]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ubifs/journal.c
xps: Transmit Packet Steering
[net-next-2.6.git] / fs / ubifs / journal.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS journal.
25 *
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
35 *
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
40 *
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
44 *
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
50 *
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
54 *
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
59 */
60
61#include "ubifs.h"
62
63/**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
66 */
67static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68{
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
71}
72
73/**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
77 */
78static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79{
80 dent->padding1 = 0;
81 memset(dent->padding2, 0, 4);
82}
83
84/**
85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
86 * @data: the data node to zero out
87 */
88static inline void zero_data_node_unused(struct ubifs_data_node *data)
89{
90 memset(data->padding, 0, 2);
91}
92
93/**
94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95 * node.
96 * @trun: the truncation node to zero out
97 */
98static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
99{
100 memset(trun->padding, 0, 12);
101}
102
103/**
104 * reserve_space - reserve space in the journal.
105 * @c: UBIFS file-system description object
106 * @jhead: journal head number
107 * @len: node length
108 *
109 * This function reserves space in journal head @head. If the reservation
110 * succeeded, the journal head stays locked and later has to be unlocked using
111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113 * other negative error codes in case of other failures.
114 */
115static int reserve_space(struct ubifs_info *c, int jhead, int len)
116{
3edaae7c 117 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
1e51764a
AB
118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
119
120 /*
121 * Typically, the base head has smaller nodes written to it, so it is
122 * better to try to allocate space at the ends of eraseblocks. This is
123 * what the squeeze parameter does.
124 */
2ef13294 125 ubifs_assert(!c->ro_media && !c->ro_mount);
1e51764a
AB
126 squeeze = (jhead == BASEHD);
127again:
128 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
129
2680d722 130 if (c->ro_error) {
1e51764a
AB
131 err = -EROFS;
132 goto out_unlock;
133 }
134
135 avail = c->leb_size - wbuf->offs - wbuf->used;
136 if (wbuf->lnum != -1 && avail >= len)
137 return 0;
138
139 /*
140 * Write buffer wasn't seek'ed or there is no enough space - look for an
141 * LEB with some empty space.
142 */
3edaae7c 143 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
1e51764a
AB
144 if (lnum >= 0) {
145 /* Found an LEB, add it to the journal head */
1e51764a
AB
146 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
147 if (err)
148 goto out_return;
149 /* A new bud was successfully allocated and added to the log */
150 goto out;
151 }
152
153 err = lnum;
154 if (err != -ENOSPC)
155 goto out_unlock;
156
157 /*
158 * No free space, we have to run garbage collector to make
159 * some. But the write-buffer mutex has to be unlocked because
160 * GC also takes it.
161 */
77a7ae58 162 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
1e51764a
AB
163 mutex_unlock(&wbuf->io_mutex);
164
165 lnum = ubifs_garbage_collect(c, 0);
166 if (lnum < 0) {
167 err = lnum;
168 if (err != -ENOSPC)
169 return err;
170
171 /*
172 * GC could not make a free LEB. But someone else may
173 * have allocated new bud for this journal head,
174 * because we dropped @wbuf->io_mutex, so try once
175 * again.
176 */
77a7ae58
AB
177 dbg_jnl("GC couldn't make a free LEB for jhead %s",
178 dbg_jhead(jhead));
1e51764a
AB
179 if (retries++ < 2) {
180 dbg_jnl("retry (%d)", retries);
181 goto again;
182 }
183
184 dbg_jnl("return -ENOSPC");
185 return err;
186 }
187
188 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
77a7ae58 189 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
1e51764a
AB
190 avail = c->leb_size - wbuf->offs - wbuf->used;
191
192 if (wbuf->lnum != -1 && avail >= len) {
193 /*
194 * Someone else has switched the journal head and we have
025dfdaf 195 * enough space now. This happens when more than one process is
1e51764a
AB
196 * trying to write to the same journal head at the same time.
197 */
198 dbg_jnl("return LEB %d back, already have LEB %d:%d",
199 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
200 err = ubifs_return_leb(c, lnum);
201 if (err)
202 goto out_unlock;
203 return 0;
204 }
205
206 err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
207 if (err)
208 goto out_return;
209 offs = 0;
210
211out:
a50412e3 212 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype);
1e51764a
AB
213 if (err)
214 goto out_unlock;
215
216 return 0;
217
218out_unlock:
219 mutex_unlock(&wbuf->io_mutex);
220 return err;
221
222out_return:
223 /* An error occurred and the LEB has to be returned to lprops */
224 ubifs_assert(err < 0);
225 err1 = ubifs_return_leb(c, lnum);
226 if (err1 && err == -EAGAIN)
227 /*
228 * Return original error code only if it is not %-EAGAIN,
229 * which is not really an error. Otherwise, return the error
230 * code of 'ubifs_return_leb()'.
231 */
232 err = err1;
233 mutex_unlock(&wbuf->io_mutex);
234 return err;
235}
236
237/**
238 * write_node - write node to a journal head.
239 * @c: UBIFS file-system description object
240 * @jhead: journal head
241 * @node: node to write
242 * @len: node length
243 * @lnum: LEB number written is returned here
244 * @offs: offset written is returned here
245 *
246 * This function writes a node to reserved space of journal head @jhead.
247 * Returns zero in case of success and a negative error code in case of
248 * failure.
249 */
250static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
251 int *lnum, int *offs)
252{
253 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
254
255 ubifs_assert(jhead != GCHD);
256
257 *lnum = c->jheads[jhead].wbuf.lnum;
258 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
259
77a7ae58
AB
260 dbg_jnl("jhead %s, LEB %d:%d, len %d",
261 dbg_jhead(jhead), *lnum, *offs, len);
1e51764a
AB
262 ubifs_prepare_node(c, node, len, 0);
263
264 return ubifs_wbuf_write_nolock(wbuf, node, len);
265}
266
267/**
268 * write_head - write data to a journal head.
269 * @c: UBIFS file-system description object
270 * @jhead: journal head
271 * @buf: buffer to write
272 * @len: length to write
273 * @lnum: LEB number written is returned here
274 * @offs: offset written is returned here
275 * @sync: non-zero if the write-buffer has to by synchronized
276 *
277 * This function is the same as 'write_node()' but it does not assume the
278 * buffer it is writing is a node, so it does not prepare it (which means
279 * initializing common header and calculating CRC).
280 */
281static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
282 int *lnum, int *offs, int sync)
283{
284 int err;
285 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
286
287 ubifs_assert(jhead != GCHD);
288
289 *lnum = c->jheads[jhead].wbuf.lnum;
290 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
77a7ae58
AB
291 dbg_jnl("jhead %s, LEB %d:%d, len %d",
292 dbg_jhead(jhead), *lnum, *offs, len);
1e51764a
AB
293
294 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
295 if (err)
296 return err;
297 if (sync)
298 err = ubifs_wbuf_sync_nolock(wbuf);
299 return err;
300}
301
302/**
303 * make_reservation - reserve journal space.
304 * @c: UBIFS file-system description object
305 * @jhead: journal head
306 * @len: how many bytes to reserve
307 *
308 * This function makes space reservation in journal head @jhead. The function
309 * takes the commit lock and locks the journal head, and the caller has to
310 * unlock the head and finish the reservation with 'finish_reservation()'.
311 * Returns zero in case of success and a negative error code in case of
312 * failure.
313 *
314 * Note, the journal head may be unlocked as soon as the data is written, while
315 * the commit lock has to be released after the data has been added to the
316 * TNC.
317 */
318static int make_reservation(struct ubifs_info *c, int jhead, int len)
319{
320 int err, cmt_retries = 0, nospc_retries = 0;
321
322again:
323 down_read(&c->commit_sem);
324 err = reserve_space(c, jhead, len);
325 if (!err)
326 return 0;
327 up_read(&c->commit_sem);
328
329 if (err == -ENOSPC) {
330 /*
331 * GC could not make any progress. We should try to commit
332 * once because it could make some dirty space and GC would
333 * make progress, so make the error -EAGAIN so that the below
334 * will commit and re-try.
335 */
336 if (nospc_retries++ < 2) {
337 dbg_jnl("no space, retry");
338 err = -EAGAIN;
339 }
340
341 /*
342 * This means that the budgeting is incorrect. We always have
343 * to be able to write to the media, because all operations are
344 * budgeted. Deletions are not budgeted, though, but we reserve
345 * an extra LEB for them.
346 */
347 }
348
349 if (err != -EAGAIN)
350 goto out;
351
352 /*
353 * -EAGAIN means that the journal is full or too large, or the above
354 * code wants to do one commit. Do this and re-try.
355 */
356 if (cmt_retries > 128) {
357 /*
358 * This should not happen unless the journal size limitations
359 * are too tough.
360 */
361 ubifs_err("stuck in space allocation");
362 err = -ENOSPC;
363 goto out;
364 } else if (cmt_retries > 32)
365 ubifs_warn("too many space allocation re-tries (%d)",
366 cmt_retries);
367
368 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
369 cmt_retries);
370 cmt_retries += 1;
371
372 err = ubifs_run_commit(c);
373 if (err)
374 return err;
375 goto again;
376
377out:
378 ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
379 len, jhead, err);
380 if (err == -ENOSPC) {
381 /* This are some budgeting problems, print useful information */
382 down_write(&c->commit_sem);
383 spin_lock(&c->space_lock);
384 dbg_dump_stack();
385 dbg_dump_budg(c);
386 spin_unlock(&c->space_lock);
387 dbg_dump_lprops(c);
388 cmt_retries = dbg_check_lprops(c);
389 up_write(&c->commit_sem);
390 }
391 return err;
392}
393
394/**
395 * release_head - release a journal head.
396 * @c: UBIFS file-system description object
397 * @jhead: journal head
398 *
399 * This function releases journal head @jhead which was locked by
400 * the 'make_reservation()' function. It has to be called after each successful
401 * 'make_reservation()' invocation.
402 */
403static inline void release_head(struct ubifs_info *c, int jhead)
404{
405 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
406}
407
408/**
409 * finish_reservation - finish a reservation.
410 * @c: UBIFS file-system description object
411 *
412 * This function finishes journal space reservation. It must be called after
413 * 'make_reservation()'.
414 */
415static void finish_reservation(struct ubifs_info *c)
416{
417 up_read(&c->commit_sem);
418}
419
420/**
421 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
422 * @mode: inode mode
423 */
424static int get_dent_type(int mode)
425{
426 switch (mode & S_IFMT) {
427 case S_IFREG:
428 return UBIFS_ITYPE_REG;
429 case S_IFDIR:
430 return UBIFS_ITYPE_DIR;
431 case S_IFLNK:
432 return UBIFS_ITYPE_LNK;
433 case S_IFBLK:
434 return UBIFS_ITYPE_BLK;
435 case S_IFCHR:
436 return UBIFS_ITYPE_CHR;
437 case S_IFIFO:
438 return UBIFS_ITYPE_FIFO;
439 case S_IFSOCK:
440 return UBIFS_ITYPE_SOCK;
441 default:
442 BUG();
443 }
444 return 0;
445}
446
447/**
448 * pack_inode - pack an inode node.
449 * @c: UBIFS file-system description object
450 * @ino: buffer in which to pack inode node
451 * @inode: inode to pack
452 * @last: indicates the last node of the group
1e51764a
AB
453 */
454static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
fd6c6b51 455 const struct inode *inode, int last)
1e51764a 456{
fd6c6b51 457 int data_len = 0, last_reference = !inode->i_nlink;
1e51764a
AB
458 struct ubifs_inode *ui = ubifs_inode(inode);
459
460 ino->ch.node_type = UBIFS_INO_NODE;
461 ino_key_init_flash(c, &ino->key, inode->i_ino);
462 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
463 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
464 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
465 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
466 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
467 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
468 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
469 ino->uid = cpu_to_le32(inode->i_uid);
470 ino->gid = cpu_to_le32(inode->i_gid);
471 ino->mode = cpu_to_le32(inode->i_mode);
472 ino->flags = cpu_to_le32(ui->flags);
473 ino->size = cpu_to_le64(ui->ui_size);
474 ino->nlink = cpu_to_le32(inode->i_nlink);
475 ino->compr_type = cpu_to_le16(ui->compr_type);
476 ino->data_len = cpu_to_le32(ui->data_len);
477 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
478 ino->xattr_size = cpu_to_le32(ui->xattr_size);
479 ino->xattr_names = cpu_to_le32(ui->xattr_names);
480 zero_ino_node_unused(ino);
481
482 /*
483 * Drop the attached data if this is a deletion inode, the data is not
484 * needed anymore.
485 */
486 if (!last_reference) {
487 memcpy(ino->data, ui->data, ui->data_len);
488 data_len = ui->data_len;
489 }
490
491 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
492}
493
494/**
495 * mark_inode_clean - mark UBIFS inode as clean.
496 * @c: UBIFS file-system description object
497 * @ui: UBIFS inode to mark as clean
498 *
499 * This helper function marks UBIFS inode @ui as clean by cleaning the
500 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
501 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
502 * just do nothing.
503 */
504static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
505{
506 if (ui->dirty)
507 ubifs_release_dirty_inode_budget(c, ui);
508 ui->dirty = 0;
509}
510
511/**
512 * ubifs_jnl_update - update inode.
513 * @c: UBIFS file-system description object
514 * @dir: parent inode or host inode in case of extended attributes
515 * @nm: directory entry name
516 * @inode: inode to update
517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
518 * @xent: non-zero if the directory entry is an extended attribute entry
519 *
520 * This function updates an inode by writing a directory entry (or extended
521 * attribute entry), the inode itself, and the parent directory inode (or the
522 * host inode) to the journal.
523 *
524 * The function writes the host inode @dir last, which is important in case of
525 * extended attributes. Indeed, then we guarantee that if the host inode gets
526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
527 * the extended attribute inode gets flushed too. And this is exactly what the
528 * user expects - synchronizing the host inode synchronizes its extended
529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
530 * directory entry corresponding to @nm gets synchronized too.
531 *
532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
533 * function synchronizes the write-buffer.
534 *
535 * This function marks the @dir and @inode inodes as clean and returns zero on
536 * success. In case of failure, a negative error code is returned.
537 */
538int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
539 const struct qstr *nm, const struct inode *inode,
540 int deletion, int xent)
541{
542 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
543 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
544 int last_reference = !!(deletion && inode->i_nlink == 0);
545 struct ubifs_inode *ui = ubifs_inode(inode);
546 struct ubifs_inode *dir_ui = ubifs_inode(dir);
547 struct ubifs_dent_node *dent;
548 struct ubifs_ino_node *ino;
549 union ubifs_key dent_key, ino_key;
550
551 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
552 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
553 ubifs_assert(dir_ui->data_len == 0);
554 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
555
556 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
557 ilen = UBIFS_INO_NODE_SZ;
558
559 /*
560 * If the last reference to the inode is being deleted, then there is
561 * no need to attach and write inode data, it is being deleted anyway.
562 * And if the inode is being deleted, no need to synchronize
563 * write-buffer even if the inode is synchronous.
564 */
565 if (!last_reference) {
566 ilen += ui->data_len;
567 sync |= IS_SYNC(inode);
568 }
569
570 aligned_dlen = ALIGN(dlen, 8);
571 aligned_ilen = ALIGN(ilen, 8);
572 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
573 dent = kmalloc(len, GFP_NOFS);
574 if (!dent)
575 return -ENOMEM;
576
577 /* Make reservation before allocating sequence numbers */
578 err = make_reservation(c, BASEHD, len);
579 if (err)
580 goto out_free;
581
582 if (!xent) {
583 dent->ch.node_type = UBIFS_DENT_NODE;
584 dent_key_init(c, &dent_key, dir->i_ino, nm);
585 } else {
586 dent->ch.node_type = UBIFS_XENT_NODE;
587 xent_key_init(c, &dent_key, dir->i_ino, nm);
588 }
589
590 key_write(c, &dent_key, dent->key);
591 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
592 dent->type = get_dent_type(inode->i_mode);
593 dent->nlen = cpu_to_le16(nm->len);
594 memcpy(dent->name, nm->name, nm->len);
595 dent->name[nm->len] = '\0';
596 zero_dent_node_unused(dent);
597 ubifs_prep_grp_node(c, dent, dlen, 0);
598
599 ino = (void *)dent + aligned_dlen;
fd6c6b51 600 pack_inode(c, ino, inode, 0);
1e51764a 601 ino = (void *)ino + aligned_ilen;
fd6c6b51 602 pack_inode(c, ino, dir, 1);
1e51764a
AB
603
604 if (last_reference) {
605 err = ubifs_add_orphan(c, inode->i_ino);
606 if (err) {
607 release_head(c, BASEHD);
608 goto out_finish;
609 }
de94eb55 610 ui->del_cmtno = c->cmt_no;
1e51764a
AB
611 }
612
613 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
614 if (err)
615 goto out_release;
616 if (!sync) {
617 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
618
619 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
620 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
621 }
622 release_head(c, BASEHD);
623 kfree(dent);
624
625 if (deletion) {
626 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
627 if (err)
628 goto out_ro;
629 err = ubifs_add_dirt(c, lnum, dlen);
630 } else
631 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
632 if (err)
633 goto out_ro;
634
635 /*
636 * Note, we do not remove the inode from TNC even if the last reference
637 * to it has just been deleted, because the inode may still be opened.
638 * Instead, the inode has been added to orphan lists and the orphan
639 * subsystem will take further care about it.
640 */
641 ino_key_init(c, &ino_key, inode->i_ino);
642 ino_offs = dent_offs + aligned_dlen;
643 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
644 if (err)
645 goto out_ro;
646
647 ino_key_init(c, &ino_key, dir->i_ino);
648 ino_offs += aligned_ilen;
649 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
650 if (err)
651 goto out_ro;
652
653 finish_reservation(c);
654 spin_lock(&ui->ui_lock);
655 ui->synced_i_size = ui->ui_size;
656 spin_unlock(&ui->ui_lock);
657 mark_inode_clean(c, ui);
658 mark_inode_clean(c, dir_ui);
659 return 0;
660
661out_finish:
662 finish_reservation(c);
663out_free:
664 kfree(dent);
665 return err;
666
667out_release:
668 release_head(c, BASEHD);
669out_ro:
670 ubifs_ro_mode(c, err);
671 if (last_reference)
672 ubifs_delete_orphan(c, inode->i_ino);
673 finish_reservation(c);
674 return err;
675}
676
677/**
678 * ubifs_jnl_write_data - write a data node to the journal.
679 * @c: UBIFS file-system description object
680 * @inode: inode the data node belongs to
681 * @key: node key
682 * @buf: buffer to write
683 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
684 *
685 * This function writes a data node to the journal. Returns %0 if the data node
686 * was successfully written, and a negative error code in case of failure.
687 */
688int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
689 const union ubifs_key *key, const void *buf, int len)
690{
691 struct ubifs_data_node *data;
692 int err, lnum, offs, compr_type, out_len;
693 int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
694 struct ubifs_inode *ui = ubifs_inode(inode);
695
e84461ad
AB
696 dbg_jnl("ino %lu, blk %u, len %d, key %s",
697 (unsigned long)key_inum(c, key), key_block(c, key), len,
698 DBGKEY(key));
1e51764a
AB
699 ubifs_assert(len <= UBIFS_BLOCK_SIZE);
700
701 data = kmalloc(dlen, GFP_NOFS);
702 if (!data)
703 return -ENOMEM;
704
705 data->ch.node_type = UBIFS_DATA_NODE;
706 key_write(c, key, &data->key);
707 data->size = cpu_to_le32(len);
708 zero_data_node_unused(data);
709
a9f2fc0e 710 if (!(ui->flags & UBIFS_COMPR_FL))
1e51764a
AB
711 /* Compression is disabled for this inode */
712 compr_type = UBIFS_COMPR_NONE;
713 else
714 compr_type = ui->compr_type;
715
716 out_len = dlen - UBIFS_DATA_NODE_SZ;
717 ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
718 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
719
720 dlen = UBIFS_DATA_NODE_SZ + out_len;
721 data->compr_type = cpu_to_le16(compr_type);
722
723 /* Make reservation before allocating sequence numbers */
724 err = make_reservation(c, DATAHD, dlen);
725 if (err)
726 goto out_free;
727
728 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
729 if (err)
730 goto out_release;
731 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
732 release_head(c, DATAHD);
733
734 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
735 if (err)
736 goto out_ro;
737
738 finish_reservation(c);
739 kfree(data);
740 return 0;
741
742out_release:
743 release_head(c, DATAHD);
744out_ro:
745 ubifs_ro_mode(c, err);
746 finish_reservation(c);
747out_free:
748 kfree(data);
749 return err;
750}
751
752/**
753 * ubifs_jnl_write_inode - flush inode to the journal.
754 * @c: UBIFS file-system description object
755 * @inode: inode to flush
1e51764a
AB
756 *
757 * This function writes inode @inode to the journal. If the inode is
758 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
759 * success and a negative error code in case of failure.
760 */
1f28681a 761int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
1e51764a 762{
1f28681a 763 int err, lnum, offs;
1e51764a
AB
764 struct ubifs_ino_node *ino;
765 struct ubifs_inode *ui = ubifs_inode(inode);
1f28681a 766 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
1e51764a 767
1f28681a 768 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
1e51764a 769
1e51764a
AB
770 /*
771 * If the inode is being deleted, do not write the attached data. No
772 * need to synchronize the write-buffer either.
773 */
1f28681a 774 if (!last_reference) {
1e51764a
AB
775 len += ui->data_len;
776 sync = IS_SYNC(inode);
777 }
778 ino = kmalloc(len, GFP_NOFS);
779 if (!ino)
780 return -ENOMEM;
781
782 /* Make reservation before allocating sequence numbers */
783 err = make_reservation(c, BASEHD, len);
784 if (err)
785 goto out_free;
786
fd6c6b51 787 pack_inode(c, ino, inode, 1);
1e51764a
AB
788 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
789 if (err)
790 goto out_release;
791 if (!sync)
792 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
793 inode->i_ino);
794 release_head(c, BASEHD);
795
1f28681a 796 if (last_reference) {
1e51764a
AB
797 err = ubifs_tnc_remove_ino(c, inode->i_ino);
798 if (err)
799 goto out_ro;
800 ubifs_delete_orphan(c, inode->i_ino);
801 err = ubifs_add_dirt(c, lnum, len);
802 } else {
803 union ubifs_key key;
804
805 ino_key_init(c, &key, inode->i_ino);
806 err = ubifs_tnc_add(c, &key, lnum, offs, len);
807 }
808 if (err)
809 goto out_ro;
810
811 finish_reservation(c);
812 spin_lock(&ui->ui_lock);
813 ui->synced_i_size = ui->ui_size;
814 spin_unlock(&ui->ui_lock);
815 kfree(ino);
816 return 0;
817
818out_release:
819 release_head(c, BASEHD);
820out_ro:
821 ubifs_ro_mode(c, err);
822 finish_reservation(c);
823out_free:
824 kfree(ino);
825 return err;
826}
827
de94eb55 828/**
7d62ff2c 829 * ubifs_jnl_delete_inode - delete an inode.
de94eb55
AB
830 * @c: UBIFS file-system description object
831 * @inode: inode to delete
832 *
833 * This function deletes inode @inode which includes removing it from orphans,
834 * deleting it from TNC and, in some cases, writing a deletion inode to the
835 * journal.
836 *
837 * When regular file inodes are unlinked or a directory inode is removed, the
7d62ff2c 838 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
de94eb55
AB
839 * direntry to the media, and adds the inode to orphans. After this, when the
840 * last reference to this inode has been dropped, this function is called. In
841 * general, it has to write one more deletion inode to the media, because if
842 * a commit happened between 'ubifs_jnl_update()' and
843 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
7d62ff2c
AH
844 * anymore, and in fact it might not be on the flash anymore, because it might
845 * have been garbage-collected already. And for optimization reasons UBIFS does
de94eb55
AB
846 * not read the orphan area if it has been unmounted cleanly, so it would have
847 * no indication in the journal that there is a deleted inode which has to be
848 * removed from TNC.
849 *
850 * However, if there was no commit between 'ubifs_jnl_update()' and
851 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
7d62ff2c 852 * inode to the media for the second time. And this is quite a typical case.
de94eb55
AB
853 *
854 * This function returns zero in case of success and a negative error code in
855 * case of failure.
856 */
857int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
858{
859 int err;
860 struct ubifs_inode *ui = ubifs_inode(inode);
861
862 ubifs_assert(inode->i_nlink == 0);
863
864 if (ui->del_cmtno != c->cmt_no)
865 /* A commit happened for sure */
866 return ubifs_jnl_write_inode(c, inode);
867
868 down_read(&c->commit_sem);
869 /*
870 * Check commit number again, because the first test has been done
871 * without @c->commit_sem, so a commit might have happened.
872 */
873 if (ui->del_cmtno != c->cmt_no) {
874 up_read(&c->commit_sem);
875 return ubifs_jnl_write_inode(c, inode);
876 }
877
de94eb55
AB
878 err = ubifs_tnc_remove_ino(c, inode->i_ino);
879 if (err)
880 ubifs_ro_mode(c, err);
f7691084
AH
881 else
882 ubifs_delete_orphan(c, inode->i_ino);
de94eb55
AB
883 up_read(&c->commit_sem);
884 return err;
885}
886
1e51764a
AB
887/**
888 * ubifs_jnl_rename - rename a directory entry.
889 * @c: UBIFS file-system description object
890 * @old_dir: parent inode of directory entry to rename
891 * @old_dentry: directory entry to rename
892 * @new_dir: parent inode of directory entry to rename
893 * @new_dentry: new directory entry (or directory entry to replace)
894 * @sync: non-zero if the write-buffer has to be synchronized
895 *
896 * This function implements the re-name operation which may involve writing up
897 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
898 * and returns zero on success. In case of failure, a negative error code is
899 * returned.
900 */
901int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
902 const struct dentry *old_dentry,
903 const struct inode *new_dir,
904 const struct dentry *new_dentry, int sync)
905{
906 void *p;
907 union ubifs_key key;
908 struct ubifs_dent_node *dent, *dent2;
909 int err, dlen1, dlen2, ilen, lnum, offs, len;
910 const struct inode *old_inode = old_dentry->d_inode;
911 const struct inode *new_inode = new_dentry->d_inode;
912 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
913 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
914 int move = (old_dir != new_dir);
915 struct ubifs_inode *uninitialized_var(new_ui);
916
917 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
918 old_dentry->d_name.len, old_dentry->d_name.name,
919 old_dir->i_ino, new_dentry->d_name.len,
920 new_dentry->d_name.name, new_dir->i_ino);
921 ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
922 ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
923 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
924 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
925
926 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
927 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
928 if (new_inode) {
929 new_ui = ubifs_inode(new_inode);
930 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
931 ilen = UBIFS_INO_NODE_SZ;
932 if (!last_reference)
933 ilen += new_ui->data_len;
934 } else
935 ilen = 0;
936
937 aligned_dlen1 = ALIGN(dlen1, 8);
938 aligned_dlen2 = ALIGN(dlen2, 8);
939 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
940 if (old_dir != new_dir)
941 len += plen;
942 dent = kmalloc(len, GFP_NOFS);
943 if (!dent)
944 return -ENOMEM;
945
946 /* Make reservation before allocating sequence numbers */
947 err = make_reservation(c, BASEHD, len);
948 if (err)
949 goto out_free;
950
951 /* Make new dent */
952 dent->ch.node_type = UBIFS_DENT_NODE;
953 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
954 dent->inum = cpu_to_le64(old_inode->i_ino);
955 dent->type = get_dent_type(old_inode->i_mode);
956 dent->nlen = cpu_to_le16(new_dentry->d_name.len);
957 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
958 dent->name[new_dentry->d_name.len] = '\0';
959 zero_dent_node_unused(dent);
960 ubifs_prep_grp_node(c, dent, dlen1, 0);
961
962 /* Make deletion dent */
963 dent2 = (void *)dent + aligned_dlen1;
964 dent2->ch.node_type = UBIFS_DENT_NODE;
965 dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
966 &old_dentry->d_name);
967 dent2->inum = 0;
968 dent2->type = DT_UNKNOWN;
969 dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
970 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
971 dent2->name[old_dentry->d_name.len] = '\0';
972 zero_dent_node_unused(dent2);
973 ubifs_prep_grp_node(c, dent2, dlen2, 0);
974
975 p = (void *)dent2 + aligned_dlen2;
976 if (new_inode) {
fd6c6b51 977 pack_inode(c, p, new_inode, 0);
1e51764a
AB
978 p += ALIGN(ilen, 8);
979 }
980
981 if (!move)
fd6c6b51 982 pack_inode(c, p, old_dir, 1);
1e51764a 983 else {
fd6c6b51 984 pack_inode(c, p, old_dir, 0);
1e51764a 985 p += ALIGN(plen, 8);
fd6c6b51 986 pack_inode(c, p, new_dir, 1);
1e51764a
AB
987 }
988
989 if (last_reference) {
990 err = ubifs_add_orphan(c, new_inode->i_ino);
991 if (err) {
992 release_head(c, BASEHD);
993 goto out_finish;
994 }
de94eb55 995 new_ui->del_cmtno = c->cmt_no;
1e51764a
AB
996 }
997
998 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
999 if (err)
1000 goto out_release;
1001 if (!sync) {
1002 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1003
1004 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1005 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1006 if (new_inode)
1007 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1008 new_inode->i_ino);
1009 }
1010 release_head(c, BASEHD);
1011
1012 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1013 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1014 if (err)
1015 goto out_ro;
1016
1017 err = ubifs_add_dirt(c, lnum, dlen2);
1018 if (err)
1019 goto out_ro;
1020
1021 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1022 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1023 if (err)
1024 goto out_ro;
1025
1026 offs += aligned_dlen1 + aligned_dlen2;
1027 if (new_inode) {
1028 ino_key_init(c, &key, new_inode->i_ino);
1029 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1030 if (err)
1031 goto out_ro;
1032 offs += ALIGN(ilen, 8);
1033 }
1034
1035 ino_key_init(c, &key, old_dir->i_ino);
1036 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1037 if (err)
1038 goto out_ro;
1039
1040 if (old_dir != new_dir) {
1041 offs += ALIGN(plen, 8);
1042 ino_key_init(c, &key, new_dir->i_ino);
1043 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1044 if (err)
1045 goto out_ro;
1046 }
1047
1048 finish_reservation(c);
1049 if (new_inode) {
1050 mark_inode_clean(c, new_ui);
1051 spin_lock(&new_ui->ui_lock);
1052 new_ui->synced_i_size = new_ui->ui_size;
1053 spin_unlock(&new_ui->ui_lock);
1054 }
1055 mark_inode_clean(c, ubifs_inode(old_dir));
1056 if (move)
1057 mark_inode_clean(c, ubifs_inode(new_dir));
1058 kfree(dent);
1059 return 0;
1060
1061out_release:
1062 release_head(c, BASEHD);
1063out_ro:
1064 ubifs_ro_mode(c, err);
1065 if (last_reference)
1066 ubifs_delete_orphan(c, new_inode->i_ino);
1067out_finish:
1068 finish_reservation(c);
1069out_free:
1070 kfree(dent);
1071 return err;
1072}
1073
1074/**
1075 * recomp_data_node - re-compress a truncated data node.
1076 * @dn: data node to re-compress
1077 * @new_len: new length
1078 *
1079 * This function is used when an inode is truncated and the last data node of
1080 * the inode has to be re-compressed and re-written.
1081 */
1082static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1083{
1084 void *buf;
1085 int err, len, compr_type, out_len;
1086
1087 out_len = le32_to_cpu(dn->size);
1088 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1089 if (!buf)
1090 return -ENOMEM;
1091
1092 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1093 compr_type = le16_to_cpu(dn->compr_type);
1094 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1095 if (err)
1096 goto out;
1097
1098 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1099 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1100 dn->compr_type = cpu_to_le16(compr_type);
1101 dn->size = cpu_to_le32(*new_len);
1102 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1103out:
1104 kfree(buf);
1105 return err;
1106}
1107
1108/**
1109 * ubifs_jnl_truncate - update the journal for a truncation.
1110 * @c: UBIFS file-system description object
1111 * @inode: inode to truncate
1112 * @old_size: old size
1113 * @new_size: new size
1114 *
1115 * When the size of a file decreases due to truncation, a truncation node is
1116 * written, the journal tree is updated, and the last data block is re-written
1117 * if it has been affected. The inode is also updated in order to synchronize
1118 * the new inode size.
1119 *
1120 * This function marks the inode as clean and returns zero on success. In case
1121 * of failure, a negative error code is returned.
1122 */
1123int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1124 loff_t old_size, loff_t new_size)
1125{
1126 union ubifs_key key, to_key;
1127 struct ubifs_ino_node *ino;
1128 struct ubifs_trun_node *trun;
1129 struct ubifs_data_node *uninitialized_var(dn);
1130 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1131 struct ubifs_inode *ui = ubifs_inode(inode);
1132 ino_t inum = inode->i_ino;
1133 unsigned int blk;
1134
e84461ad
AB
1135 dbg_jnl("ino %lu, size %lld -> %lld",
1136 (unsigned long)inum, old_size, new_size);
1e51764a
AB
1137 ubifs_assert(!ui->data_len);
1138 ubifs_assert(S_ISREG(inode->i_mode));
1139 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1140
1141 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1142 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1143 ino = kmalloc(sz, GFP_NOFS);
1144 if (!ino)
1145 return -ENOMEM;
1146
1147 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1148 trun->ch.node_type = UBIFS_TRUN_NODE;
1149 trun->inum = cpu_to_le32(inum);
1150 trun->old_size = cpu_to_le64(old_size);
1151 trun->new_size = cpu_to_le64(new_size);
1152 zero_trun_node_unused(trun);
1153
1154 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1155 if (dlen) {
1156 /* Get last data block so it can be truncated */
1157 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1158 blk = new_size >> UBIFS_BLOCK_SHIFT;
1159 data_key_init(c, &key, inum, blk);
1160 dbg_jnl("last block key %s", DBGKEY(&key));
1161 err = ubifs_tnc_lookup(c, &key, dn);
1162 if (err == -ENOENT)
1163 dlen = 0; /* Not found (so it is a hole) */
1164 else if (err)
1165 goto out_free;
1166 else {
1167 if (le32_to_cpu(dn->size) <= dlen)
1168 dlen = 0; /* Nothing to do */
1169 else {
1170 int compr_type = le16_to_cpu(dn->compr_type);
1171
1172 if (compr_type != UBIFS_COMPR_NONE) {
1173 err = recomp_data_node(dn, &dlen);
1174 if (err)
1175 goto out_free;
1176 } else {
1177 dn->size = cpu_to_le32(dlen);
1178 dlen += UBIFS_DATA_NODE_SZ;
1179 }
1180 zero_data_node_unused(dn);
1181 }
1182 }
1183 }
1184
1185 /* Must make reservation before allocating sequence numbers */
1186 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1187 if (dlen)
1188 len += dlen;
1189 err = make_reservation(c, BASEHD, len);
1190 if (err)
1191 goto out_free;
1192
fd6c6b51 1193 pack_inode(c, ino, inode, 0);
1e51764a
AB
1194 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1195 if (dlen)
1196 ubifs_prep_grp_node(c, dn, dlen, 1);
1197
1198 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1199 if (err)
1200 goto out_release;
1201 if (!sync)
1202 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1203 release_head(c, BASEHD);
1204
1205 if (dlen) {
1206 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1207 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1208 if (err)
1209 goto out_ro;
1210 }
1211
1212 ino_key_init(c, &key, inum);
1213 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1214 if (err)
1215 goto out_ro;
1216
1217 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1218 if (err)
1219 goto out_ro;
1220
1221 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1222 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1223 data_key_init(c, &key, inum, blk);
1224
1225 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
f92b9826 1226 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1e51764a
AB
1227 data_key_init(c, &to_key, inum, blk);
1228
1229 err = ubifs_tnc_remove_range(c, &key, &to_key);
1230 if (err)
1231 goto out_ro;
1232
1233 finish_reservation(c);
1234 spin_lock(&ui->ui_lock);
1235 ui->synced_i_size = ui->ui_size;
1236 spin_unlock(&ui->ui_lock);
1237 mark_inode_clean(c, ui);
1238 kfree(ino);
1239 return 0;
1240
1241out_release:
1242 release_head(c, BASEHD);
1243out_ro:
1244 ubifs_ro_mode(c, err);
1245 finish_reservation(c);
1246out_free:
1247 kfree(ino);
1248 return err;
1249}
1250
1251#ifdef CONFIG_UBIFS_FS_XATTR
1252
1253/**
1254 * ubifs_jnl_delete_xattr - delete an extended attribute.
1255 * @c: UBIFS file-system description object
1256 * @host: host inode
1257 * @inode: extended attribute inode
1258 * @nm: extended attribute entry name
1259 *
1260 * This function delete an extended attribute which is very similar to
1261 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1262 * updates the target inode. Returns zero in case of success and a negative
1263 * error code in case of failure.
1264 */
1265int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1266 const struct inode *inode, const struct qstr *nm)
1267{
1268 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1269 struct ubifs_dent_node *xent;
1270 struct ubifs_ino_node *ino;
1271 union ubifs_key xent_key, key1, key2;
1272 int sync = IS_DIRSYNC(host);
1273 struct ubifs_inode *host_ui = ubifs_inode(host);
1274
1275 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1276 host->i_ino, inode->i_ino, nm->name,
1277 ubifs_inode(inode)->data_len);
1278 ubifs_assert(inode->i_nlink == 0);
1279 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1280
1281 /*
1282 * Since we are deleting the inode, we do not bother to attach any data
1283 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1284 */
1285 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1286 aligned_xlen = ALIGN(xlen, 8);
1287 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1288 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1289
1290 xent = kmalloc(len, GFP_NOFS);
1291 if (!xent)
1292 return -ENOMEM;
1293
1294 /* Make reservation before allocating sequence numbers */
1295 err = make_reservation(c, BASEHD, len);
1296 if (err) {
1297 kfree(xent);
1298 return err;
1299 }
1300
1301 xent->ch.node_type = UBIFS_XENT_NODE;
1302 xent_key_init(c, &xent_key, host->i_ino, nm);
1303 key_write(c, &xent_key, xent->key);
1304 xent->inum = 0;
1305 xent->type = get_dent_type(inode->i_mode);
1306 xent->nlen = cpu_to_le16(nm->len);
1307 memcpy(xent->name, nm->name, nm->len);
1308 xent->name[nm->len] = '\0';
1309 zero_dent_node_unused(xent);
1310 ubifs_prep_grp_node(c, xent, xlen, 0);
1311
1312 ino = (void *)xent + aligned_xlen;
fd6c6b51 1313 pack_inode(c, ino, inode, 0);
1e51764a 1314 ino = (void *)ino + UBIFS_INO_NODE_SZ;
fd6c6b51 1315 pack_inode(c, ino, host, 1);
1e51764a
AB
1316
1317 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1318 if (!sync && !err)
1319 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1320 release_head(c, BASEHD);
1321 kfree(xent);
1322 if (err)
1323 goto out_ro;
1324
1325 /* Remove the extended attribute entry from TNC */
1326 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1327 if (err)
1328 goto out_ro;
1329 err = ubifs_add_dirt(c, lnum, xlen);
1330 if (err)
1331 goto out_ro;
1332
1333 /*
1334 * Remove all nodes belonging to the extended attribute inode from TNC.
1335 * Well, there actually must be only one node - the inode itself.
1336 */
1337 lowest_ino_key(c, &key1, inode->i_ino);
1338 highest_ino_key(c, &key2, inode->i_ino);
1339 err = ubifs_tnc_remove_range(c, &key1, &key2);
1340 if (err)
1341 goto out_ro;
1342 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1343 if (err)
1344 goto out_ro;
1345
1346 /* And update TNC with the new host inode position */
1347 ino_key_init(c, &key1, host->i_ino);
1348 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1349 if (err)
1350 goto out_ro;
1351
1352 finish_reservation(c);
1353 spin_lock(&host_ui->ui_lock);
1354 host_ui->synced_i_size = host_ui->ui_size;
1355 spin_unlock(&host_ui->ui_lock);
1356 mark_inode_clean(c, host_ui);
1357 return 0;
1358
1359out_ro:
1360 ubifs_ro_mode(c, err);
1361 finish_reservation(c);
1362 return err;
1363}
1364
1365/**
1366 * ubifs_jnl_change_xattr - change an extended attribute.
1367 * @c: UBIFS file-system description object
1368 * @inode: extended attribute inode
1369 * @host: host inode
1370 *
1371 * This function writes the updated version of an extended attribute inode and
7d4e9ccb 1372 * the host inode to the journal (to the base head). The host inode is written
1e51764a
AB
1373 * after the extended attribute inode in order to guarantee that the extended
1374 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1375 * consequently, the write-buffer is synchronized. This function returns zero
1376 * in case of success and a negative error code in case of failure.
1377 */
1378int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1379 const struct inode *host)
1380{
1381 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
c78c7e35 1382 struct ubifs_inode *host_ui = ubifs_inode(host);
1e51764a
AB
1383 struct ubifs_ino_node *ino;
1384 union ubifs_key key;
1385 int sync = IS_DIRSYNC(host);
1386
1387 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1388 ubifs_assert(host->i_nlink > 0);
1389 ubifs_assert(inode->i_nlink > 0);
1390 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1391
1392 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1393 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1394 aligned_len1 = ALIGN(len1, 8);
1395 aligned_len = aligned_len1 + ALIGN(len2, 8);
1396
1397 ino = kmalloc(aligned_len, GFP_NOFS);
1398 if (!ino)
1399 return -ENOMEM;
1400
1401 /* Make reservation before allocating sequence numbers */
1402 err = make_reservation(c, BASEHD, aligned_len);
1403 if (err)
1404 goto out_free;
1405
fd6c6b51
AB
1406 pack_inode(c, ino, host, 0);
1407 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1e51764a
AB
1408
1409 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1410 if (!sync && !err) {
1411 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1412
1413 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1414 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1415 }
1416 release_head(c, BASEHD);
1417 if (err)
1418 goto out_ro;
1419
1420 ino_key_init(c, &key, host->i_ino);
1421 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1422 if (err)
1423 goto out_ro;
1424
1425 ino_key_init(c, &key, inode->i_ino);
1426 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1427 if (err)
1428 goto out_ro;
1429
1430 finish_reservation(c);
1431 spin_lock(&host_ui->ui_lock);
1432 host_ui->synced_i_size = host_ui->ui_size;
1433 spin_unlock(&host_ui->ui_lock);
1434 mark_inode_clean(c, host_ui);
1435 kfree(ino);
1436 return 0;
1437
1438out_ro:
1439 ubifs_ro_mode(c, err);
1440 finish_reservation(c);
1441out_free:
1442 kfree(ino);
1443 return err;
1444}
1445
1446#endif /* CONFIG_UBIFS_FS_XATTR */