (nn >= 0) {
665 znode = get_znode(c, znode, nn);
666 if (IS_ERR(znode))
667 return PTR_ERR(znode);
668 while (znode->level != 0) {
669 nn = znode->child_cnt - 1;
670 znode = get_znode(c, znode, nn);
671 if (IS_ERR(znode))
672 return PTR_ERR(znode);
673 }
674 nn = znode->child_cnt - 1;
675 break;
676 }
677 }
678 *zn = znode;
679 *n = nn;
680 return 0;
681}
682
683/**
684 * resolve_collision - resolve a collision.
685 * @c: UBIFS file-system description object
686 * @key: key of a directory or extended attribute entry
687 * @zn: znode is returned here
688 * @n: zbranch number is passed and returned here
689 * @nm: name of the entry
690 *
691 * This function is called for "hashed" keys to make sure that the found key
692 * really corresponds to the looked up node (directory or extended attribute
693 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
694 * %0 is returned if @nm is not found and @zn and @n are set to the previous
695 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
696 * This means that @n may be set to %-1 if the leftmost key in @zn is the
697 * previous one. A negative error code is returned on failures.
698 */
699static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
700 struct ubifs_znode **zn, int *n,
701 const struct qstr *nm)
702{
703 int err;
704
705 err = matches_name(c, &(*zn)->zbranch[*n], nm);
706 if (unlikely(err < 0))
707 return err;
708 if (err == NAME_MATCHES)
709 return 1;
710
711 if (err == NAME_GREATER) {
712 /* Look left */
713 while (1) {
714 err = tnc_prev(c, zn, n);
715 if (err == -ENOENT) {
716 ubifs_assert(*n == 0);
717 *n = -1;
718 return 0;
719 }
720 if (err < 0)
721 return err;
722 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
723 /*
724 * We have found the branch after which we would
725 * like to insert, but inserting in this znode
726 * may still be wrong. Consider the following 3
727 * znodes, in the case where we are resolving a
728 * collision with Key2.
729 *
730 * znode zp
731 * ----------------------
732 * level 1 | Key0 | Key1 |
733 * -----------------------
734 * | |
735 * znode za | | znode zb
736 * ------------ ------------
737 * level 0 | Key0 | | Key2 |
738 * ------------ ------------
739 *
740 * The lookup finds Key2 in znode zb. Lets say
741 * there is no match and the name is greater so
742 * we look left. When we find Key0, we end up
743 * here. If we return now, we will insert into
744 * znode za at slot n = 1. But that is invalid
745 * according to the parent's keys. Key2 must
746 * be inserted into znode zb.
747 *
748 * Note, this problem is not relevant for the
749 * case when we go right, because
750 * 'tnc_insert()' would correct the parent key.
751 */
752 if (*n == (*zn)->child_cnt - 1) {
753 err = tnc_next(c, zn, n);
754 if (err) {
755 /* Should be impossible */
756 ubifs_assert(0);
757 if (err == -ENOENT)
758 err = -EINVAL;
759 return err;
760 }
761 ubifs_assert(*n == 0);
762 *n = -1;
763 }
764 return 0;
765 }
766 err = matches_name(c, &(*zn)->zbranch[*n], nm);
767 if (err < 0)
768 return err;
769 if (err == NAME_LESS)
770 return 0;
771 if (err == NAME_MATCHES)
772 return 1;
773 ubifs_assert(err == NAME_GREATER);
774 }
775 } else {
776 int nn = *n;
777 struct ubifs_znode *znode = *zn;
778
779 /* Look right */
780 while (1) {
781 err = tnc_next(c, &znode, &nn);
782 if (err == -ENOENT)
783 return 0;
784 if (err < 0)
785 return err;
786 if (keys_cmp(c, &znode->zbranch[nn].key, key))
787 return 0;
788 err = matches_name(c, &znode->zbranch[nn], nm);
789 if (err < 0)
790 return err;
791 if (err == NAME_GREATER)
792 return 0;
793 *zn = znode;
794 *n = nn;
795 if (err == NAME_MATCHES)
796 return 1;
797 ubifs_assert(err == NAME_LESS);
798 }
799 }
800}
801
802/**
803 * fallible_matches_name - determine if a dent matches a given name.
804 * @c: UBIFS file-system description object
805 * @zbr: zbranch of dent
806 * @nm: name to match
807 *
808 * This is a "fallible" version of 'matches_name()' function which does not
809 * panic if the direntry/xentry referred by @zbr does not exist on the media.
810 *
811 * This function checks if xentry/direntry referred by zbranch @zbr matches name
812 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
813 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
814 * if xentry/direntry referred by @zbr does not exist on the media. A negative
815 * error code is returned in case of failure.
816 */
817static int fallible_matches_name(struct ubifs_info *c,
818 struct ubifs_zbranch *zbr,
819 const struct qstr *nm)
820{
821 struct ubifs_dent_node *dent;
822 int nlen, err;
823
824 /* If possible, match against the dent in the leaf node cache */
825 if (!zbr->leaf) {
826 dent = kmalloc(zbr->len, GFP_NOFS);
827 if (!dent)
828 return -ENOMEM;
829
830 err = fallible_read_node(c, &zbr->key, zbr, dent);
831 if (err < 0)
832 goto out_free;
833 if (err == 0) {
834 /* The node was not present */
835 err = NOT_ON_MEDIA;
836 goto out_free;
837 }
838 ubifs_assert(err == 1);
839
840 err = lnc_add_directly(c, zbr, dent);
841 if (err)
842 goto out_free;
843 } else
844 dent = zbr->leaf;
845
846 nlen = le16_to_cpu(dent->nlen);
847 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
848 if (err == 0) {
849 if (nlen == nm->len)
850 return NAME_MATCHES;
851 else if (nlen < nm->len)
852 return NAME_LESS;
853 else
854 return NAME_GREATER;
855 } else if (err < 0)
856 return NAME_LESS;
857 else
858 return NAME_GREATER;
859
860out_free:
861 kfree(dent);
862 return err;
863}
864
865/**
866 * fallible_resolve_collision - resolve a collision even if nodes are missing.
867 * @c: UBIFS file-system description object
868 * @key: key
869 * @zn: znode is returned here
870 * @n: branch number is passed and returned here
871 * @nm: name of directory entry
872 * @adding: indicates caller is adding a key to the TNC
873 *
874 * This is a "fallible" version of the 'resolve_collision()' function which
875 * does not panic if one of the nodes referred to by TNC does not exist on the
876 * media. This may happen when replaying the journal if a deleted node was
877 * Garbage-collected and the commit was not done. A branch that refers to a node
878 * that is not present is called a dangling branch. The following are the return
879 * codes for this function:
880 * o if @nm was found, %1 is returned and @zn and @n are set to the found
881 * branch;
882 * o if we are @adding and @nm was not found, %0 is returned;
883 * o if we are not @adding and @nm was not found, but a dangling branch was
884 * found, then %1 is returned and @zn and @n are set to the dangling branch;
885 * o a negative error code is returned in case of failure.
886 */
887static int fallible_resolve_collision(struct ubifs_info *c,
888 const union ubifs_key *key,
889 struct ubifs_znode **zn, int *n,
890 const struct qstr *nm, int adding)
891{
892 struct ubifs_znode *o_znode = NULL, *znode = *zn;
893 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
894
895 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
896 if (unlikely(cmp < 0))
897 return cmp;
898 if (cmp == NAME_MATCHES)
899 return 1;
900 if (cmp == NOT_ON_MEDIA) {
901 o_znode = znode;
902 o_n = nn;
903 /*
904 * We are unlucky and hit a dangling branch straight away.
905 * Now we do not really know where to go to find the needed
906 * branch - to the left or to the right. Well, let's try left.
907 */
908 unsure = 1;
909 } else if (!adding)
910 unsure = 1; /* Remove a dangling branch wherever it is */
911
912 if (cmp == NAME_GREATER || unsure) {
913 /* Look left */
914 while (1) {
915 err = tnc_prev(c, zn, n);
916 if (err == -ENOENT) {
917 ubifs_assert(*n == 0);
918 *n = -1;
919 break;
920 }
921 if (err < 0)
922 return err;
923 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
924 /* See comments in 'resolve_collision()' */
925 if (*n == (*zn)->child_cnt - 1) {
926 err = tnc_next(c, zn, n);
927 if (err) {
928 /* Should be impossible */
929 ubifs_assert(0);
930 if (err == -ENOENT)
931 err = -EINVAL;
932 return err;
933 }
934 ubifs_assert(*n == 0);
935 *n = -1;
936 }
937 break;
938 }
939 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
940 if (err < 0)
941 return err;
942 if (err == NAME_MATCHES)
943 return 1;
944 if (err == NOT_ON_MEDIA) {
945 o_znode = *zn;
946 o_n = *n;
947 continue;
948 }
949 if (!adding)
950 continue;
951 if (err == NAME_LESS)
952 break;
953 else
954 unsure = 0;
955 }
956 }
957
958 if (cmp == NAME_LESS || unsure) {
959 /* Look right */
960 *zn = znode;
961 *n = nn;
962 while (1) {
963 err = tnc_next(c, &znode, &nn);
964 if (err == -ENOENT)
965 break;
966 if (err < 0)
967 return err;
968 if (keys_cmp(c, &znode->zbranch[nn].key, key))
969 break;
970 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
971 if (err < 0)
972 return err;
973 if (err == NAME_GREATER)
974 break;
975 *zn = znode;
976 *n = nn;
977 if (err == NAME_MATCHES)
978 return 1;
979 if (err == NOT_ON_MEDIA) {
980 o_znode = znode;
981 o_n = nn;
982 }
983 }
984 }
985
986 /* Never match a dangling branch when adding */
987 if (adding || !o_znode)
988 return 0;
989
990 dbg_mnt("dangling match LEB %d:%d len %d %s",
991 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
992 o_znode->zbranch[o_n].len, DBGKEY(key));
993 *zn = o_znode;
994 *n = o_n;
995 return 1;
996}
997
998/**
999 * matches_position - determine if a zbranch matches a given position.
1000 * @zbr: zbranch of dent
1001 * @lnum: LEB number of dent to match
1002 * @offs: offset of dent to match
1003 *
1004 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1005 */
1006static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1007{
1008 if (zbr->lnum == lnum && zbr->offs == offs)
1009 return 1;
1010 else
1011 return 0;
1012}
1013
1014/**
1015 * resolve_collision_directly - resolve a collision directly.
1016 * @c: UBIFS file-system description object
1017 * @key: key of directory entry
1018 * @zn: znode is passed and returned here
1019 * @n: zbranch number is passed and returned here
1020 * @lnum: LEB number of dent node to match
1021 * @offs: offset of dent node to match
1022 *
1023 * This function is used for "hashed" keys to make sure the found directory or
1024 * extended attribute entry node is what was looked for. It is used when the
1025 * flash address of the right node is known (@lnum:@offs) which makes it much
1026 * easier to resolve collisions (no need to read entries and match full
1027 * names). This function returns %1 and sets @zn and @n if the collision is
1028 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1029 * previous directory entry. Otherwise a negative error code is returned.
1030 */
1031static int resolve_collision_directly(struct ubifs_info *c,
1032 const union ubifs_key *key,
1033 struct ubifs_znode **zn, int *n,
1034 int lnum, int offs)
1035{
1036 struct ubifs_znode *znode;
1037 int nn, err;
1038
1039 znode = *zn;
1040 nn = *n;
1041 if (matches_position(&znode->zbranch[nn], lnum, offs))
1042 return 1;
1043
1044 /* Look left */
1045 while (1) {
1046 err = tnc_prev(c, &znode, &nn);
1047 if (err == -ENOENT)
1048 break;
1049 if (err < 0)
1050 return err;
1051 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1052 break;
1053 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1054 *zn = znode;
1055 *n = nn;
1056 return 1;
1057 }
1058 }
1059
1060 /* Look right */
1061 znode = *zn;
1062 nn = *n;
1063 while (1) {
1064 err = tnc_next(c, &znode, &nn);
1065 if (err == -ENOENT)
1066 return 0;
1067 if (err < 0)
1068 return err;
1069 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1070 return 0;
1071 *zn = znode;
1072 *n = nn;
1073 if (matches_position(&znode->zbranch[nn], lnum, offs))
1074 return 1;
1075 }
1076}
1077
1078/**
1079 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1080 * @c: UBIFS file-system description object
1081 * @znode: znode to dirty
1082 *
1083 * If we do not have a unique key that resides in a znode, then we cannot
1084 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1085 * This function records the path back to the last dirty ancestor, and then
1086 * dirties the znodes on that path.
1087 */
1088static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1089 struct ubifs_znode *znode)
1090{
1091 struct ubifs_znode *zp;
1092 int *path = c->bottom_up_buf, p = 0;
1093
1094 ubifs_assert(c->zroot.znode);
1095 ubifs_assert(znode);
1096 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1097 kfree(c->bottom_up_buf);
1098 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1099 GFP_NOFS);
1100 if (!c->bottom_up_buf)
1101 return ERR_PTR(-ENOMEM);
1102 path = c->bottom_up_buf;
1103 }
1104 if (c->zroot.znode->level) {
1105 /* Go up until parent is dirty */
1106 while (1) {
1107 int n;
1108
1109 zp = znode->parent;
1110 if (!zp)
1111 break;
1112 n = znode->iip;
1113 ubifs_assert(p < c->zroot.znode->level);
1114 path[p++] = n;
1115 if (!zp->cnext && ubifs_zn_dirty(znode))
1116 break;
1117 znode = zp;
1118 }
1119 }
1120
1121 /* Come back down, dirtying as we go */
1122 while (1) {
1123 struct ubifs_zbranch *zbr;
1124
1125 zp = znode->parent;
1126 if (zp) {
1127 ubifs_assert(path[p - 1] >= 0);
1128 ubifs_assert(path[p - 1] < zp->child_cnt);
1129 zbr = &zp->zbranch[path[--p]];
1130 znode = dirty_cow_znode(c, zbr);
1131 } else {
1132 ubifs_assert(znode == c->zroot.znode);
1133 znode = dirty_cow_znode(c, &c->zroot);
1134 }
8d47aef4 1135 if (IS_ERR(znode) || !p)
1e51764a
AB
1136 break;
1137 ubifs_assert(path[p - 1] >= 0);
1138 ubifs_assert(path[p - 1] < znode->child_cnt);
1139 znode = znode->zbranch[path[p - 1]].znode;
1140 }
1141
1142 return znode;
1143}
1144
1145/**
1146 * ubifs_lookup_level0 - search for zero-level znode.
1147 * @c: UBIFS file-system description object
1148 * @key: key to lookup
1149 * @zn: znode is returned here
1150 * @n: znode branch slot number is returned here
1151 *
1152 * This function looks up the TNC tree and search for zero-level znode which
1153 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1154 * cases:
1155 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1156 * is returned and slot number of the matched branch is stored in @n;
1157 * o not exact match, which means that zero-level znode does not contain
1158 * @key, then %0 is returned and slot number of the closed branch is stored
1159 * in @n;
1160 * o @key is so small that it is even less than the lowest key of the
1161 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1162 *
1163 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1164 * function reads corresponding indexing nodes and inserts them to TNC. In
1165 * case of failure, a negative error code is returned.
1166 */
1167int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1168 struct ubifs_znode **zn, int *n)
1169{
1170 int err, exact;
1171 struct ubifs_znode *znode;
1172 unsigned long time = get_seconds();
1173
1174 dbg_tnc("search key %s", DBGKEY(key));
1175
1176 znode = c->zroot.znode;
1177 if (unlikely(!znode)) {
1178 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1179 if (IS_ERR(znode))
1180 return PTR_ERR(znode);
1181 }
1182
1183 znode->time = time;
1184
1185 while (1) {
1186 struct ubifs_zbranch *zbr;
1187
1188 exact = ubifs_search_zbranch(c, znode, key, n);
1189
1190 if (znode->level == 0)
1191 break;
1192
1193 if (*n < 0)
1194 *n = 0;
1195 zbr = &znode->zbranch[*n];
1196
1197 if (zbr->znode) {
1198 znode->time = time;
1199 znode = zbr->znode;
1200 continue;
1201 }
1202
1203 /* znode is not in TNC cache, load it from the media */
1204 znode = ubifs_load_znode(c, zbr, znode, *n);
1205 if (IS_ERR(znode))
1206 return PTR_ERR(znode);
1207 }
1208
1209 *zn = znode;
1210 if (exact || !is_hash_key(c, key) || *n != -1) {
1211 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1212 return exact;
1213 }
1214
1215 /*
1216 * Here is a tricky place. We have not found the key and this is a
1217 * "hashed" key, which may collide. The rest of the code deals with
1218 * situations like this:
1219 *
1220 * | 3 | 5 |
1221 * / \
1222 * | 3 | 5 | | 6 | 7 | (x)
1223 *
1224 * Or more a complex example:
1225 *
1226 * | 1 | 5 |
1227 * / \
1228 * | 1 | 3 | | 5 | 8 |
1229 * \ /
1230 * | 5 | 5 | | 6 | 7 | (x)
1231 *
1232 * In the examples, if we are looking for key "5", we may reach nodes
1233 * marked with "(x)". In this case what we have do is to look at the
1234 * left and see if there is "5" key there. If there is, we have to
1235 * return it.
1236 *
1237 * Note, this whole situation is possible because we allow to have
1238 * elements which are equivalent to the next key in the parent in the
1239 * children of current znode. For example, this happens if we split a
1240 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1241 * like this:
1242 * | 3 | 5 |
1243 * / \
1244 * | 3 | 5 | | 5 | 6 | 7 |
1245 * ^
1246 * And this becomes what is at the first "picture" after key "5" marked
1247 * with "^" is removed. What could be done is we could prohibit
1248 * splitting in the middle of the colliding sequence. Also, when
1249 * removing the leftmost key, we would have to correct the key of the
1250 * parent node, which would introduce additional complications. Namely,
1251 * if we changed the the leftmost key of the parent znode, the garbage
1252 * collector would be unable to find it (GC is doing this when GC'ing
1253 * indexing LEBs). Although we already have an additional RB-tree where
1254 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1255 * after the commit. But anyway, this does not look easy to implement
1256 * so we did not try this.
1257 */
1258 err = tnc_prev(c, &znode, n);
1259 if (err == -ENOENT) {
1260 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1261 *n = -1;
1262 return 0;
1263 }
1264 if (unlikely(err < 0))
1265 return err;
1266 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1267 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1268 *n = -1;
1269 return 0;
1270 }
1271
1272 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1273 *zn = znode;
1274 return 1;
1275}
1276
1277/**
1278 * lookup_level0_dirty - search for zero-level znode dirtying.
1279 * @c: UBIFS file-system description object
1280 * @key: key to lookup
1281 * @zn: znode is returned here
1282 * @n: znode branch slot number is returned here
1283 *
1284 * This function looks up the TNC tree and search for zero-level znode which
1285 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1286 * cases:
1287 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1288 * is returned and slot number of the matched branch is stored in @n;
1289 * o not exact match, which means that zero-level znode does not contain @key
1290 * then %0 is returned and slot number of the closed branch is stored in
1291 * @n;
1292 * o @key is so small that it is even less than the lowest key of the
1293 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1294 *
1295 * Additionally all znodes in the path from the root to the located zero-level
1296 * znode are marked as dirty.
1297 *
1298 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1299 * function reads corresponding indexing nodes and inserts them to TNC. In
1300 * case of failure, a negative error code is returned.
1301 */
1302static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1303 struct ubifs_znode **zn, int *n)
1304{
1305 int err, exact;
1306 struct ubifs_znode *znode;
1307 unsigned long time = get_seconds();
1308
1309 dbg_tnc("search and dirty key %s", DBGKEY(key));
1310
1311 znode = c->zroot.znode;
1312 if (unlikely(!znode)) {
1313 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1314 if (IS_ERR(znode))
1315 return PTR_ERR(znode);
1316 }
1317
1318 znode = dirty_cow_znode(c, &c->zroot);
1319 if (IS_ERR(znode))
1320 return PTR_ERR(znode);
1321
1322 znode->time = time;
1323
1324 while (1) {
1325 struct ubifs_zbranch *zbr;
1326
1327 exact = ubifs_search_zbranch(c, znode, key, n);
1328
1329 if (znode->level == 0)
1330 break;
1331
1332 if (*n < 0)
1333 *n = 0;
1334 zbr = &znode->zbranch[*n];
1335
1336 if (zbr->znode) {
1337 znode->time = time;
1338 znode = dirty_cow_znode(c, zbr);
1339 if (IS_ERR(znode))
1340 return PTR_ERR(znode);
1341 continue;
1342 }
1343
1344 /* znode is not in TNC cache, load it from the media */
1345 znode = ubifs_load_znode(c, zbr, znode, *n);
1346 if (IS_ERR(znode))
1347 return PTR_ERR(znode);
1348 znode = dirty_cow_znode(c, zbr);
1349 if (IS_ERR(znode))
1350 return PTR_ERR(znode);
1351 }
1352
1353 *zn = znode;
1354 if (exact || !is_hash_key(c, key) || *n != -1) {
1355 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1356 return exact;
1357 }
1358
1359 /*
1360 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1361 * code.
1362 */
1363 err = tnc_prev(c, &znode, n);
1364 if (err == -ENOENT) {
1365 *n = -1;
1366 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1367 return 0;
1368 }
1369 if (unlikely(err < 0))
1370 return err;
1371 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1372 *n = -1;
1373 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1374 return 0;
1375 }
1376
1377 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1378 znode = dirty_cow_bottom_up(c, znode);
1379 if (IS_ERR(znode))
1380 return PTR_ERR(znode);
1381 }
1382
1383 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1384 *zn = znode;
1385 return 1;
1386}
1387
1388/**
601c0bc4 1389 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1e51764a 1390 * @c: UBIFS file-system description object
601c0bc4
AH
1391 * @lnum: LEB number
1392 * @gc_seq1: garbage collection sequence number
1e51764a 1393 *
601c0bc4
AH
1394 * This function determines if @lnum may have been garbage collected since
1395 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1396 * %0 is returned.
1e51764a 1397 */
601c0bc4 1398static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1e51764a 1399{
601c0bc4 1400 int gc_seq2, gced_lnum;
1e51764a 1401
601c0bc4
AH
1402 gced_lnum = c->gced_lnum;
1403 smp_rmb();
1404 gc_seq2 = c->gc_seq;
1405 /* Same seq means no GC */
1406 if (gc_seq1 == gc_seq2)
1407 return 0;
1408 /* Different by more than 1 means we don't know */
1409 if (gc_seq1 + 1 != gc_seq2)
1410 return 1;
1411 /*
1412 * We have seen the sequence number has increased by 1. Now we need to
1413 * be sure we read the right LEB number, so read it again.
1414 */
1415 smp_rmb();
1416 if (gced_lnum != c->gced_lnum)
1417 return 1;
1418 /* Finally we can check lnum */
1419 if (gced_lnum == lnum)
1420 return 1;
1421 return 0;
1e51764a
AB
1422}
1423
1424/**
1425 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1426 * @c: UBIFS file-system description object
1427 * @key: node key to lookup
1428 * @node: the node is returned here
1429 * @lnum: LEB number is returned here
1430 * @offs: offset is returned here
1431 *
601c0bc4
AH
1432 * This function look up and reads node with key @key. The caller has to make
1433 * sure the @node buffer is large enough to fit the node. Returns zero in case
1434 * of success, %-ENOENT if the node was not found, and a negative error code in
1435 * case of failure. The node location can be returned in @lnum and @offs.
1e51764a
AB
1436 */
1437int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1438 void *node, int *lnum, int *offs)
1439{
601c0bc4 1440 int found, n, err, safely = 0, gc_seq1;
1e51764a
AB
1441 struct ubifs_znode *znode;
1442 struct ubifs_zbranch zbr, *zt;
1443
601c0bc4 1444again:
1e51764a
AB
1445 mutex_lock(&c->tnc_mutex);
1446 found = ubifs_lookup_level0(c, key, &znode, &n);
1447 if (!found) {
1448 err = -ENOENT;
1449 goto out;
1450 } else if (found < 0) {
1451 err = found;
1452 goto out;
1453 }
1454 zt = &znode->zbranch[n];
601c0bc4
AH
1455 if (lnum) {
1456 *lnum = zt->lnum;
1457 *offs = zt->offs;
1458 }
1e51764a
AB
1459 if (is_hash_key(c, key)) {
1460 /*
1461 * In this case the leaf node cache gets used, so we pass the
1462 * address of the zbranch and keep the mutex locked
1463 */
1e51764a
AB
1464 err = tnc_read_node_nm(c, zt, node);
1465 goto out;
1466 }
601c0bc4
AH
1467 if (safely) {
1468 err = ubifs_tnc_read_node(c, zt, node);
1469 goto out;
1470 }
1471 /* Drop the TNC mutex prematurely and race with garbage collection */
1e51764a 1472 zbr = znode->zbranch[n];
601c0bc4 1473 gc_seq1 = c->gc_seq;
1e51764a
AB
1474 mutex_unlock(&c->tnc_mutex);
1475
601c0bc4
AH
1476 if (ubifs_get_wbuf(c, zbr.lnum)) {
1477 /* We do not GC journal heads */
1478 err = ubifs_tnc_read_node(c, &zbr, node);
1479 return err;
1480 }
1e51764a 1481
601c0bc4 1482 err = fallible_read_node(c, key, &zbr, node);
6dcfac4f 1483 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
601c0bc4
AH
1484 /*
1485 * The node may have been GC'ed out from under us so try again
1486 * while keeping the TNC mutex locked.
1487 */
1488 safely = 1;
1489 goto again;
1490 }
1491 return 0;
1e51764a
AB
1492
1493out:
1494 mutex_unlock(&c->tnc_mutex);
1495 return err;
1496}
1497
4793e7c5
AH
1498/**
1499 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1500 * @c: UBIFS file-system description object
1501 * @bu: bulk-read parameters and results
1502 *
1503 * Lookup consecutive data node keys for the same inode that reside
1504 * consecutively in the same LEB.
1505 */
1506int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1507{
1508 int n, err = 0, lnum = -1, uninitialized_var(offs);
1509 int uninitialized_var(len);
1510 unsigned int block = key_block(c, &bu->key);
1511 struct ubifs_znode *znode;
1512
1513 bu->cnt = 0;
1514 bu->blk_cnt = 0;
1515 bu->eof = 0;
1516
1517 mutex_lock(&c->tnc_mutex);
1518 /* Find first key */
1519 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1520 if (err < 0)
1521 goto out;
1522 if (err) {
1523 /* Key found */
1524 len = znode->zbranch[n].len;
1525 /* The buffer must be big enough for at least 1 node */
1526 if (len > bu->buf_len) {
1527 err = -EINVAL;
1528 goto out;
1529 }
1530 /* Add this key */
1531 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1532 bu->blk_cnt += 1;
1533 lnum = znode->zbranch[n].lnum;
1534 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1535 }
1536 while (1) {
1537 struct ubifs_zbranch *zbr;
1538 union ubifs_key *key;
1539 unsigned int next_block;
1540
1541 /* Find next key */
1542 err = tnc_next(c, &znode, &n);
1543 if (err)
1544 goto out;
1545 zbr = &znode->zbranch[n];
1546 key = &zbr->key;
1547 /* See if there is another data key for this file */
1548 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1549 key_type(c, key) != UBIFS_DATA_KEY) {
1550 err = -ENOENT;
1551 goto out;
1552 }
1553 if (lnum < 0) {
1554 /* First key found */
1555 lnum = zbr->lnum;
1556 offs = ALIGN(zbr->offs + zbr->len, 8);
1557 len = zbr->len;
1558 if (len > bu->buf_len) {
1559 err = -EINVAL;
1560 goto out;
1561 }
1562 } else {
1563 /*
1564 * The data nodes must be in consecutive positions in
1565 * the same LEB.
1566 */
1567 if (zbr->lnum != lnum || zbr->offs != offs)
1568 goto out;
1569 offs += ALIGN(zbr->len, 8);
1570 len = ALIGN(len, 8) + zbr->len;
1571 /* Must not exceed buffer length */
1572 if (len > bu->buf_len)
1573 goto out;
1574 }
1575 /* Allow for holes */
1576 next_block = key_block(c, key);
1577 bu->blk_cnt += (next_block - block - 1);
1578 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1579 goto out;
1580 block = next_block;
1581 /* Add this key */
1582 bu->zbranch[bu->cnt++] = *zbr;
1583 bu->blk_cnt += 1;
1584 /* See if we have room for more */
1585 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1586 goto out;
1587 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1588 goto out;
1589 }
1590out:
1591 if (err == -ENOENT) {
1592 bu->eof = 1;
1593 err = 0;
1594 }
1595 bu->gc_seq = c->gc_seq;
1596 mutex_unlock(&c->tnc_mutex);
1597 if (err)
1598 return err;
1599 /*
1600 * An enormous hole could cause bulk-read to encompass too many
1601 * page cache pages, so limit the number here.
1602 */
1603 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1604 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1605 /*
1606 * Ensure that bulk-read covers a whole number of page cache
1607 * pages.
1608 */
1609 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1610 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1611 return 0;
1612 if (bu->eof) {
1613 /* At the end of file we can round up */
1614 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1615 return 0;
1616 }
1617 /* Exclude data nodes that do not make up a whole page cache page */
1618 block = key_block(c, &bu->key) + bu->blk_cnt;
1619 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1620 while (bu->cnt) {
1621 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1622 break;
1623 bu->cnt -= 1;
1624 }
1625 return 0;
1626}
1627
1628/**
1629 * read_wbuf - bulk-read from a LEB with a wbuf.
1630 * @wbuf: wbuf that may overlap the read
1631 * @buf: buffer into which to read
1632 * @len: read length
1633 * @lnum: LEB number from which to read
1634 * @offs: offset from which to read
1635 *
1636 * This functions returns %0 on success or a negative error code on failure.
1637 */
1638static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1639 int offs)
1640{
1641 const struct ubifs_info *c = wbuf->c;
1642 int rlen, overlap;
1643
1644 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1645 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1646 ubifs_assert(!(offs & 7) && offs < c->leb_size);
1647 ubifs_assert(offs + len <= c->leb_size);
1648
1649 spin_lock(&wbuf->lock);
1650 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1651 if (!overlap) {
1652 /* We may safely unlock the write-buffer and read the data */
1653 spin_unlock(&wbuf->lock);
1654 return ubi_read(c->ubi, lnum, buf, offs, len);
1655 }
1656
1657 /* Don't read under wbuf */
1658 rlen = wbuf->offs - offs;
1659 if (rlen < 0)
1660 rlen = 0;
1661
1662 /* Copy the rest from the write-buffer */
1663 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1664 spin_unlock(&wbuf->lock);
1665
1666 if (rlen > 0)
1667 /* Read everything that goes before write-buffer */
1668 return ubi_read(c->ubi, lnum, buf, offs, rlen);
1669
1670 return 0;
1671}
1672
1673/**
1674 * validate_data_node - validate data nodes for bulk-read.
1675 * @c: UBIFS file-system description object
1676 * @buf: buffer containing data node to validate
1677 * @zbr: zbranch of data node to validate
1678 *
1679 * This functions returns %0 on success or a negative error code on failure.
1680 */
1681static int validate_data_node(struct ubifs_info *c, void *buf,
1682 struct ubifs_zbranch *zbr)
1683{
1684 union ubifs_key key1;
1685 struct ubifs_ch *ch = buf;
1686 int err, len;
1687
1688 if (ch->node_type != UBIFS_DATA_NODE) {
1689 ubifs_err("bad node type (%d but expected %d)",
1690 ch->node_type, UBIFS_DATA_NODE);
1691 goto out_err;
1692 }
1693
2953e73f 1694 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
4793e7c5
AH
1695 if (err) {
1696 ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1697 goto out;
1698 }
1699
1700 len = le32_to_cpu(ch->len);
1701 if (len != zbr->len) {
1702 ubifs_err("bad node length %d, expected %d", len, zbr->len);
1703 goto out_err;
1704 }
1705
1706 /* Make sure the key of the read node is correct */
1707 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1708 if (!keys_eq(c, &zbr->key, &key1)) {
1709 ubifs_err("bad key in node at LEB %d:%d",
1710 zbr->lnum, zbr->offs);
1711 dbg_tnc("looked for key %s found node's key %s",
1712 DBGKEY(&zbr->key), DBGKEY1(&key1));
1713 goto out_err;
1714 }
1715
1716 return 0;
1717
1718out_err:
1719 err = -EINVAL;
1720out:
1721 ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1722 dbg_dump_node(c, buf);
1723 dbg_dump_stack();
1724 return err;
1725}
1726
1727/**
1728 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1729 * @c: UBIFS file-system description object
1730 * @bu: bulk-read parameters and results
1731 *
1732 * This functions reads and validates the data nodes that were identified by the
1733 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1734 * -EAGAIN to indicate a race with GC, or another negative error code on
1735 * failure.
1736 */
1737int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1738{
1739 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1740 struct ubifs_wbuf *wbuf;
1741 void *buf;
1742
1743 len = bu->zbranch[bu->cnt - 1].offs;
1744 len += bu->zbranch[bu->cnt - 1].len - offs;
1745 if (len > bu->buf_len) {
1746 ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1747 return -EINVAL;
1748 }
1749
1750 /* Do the read */
1751 wbuf = ubifs_get_wbuf(c, lnum);
1752 if (wbuf)
1753 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1754 else
1755 err = ubi_read(c->ubi, lnum, bu->buf, offs, len);
1756
1757 /* Check for a race with GC */
1758 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1759 return -EAGAIN;
1760
1761 if (err && err != -EBADMSG) {
1762 ubifs_err("failed to read from LEB %d:%d, error %d",
1763 lnum, offs, err);
1764 dbg_dump_stack();
1765 dbg_tnc("key %s", DBGKEY(&bu->key));
1766 return err;
1767 }
1768
1769 /* Validate the nodes read */
1770 buf = bu->buf;
1771 for (i = 0; i < bu->cnt; i++) {
1772 err = validate_data_node(c, buf, &bu->zbranch[i]);
1773 if (err)
1774 return err;
1775 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1776 }
1777
1778 return 0;
1779}
1780
1e51764a
AB
1781/**
1782 * do_lookup_nm- look up a "hashed" node.
1783 * @c: UBIFS file-system description object
1784 * @key: node key to lookup
1785 * @node: the node is returned here
1786 * @nm: node name
1787 *
1788 * This function look up and reads a node which contains name hash in the key.
1789 * Since the hash may have collisions, there may be many nodes with the same
1790 * key, so we have to sequentially look to all of them until the needed one is
1791 * found. This function returns zero in case of success, %-ENOENT if the node
1792 * was not found, and a negative error code in case of failure.
1793 */
1794static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1795 void *node, const struct qstr *nm)
1796{
1797 int found, n, err;
1798 struct ubifs_znode *znode;
1e51764a
AB
1799
1800 dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1801 mutex_lock(&c->tnc_mutex);
1802 found = ubifs_lookup_level0(c, key, &znode, &n);
1803 if (!found) {
1804 err = -ENOENT;
1805 goto out_unlock;
1806 } else if (found < 0) {
1807 err = found;
1808 goto out_unlock;
1809 }
1810
1811 ubifs_assert(n >= 0);
1812
1813 err = resolve_collision(c, key, &znode, &n, nm);
1814 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1815 if (unlikely(err < 0))
1816 goto out_unlock;
1817 if (err == 0) {
1818 err = -ENOENT;
1819 goto out_unlock;
1820 }
1821
761e29f3 1822 err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1e51764a
AB
1823
1824out_unlock:
1825 mutex_unlock(&c->tnc_mutex);
1826 return err;
1827}
1828
1829/**
1830 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1831 * @c: UBIFS file-system description object
1832 * @key: node key to lookup
1833 * @node: the node is returned here
1834 * @nm: node name
1835 *
1836 * This function look up and reads a node which contains name hash in the key.
1837 * Since the hash may have collisions, there may be many nodes with the same
1838 * key, so we have to sequentially look to all of them until the needed one is
1839 * found. This function returns zero in case of success, %-ENOENT if the node
1840 * was not found, and a negative error code in case of failure.
1841 */
1842int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1843 void *node, const struct qstr *nm)
1844{
1845 int err, len;
1846 const struct ubifs_dent_node *dent = node;
1847
1848 /*
1849 * We assume that in most of the cases there are no name collisions and
1850 * 'ubifs_tnc_lookup()' returns us the right direntry.
1851 */
1852 err = ubifs_tnc_lookup(c, key, node);
1853 if (err)
1854 return err;
1855
1856 len = le16_to_cpu(dent->nlen);
1857 if (nm->len == len && !memcmp(dent->name, nm->name, len))
1858 return 0;
1859
1860 /*
1861 * Unluckily, there are hash collisions and we have to iterate over
1862 * them look at each direntry with colliding name hash sequentially.
1863 */
1864 return do_lookup_nm(c, key, node, nm);
1865}
1866
1867/**
1868 * correct_parent_keys - correct parent znodes' keys.
1869 * @c: UBIFS file-system description object
1870 * @znode: znode to correct parent znodes for
1871 *
1872 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1873 * zbranch changes, keys of parent znodes have to be corrected. This helper
1874 * function is called in such situations and corrects the keys if needed.
1875 */
1876static void correct_parent_keys(const struct ubifs_info *c,
1877 struct ubifs_znode *znode)
1878{
1879 union ubifs_key *key, *key1;
1880
1881 ubifs_assert(znode->parent);
1882 ubifs_assert(znode->iip == 0);
1883
1884 key = &znode->zbranch[0].key;
1885 key1 = &znode->parent->zbranch[0].key;
1886
1887 while (keys_cmp(c, key, key1) < 0) {
1888 key_copy(c, key, key1);
1889 znode = znode->parent;
1890 znode->alt = 1;
1891 if (!znode->parent || znode->iip)
1892 break;
1893 key1 = &znode->parent->zbranch[0].key;
1894 }
1895}
1896
1897/**
1898 * insert_zbranch - insert a zbranch into a znode.
1899 * @znode: znode into which to insert
1900 * @zbr: zbranch to insert
1901 * @n: slot number to insert to
1902 *
1903 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1904 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1905 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1906 * slot, zbranches starting from @n have to be moved right.
1907 */
1908static void insert_zbranch(struct ubifs_znode *znode,
1909 const struct ubifs_zbranch *zbr, int n)
1910{
1911 int i;
1912
1913 ubifs_assert(ubifs_zn_dirty(znode));
1914
1915 if (znode->level) {
1916 for (i = znode->child_cnt; i > n; i--) {
1917 znode->zbranch[i] = znode->zbranch[i - 1];
1918 if (znode->zbranch[i].znode)
1919 znode->zbranch[i].znode->iip = i;
1920 }
1921 if (zbr->znode)
1922 zbr->znode->iip = n;
1923 } else
1924 for (i = znode->child_cnt; i > n; i--)
1925 znode->zbranch[i] = znode->zbranch[i - 1];
1926
1927 znode->zbranch[n] = *zbr;
1928 znode->child_cnt += 1;
1929
1930 /*
1931 * After inserting at slot zero, the lower bound of the key range of
1932 * this znode may have changed. If this znode is subsequently split
1933 * then the upper bound of the key range may change, and furthermore
1934 * it could change to be lower than the original lower bound. If that
1935 * happens, then it will no longer be possible to find this znode in the
1936 * TNC using the key from the index node on flash. That is bad because
1937 * if it is not found, we will assume it is obsolete and may overwrite
1938 * it. Then if there is an unclean unmount, we will start using the
1939 * old index which will be broken.
1940 *
1941 * So we first mark znodes that have insertions at slot zero, and then
1942 * if they are split we add their lnum/offs to the old_idx tree.
1943 */
1944 if (n == 0)
1945 znode->alt = 1;
1946}
1947
1948/**
1949 * tnc_insert - insert a node into TNC.
1950 * @c: UBIFS file-system description object
1951 * @znode: znode to insert into
1952 * @zbr: branch to insert
1953 * @n: slot number to insert new zbranch to
1954 *
1955 * This function inserts a new node described by @zbr into znode @znode. If
1956 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1957 * are splat as well if needed. Returns zero in case of success or a negative
1958 * error code in case of failure.
1959 */
1960static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1961 struct ubifs_zbranch *zbr, int n)
1962{
1963 struct ubifs_znode *zn, *zi, *zp;
1964 int i, keep, move, appending = 0;
1965 union ubifs_key *key = &zbr->key;
1966
1967 ubifs_assert(n >= 0 && n <= c->fanout);
1968
1969 /* Implement naive insert for now */
1970again:
1971 zp = znode->parent;
1972 if (znode->child_cnt < c->fanout) {
1973 ubifs_assert(n != c->fanout);
1974 dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1975 DBGKEY(key));
1976
1977 insert_zbranch(znode, zbr, n);
1978
1979 /* Ensure parent's key is correct */
1980 if (n == 0 && zp && znode->iip == 0)
1981 correct_parent_keys(c, znode);
1982
1983 return 0;
1984 }
1985
1986 /*
1987 * Unfortunately, @znode does not have more empty slots and we have to
1988 * split it.
1989 */
1990 dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
1991
1992 if (znode->alt)
1993 /*
1994 * We can no longer be sure of finding this znode by key, so we
1995 * record it in the old_idx tree.
1996 */
1997 ins_clr_old_idx_znode(c, znode);
1998
1999 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2000 if (!zn)
2001 return -ENOMEM;
2002 zn->parent = zp;
2003 zn->level = znode->level;
2004
2005 /* Decide where to split */
2006 if (znode->level == 0 && n == c->fanout &&
2007 key_type(c, key) == UBIFS_DATA_KEY) {
2008 union ubifs_key *key1;
2009
2010 /*
2011 * If this is an inode which is being appended - do not split
2012 * it because no other zbranches can be inserted between
2013 * zbranches of consecutive data nodes anyway.
2014 */
2015 key1 = &znode->zbranch[n - 1].key;
2016 if (key_inum(c, key1) == key_inum(c, key) &&
2017 key_type(c, key1) == UBIFS_DATA_KEY &&
2018 key_block(c, key1) == key_block(c, key) - 1)
2019 appending = 1;
2020 }
2021
2022 if (appending) {
2023 keep = c->fanout;
2024 move = 0;
2025 } else {
2026 keep = (c->fanout + 1) / 2;
2027 move = c->fanout - keep;
2028 }
2029
2030 /*
2031 * Although we don't at present, we could look at the neighbors and see
2032 * if we can move some zbranches there.
2033 */
2034
2035 if (n < keep) {
2036 /* Insert into existing znode */
2037 zi = znode;
2038 move += 1;
2039 keep -= 1;
2040 } else {
2041 /* Insert into new znode */
2042 zi = zn;
2043 n -= keep;
2044 /* Re-parent */
2045 if (zn->level != 0)
2046 zbr->znode->parent = zn;
2047 }
2048
2049 __set_bit(DIRTY_ZNODE, &zn->flags);
2050 atomic_long_inc(&c->dirty_zn_cnt);
2051
2052 zn->child_cnt = move;
2053 znode->child_cnt = keep;
2054
2055 dbg_tnc("moving %d, keeping %d", move, keep);
2056
2057 /* Move zbranch */
2058 for (i = 0; i < move; i++) {
2059 zn->zbranch[i] = znode->zbranch[keep + i];
2060 /* Re-parent */
2061 if (zn->level != 0)
2062 if (zn->zbranch[i].znode) {
2063 zn->zbranch[i].znode->parent = zn;
2064 zn->zbranch[i].znode->iip = i;
2065 }
2066 }
2067
2068 /* Insert new key and branch */
2069 dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
2070
2071 insert_zbranch(zi, zbr, n);
2072
2073 /* Insert new znode (produced by spitting) into the parent */
2074 if (zp) {
2075 i = n;
2076 /* Locate insertion point */
2077 n = znode->iip + 1;
2078 if (appending && n != c->fanout)
2079 appending = 0;
2080
2081 if (i == 0 && zi == znode && znode->iip == 0)
2082 correct_parent_keys(c, znode);
2083
2084 /* Tail recursion */
2085 zbr->key = zn->zbranch[0].key;
2086 zbr->znode = zn;
2087 zbr->lnum = 0;
2088 zbr->offs = 0;
2089 zbr->len = 0;
2090 znode = zp;
2091
2092 goto again;
2093 }
2094
2095 /* We have to split root znode */
2096 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2097
2098 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2099 if (!zi)
2100 return -ENOMEM;
2101
2102 zi->child_cnt = 2;
2103 zi->level = znode->level + 1;
2104
2105 __set_bit(DIRTY_ZNODE, &zi->flags);
2106 atomic_long_inc(&c->dirty_zn_cnt);
2107
2108 zi->zbranch[0].key = znode->zbranch[0].key;
2109 zi->zbranch[0].znode = znode;
2110 zi->zbranch[0].lnum = c->zroot.lnum;
2111 zi->zbranch[0].offs = c->zroot.offs;
2112 zi->zbranch[0].len = c->zroot.len;
2113 zi->zbranch[1].key = zn->zbranch[0].key;
2114 zi->zbranch[1].znode = zn;
2115
2116 c->zroot.lnum = 0;
2117 c->zroot.offs = 0;
2118 c->zroot.len = 0;
2119 c->zroot.znode = zi;
2120
2121 zn->parent = zi;
2122 zn->iip = 1;
2123 znode->parent = zi;
2124 znode->iip = 0;
2125
2126 return 0;
2127}
2128
2129/**
2130 * ubifs_tnc_add - add a node to TNC.
2131 * @c: UBIFS file-system description object
2132 * @key: key to add
2133 * @lnum: LEB number of node
2134 * @offs: node offset
2135 * @len: node length
2136 *
2137 * This function adds a node with key @key to TNC. The node may be new or it may
2138 * obsolete some existing one. Returns %0 on success or negative error code on
2139 * failure.
2140 */
2141int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2142 int offs, int len)
2143{
2144 int found, n, err = 0;
2145 struct ubifs_znode *znode;
2146
2147 mutex_lock(&c->tnc_mutex);
2148 dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
2149 found = lookup_level0_dirty(c, key, &znode, &n);
2150 if (!found) {
2151 struct ubifs_zbranch zbr;
2152
2153 zbr.znode = NULL;
2154 zbr.lnum = lnum;
2155 zbr.offs = offs;
2156 zbr.len = len;
2157 key_copy(c, key, &zbr.key);
2158 err = tnc_insert(c, znode, &zbr, n + 1);
2159 } else if (found == 1) {
2160 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2161
2162 lnc_free(zbr);
2163 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2164 zbr->lnum = lnum;
2165 zbr->offs = offs;
2166 zbr->len = len;
2167 } else
2168 err = found;
2169 if (!err)
2170 err = dbg_check_tnc(c, 0);
2171 mutex_unlock(&c->tnc_mutex);
2172
2173 return err;
2174}
2175
2176/**
2177 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2178 * @c: UBIFS file-system description object
2179 * @key: key to add
2180 * @old_lnum: LEB number of old node
2181 * @old_offs: old node offset
2182 * @lnum: LEB number of node
2183 * @offs: node offset
2184 * @len: node length
2185 *
2186 * This function replaces a node with key @key in the TNC only if the old node
2187 * is found. This function is called by garbage collection when node are moved.
2188 * Returns %0 on success or negative error code on failure.
2189 */
2190int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2191 int old_lnum, int old_offs, int lnum, int offs, int len)
2192{
2193 int found, n, err = 0;
2194 struct ubifs_znode *znode;
2195
2196 mutex_lock(&c->tnc_mutex);
2197 dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
2198 old_offs, lnum, offs, len, DBGKEY(key));
2199 found = lookup_level0_dirty(c, key, &znode, &n);
2200 if (found < 0) {
2201 err = found;
2202 goto out_unlock;
2203 }
2204
2205 if (found == 1) {
2206 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2207
2208 found = 0;
2209 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2210 lnc_free(zbr);
2211 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2212 if (err)
2213 goto out_unlock;
2214 zbr->lnum = lnum;
2215 zbr->offs = offs;
2216 zbr->len = len;
2217 found = 1;
2218 } else if (is_hash_key(c, key)) {
2219 found = resolve_collision_directly(c, key, &znode, &n,
2220 old_lnum, old_offs);
2221 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2222 found, znode, n, old_lnum, old_offs);
2223 if (found < 0) {
2224 err = found;
2225 goto out_unlock;
2226 }
2227
2228 if (found) {
2229 /* Ensure the znode is dirtied */
2230 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2231 znode = dirty_cow_bottom_up(c,
2232 znode);
2233 if (IS_ERR(znode)) {
2234 err = PTR_ERR(znode);
2235 goto out_unlock;
2236 }
2237 }
2238 zbr = &znode->zbranch[n];
2239 lnc_free(zbr);
2240 err = ubifs_add_dirt(c, zbr->lnum,
2241 zbr->len);
2242 if (err)
2243 goto out_unlock;
2244 zbr->lnum = lnum;
2245 zbr->offs = offs;
2246 zbr->len = len;
2247 }
2248 }
2249 }
2250
2251 if (!found)
2252 err = ubifs_add_dirt(c, lnum, len);
2253
2254 if (!err)
2255 err = dbg_check_tnc(c, 0);
2256
2257out_unlock:
2258 mutex_unlock(&c->tnc_mutex);
2259 return err;
2260}
2261
2262/**
2263 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2264 * @c: UBIFS file-system description object
2265 * @key: key to add
2266 * @lnum: LEB number of node
2267 * @offs: node offset
2268 * @len: node length
2269 * @nm: node name
2270 *
2271 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2272 * may have collisions, like directory entry keys.
2273 */
2274int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2275 int lnum, int offs, int len, const struct qstr *nm)
2276{
2277 int found, n, err = 0;
2278 struct ubifs_znode *znode;
2279
2280 mutex_lock(&c->tnc_mutex);
2281 dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
2282 DBGKEY(key));
2283 found = lookup_level0_dirty(c, key, &znode, &n);
2284 if (found < 0) {
2285 err = found;
2286 goto out_unlock;
2287 }
2288
2289 if (found == 1) {
2290 if (c->replaying)
2291 found = fallible_resolve_collision(c, key, &znode, &n,
2292 nm, 1);
2293 else
2294 found = resolve_collision(c, key, &znode, &n, nm);
2295 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2296 if (found < 0) {
2297 err = found;
2298 goto out_unlock;
2299 }
2300
2301 /* Ensure the znode is dirtied */
2302 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2303 znode = dirty_cow_bottom_up(c, znode);
2304 if (IS_ERR(znode)) {
2305 err = PTR_ERR(znode);
2306 goto out_unlock;
2307 }
2308 }
2309
2310 if (found == 1) {
2311 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2312
2313 lnc_free(zbr);
2314 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2315 zbr->lnum = lnum;
2316 zbr->offs = offs;
2317 zbr->len = len;
2318 goto out_unlock;
2319 }
2320 }
2321
2322 if (!found) {
2323 struct ubifs_zbranch zbr;
2324
2325 zbr.znode = NULL;
2326 zbr.lnum = lnum;
2327 zbr.offs = offs;
2328 zbr.len = len;
2329 key_copy(c, key, &zbr.key);
2330 err = tnc_insert(c, znode, &zbr, n + 1);
2331 if (err)
2332 goto out_unlock;
2333 if (c->replaying) {
2334 /*
2335 * We did not find it in the index so there may be a
2336 * dangling branch still in the index. So we remove it
2337 * by passing 'ubifs_tnc_remove_nm()' the same key but
2338 * an unmatchable name.
2339 */
2340 struct qstr noname = { .len = 0, .name = "" };
2341
2342 err = dbg_check_tnc(c, 0);
2343 mutex_unlock(&c->tnc_mutex);
2344 if (err)
2345 return err;
2346 return ubifs_tnc_remove_nm(c, key, &noname);
2347 }
2348 }
2349
2350out_unlock:
2351 if (!err)
2352 err = dbg_check_tnc(c, 0);
2353 mutex_unlock(&c->tnc_mutex);
2354 return err;
2355}
2356
2357/**
2358 * tnc_delete - delete a znode form TNC.
2359 * @c: UBIFS file-system description object
2360 * @znode: znode to delete from
2361 * @n: zbranch slot number to delete
2362 *
2363 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2364 * case of success and a negative error code in case of failure.
2365 */
2366static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2367{
2368 struct ubifs_zbranch *zbr;
2369 struct ubifs_znode *zp;
2370 int i, err;
2371
2372 /* Delete without merge for now */
2373 ubifs_assert(znode->level == 0);
2374 ubifs_assert(n >= 0 && n < c->fanout);
2375 dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2376
2377 zbr = &znode->zbranch[n];
2378 lnc_free(zbr);
2379
2380 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2381 if (err) {
2382 dbg_dump_znode(c, znode);
2383 return err;
2384 }
2385
2386 /* We do not "gap" zbranch slots */
2387 for (i = n; i < znode->child_cnt - 1; i++)
2388 znode->zbranch[i] = znode->zbranch[i + 1];
2389 znode->child_cnt -= 1;
2390
2391 if (znode->child_cnt > 0)
2392 return 0;
2393
2394 /*
2395 * This was the last zbranch, we have to delete this znode from the
2396 * parent.
2397 */
2398
2399 do {
2400 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2401 ubifs_assert(ubifs_zn_dirty(znode));
2402
2403 zp = znode->parent;
2404 n = znode->iip;
2405
2406 atomic_long_dec(&c->dirty_zn_cnt);
2407
2408 err = insert_old_idx_znode(c, znode);
2409 if (err)
2410 return err;
2411
2412 if (znode->cnext) {
2413 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2414 atomic_long_inc(&c->clean_zn_cnt);
2415 atomic_long_inc(&ubifs_clean_zn_cnt);
2416 } else
2417 kfree(znode);
2418 znode = zp;
2419 } while (znode->child_cnt == 1); /* while removing last child */
2420
2421 /* Remove from znode, entry n - 1 */
2422 znode->child_cnt -= 1;
2423 ubifs_assert(znode->level != 0);
2424 for (i = n; i < znode->child_cnt; i++) {
2425 znode->zbranch[i] = znode->zbranch[i + 1];
2426 if (znode->zbranch[i].znode)
2427 znode->zbranch[i].znode->iip = i;
2428 }
2429
2430 /*
2431 * If this is the root and it has only 1 child then
2432 * collapse the tree.
2433 */
2434 if (!znode->parent) {
2435 while (znode->child_cnt == 1 && znode->level != 0) {
2436 zp = znode;
2437 zbr = &znode->zbranch[0];
2438 znode = get_znode(c, znode, 0);
2439 if (IS_ERR(znode))
2440 return PTR_ERR(znode);
2441 znode = dirty_cow_znode(c, zbr);
2442 if (IS_ERR(znode))
2443 return PTR_ERR(znode);
2444 znode->parent = NULL;
2445 znode->iip = 0;
2446 if (c->zroot.len) {
2447 err = insert_old_idx(c, c->zroot.lnum,
2448 c->zroot.offs);
2449 if (err)
2450 return err;
2451 }
2452 c->zroot.lnum = zbr->lnum;
2453 c->zroot.offs = zbr->offs;
2454 c->zroot.len = zbr->len;
2455 c->zroot.znode = znode;
2456 ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2457 &zp->flags));
2458 ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2459 atomic_long_dec(&c->dirty_zn_cnt);
2460
2461 if (zp->cnext) {
2462 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2463 atomic_long_inc(&c->clean_zn_cnt);
2464 atomic_long_inc(&ubifs_clean_zn_cnt);
2465 } else
2466 kfree(zp);
2467 }
2468 }
2469
2470 return 0;
2471}
2472
2473/**
2474 * ubifs_tnc_remove - remove an index entry of a node.
2475 * @c: UBIFS file-system description object
2476 * @key: key of node
2477 *
2478 * Returns %0 on success or negative error code on failure.
2479 */
2480int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2481{
2482 int found, n, err = 0;
2483 struct ubifs_znode *znode;
2484
2485 mutex_lock(&c->tnc_mutex);
2486 dbg_tnc("key %s", DBGKEY(key));
2487 found = lookup_level0_dirty(c, key, &znode, &n);
2488 if (found < 0) {
2489 err = found;
2490 goto out_unlock;
2491 }
2492 if (found == 1)
2493 err = tnc_delete(c, znode, n);
2494 if (!err)
2495 err = dbg_check_tnc(c, 0);
2496
2497out_unlock:
2498 mutex_unlock(&c->tnc_mutex);
2499 return err;
2500}
2501
2502/**
2503 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2504 * @c: UBIFS file-system description object
2505 * @key: key of node
2506 * @nm: directory entry name
2507 *
2508 * Returns %0 on success or negative error code on failure.
2509 */
2510int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2511 const struct qstr *nm)
2512{
2513 int n, err;
2514 struct ubifs_znode *znode;
2515
2516 mutex_lock(&c->tnc_mutex);
2517 dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2518 err = lookup_level0_dirty(c, key, &znode, &n);
2519 if (err < 0)
2520 goto out_unlock;
2521
2522 if (err) {
2523 if (c->replaying)
2524 err = fallible_resolve_collision(c, key, &znode, &n,
2525 nm, 0);
2526 else
2527 err = resolve_collision(c, key, &znode, &n, nm);
2528 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2529 if (err < 0)
2530 goto out_unlock;
2531 if (err) {
2532 /* Ensure the znode is dirtied */
2533 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2534 znode = dirty_cow_bottom_up(c, znode);
2535 if (IS_ERR(znode)) {
2536 err = PTR_ERR(znode);
2537 goto out_unlock;
2538 }
2539 }
2540 err = tnc_delete(c, znode, n);
2541 }
2542 }
2543
2544out_unlock:
2545 if (!err)
2546 err = dbg_check_tnc(c, 0);
2547 mutex_unlock(&c->tnc_mutex);
2548 return err;
2549}
2550
2551/**
2552 * key_in_range - determine if a key falls within a range of keys.
2553 * @c: UBIFS file-system description object
2554 * @key: key to check
2555 * @from_key: lowest key in range
2556 * @to_key: highest key in range
2557 *
2558 * This function returns %1 if the key is in range and %0 otherwise.
2559 */
2560static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2561 union ubifs_key *from_key, union ubifs_key *to_key)
2562{
2563 if (keys_cmp(c, key, from_key) < 0)
2564 return 0;
2565 if (keys_cmp(c, key, to_key) > 0)
2566 return 0;
2567 return 1;
2568}
2569
2570/**
2571 * ubifs_tnc_remove_range - remove index entries in range.
2572 * @c: UBIFS file-system description object
2573 * @from_key: lowest key to remove
2574 * @to_key: highest key to remove
2575 *
2576 * This function removes index entries starting at @from_key and ending at
2577 * @to_key. This function returns zero in case of success and a negative error
2578 * code in case of failure.
2579 */
2580int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2581 union ubifs_key *to_key)
2582{
2583 int i, n, k, err = 0;
2584 struct ubifs_znode *znode;
2585 union ubifs_key *key;
2586
2587 mutex_lock(&c->tnc_mutex);
2588 while (1) {
2589 /* Find first level 0 znode that contains keys to remove */
2590 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2591 if (err < 0)
2592 goto out_unlock;
2593
2594 if (err)
2595 key = from_key;
2596 else {
2597 err = tnc_next(c, &znode, &n);
2598 if (err == -ENOENT) {
2599 err = 0;
2600 goto out_unlock;
2601 }
2602 if (err < 0)
2603 goto out_unlock;
2604 key = &znode->zbranch[n].key;
2605 if (!key_in_range(c, key, from_key, to_key)) {
2606 err = 0;
2607 goto out_unlock;
2608 }
2609 }
2610
2611 /* Ensure the znode is dirtied */
2612 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2613 znode = dirty_cow_bottom_up(c, znode);
2614 if (IS_ERR(znode)) {
2615 err = PTR_ERR(znode);
2616 goto out_unlock;
2617 }
2618 }
2619
2620 /* Remove all keys in range except the first */
2621 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2622 key = &znode->zbranch[i].key;
2623 if (!key_in_range(c, key, from_key, to_key))
2624 break;
2625 lnc_free(&znode->zbranch[i]);
2626 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2627 znode->zbranch[i].len);
2628 if (err) {
2629 dbg_dump_znode(c, znode);
2630 goto out_unlock;
2631 }
2632 dbg_tnc("removing %s", DBGKEY(key));
2633 }
2634 if (k) {
2635 for (i = n + 1 + k; i < znode->child_cnt; i++)
2636 znode->zbranch[i - k] = znode->zbranch[i];
2637 znode->child_cnt -= k;
2638 }
2639
2640 /* Now delete the first */
2641 err = tnc_delete(c, znode, n);
2642 if (err)
2643 goto out_unlock;
2644 }
2645
2646out_unlock:
2647 if (!err)
2648 err = dbg_check_tnc(c, 0);
2649 mutex_unlock(&c->tnc_mutex);
2650 return err;
2651}
2652
2653/**
2654 * ubifs_tnc_remove_ino - remove an inode from TNC.
2655 * @c: UBIFS file-system description object
2656 * @inum: inode number to remove
2657 *
2658 * This function remove inode @inum and all the extended attributes associated
2659 * with the anode from TNC and returns zero in case of success or a negative
2660 * error code in case of failure.
2661 */
2662int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2663{
2664 union ubifs_key key1, key2;
2665 struct ubifs_dent_node *xent, *pxent = NULL;
2666 struct qstr nm = { .name = NULL };
2667
2668 dbg_tnc("ino %lu", inum);
2669
2670 /*
2671 * Walk all extended attribute entries and remove them together with
2672 * corresponding extended attribute inodes.
2673 */
2674 lowest_xent_key(c, &key1, inum);
2675 while (1) {
2676 ino_t xattr_inum;
2677 int err;
2678
2679 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2680 if (IS_ERR(xent)) {
2681 err = PTR_ERR(xent);
2682 if (err == -ENOENT)
2683 break;
2684 return err;
2685 }
2686
2687 xattr_inum = le64_to_cpu(xent->inum);
2688 dbg_tnc("xent '%s', ino %lu", xent->name, xattr_inum);
2689
2690 nm.name = xent->name;
2691 nm.len = le16_to_cpu(xent->nlen);
2692 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2693 if (err) {
2694 kfree(xent);
2695 return err;
2696 }
2697
2698 lowest_ino_key(c, &key1, xattr_inum);
2699 highest_ino_key(c, &key2, xattr_inum);
2700 err = ubifs_tnc_remove_range(c, &key1, &key2);
2701 if (err) {
2702 kfree(xent);
2703 return err;
2704 }
2705
2706 kfree(pxent);
2707 pxent = xent;
2708 key_read(c, &xent->key, &key1);
2709 }
2710
2711 kfree(pxent);
2712 lowest_ino_key(c, &key1, inum);
2713 highest_ino_key(c, &key2, inum);
2714
2715 return ubifs_tnc_remove_range(c, &key1, &key2);
2716}
2717
2718/**
2719 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2720 * @c: UBIFS file-system description object
2721 * @key: key of last entry
2722 * @nm: name of last entry found or %NULL
2723 *
2724 * This function finds and reads the next directory or extended attribute entry
2725 * after the given key (@key) if there is one. @nm is used to resolve
2726 * collisions.
2727 *
2728 * If the name of the current entry is not known and only the key is known,
2729 * @nm->name has to be %NULL. In this case the semantics of this function is a
2730 * little bit different and it returns the entry corresponding to this key, not
2731 * the next one. If the key was not found, the closest "right" entry is
2732 * returned.
2733 *
2734 * If the fist entry has to be found, @key has to contain the lowest possible
2735 * key value for this inode and @name has to be %NULL.
2736 *
2737 * This function returns the found directory or extended attribute entry node
2738 * in case of success, %-ENOENT is returned if no entry was found, and a
2739 * negative error code is returned in case of failure.
2740 */
2741struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2742 union ubifs_key *key,
2743 const struct qstr *nm)
2744{
2745 int n, err, type = key_type(c, key);
2746 struct ubifs_znode *znode;
2747 struct ubifs_dent_node *dent;
2748 struct ubifs_zbranch *zbr;
2749 union ubifs_key *dkey;
2750
2751 dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2752 ubifs_assert(is_hash_key(c, key));
2753
2754 mutex_lock(&c->tnc_mutex);
2755 err = ubifs_lookup_level0(c, key, &znode, &n);
2756 if (unlikely(err < 0))
2757 goto out_unlock;
2758
2759 if (nm->name) {
2760 if (err) {
2761 /* Handle collisions */
2762 err = resolve_collision(c, key, &znode, &n, nm);
2763 dbg_tnc("rc returned %d, znode %p, n %d",
2764 err, znode, n);
2765 if (unlikely(err < 0))
2766 goto out_unlock;
2767 }
2768
2769 /* Now find next entry */
2770 err = tnc_next(c, &znode, &n);
2771 if (unlikely(err))
2772 goto out_unlock;
2773 } else {
2774 /*
2775 * The full name of the entry was not given, in which case the
2776 * behavior of this function is a little different and it
2777 * returns current entry, not the next one.
2778 */
2779 if (!err) {
2780 /*
2781 * However, the given key does not exist in the TNC
2782 * tree and @znode/@n variables contain the closest
2783 * "preceding" element. Switch to the next one.
2784 */
2785 err = tnc_next(c, &znode, &n);
2786 if (err)
2787 goto out_unlock;
2788 }
2789 }
2790
2791 zbr = &znode->zbranch[n];
2792 dent = kmalloc(zbr->len, GFP_NOFS);
2793 if (unlikely(!dent)) {
2794 err = -ENOMEM;
2795 goto out_unlock;
2796 }
2797
2798 /*
2799 * The above 'tnc_next()' call could lead us to the next inode, check
2800 * this.
2801 */
2802 dkey = &zbr->key;
2803 if (key_inum(c, dkey) != key_inum(c, key) ||
2804 key_type(c, dkey) != type) {
2805 err = -ENOENT;
2806 goto out_free;
2807 }
2808
2809 err = tnc_read_node_nm(c, zbr, dent);
2810 if (unlikely(err))
2811 goto out_free;
2812
2813 mutex_unlock(&c->tnc_mutex);
2814 return dent;
2815
2816out_free:
2817 kfree(dent);
2818out_unlock:
2819 mutex_unlock(&c->tnc_mutex);
2820 return ERR_PTR(err);
2821}
2822
2823/**
2824 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2825 * @c: UBIFS file-system description object
2826 *
2827 * Destroy left-over obsolete znodes from a failed commit.
2828 */
2829static void tnc_destroy_cnext(struct ubifs_info *c)
2830{
2831 struct ubifs_znode *cnext;
2832
2833 if (!c->cnext)
2834 return;
2835 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2836 cnext = c->cnext;
2837 do {
2838 struct ubifs_znode *znode = cnext;
2839
2840 cnext = cnext->cnext;
2841 if (test_bit(OBSOLETE_ZNODE, &znode->flags))
2842 kfree(znode);
2843 } while (cnext && cnext != c->cnext);
2844}
2845
2846/**
2847 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2848 * @c: UBIFS file-system description object
2849 */
2850void ubifs_tnc_close(struct ubifs_info *c)
2851{
2852 long clean_freed;
2853
2854 tnc_destroy_cnext(c);
2855 if (c->zroot.znode) {
2856 clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2857 atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
2858 }
2859 kfree(c->gap_lebs);
2860 kfree(c->ilebs);
2861 destroy_old_idx(c);
2862}
2863
2864/**
2865 * left_znode - get the znode to the left.
2866 * @c: UBIFS file-system description object
2867 * @znode: znode
2868 *
2869 * This function returns a pointer to the znode to the left of @znode or NULL if
2870 * there is not one. A negative error code is returned on failure.
2871 */
2872static struct ubifs_znode *left_znode(struct ubifs_info *c,
2873 struct ubifs_znode *znode)
2874{
2875 int level = znode->level;
2876
2877 while (1) {
2878 int n = znode->iip - 1;
2879
2880 /* Go up until we can go left */
2881 znode = znode->parent;
2882 if (!znode)
2883 return NULL;
2884 if (n >= 0) {
2885 /* Now go down the rightmost branch to 'level' */
2886 znode = get_znode(c, znode, n);
2887 if (IS_ERR(znode))
2888 return znode;
2889 while (znode->level != level) {
2890 n = znode->child_cnt - 1;
2891 znode = get_znode(c, znode, n);
2892 if (IS_ERR(znode))
2893 return znode;
2894 }
2895 break;
2896 }
2897 }
2898 return znode;
2899}
2900
2901/**
2902 * right_znode - get the znode to the right.
2903 * @c: UBIFS file-system description object
2904 * @znode: znode
2905 *
2906 * This function returns a pointer to the znode to the right of @znode or NULL
2907 * if there is not one. A negative error code is returned on failure.
2908 */
2909static struct ubifs_znode *right_znode(struct ubifs_info *c,
2910 struct ubifs_znode *znode)
2911{
2912 int level = znode->level;
2913
2914 while (1) {
2915 int n = znode->iip + 1;
2916
2917 /* Go up until we can go right */
2918 znode = znode->parent;
2919 if (!znode)
2920 return NULL;
2921 if (n < znode->child_cnt) {
2922 /* Now go down the leftmost branch to 'level' */
2923 znode = get_znode(c, znode, n);
2924 if (IS_ERR(znode))
2925 return znode;
2926 while (znode->level != level) {
2927 znode = get_znode(c, znode, 0);
2928 if (IS_ERR(znode))
2929 return znode;
2930 }
2931 break;
2932 }
2933 }
2934 return znode;
2935}
2936
2937/**
2938 * lookup_znode - find a particular indexing node from TNC.
2939 * @c: UBIFS file-system description object
2940 * @key: index node key to lookup
2941 * @level: index node level
2942 * @lnum: index node LEB number
2943 * @offs: index node offset
2944 *
2945 * This function searches an indexing node by its first key @key and its
2946 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2947 * nodes it traverses to TNC. This function is called fro indexing nodes which
2948 * were found on the media by scanning, for example when garbage-collecting or
2949 * when doing in-the-gaps commit. This means that the indexing node which is
2950 * looked for does not have to have exactly the same leftmost key @key, because
2951 * the leftmost key may have been changed, in which case TNC will contain a
2952 * dirty znode which still refers the same @lnum:@offs. This function is clever
2953 * enough to recognize such indexing nodes.
2954 *
2955 * Note, if a znode was deleted or changed too much, then this function will
2956 * not find it. For situations like this UBIFS has the old index RB-tree
2957 * (indexed by @lnum:@offs).
2958 *
2959 * This function returns a pointer to the znode found or %NULL if it is not
2960 * found. A negative error code is returned on failure.
2961 */
2962static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2963 union ubifs_key *key, int level,
2964 int lnum, int offs)
2965{
2966 struct ubifs_znode *znode, *zn;
2967 int n, nn;
2968
2969 /*
2970 * The arguments have probably been read off flash, so don't assume
2971 * they are valid.
2972 */
2973 if (level < 0)
2974 return ERR_PTR(-EINVAL);
2975
2976 /* Get the root znode */
2977 znode = c->zroot.znode;
2978 if (!znode) {
2979 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2980 if (IS_ERR(znode))
2981 return znode;
2982 }
2983 /* Check if it is the one we are looking for */
2984 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2985 return znode;
2986 /* Descend to the parent level i.e. (level + 1) */
2987 if (level >= znode->level)
2988 return NULL;
2989 while (1) {
2990 ubifs_search_zbranch(c, znode, key, &n);
2991 if (n < 0) {
2992 /*
2993 * We reached a znode where the leftmost key is greater
2994 * than the key we are searching for. This is the same
2995 * situation as the one described in a huge comment at
2996 * the end of the 'ubifs_lookup_level0()' function. And
2997 * for exactly the same reasons we have to try to look
2998 * left before giving up.
2999 */
3000 znode = left_znode(c, znode);
3001 if (!znode)
3002 return NULL;
3003 if (IS_ERR(znode))
3004 return znode;
3005 ubifs_search_zbranch(c, znode, key, &n);
3006 ubifs_assert(n >= 0);
3007 }
3008 if (znode->level == level + 1)
3009 break;
3010 znode = get_znode(c, znode, n);
3011 if (IS_ERR(znode))
3012 return znode;
3013 }
3014 /* Check if the child is the one we are looking for */
3015 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3016 return get_znode(c, znode, n);
3017 /* If the key is unique, there is nowhere else to look */
3018 if (!is_hash_key(c, key))
3019 return NULL;
3020 /*
3021 * The key is not unique and so may be also in the znodes to either
3022 * side.
3023 */
3024 zn = znode;
3025 nn = n;
3026 /* Look left */
3027 while (1) {
3028 /* Move one branch to the left */
3029 if (n)
3030 n -= 1;
3031 else {
3032 znode = left_znode(c, znode);
3033 if (!znode)
3034 break;
3035 if (IS_ERR(znode))
3036 return znode;
3037 n = znode->child_cnt - 1;
3038 }
3039 /* Check it */
3040 if (znode->zbranch[n].lnum == lnum &&
3041 znode->zbranch[n].offs == offs)
3042 return get_znode(c, znode, n);
3043 /* Stop if the key is less than the one we are looking for */
3044 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3045 break;
3046 }
3047 /* Back to the middle */
3048 znode = zn;
3049 n = nn;
3050 /* Look right */
3051 while (1) {
3052 /* Move one branch to the right */
3053 if (++n >= znode->child_cnt) {
3054 znode = right_znode(c, znode);
3055 if (!znode)
3056 break;
3057 if (IS_ERR(znode))
3058 return znode;
3059 n = 0;
3060 }
3061 /* Check it */
3062 if (znode->zbranch[n].lnum == lnum &&
3063 znode->zbranch[n].offs == offs)
3064 return get_znode(c, znode, n);
3065 /* Stop if the key is greater than the one we are looking for */
3066 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3067 break;
3068 }
3069 return NULL;
3070}
3071
3072/**
3073 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3074 * @c: UBIFS file-system description object
3075 * @key: key of index node
3076 * @level: index node level
3077 * @lnum: LEB number of index node
3078 * @offs: offset of index node
3079 *
3080 * This function returns %0 if the index node is not referred to in the TNC, %1
3081 * if the index node is referred to in the TNC and the corresponding znode is
3082 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3083 * znode is clean, and a negative error code in case of failure.
3084 *
3085 * Note, the @key argument has to be the key of the first child. Also note,
3086 * this function relies on the fact that 0:0 is never a valid LEB number and
3087 * offset for a main-area node.
3088 */
3089int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3090 int lnum, int offs)
3091{
3092 struct ubifs_znode *znode;
3093
3094 znode = lookup_znode(c, key, level, lnum, offs);
3095 if (!znode)
3096 return 0;
3097 if (IS_ERR(znode))
3098 return PTR_ERR(znode);
3099
3100 return ubifs_zn_dirty(znode) ? 1 : 2;
3101}
3102
3103/**
3104 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3105 * @c: UBIFS file-system description object
3106 * @key: node key
3107 * @lnum: node LEB number
3108 * @offs: node offset
3109 *
3110 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3111 * not, and a negative error code in case of failure.
3112 *
3113 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3114 * and offset for a main-area node.
3115 */
3116static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3117 int lnum, int offs)
3118{
3119 struct ubifs_zbranch *zbr;
3120 struct ubifs_znode *znode, *zn;
3121 int n, found, err, nn;
3122 const int unique = !is_hash_key(c, key);
3123
3124 found = ubifs_lookup_level0(c, key, &znode, &n);
3125 if (found < 0)
3126 return found; /* Error code */
3127 if (!found)
3128 return 0;
3129 zbr = &znode->zbranch[n];
3130 if (lnum == zbr->lnum && offs == zbr->offs)
3131 return 1; /* Found it */
3132 if (unique)
3133 return 0;
3134 /*
3135 * Because the key is not unique, we have to look left
3136 * and right as well
3137 */
3138 zn = znode;
3139 nn = n;
3140 /* Look left */
3141 while (1) {
3142 err = tnc_prev(c, &znode, &n);
3143 if (err == -ENOENT)
3144 break;
3145 if (err)
3146 return err;
3147 if (keys_cmp(c, key, &znode->zbranch[n].key))
3148 break;
3149 zbr = &znode->zbranch[n];
3150 if (lnum == zbr->lnum && offs == zbr->offs)
3151 return 1; /* Found it */
3152 }
3153 /* Look right */
3154 znode = zn;
3155 n = nn;
3156 while (1) {
3157 err = tnc_next(c, &znode, &n);
3158 if (err) {
3159 if (err == -ENOENT)
3160 return 0;
3161 return err;
3162 }
3163 if (keys_cmp(c, key, &znode->zbranch[n].key))
3164 break;
3165 zbr = &znode->zbranch[n];
3166 if (lnum == zbr->lnum && offs == zbr->offs)
3167 return 1; /* Found it */
3168 }
3169 return 0;
3170}
3171
3172/**
3173 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3174 * @c: UBIFS file-system description object
3175 * @key: node key
3176 * @level: index node level (if it is an index node)
3177 * @lnum: node LEB number
3178 * @offs: node offset
3179 * @is_idx: non-zero if the node is an index node
3180 *
3181 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3182 * negative error code in case of failure. For index nodes, @key has to be the
3183 * key of the first child. An index node is considered to be in the TNC only if
3184 * the corresponding znode is clean or has not been loaded.
3185 */
3186int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3187 int lnum, int offs, int is_idx)
3188{
3189 int err;
3190
3191 mutex_lock(&c->tnc_mutex);
3192 if (is_idx) {
3193 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3194 if (err < 0)
3195 goto out_unlock;
3196 if (err == 1)
3197 /* The index node was found but it was dirty */
3198 err = 0;
3199 else if (err == 2)
3200 /* The index node was found and it was clean */
3201 err = 1;
3202 else
3203 BUG_ON(err != 0);
3204 } else
3205 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3206
3207out_unlock:
3208 mutex_unlock(&c->tnc_mutex);
3209 return err;
3210}
3211
3212/**
3213 * ubifs_dirty_idx_node - dirty an index node.
3214 * @c: UBIFS file-system description object
3215 * @key: index node key
3216 * @level: index node level
3217 * @lnum: index node LEB number
3218 * @offs: index node offset
3219 *
3220 * This function loads and dirties an index node so that it can be garbage
3221 * collected. The @key argument has to be the key of the first child. This
3222 * function relies on the fact that 0:0 is never a valid LEB number and offset
3223 * for a main-area node. Returns %0 on success and a negative error code on
3224 * failure.
3225 */
3226int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3227 int lnum, int offs)
3228{
3229 struct ubifs_znode *znode;
3230 int err = 0;
3231
3232 mutex_lock(&c->tnc_mutex);
3233 znode = lookup_znode(c, key, level, lnum, offs);
3234 if (!znode)
3235 goto out_unlock;
3236 if (IS_ERR(znode)) {
3237 err = PTR_ERR(znode);
3238 goto out_unlock;
3239 }
3240 znode = dirty_cow_bottom_up(c, znode);
3241 if (IS_ERR(znode)) {
3242 err = PTR_ERR(znode);
3243 goto out_unlock;
3244 }
3245
3246out_unlock:
3247 mutex_unlock(&c->tnc_mutex);
3248 return err;
3249}