]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ubifs/debug.c
xps: Transmit Packet Steering
[net-next-2.6.git] / fs / ubifs / debug.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#define UBIFS_DBG_PRESERVE_UBI
31
32#include "ubifs.h"
33#include <linux/module.h>
34#include <linux/moduleparam.h>
552ff317 35#include <linux/debugfs.h>
4d61db4f 36#include <linux/math64.h>
5a0e3ad6 37#include <linux/slab.h>
1e51764a
AB
38
39#ifdef CONFIG_UBIFS_FS_DEBUG
40
41DEFINE_SPINLOCK(dbg_lock);
42
43static char dbg_key_buf0[128];
44static char dbg_key_buf1[128];
45
46unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
47unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
48unsigned int ubifs_tst_flags;
49
50module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
51module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
52module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
53
54MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
55MODULE_PARM_DESC(debug_chks, "Debug check flags");
56MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
57
58static const char *get_key_fmt(int fmt)
59{
60 switch (fmt) {
61 case UBIFS_SIMPLE_KEY_FMT:
62 return "simple";
63 default:
64 return "unknown/invalid format";
65 }
66}
67
68static const char *get_key_hash(int hash)
69{
70 switch (hash) {
71 case UBIFS_KEY_HASH_R5:
72 return "R5";
73 case UBIFS_KEY_HASH_TEST:
74 return "test";
75 default:
76 return "unknown/invalid name hash";
77 }
78}
79
80static const char *get_key_type(int type)
81{
82 switch (type) {
83 case UBIFS_INO_KEY:
84 return "inode";
85 case UBIFS_DENT_KEY:
86 return "direntry";
87 case UBIFS_XENT_KEY:
88 return "xentry";
89 case UBIFS_DATA_KEY:
90 return "data";
91 case UBIFS_TRUN_KEY:
92 return "truncate";
93 default:
94 return "unknown/invalid key";
95 }
96}
97
98static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
99 char *buffer)
100{
101 char *p = buffer;
102 int type = key_type(c, key);
103
104 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
105 switch (type) {
106 case UBIFS_INO_KEY:
e84461ad 107 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
1e51764a
AB
108 get_key_type(type));
109 break;
110 case UBIFS_DENT_KEY:
111 case UBIFS_XENT_KEY:
e84461ad
AB
112 sprintf(p, "(%lu, %s, %#08x)",
113 (unsigned long)key_inum(c, key),
1e51764a
AB
114 get_key_type(type), key_hash(c, key));
115 break;
116 case UBIFS_DATA_KEY:
e84461ad
AB
117 sprintf(p, "(%lu, %s, %u)",
118 (unsigned long)key_inum(c, key),
1e51764a
AB
119 get_key_type(type), key_block(c, key));
120 break;
121 case UBIFS_TRUN_KEY:
122 sprintf(p, "(%lu, %s)",
e84461ad
AB
123 (unsigned long)key_inum(c, key),
124 get_key_type(type));
1e51764a
AB
125 break;
126 default:
127 sprintf(p, "(bad key type: %#08x, %#08x)",
128 key->u32[0], key->u32[1]);
129 }
130 } else
131 sprintf(p, "bad key format %d", c->key_fmt);
132}
133
134const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
135{
136 /* dbg_lock must be held */
137 sprintf_key(c, key, dbg_key_buf0);
138 return dbg_key_buf0;
139}
140
141const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
142{
143 /* dbg_lock must be held */
144 sprintf_key(c, key, dbg_key_buf1);
145 return dbg_key_buf1;
146}
147
148const char *dbg_ntype(int type)
149{
150 switch (type) {
151 case UBIFS_PAD_NODE:
152 return "padding node";
153 case UBIFS_SB_NODE:
154 return "superblock node";
155 case UBIFS_MST_NODE:
156 return "master node";
157 case UBIFS_REF_NODE:
158 return "reference node";
159 case UBIFS_INO_NODE:
160 return "inode node";
161 case UBIFS_DENT_NODE:
162 return "direntry node";
163 case UBIFS_XENT_NODE:
164 return "xentry node";
165 case UBIFS_DATA_NODE:
166 return "data node";
167 case UBIFS_TRUN_NODE:
168 return "truncate node";
169 case UBIFS_IDX_NODE:
170 return "indexing node";
171 case UBIFS_CS_NODE:
172 return "commit start node";
173 case UBIFS_ORPH_NODE:
174 return "orphan node";
175 default:
176 return "unknown node";
177 }
178}
179
180static const char *dbg_gtype(int type)
181{
182 switch (type) {
183 case UBIFS_NO_NODE_GROUP:
184 return "no node group";
185 case UBIFS_IN_NODE_GROUP:
186 return "in node group";
187 case UBIFS_LAST_OF_NODE_GROUP:
188 return "last of node group";
189 default:
190 return "unknown";
191 }
192}
193
194const char *dbg_cstate(int cmt_state)
195{
196 switch (cmt_state) {
197 case COMMIT_RESTING:
198 return "commit resting";
199 case COMMIT_BACKGROUND:
200 return "background commit requested";
201 case COMMIT_REQUIRED:
202 return "commit required";
203 case COMMIT_RUNNING_BACKGROUND:
204 return "BACKGROUND commit running";
205 case COMMIT_RUNNING_REQUIRED:
206 return "commit running and required";
207 case COMMIT_BROKEN:
208 return "broken commit";
209 default:
210 return "unknown commit state";
211 }
212}
213
77a7ae58
AB
214const char *dbg_jhead(int jhead)
215{
216 switch (jhead) {
217 case GCHD:
218 return "0 (GC)";
219 case BASEHD:
220 return "1 (base)";
221 case DATAHD:
222 return "2 (data)";
223 default:
224 return "unknown journal head";
225 }
226}
227
1e51764a
AB
228static void dump_ch(const struct ubifs_ch *ch)
229{
230 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
231 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
232 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
233 dbg_ntype(ch->node_type));
234 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
235 dbg_gtype(ch->group_type));
236 printk(KERN_DEBUG "\tsqnum %llu\n",
237 (unsigned long long)le64_to_cpu(ch->sqnum));
238 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
239}
240
241void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
242{
243 const struct ubifs_inode *ui = ubifs_inode(inode);
244
b5e426e9
AB
245 printk(KERN_DEBUG "Dump in-memory inode:");
246 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
247 printk(KERN_DEBUG "\tsize %llu\n",
1e51764a 248 (unsigned long long)i_size_read(inode));
b5e426e9
AB
249 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
250 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
251 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
252 printk(KERN_DEBUG "\tatime %u.%u\n",
1e51764a
AB
253 (unsigned int)inode->i_atime.tv_sec,
254 (unsigned int)inode->i_atime.tv_nsec);
b5e426e9 255 printk(KERN_DEBUG "\tmtime %u.%u\n",
1e51764a
AB
256 (unsigned int)inode->i_mtime.tv_sec,
257 (unsigned int)inode->i_mtime.tv_nsec);
b5e426e9 258 printk(KERN_DEBUG "\tctime %u.%u\n",
1e51764a
AB
259 (unsigned int)inode->i_ctime.tv_sec,
260 (unsigned int)inode->i_ctime.tv_nsec);
b5e426e9
AB
261 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
262 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
263 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
264 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
265 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
266 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
267 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
268 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
269 (unsigned long long)ui->synced_i_size);
270 printk(KERN_DEBUG "\tui_size %llu\n",
271 (unsigned long long)ui->ui_size);
272 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
273 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
274 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
275 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
276 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
1e51764a
AB
277}
278
279void dbg_dump_node(const struct ubifs_info *c, const void *node)
280{
281 int i, n;
282 union ubifs_key key;
283 const struct ubifs_ch *ch = node;
284
285 if (dbg_failure_mode)
286 return;
287
288 /* If the magic is incorrect, just hexdump the first bytes */
289 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
290 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
291 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
292 (void *)node, UBIFS_CH_SZ, 1);
293 return;
294 }
295
296 spin_lock(&dbg_lock);
297 dump_ch(node);
298
299 switch (ch->node_type) {
300 case UBIFS_PAD_NODE:
301 {
302 const struct ubifs_pad_node *pad = node;
303
304 printk(KERN_DEBUG "\tpad_len %u\n",
305 le32_to_cpu(pad->pad_len));
306 break;
307 }
308 case UBIFS_SB_NODE:
309 {
310 const struct ubifs_sb_node *sup = node;
311 unsigned int sup_flags = le32_to_cpu(sup->flags);
312
313 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
314 (int)sup->key_hash, get_key_hash(sup->key_hash));
315 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
316 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
317 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
318 printk(KERN_DEBUG "\t big_lpt %u\n",
319 !!(sup_flags & UBIFS_FLG_BIGLPT));
320 printk(KERN_DEBUG "\tmin_io_size %u\n",
321 le32_to_cpu(sup->min_io_size));
322 printk(KERN_DEBUG "\tleb_size %u\n",
323 le32_to_cpu(sup->leb_size));
324 printk(KERN_DEBUG "\tleb_cnt %u\n",
325 le32_to_cpu(sup->leb_cnt));
326 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
327 le32_to_cpu(sup->max_leb_cnt));
328 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
329 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
330 printk(KERN_DEBUG "\tlog_lebs %u\n",
331 le32_to_cpu(sup->log_lebs));
332 printk(KERN_DEBUG "\tlpt_lebs %u\n",
333 le32_to_cpu(sup->lpt_lebs));
334 printk(KERN_DEBUG "\torph_lebs %u\n",
335 le32_to_cpu(sup->orph_lebs));
336 printk(KERN_DEBUG "\tjhead_cnt %u\n",
337 le32_to_cpu(sup->jhead_cnt));
338 printk(KERN_DEBUG "\tfanout %u\n",
339 le32_to_cpu(sup->fanout));
340 printk(KERN_DEBUG "\tlsave_cnt %u\n",
341 le32_to_cpu(sup->lsave_cnt));
342 printk(KERN_DEBUG "\tdefault_compr %u\n",
343 (int)le16_to_cpu(sup->default_compr));
344 printk(KERN_DEBUG "\trp_size %llu\n",
345 (unsigned long long)le64_to_cpu(sup->rp_size));
346 printk(KERN_DEBUG "\trp_uid %u\n",
347 le32_to_cpu(sup->rp_uid));
348 printk(KERN_DEBUG "\trp_gid %u\n",
349 le32_to_cpu(sup->rp_gid));
350 printk(KERN_DEBUG "\tfmt_version %u\n",
351 le32_to_cpu(sup->fmt_version));
352 printk(KERN_DEBUG "\ttime_gran %u\n",
353 le32_to_cpu(sup->time_gran));
7f2f4e72
JP
354 printk(KERN_DEBUG "\tUUID %pUB\n",
355 sup->uuid);
1e51764a
AB
356 break;
357 }
358 case UBIFS_MST_NODE:
359 {
360 const struct ubifs_mst_node *mst = node;
361
362 printk(KERN_DEBUG "\thighest_inum %llu\n",
363 (unsigned long long)le64_to_cpu(mst->highest_inum));
364 printk(KERN_DEBUG "\tcommit number %llu\n",
365 (unsigned long long)le64_to_cpu(mst->cmt_no));
366 printk(KERN_DEBUG "\tflags %#x\n",
367 le32_to_cpu(mst->flags));
368 printk(KERN_DEBUG "\tlog_lnum %u\n",
369 le32_to_cpu(mst->log_lnum));
370 printk(KERN_DEBUG "\troot_lnum %u\n",
371 le32_to_cpu(mst->root_lnum));
372 printk(KERN_DEBUG "\troot_offs %u\n",
373 le32_to_cpu(mst->root_offs));
374 printk(KERN_DEBUG "\troot_len %u\n",
375 le32_to_cpu(mst->root_len));
376 printk(KERN_DEBUG "\tgc_lnum %u\n",
377 le32_to_cpu(mst->gc_lnum));
378 printk(KERN_DEBUG "\tihead_lnum %u\n",
379 le32_to_cpu(mst->ihead_lnum));
380 printk(KERN_DEBUG "\tihead_offs %u\n",
381 le32_to_cpu(mst->ihead_offs));
0ecb9529
HH
382 printk(KERN_DEBUG "\tindex_size %llu\n",
383 (unsigned long long)le64_to_cpu(mst->index_size));
1e51764a
AB
384 printk(KERN_DEBUG "\tlpt_lnum %u\n",
385 le32_to_cpu(mst->lpt_lnum));
386 printk(KERN_DEBUG "\tlpt_offs %u\n",
387 le32_to_cpu(mst->lpt_offs));
388 printk(KERN_DEBUG "\tnhead_lnum %u\n",
389 le32_to_cpu(mst->nhead_lnum));
390 printk(KERN_DEBUG "\tnhead_offs %u\n",
391 le32_to_cpu(mst->nhead_offs));
392 printk(KERN_DEBUG "\tltab_lnum %u\n",
393 le32_to_cpu(mst->ltab_lnum));
394 printk(KERN_DEBUG "\tltab_offs %u\n",
395 le32_to_cpu(mst->ltab_offs));
396 printk(KERN_DEBUG "\tlsave_lnum %u\n",
397 le32_to_cpu(mst->lsave_lnum));
398 printk(KERN_DEBUG "\tlsave_offs %u\n",
399 le32_to_cpu(mst->lsave_offs));
400 printk(KERN_DEBUG "\tlscan_lnum %u\n",
401 le32_to_cpu(mst->lscan_lnum));
402 printk(KERN_DEBUG "\tleb_cnt %u\n",
403 le32_to_cpu(mst->leb_cnt));
404 printk(KERN_DEBUG "\tempty_lebs %u\n",
405 le32_to_cpu(mst->empty_lebs));
406 printk(KERN_DEBUG "\tidx_lebs %u\n",
407 le32_to_cpu(mst->idx_lebs));
408 printk(KERN_DEBUG "\ttotal_free %llu\n",
409 (unsigned long long)le64_to_cpu(mst->total_free));
410 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
411 (unsigned long long)le64_to_cpu(mst->total_dirty));
412 printk(KERN_DEBUG "\ttotal_used %llu\n",
413 (unsigned long long)le64_to_cpu(mst->total_used));
414 printk(KERN_DEBUG "\ttotal_dead %llu\n",
415 (unsigned long long)le64_to_cpu(mst->total_dead));
416 printk(KERN_DEBUG "\ttotal_dark %llu\n",
417 (unsigned long long)le64_to_cpu(mst->total_dark));
418 break;
419 }
420 case UBIFS_REF_NODE:
421 {
422 const struct ubifs_ref_node *ref = node;
423
424 printk(KERN_DEBUG "\tlnum %u\n",
425 le32_to_cpu(ref->lnum));
426 printk(KERN_DEBUG "\toffs %u\n",
427 le32_to_cpu(ref->offs));
428 printk(KERN_DEBUG "\tjhead %u\n",
429 le32_to_cpu(ref->jhead));
430 break;
431 }
432 case UBIFS_INO_NODE:
433 {
434 const struct ubifs_ino_node *ino = node;
435
436 key_read(c, &ino->key, &key);
437 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
438 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
439 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
440 printk(KERN_DEBUG "\tsize %llu\n",
441 (unsigned long long)le64_to_cpu(ino->size));
442 printk(KERN_DEBUG "\tnlink %u\n",
443 le32_to_cpu(ino->nlink));
444 printk(KERN_DEBUG "\tatime %lld.%u\n",
445 (long long)le64_to_cpu(ino->atime_sec),
446 le32_to_cpu(ino->atime_nsec));
447 printk(KERN_DEBUG "\tmtime %lld.%u\n",
448 (long long)le64_to_cpu(ino->mtime_sec),
449 le32_to_cpu(ino->mtime_nsec));
450 printk(KERN_DEBUG "\tctime %lld.%u\n",
451 (long long)le64_to_cpu(ino->ctime_sec),
452 le32_to_cpu(ino->ctime_nsec));
453 printk(KERN_DEBUG "\tuid %u\n",
454 le32_to_cpu(ino->uid));
455 printk(KERN_DEBUG "\tgid %u\n",
456 le32_to_cpu(ino->gid));
457 printk(KERN_DEBUG "\tmode %u\n",
458 le32_to_cpu(ino->mode));
459 printk(KERN_DEBUG "\tflags %#x\n",
460 le32_to_cpu(ino->flags));
461 printk(KERN_DEBUG "\txattr_cnt %u\n",
462 le32_to_cpu(ino->xattr_cnt));
463 printk(KERN_DEBUG "\txattr_size %u\n",
464 le32_to_cpu(ino->xattr_size));
465 printk(KERN_DEBUG "\txattr_names %u\n",
466 le32_to_cpu(ino->xattr_names));
467 printk(KERN_DEBUG "\tcompr_type %#x\n",
468 (int)le16_to_cpu(ino->compr_type));
469 printk(KERN_DEBUG "\tdata len %u\n",
470 le32_to_cpu(ino->data_len));
471 break;
472 }
473 case UBIFS_DENT_NODE:
474 case UBIFS_XENT_NODE:
475 {
476 const struct ubifs_dent_node *dent = node;
477 int nlen = le16_to_cpu(dent->nlen);
478
479 key_read(c, &dent->key, &key);
480 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
481 printk(KERN_DEBUG "\tinum %llu\n",
482 (unsigned long long)le64_to_cpu(dent->inum));
483 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
484 printk(KERN_DEBUG "\tnlen %d\n", nlen);
485 printk(KERN_DEBUG "\tname ");
486
487 if (nlen > UBIFS_MAX_NLEN)
488 printk(KERN_DEBUG "(bad name length, not printing, "
489 "bad or corrupted node)");
490 else {
491 for (i = 0; i < nlen && dent->name[i]; i++)
c9927c3e 492 printk(KERN_CONT "%c", dent->name[i]);
1e51764a 493 }
c9927c3e 494 printk(KERN_CONT "\n");
1e51764a
AB
495
496 break;
497 }
498 case UBIFS_DATA_NODE:
499 {
500 const struct ubifs_data_node *dn = node;
501 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
502
503 key_read(c, &dn->key, &key);
504 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
505 printk(KERN_DEBUG "\tsize %u\n",
506 le32_to_cpu(dn->size));
507 printk(KERN_DEBUG "\tcompr_typ %d\n",
508 (int)le16_to_cpu(dn->compr_type));
509 printk(KERN_DEBUG "\tdata size %d\n",
510 dlen);
511 printk(KERN_DEBUG "\tdata:\n");
512 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 (void *)&dn->data, dlen, 0);
514 break;
515 }
516 case UBIFS_TRUN_NODE:
517 {
518 const struct ubifs_trun_node *trun = node;
519
520 printk(KERN_DEBUG "\tinum %u\n",
521 le32_to_cpu(trun->inum));
522 printk(KERN_DEBUG "\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun->old_size));
524 printk(KERN_DEBUG "\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun->new_size));
526 break;
527 }
528 case UBIFS_IDX_NODE:
529 {
530 const struct ubifs_idx_node *idx = node;
531
532 n = le16_to_cpu(idx->child_cnt);
533 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
534 printk(KERN_DEBUG "\tlevel %d\n",
535 (int)le16_to_cpu(idx->level));
536 printk(KERN_DEBUG "\tBranches:\n");
537
538 for (i = 0; i < n && i < c->fanout - 1; i++) {
539 const struct ubifs_branch *br;
540
541 br = ubifs_idx_branch(c, idx, i);
542 key_read(c, &br->key, &key);
543 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
544 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
545 le32_to_cpu(br->len), DBGKEY(&key));
546 }
547 break;
548 }
549 case UBIFS_CS_NODE:
550 break;
551 case UBIFS_ORPH_NODE:
552 {
553 const struct ubifs_orph_node *orph = node;
554
555 printk(KERN_DEBUG "\tcommit number %llu\n",
556 (unsigned long long)
557 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
558 printk(KERN_DEBUG "\tlast node flag %llu\n",
559 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
560 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
561 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
562 for (i = 0; i < n; i++)
563 printk(KERN_DEBUG "\t ino %llu\n",
7424bac8 564 (unsigned long long)le64_to_cpu(orph->inos[i]));
1e51764a
AB
565 break;
566 }
567 default:
568 printk(KERN_DEBUG "node type %d was not recognized\n",
569 (int)ch->node_type);
570 }
571 spin_unlock(&dbg_lock);
572}
573
574void dbg_dump_budget_req(const struct ubifs_budget_req *req)
575{
576 spin_lock(&dbg_lock);
577 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
578 req->new_ino, req->dirtied_ino);
579 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
580 req->new_ino_d, req->dirtied_ino_d);
581 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
582 req->new_page, req->dirtied_page);
583 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
584 req->new_dent, req->mod_dent);
585 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
586 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
587 req->data_growth, req->dd_growth);
588 spin_unlock(&dbg_lock);
589}
590
591void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
592{
593 spin_lock(&dbg_lock);
1de94159
AB
594 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
595 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
1e51764a
AB
596 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
597 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
598 lst->total_dirty);
599 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
600 "total_dead %lld\n", lst->total_used, lst->total_dark,
601 lst->total_dead);
602 spin_unlock(&dbg_lock);
603}
604
605void dbg_dump_budg(struct ubifs_info *c)
606{
607 int i;
608 struct rb_node *rb;
609 struct ubifs_bud *bud;
610 struct ubifs_gced_idx_leb *idx_gc;
21a60258 611 long long available, outstanding, free;
1e51764a 612
21a60258 613 ubifs_assert(spin_is_locked(&c->space_lock));
1e51764a 614 spin_lock(&dbg_lock);
1de94159
AB
615 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
616 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
1e51764a
AB
617 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
618 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
619 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
620 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
621 c->freeable_cnt);
622 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
623 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
624 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
625 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
626 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
627 atomic_long_read(&c->dirty_zn_cnt),
628 atomic_long_read(&c->clean_zn_cnt));
629 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
630 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
631 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
632 c->gc_lnum, c->ihead_lnum);
84abf972
AB
633 /* If we are in R/O mode, journal heads do not exist */
634 if (c->jheads)
635 for (i = 0; i < c->jhead_cnt; i++)
77a7ae58
AB
636 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
637 dbg_jhead(c->jheads[i].wbuf.jhead),
638 c->jheads[i].wbuf.lnum);
1e51764a
AB
639 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
640 bud = rb_entry(rb, struct ubifs_bud, rb);
641 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
642 }
643 list_for_each_entry(bud, &c->old_buds, list)
644 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
645 list_for_each_entry(idx_gc, &c->idx_gc, list)
646 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
647 idx_gc->lnum, idx_gc->unmap);
648 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
21a60258
AB
649
650 /* Print budgeting predictions */
651 available = ubifs_calc_available(c, c->min_idx_lebs);
652 outstanding = c->budg_data_growth + c->budg_dd_growth;
84abf972 653 free = ubifs_get_free_space_nolock(c);
21a60258
AB
654 printk(KERN_DEBUG "Budgeting predictions:\n");
655 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
656 available, outstanding, free);
1e51764a
AB
657 spin_unlock(&dbg_lock);
658}
659
660void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
661{
be9e62a7
AB
662 int i, spc, dark = 0, dead = 0;
663 struct rb_node *rb;
664 struct ubifs_bud *bud;
665
666 spc = lp->free + lp->dirty;
667 if (spc < c->dead_wm)
668 dead = spc;
669 else
670 dark = ubifs_calc_dark(c, spc);
671
672 if (lp->flags & LPROPS_INDEX)
673 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
674 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
675 lp->dirty, c->leb_size - spc, spc, lp->flags);
676 else
677 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
678 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
679 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
680 c->leb_size - spc, spc, dark, dead,
681 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
682
683 if (lp->flags & LPROPS_TAKEN) {
684 if (lp->flags & LPROPS_INDEX)
685 printk(KERN_CONT "index, taken");
686 else
687 printk(KERN_CONT "taken");
688 } else {
689 const char *s;
690
691 if (lp->flags & LPROPS_INDEX) {
692 switch (lp->flags & LPROPS_CAT_MASK) {
693 case LPROPS_DIRTY_IDX:
694 s = "dirty index";
695 break;
696 case LPROPS_FRDI_IDX:
697 s = "freeable index";
698 break;
699 default:
700 s = "index";
701 }
702 } else {
703 switch (lp->flags & LPROPS_CAT_MASK) {
704 case LPROPS_UNCAT:
705 s = "not categorized";
706 break;
707 case LPROPS_DIRTY:
708 s = "dirty";
709 break;
710 case LPROPS_FREE:
711 s = "free";
712 break;
713 case LPROPS_EMPTY:
714 s = "empty";
715 break;
716 case LPROPS_FREEABLE:
717 s = "freeable";
718 break;
719 default:
720 s = NULL;
721 break;
722 }
723 }
724 printk(KERN_CONT "%s", s);
725 }
726
727 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
728 bud = rb_entry(rb, struct ubifs_bud, rb);
729 if (bud->lnum == lp->lnum) {
730 int head = 0;
731 for (i = 0; i < c->jhead_cnt; i++) {
732 if (lp->lnum == c->jheads[i].wbuf.lnum) {
733 printk(KERN_CONT ", jhead %s",
734 dbg_jhead(i));
735 head = 1;
736 }
737 }
738 if (!head)
739 printk(KERN_CONT ", bud of jhead %s",
740 dbg_jhead(bud->jhead));
741 }
742 }
743 if (lp->lnum == c->gc_lnum)
744 printk(KERN_CONT ", GC LEB");
745 printk(KERN_CONT ")\n");
1e51764a
AB
746}
747
748void dbg_dump_lprops(struct ubifs_info *c)
749{
750 int lnum, err;
751 struct ubifs_lprops lp;
752 struct ubifs_lp_stats lst;
753
2ba5f7ae
AB
754 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
755 current->pid);
1e51764a
AB
756 ubifs_get_lp_stats(c, &lst);
757 dbg_dump_lstats(&lst);
758
759 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
760 err = ubifs_read_one_lp(c, lnum, &lp);
761 if (err)
762 ubifs_err("cannot read lprops for LEB %d", lnum);
763
764 dbg_dump_lprop(c, &lp);
765 }
2ba5f7ae
AB
766 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
767 current->pid);
1e51764a
AB
768}
769
73944a6d
AH
770void dbg_dump_lpt_info(struct ubifs_info *c)
771{
772 int i;
773
774 spin_lock(&dbg_lock);
2ba5f7ae 775 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
73944a6d
AH
776 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
777 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
778 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
779 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
780 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
781 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
782 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
783 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
784 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
785 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
786 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
787 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
788 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
789 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
790 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
791 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
792 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
793 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
794 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
795 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
796 c->nhead_lnum, c->nhead_offs);
f92b9826
AB
797 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
798 c->ltab_lnum, c->ltab_offs);
73944a6d
AH
799 if (c->big_lpt)
800 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
801 c->lsave_lnum, c->lsave_offs);
802 for (i = 0; i < c->lpt_lebs; i++)
803 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
804 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
805 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
806 spin_unlock(&dbg_lock);
807}
808
1e51764a
AB
809void dbg_dump_leb(const struct ubifs_info *c, int lnum)
810{
811 struct ubifs_scan_leb *sleb;
812 struct ubifs_scan_node *snod;
813
814 if (dbg_failure_mode)
815 return;
816
2ba5f7ae
AB
817 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
818 current->pid, lnum);
348709ba 819 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
1e51764a
AB
820 if (IS_ERR(sleb)) {
821 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
822 return;
823 }
824
825 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
826 sleb->nodes_cnt, sleb->endpt);
827
828 list_for_each_entry(snod, &sleb->nodes, list) {
829 cond_resched();
830 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
831 snod->offs, snod->len);
832 dbg_dump_node(c, snod->node);
833 }
834
2ba5f7ae
AB
835 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
836 current->pid, lnum);
1e51764a
AB
837 ubifs_scan_destroy(sleb);
838 return;
839}
840
841void dbg_dump_znode(const struct ubifs_info *c,
842 const struct ubifs_znode *znode)
843{
844 int n;
845 const struct ubifs_zbranch *zbr;
846
847 spin_lock(&dbg_lock);
848 if (znode->parent)
849 zbr = &znode->parent->zbranch[znode->iip];
850 else
851 zbr = &c->zroot;
852
853 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
854 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
855 zbr->len, znode->parent, znode->iip, znode->level,
856 znode->child_cnt, znode->flags);
857
858 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
859 spin_unlock(&dbg_lock);
860 return;
861 }
862
863 printk(KERN_DEBUG "zbranches:\n");
864 for (n = 0; n < znode->child_cnt; n++) {
865 zbr = &znode->zbranch[n];
866 if (znode->level > 0)
867 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
868 "%s\n", n, zbr->znode, zbr->lnum,
869 zbr->offs, zbr->len,
870 DBGKEY(&zbr->key));
871 else
872 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
873 "%s\n", n, zbr->znode, zbr->lnum,
874 zbr->offs, zbr->len,
875 DBGKEY(&zbr->key));
876 }
877 spin_unlock(&dbg_lock);
878}
879
880void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
881{
882 int i;
883
2ba5f7ae 884 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
1de94159 885 current->pid, cat, heap->cnt);
1e51764a
AB
886 for (i = 0; i < heap->cnt; i++) {
887 struct ubifs_lprops *lprops = heap->arr[i];
888
889 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
890 "flags %d\n", i, lprops->lnum, lprops->hpos,
891 lprops->free, lprops->dirty, lprops->flags);
892 }
2ba5f7ae 893 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
1e51764a
AB
894}
895
896void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
897 struct ubifs_nnode *parent, int iip)
898{
899 int i;
900
2ba5f7ae 901 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
1e51764a
AB
902 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
903 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
904 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
905 pnode->flags, iip, pnode->level, pnode->num);
906 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
907 struct ubifs_lprops *lp = &pnode->lprops[i];
908
909 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
910 i, lp->free, lp->dirty, lp->flags, lp->lnum);
911 }
912}
913
914void dbg_dump_tnc(struct ubifs_info *c)
915{
916 struct ubifs_znode *znode;
917 int level;
918
919 printk(KERN_DEBUG "\n");
2ba5f7ae 920 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
1e51764a
AB
921 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
922 level = znode->level;
923 printk(KERN_DEBUG "== Level %d ==\n", level);
924 while (znode) {
925 if (level != znode->level) {
926 level = znode->level;
927 printk(KERN_DEBUG "== Level %d ==\n", level);
928 }
929 dbg_dump_znode(c, znode);
930 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
931 }
2ba5f7ae 932 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1e51764a
AB
933}
934
935static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
936 void *priv)
937{
938 dbg_dump_znode(c, znode);
939 return 0;
940}
941
942/**
943 * dbg_dump_index - dump the on-flash index.
944 * @c: UBIFS file-system description object
945 *
946 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
947 * which dumps only in-memory znodes and does not read znodes which from flash.
948 */
949void dbg_dump_index(struct ubifs_info *c)
950{
951 dbg_walk_index(c, NULL, dump_znode, NULL);
952}
953
84abf972
AB
954/**
955 * dbg_save_space_info - save information about flash space.
956 * @c: UBIFS file-system description object
957 *
958 * This function saves information about UBIFS free space, dirty space, etc, in
959 * order to check it later.
960 */
961void dbg_save_space_info(struct ubifs_info *c)
962{
963 struct ubifs_debug_info *d = c->dbg;
964
965 ubifs_get_lp_stats(c, &d->saved_lst);
966
967 spin_lock(&c->space_lock);
968 d->saved_free = ubifs_get_free_space_nolock(c);
969 spin_unlock(&c->space_lock);
970}
971
972/**
973 * dbg_check_space_info - check flash space information.
974 * @c: UBIFS file-system description object
975 *
976 * This function compares current flash space information with the information
977 * which was saved when the 'dbg_save_space_info()' function was called.
978 * Returns zero if the information has not changed, and %-EINVAL it it has
979 * changed.
980 */
981int dbg_check_space_info(struct ubifs_info *c)
982{
983 struct ubifs_debug_info *d = c->dbg;
984 struct ubifs_lp_stats lst;
985 long long avail, free;
986
987 spin_lock(&c->space_lock);
988 avail = ubifs_calc_available(c, c->min_idx_lebs);
989 spin_unlock(&c->space_lock);
990 free = ubifs_get_free_space(c);
991
992 if (free != d->saved_free) {
993 ubifs_err("free space changed from %lld to %lld",
994 d->saved_free, free);
995 goto out;
996 }
997
998 return 0;
999
1000out:
1001 ubifs_msg("saved lprops statistics dump");
1002 dbg_dump_lstats(&d->saved_lst);
1003 ubifs_get_lp_stats(c, &lst);
e055f7e8 1004
84abf972 1005 ubifs_msg("current lprops statistics dump");
e055f7e8
AB
1006 dbg_dump_lstats(&lst);
1007
84abf972
AB
1008 spin_lock(&c->space_lock);
1009 dbg_dump_budg(c);
1010 spin_unlock(&c->space_lock);
1011 dump_stack();
1012 return -EINVAL;
1013}
1014
1e51764a
AB
1015/**
1016 * dbg_check_synced_i_size - check synchronized inode size.
1017 * @inode: inode to check
1018 *
1019 * If inode is clean, synchronized inode size has to be equivalent to current
1020 * inode size. This function has to be called only for locked inodes (@i_mutex
1021 * has to be locked). Returns %0 if synchronized inode size if correct, and
1022 * %-EINVAL if not.
1023 */
1024int dbg_check_synced_i_size(struct inode *inode)
1025{
1026 int err = 0;
1027 struct ubifs_inode *ui = ubifs_inode(inode);
1028
1029 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1030 return 0;
1031 if (!S_ISREG(inode->i_mode))
1032 return 0;
1033
1034 mutex_lock(&ui->ui_mutex);
1035 spin_lock(&ui->ui_lock);
1036 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1037 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1038 "is clean", ui->ui_size, ui->synced_i_size);
1039 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1040 inode->i_mode, i_size_read(inode));
1041 dbg_dump_stack();
1042 err = -EINVAL;
1043 }
1044 spin_unlock(&ui->ui_lock);
1045 mutex_unlock(&ui->ui_mutex);
1046 return err;
1047}
1048
1049/*
1050 * dbg_check_dir - check directory inode size and link count.
1051 * @c: UBIFS file-system description object
1052 * @dir: the directory to calculate size for
1053 * @size: the result is returned here
1054 *
1055 * This function makes sure that directory size and link count are correct.
1056 * Returns zero in case of success and a negative error code in case of
1057 * failure.
1058 *
1059 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1060 * calling this function.
1061 */
1062int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1063{
1064 unsigned int nlink = 2;
1065 union ubifs_key key;
1066 struct ubifs_dent_node *dent, *pdent = NULL;
1067 struct qstr nm = { .name = NULL };
1068 loff_t size = UBIFS_INO_NODE_SZ;
1069
1070 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1071 return 0;
1072
1073 if (!S_ISDIR(dir->i_mode))
1074 return 0;
1075
1076 lowest_dent_key(c, &key, dir->i_ino);
1077 while (1) {
1078 int err;
1079
1080 dent = ubifs_tnc_next_ent(c, &key, &nm);
1081 if (IS_ERR(dent)) {
1082 err = PTR_ERR(dent);
1083 if (err == -ENOENT)
1084 break;
1085 return err;
1086 }
1087
1088 nm.name = dent->name;
1089 nm.len = le16_to_cpu(dent->nlen);
1090 size += CALC_DENT_SIZE(nm.len);
1091 if (dent->type == UBIFS_ITYPE_DIR)
1092 nlink += 1;
1093 kfree(pdent);
1094 pdent = dent;
1095 key_read(c, &dent->key, &key);
1096 }
1097 kfree(pdent);
1098
1099 if (i_size_read(dir) != size) {
1100 ubifs_err("directory inode %lu has size %llu, "
1101 "but calculated size is %llu", dir->i_ino,
1102 (unsigned long long)i_size_read(dir),
1103 (unsigned long long)size);
1104 dump_stack();
1105 return -EINVAL;
1106 }
1107 if (dir->i_nlink != nlink) {
1108 ubifs_err("directory inode %lu has nlink %u, but calculated "
1109 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1110 dump_stack();
1111 return -EINVAL;
1112 }
1113
1114 return 0;
1115}
1116
1117/**
1118 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1119 * @c: UBIFS file-system description object
1120 * @zbr1: first zbranch
1121 * @zbr2: following zbranch
1122 *
1123 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1124 * names of the direntries/xentries which are referred by the keys. This
1125 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1126 * sure the name of direntry/xentry referred by @zbr1 is less than
1127 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1128 * and a negative error code in case of failure.
1129 */
1130static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1131 struct ubifs_zbranch *zbr2)
1132{
1133 int err, nlen1, nlen2, cmp;
1134 struct ubifs_dent_node *dent1, *dent2;
1135 union ubifs_key key;
1136
1137 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1138 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1139 if (!dent1)
1140 return -ENOMEM;
1141 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1142 if (!dent2) {
1143 err = -ENOMEM;
1144 goto out_free;
1145 }
1146
1147 err = ubifs_tnc_read_node(c, zbr1, dent1);
1148 if (err)
1149 goto out_free;
1150 err = ubifs_validate_entry(c, dent1);
1151 if (err)
1152 goto out_free;
1153
1154 err = ubifs_tnc_read_node(c, zbr2, dent2);
1155 if (err)
1156 goto out_free;
1157 err = ubifs_validate_entry(c, dent2);
1158 if (err)
1159 goto out_free;
1160
1161 /* Make sure node keys are the same as in zbranch */
1162 err = 1;
1163 key_read(c, &dent1->key, &key);
1164 if (keys_cmp(c, &zbr1->key, &key)) {
5d38b3ac
AB
1165 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1166 zbr1->offs, DBGKEY(&key));
1167 dbg_err("but it should have key %s according to tnc",
1168 DBGKEY(&zbr1->key));
2ba5f7ae 1169 dbg_dump_node(c, dent1);
552ff317 1170 goto out_free;
1e51764a
AB
1171 }
1172
1173 key_read(c, &dent2->key, &key);
1174 if (keys_cmp(c, &zbr2->key, &key)) {
5d38b3ac
AB
1175 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1176 zbr1->offs, DBGKEY(&key));
1177 dbg_err("but it should have key %s according to tnc",
1178 DBGKEY(&zbr2->key));
2ba5f7ae 1179 dbg_dump_node(c, dent2);
552ff317 1180 goto out_free;
1e51764a
AB
1181 }
1182
1183 nlen1 = le16_to_cpu(dent1->nlen);
1184 nlen2 = le16_to_cpu(dent2->nlen);
1185
1186 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1187 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1188 err = 0;
1189 goto out_free;
1190 }
1191 if (cmp == 0 && nlen1 == nlen2)
5d38b3ac 1192 dbg_err("2 xent/dent nodes with the same name");
1e51764a 1193 else
5d38b3ac 1194 dbg_err("bad order of colliding key %s",
1e51764a
AB
1195 DBGKEY(&key));
1196
552ff317 1197 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1e51764a 1198 dbg_dump_node(c, dent1);
552ff317 1199 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1e51764a
AB
1200 dbg_dump_node(c, dent2);
1201
1202out_free:
1203 kfree(dent2);
1204 kfree(dent1);
1205 return err;
1206}
1207
1208/**
1209 * dbg_check_znode - check if znode is all right.
1210 * @c: UBIFS file-system description object
1211 * @zbr: zbranch which points to this znode
1212 *
1213 * This function makes sure that znode referred to by @zbr is all right.
1214 * Returns zero if it is, and %-EINVAL if it is not.
1215 */
1216static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1217{
1218 struct ubifs_znode *znode = zbr->znode;
1219 struct ubifs_znode *zp = znode->parent;
1220 int n, err, cmp;
1221
1222 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1223 err = 1;
1224 goto out;
1225 }
1226 if (znode->level < 0) {
1227 err = 2;
1228 goto out;
1229 }
1230 if (znode->iip < 0 || znode->iip >= c->fanout) {
1231 err = 3;
1232 goto out;
1233 }
1234
1235 if (zbr->len == 0)
1236 /* Only dirty zbranch may have no on-flash nodes */
1237 if (!ubifs_zn_dirty(znode)) {
1238 err = 4;
1239 goto out;
1240 }
1241
1242 if (ubifs_zn_dirty(znode)) {
1243 /*
1244 * If znode is dirty, its parent has to be dirty as well. The
1245 * order of the operation is important, so we have to have
1246 * memory barriers.
1247 */
1248 smp_mb();
1249 if (zp && !ubifs_zn_dirty(zp)) {
1250 /*
1251 * The dirty flag is atomic and is cleared outside the
1252 * TNC mutex, so znode's dirty flag may now have
1253 * been cleared. The child is always cleared before the
1254 * parent, so we just need to check again.
1255 */
1256 smp_mb();
1257 if (ubifs_zn_dirty(znode)) {
1258 err = 5;
1259 goto out;
1260 }
1261 }
1262 }
1263
1264 if (zp) {
1265 const union ubifs_key *min, *max;
1266
1267 if (znode->level != zp->level - 1) {
1268 err = 6;
1269 goto out;
1270 }
1271
1272 /* Make sure the 'parent' pointer in our znode is correct */
1273 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1274 if (!err) {
1275 /* This zbranch does not exist in the parent */
1276 err = 7;
1277 goto out;
1278 }
1279
1280 if (znode->iip >= zp->child_cnt) {
1281 err = 8;
1282 goto out;
1283 }
1284
1285 if (znode->iip != n) {
1286 /* This may happen only in case of collisions */
1287 if (keys_cmp(c, &zp->zbranch[n].key,
1288 &zp->zbranch[znode->iip].key)) {
1289 err = 9;
1290 goto out;
1291 }
1292 n = znode->iip;
1293 }
1294
1295 /*
1296 * Make sure that the first key in our znode is greater than or
1297 * equal to the key in the pointing zbranch.
1298 */
1299 min = &zbr->key;
1300 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1301 if (cmp == 1) {
1302 err = 10;
1303 goto out;
1304 }
1305
1306 if (n + 1 < zp->child_cnt) {
1307 max = &zp->zbranch[n + 1].key;
1308
1309 /*
1310 * Make sure the last key in our znode is less or
7d4e9ccb 1311 * equivalent than the key in the zbranch which goes
1e51764a
AB
1312 * after our pointing zbranch.
1313 */
1314 cmp = keys_cmp(c, max,
1315 &znode->zbranch[znode->child_cnt - 1].key);
1316 if (cmp == -1) {
1317 err = 11;
1318 goto out;
1319 }
1320 }
1321 } else {
1322 /* This may only be root znode */
1323 if (zbr != &c->zroot) {
1324 err = 12;
1325 goto out;
1326 }
1327 }
1328
1329 /*
1330 * Make sure that next key is greater or equivalent then the previous
1331 * one.
1332 */
1333 for (n = 1; n < znode->child_cnt; n++) {
1334 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1335 &znode->zbranch[n].key);
1336 if (cmp > 0) {
1337 err = 13;
1338 goto out;
1339 }
1340 if (cmp == 0) {
1341 /* This can only be keys with colliding hash */
1342 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1343 err = 14;
1344 goto out;
1345 }
1346
1347 if (znode->level != 0 || c->replaying)
1348 continue;
1349
1350 /*
1351 * Colliding keys should follow binary order of
1352 * corresponding xentry/dentry names.
1353 */
1354 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1355 &znode->zbranch[n]);
1356 if (err < 0)
1357 return err;
1358 if (err) {
1359 err = 15;
1360 goto out;
1361 }
1362 }
1363 }
1364
1365 for (n = 0; n < znode->child_cnt; n++) {
1366 if (!znode->zbranch[n].znode &&
1367 (znode->zbranch[n].lnum == 0 ||
1368 znode->zbranch[n].len == 0)) {
1369 err = 16;
1370 goto out;
1371 }
1372
1373 if (znode->zbranch[n].lnum != 0 &&
1374 znode->zbranch[n].len == 0) {
1375 err = 17;
1376 goto out;
1377 }
1378
1379 if (znode->zbranch[n].lnum == 0 &&
1380 znode->zbranch[n].len != 0) {
1381 err = 18;
1382 goto out;
1383 }
1384
1385 if (znode->zbranch[n].lnum == 0 &&
1386 znode->zbranch[n].offs != 0) {
1387 err = 19;
1388 goto out;
1389 }
1390
1391 if (znode->level != 0 && znode->zbranch[n].znode)
1392 if (znode->zbranch[n].znode->parent != znode) {
1393 err = 20;
1394 goto out;
1395 }
1396 }
1397
1398 return 0;
1399
1400out:
1401 ubifs_err("failed, error %d", err);
1402 ubifs_msg("dump of the znode");
1403 dbg_dump_znode(c, znode);
1404 if (zp) {
1405 ubifs_msg("dump of the parent znode");
1406 dbg_dump_znode(c, zp);
1407 }
1408 dump_stack();
1409 return -EINVAL;
1410}
1411
1412/**
1413 * dbg_check_tnc - check TNC tree.
1414 * @c: UBIFS file-system description object
1415 * @extra: do extra checks that are possible at start commit
1416 *
1417 * This function traverses whole TNC tree and checks every znode. Returns zero
1418 * if everything is all right and %-EINVAL if something is wrong with TNC.
1419 */
1420int dbg_check_tnc(struct ubifs_info *c, int extra)
1421{
1422 struct ubifs_znode *znode;
1423 long clean_cnt = 0, dirty_cnt = 0;
1424 int err, last;
1425
1426 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1427 return 0;
1428
1429 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1430 if (!c->zroot.znode)
1431 return 0;
1432
1433 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1434 while (1) {
1435 struct ubifs_znode *prev;
1436 struct ubifs_zbranch *zbr;
1437
1438 if (!znode->parent)
1439 zbr = &c->zroot;
1440 else
1441 zbr = &znode->parent->zbranch[znode->iip];
1442
1443 err = dbg_check_znode(c, zbr);
1444 if (err)
1445 return err;
1446
1447 if (extra) {
1448 if (ubifs_zn_dirty(znode))
1449 dirty_cnt += 1;
1450 else
1451 clean_cnt += 1;
1452 }
1453
1454 prev = znode;
1455 znode = ubifs_tnc_postorder_next(znode);
1456 if (!znode)
1457 break;
1458
1459 /*
1460 * If the last key of this znode is equivalent to the first key
1461 * of the next znode (collision), then check order of the keys.
1462 */
1463 last = prev->child_cnt - 1;
1464 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1465 !keys_cmp(c, &prev->zbranch[last].key,
1466 &znode->zbranch[0].key)) {
1467 err = dbg_check_key_order(c, &prev->zbranch[last],
1468 &znode->zbranch[0]);
1469 if (err < 0)
1470 return err;
1471 if (err) {
1472 ubifs_msg("first znode");
1473 dbg_dump_znode(c, prev);
1474 ubifs_msg("second znode");
1475 dbg_dump_znode(c, znode);
1476 return -EINVAL;
1477 }
1478 }
1479 }
1480
1481 if (extra) {
1482 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1483 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1484 atomic_long_read(&c->clean_zn_cnt),
1485 clean_cnt);
1486 return -EINVAL;
1487 }
1488 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1489 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1490 atomic_long_read(&c->dirty_zn_cnt),
1491 dirty_cnt);
1492 return -EINVAL;
1493 }
1494 }
1495
1496 return 0;
1497}
1498
1499/**
1500 * dbg_walk_index - walk the on-flash index.
1501 * @c: UBIFS file-system description object
1502 * @leaf_cb: called for each leaf node
1503 * @znode_cb: called for each indexing node
227c75c9 1504 * @priv: private data which is passed to callbacks
1e51764a
AB
1505 *
1506 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1507 * node and @znode_cb for each indexing node. Returns zero in case of success
1508 * and a negative error code in case of failure.
1509 *
1510 * It would be better if this function removed every znode it pulled to into
1511 * the TNC, so that the behavior more closely matched the non-debugging
1512 * behavior.
1513 */
1514int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1515 dbg_znode_callback znode_cb, void *priv)
1516{
1517 int err;
1518 struct ubifs_zbranch *zbr;
1519 struct ubifs_znode *znode, *child;
1520
1521 mutex_lock(&c->tnc_mutex);
1522 /* If the root indexing node is not in TNC - pull it */
1523 if (!c->zroot.znode) {
1524 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1525 if (IS_ERR(c->zroot.znode)) {
1526 err = PTR_ERR(c->zroot.znode);
1527 c->zroot.znode = NULL;
1528 goto out_unlock;
1529 }
1530 }
1531
1532 /*
1533 * We are going to traverse the indexing tree in the postorder manner.
1534 * Go down and find the leftmost indexing node where we are going to
1535 * start from.
1536 */
1537 znode = c->zroot.znode;
1538 while (znode->level > 0) {
1539 zbr = &znode->zbranch[0];
1540 child = zbr->znode;
1541 if (!child) {
1542 child = ubifs_load_znode(c, zbr, znode, 0);
1543 if (IS_ERR(child)) {
1544 err = PTR_ERR(child);
1545 goto out_unlock;
1546 }
1547 zbr->znode = child;
1548 }
1549
1550 znode = child;
1551 }
1552
1553 /* Iterate over all indexing nodes */
1554 while (1) {
1555 int idx;
1556
1557 cond_resched();
1558
1559 if (znode_cb) {
1560 err = znode_cb(c, znode, priv);
1561 if (err) {
1562 ubifs_err("znode checking function returned "
1563 "error %d", err);
1564 dbg_dump_znode(c, znode);
1565 goto out_dump;
1566 }
1567 }
1568 if (leaf_cb && znode->level == 0) {
1569 for (idx = 0; idx < znode->child_cnt; idx++) {
1570 zbr = &znode->zbranch[idx];
1571 err = leaf_cb(c, zbr, priv);
1572 if (err) {
1573 ubifs_err("leaf checking function "
1574 "returned error %d, for leaf "
1575 "at LEB %d:%d",
1576 err, zbr->lnum, zbr->offs);
1577 goto out_dump;
1578 }
1579 }
1580 }
1581
1582 if (!znode->parent)
1583 break;
1584
1585 idx = znode->iip + 1;
1586 znode = znode->parent;
1587 if (idx < znode->child_cnt) {
1588 /* Switch to the next index in the parent */
1589 zbr = &znode->zbranch[idx];
1590 child = zbr->znode;
1591 if (!child) {
1592 child = ubifs_load_znode(c, zbr, znode, idx);
1593 if (IS_ERR(child)) {
1594 err = PTR_ERR(child);
1595 goto out_unlock;
1596 }
1597 zbr->znode = child;
1598 }
1599 znode = child;
1600 } else
1601 /*
1602 * This is the last child, switch to the parent and
1603 * continue.
1604 */
1605 continue;
1606
1607 /* Go to the lowest leftmost znode in the new sub-tree */
1608 while (znode->level > 0) {
1609 zbr = &znode->zbranch[0];
1610 child = zbr->znode;
1611 if (!child) {
1612 child = ubifs_load_znode(c, zbr, znode, 0);
1613 if (IS_ERR(child)) {
1614 err = PTR_ERR(child);
1615 goto out_unlock;
1616 }
1617 zbr->znode = child;
1618 }
1619 znode = child;
1620 }
1621 }
1622
1623 mutex_unlock(&c->tnc_mutex);
1624 return 0;
1625
1626out_dump:
1627 if (znode->parent)
1628 zbr = &znode->parent->zbranch[znode->iip];
1629 else
1630 zbr = &c->zroot;
1631 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1632 dbg_dump_znode(c, znode);
1633out_unlock:
1634 mutex_unlock(&c->tnc_mutex);
1635 return err;
1636}
1637
1638/**
1639 * add_size - add znode size to partially calculated index size.
1640 * @c: UBIFS file-system description object
1641 * @znode: znode to add size for
1642 * @priv: partially calculated index size
1643 *
1644 * This is a helper function for 'dbg_check_idx_size()' which is called for
1645 * every indexing node and adds its size to the 'long long' variable pointed to
1646 * by @priv.
1647 */
1648static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1649{
1650 long long *idx_size = priv;
1651 int add;
1652
1653 add = ubifs_idx_node_sz(c, znode->child_cnt);
1654 add = ALIGN(add, 8);
1655 *idx_size += add;
1656 return 0;
1657}
1658
1659/**
1660 * dbg_check_idx_size - check index size.
1661 * @c: UBIFS file-system description object
1662 * @idx_size: size to check
1663 *
1664 * This function walks the UBIFS index, calculates its size and checks that the
1665 * size is equivalent to @idx_size. Returns zero in case of success and a
1666 * negative error code in case of failure.
1667 */
1668int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1669{
1670 int err;
1671 long long calc = 0;
1672
1673 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1674 return 0;
1675
1676 err = dbg_walk_index(c, NULL, add_size, &calc);
1677 if (err) {
1678 ubifs_err("error %d while walking the index", err);
1679 return err;
1680 }
1681
1682 if (calc != idx_size) {
1683 ubifs_err("index size check failed: calculated size is %lld, "
1684 "should be %lld", calc, idx_size);
1685 dump_stack();
1686 return -EINVAL;
1687 }
1688
1689 return 0;
1690}
1691
1692/**
1693 * struct fsck_inode - information about an inode used when checking the file-system.
1694 * @rb: link in the RB-tree of inodes
1695 * @inum: inode number
1696 * @mode: inode type, permissions, etc
1697 * @nlink: inode link count
1698 * @xattr_cnt: count of extended attributes
1699 * @references: how many directory/xattr entries refer this inode (calculated
1700 * while walking the index)
1701 * @calc_cnt: for directory inode count of child directories
1702 * @size: inode size (read from on-flash inode)
1703 * @xattr_sz: summary size of all extended attributes (read from on-flash
1704 * inode)
1705 * @calc_sz: for directories calculated directory size
1706 * @calc_xcnt: count of extended attributes
1707 * @calc_xsz: calculated summary size of all extended attributes
1708 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1709 * inode (read from on-flash inode)
1710 * @calc_xnms: calculated sum of lengths of all extended attribute names
1711 */
1712struct fsck_inode {
1713 struct rb_node rb;
1714 ino_t inum;
1715 umode_t mode;
1716 unsigned int nlink;
1717 unsigned int xattr_cnt;
1718 int references;
1719 int calc_cnt;
1720 long long size;
1721 unsigned int xattr_sz;
1722 long long calc_sz;
1723 long long calc_xcnt;
1724 long long calc_xsz;
1725 unsigned int xattr_nms;
1726 long long calc_xnms;
1727};
1728
1729/**
1730 * struct fsck_data - private FS checking information.
1731 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1732 */
1733struct fsck_data {
1734 struct rb_root inodes;
1735};
1736
1737/**
1738 * add_inode - add inode information to RB-tree of inodes.
1739 * @c: UBIFS file-system description object
1740 * @fsckd: FS checking information
1741 * @ino: raw UBIFS inode to add
1742 *
1743 * This is a helper function for 'check_leaf()' which adds information about
1744 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1745 * case of success and a negative error code in case of failure.
1746 */
1747static struct fsck_inode *add_inode(struct ubifs_info *c,
1748 struct fsck_data *fsckd,
1749 struct ubifs_ino_node *ino)
1750{
1751 struct rb_node **p, *parent = NULL;
1752 struct fsck_inode *fscki;
1753 ino_t inum = key_inum_flash(c, &ino->key);
1754
1755 p = &fsckd->inodes.rb_node;
1756 while (*p) {
1757 parent = *p;
1758 fscki = rb_entry(parent, struct fsck_inode, rb);
1759 if (inum < fscki->inum)
1760 p = &(*p)->rb_left;
1761 else if (inum > fscki->inum)
1762 p = &(*p)->rb_right;
1763 else
1764 return fscki;
1765 }
1766
1767 if (inum > c->highest_inum) {
1768 ubifs_err("too high inode number, max. is %lu",
e84461ad 1769 (unsigned long)c->highest_inum);
1e51764a
AB
1770 return ERR_PTR(-EINVAL);
1771 }
1772
1773 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1774 if (!fscki)
1775 return ERR_PTR(-ENOMEM);
1776
1777 fscki->inum = inum;
1778 fscki->nlink = le32_to_cpu(ino->nlink);
1779 fscki->size = le64_to_cpu(ino->size);
1780 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1781 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1782 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1783 fscki->mode = le32_to_cpu(ino->mode);
1784 if (S_ISDIR(fscki->mode)) {
1785 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1786 fscki->calc_cnt = 2;
1787 }
1788 rb_link_node(&fscki->rb, parent, p);
1789 rb_insert_color(&fscki->rb, &fsckd->inodes);
1790 return fscki;
1791}
1792
1793/**
1794 * search_inode - search inode in the RB-tree of inodes.
1795 * @fsckd: FS checking information
1796 * @inum: inode number to search
1797 *
1798 * This is a helper function for 'check_leaf()' which searches inode @inum in
1799 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1800 * the inode was not found.
1801 */
1802static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1803{
1804 struct rb_node *p;
1805 struct fsck_inode *fscki;
1806
1807 p = fsckd->inodes.rb_node;
1808 while (p) {
1809 fscki = rb_entry(p, struct fsck_inode, rb);
1810 if (inum < fscki->inum)
1811 p = p->rb_left;
1812 else if (inum > fscki->inum)
1813 p = p->rb_right;
1814 else
1815 return fscki;
1816 }
1817 return NULL;
1818}
1819
1820/**
1821 * read_add_inode - read inode node and add it to RB-tree of inodes.
1822 * @c: UBIFS file-system description object
1823 * @fsckd: FS checking information
1824 * @inum: inode number to read
1825 *
1826 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1827 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1828 * information pointer in case of success and a negative error code in case of
1829 * failure.
1830 */
1831static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1832 struct fsck_data *fsckd, ino_t inum)
1833{
1834 int n, err;
1835 union ubifs_key key;
1836 struct ubifs_znode *znode;
1837 struct ubifs_zbranch *zbr;
1838 struct ubifs_ino_node *ino;
1839 struct fsck_inode *fscki;
1840
1841 fscki = search_inode(fsckd, inum);
1842 if (fscki)
1843 return fscki;
1844
1845 ino_key_init(c, &key, inum);
1846 err = ubifs_lookup_level0(c, &key, &znode, &n);
1847 if (!err) {
e84461ad 1848 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1e51764a
AB
1849 return ERR_PTR(-ENOENT);
1850 } else if (err < 0) {
e84461ad
AB
1851 ubifs_err("error %d while looking up inode %lu",
1852 err, (unsigned long)inum);
1e51764a
AB
1853 return ERR_PTR(err);
1854 }
1855
1856 zbr = &znode->zbranch[n];
1857 if (zbr->len < UBIFS_INO_NODE_SZ) {
e84461ad
AB
1858 ubifs_err("bad node %lu node length %d",
1859 (unsigned long)inum, zbr->len);
1e51764a
AB
1860 return ERR_PTR(-EINVAL);
1861 }
1862
1863 ino = kmalloc(zbr->len, GFP_NOFS);
1864 if (!ino)
1865 return ERR_PTR(-ENOMEM);
1866
1867 err = ubifs_tnc_read_node(c, zbr, ino);
1868 if (err) {
1869 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1870 zbr->lnum, zbr->offs, err);
1871 kfree(ino);
1872 return ERR_PTR(err);
1873 }
1874
1875 fscki = add_inode(c, fsckd, ino);
1876 kfree(ino);
1877 if (IS_ERR(fscki)) {
1878 ubifs_err("error %ld while adding inode %lu node",
e84461ad 1879 PTR_ERR(fscki), (unsigned long)inum);
1e51764a
AB
1880 return fscki;
1881 }
1882
1883 return fscki;
1884}
1885
1886/**
1887 * check_leaf - check leaf node.
1888 * @c: UBIFS file-system description object
1889 * @zbr: zbranch of the leaf node to check
1890 * @priv: FS checking information
1891 *
1892 * This is a helper function for 'dbg_check_filesystem()' which is called for
1893 * every single leaf node while walking the indexing tree. It checks that the
1894 * leaf node referred from the indexing tree exists, has correct CRC, and does
1895 * some other basic validation. This function is also responsible for building
1896 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1897 * calculates reference count, size, etc for each inode in order to later
1898 * compare them to the information stored inside the inodes and detect possible
1899 * inconsistencies. Returns zero in case of success and a negative error code
1900 * in case of failure.
1901 */
1902static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1903 void *priv)
1904{
1905 ino_t inum;
1906 void *node;
1907 struct ubifs_ch *ch;
1908 int err, type = key_type(c, &zbr->key);
1909 struct fsck_inode *fscki;
1910
1911 if (zbr->len < UBIFS_CH_SZ) {
1912 ubifs_err("bad leaf length %d (LEB %d:%d)",
1913 zbr->len, zbr->lnum, zbr->offs);
1914 return -EINVAL;
1915 }
1916
1917 node = kmalloc(zbr->len, GFP_NOFS);
1918 if (!node)
1919 return -ENOMEM;
1920
1921 err = ubifs_tnc_read_node(c, zbr, node);
1922 if (err) {
1923 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1924 zbr->lnum, zbr->offs, err);
1925 goto out_free;
1926 }
1927
1928 /* If this is an inode node, add it to RB-tree of inodes */
1929 if (type == UBIFS_INO_KEY) {
1930 fscki = add_inode(c, priv, node);
1931 if (IS_ERR(fscki)) {
1932 err = PTR_ERR(fscki);
1933 ubifs_err("error %d while adding inode node", err);
1934 goto out_dump;
1935 }
1936 goto out;
1937 }
1938
1939 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1940 type != UBIFS_DATA_KEY) {
1941 ubifs_err("unexpected node type %d at LEB %d:%d",
1942 type, zbr->lnum, zbr->offs);
1943 err = -EINVAL;
1944 goto out_free;
1945 }
1946
1947 ch = node;
1948 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1949 ubifs_err("too high sequence number, max. is %llu",
1950 c->max_sqnum);
1951 err = -EINVAL;
1952 goto out_dump;
1953 }
1954
1955 if (type == UBIFS_DATA_KEY) {
1956 long long blk_offs;
1957 struct ubifs_data_node *dn = node;
1958
1959 /*
1960 * Search the inode node this data node belongs to and insert
1961 * it to the RB-tree of inodes.
1962 */
1963 inum = key_inum_flash(c, &dn->key);
1964 fscki = read_add_inode(c, priv, inum);
1965 if (IS_ERR(fscki)) {
1966 err = PTR_ERR(fscki);
1967 ubifs_err("error %d while processing data node and "
e84461ad
AB
1968 "trying to find inode node %lu",
1969 err, (unsigned long)inum);
1e51764a
AB
1970 goto out_dump;
1971 }
1972
1973 /* Make sure the data node is within inode size */
1974 blk_offs = key_block_flash(c, &dn->key);
1975 blk_offs <<= UBIFS_BLOCK_SHIFT;
1976 blk_offs += le32_to_cpu(dn->size);
1977 if (blk_offs > fscki->size) {
1978 ubifs_err("data node at LEB %d:%d is not within inode "
1979 "size %lld", zbr->lnum, zbr->offs,
1980 fscki->size);
1981 err = -EINVAL;
1982 goto out_dump;
1983 }
1984 } else {
1985 int nlen;
1986 struct ubifs_dent_node *dent = node;
1987 struct fsck_inode *fscki1;
1988
1989 err = ubifs_validate_entry(c, dent);
1990 if (err)
1991 goto out_dump;
1992
1993 /*
1994 * Search the inode node this entry refers to and the parent
1995 * inode node and insert them to the RB-tree of inodes.
1996 */
1997 inum = le64_to_cpu(dent->inum);
1998 fscki = read_add_inode(c, priv, inum);
1999 if (IS_ERR(fscki)) {
2000 err = PTR_ERR(fscki);
2001 ubifs_err("error %d while processing entry node and "
e84461ad
AB
2002 "trying to find inode node %lu",
2003 err, (unsigned long)inum);
1e51764a
AB
2004 goto out_dump;
2005 }
2006
2007 /* Count how many direntries or xentries refers this inode */
2008 fscki->references += 1;
2009
2010 inum = key_inum_flash(c, &dent->key);
2011 fscki1 = read_add_inode(c, priv, inum);
2012 if (IS_ERR(fscki1)) {
b38882f5 2013 err = PTR_ERR(fscki1);
1e51764a
AB
2014 ubifs_err("error %d while processing entry node and "
2015 "trying to find parent inode node %lu",
e84461ad 2016 err, (unsigned long)inum);
1e51764a
AB
2017 goto out_dump;
2018 }
2019
2020 nlen = le16_to_cpu(dent->nlen);
2021 if (type == UBIFS_XENT_KEY) {
2022 fscki1->calc_xcnt += 1;
2023 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2024 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2025 fscki1->calc_xnms += nlen;
2026 } else {
2027 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2028 if (dent->type == UBIFS_ITYPE_DIR)
2029 fscki1->calc_cnt += 1;
2030 }
2031 }
2032
2033out:
2034 kfree(node);
2035 return 0;
2036
2037out_dump:
2038 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2039 dbg_dump_node(c, node);
2040out_free:
2041 kfree(node);
2042 return err;
2043}
2044
2045/**
2046 * free_inodes - free RB-tree of inodes.
2047 * @fsckd: FS checking information
2048 */
2049static void free_inodes(struct fsck_data *fsckd)
2050{
2051 struct rb_node *this = fsckd->inodes.rb_node;
2052 struct fsck_inode *fscki;
2053
2054 while (this) {
2055 if (this->rb_left)
2056 this = this->rb_left;
2057 else if (this->rb_right)
2058 this = this->rb_right;
2059 else {
2060 fscki = rb_entry(this, struct fsck_inode, rb);
2061 this = rb_parent(this);
2062 if (this) {
2063 if (this->rb_left == &fscki->rb)
2064 this->rb_left = NULL;
2065 else
2066 this->rb_right = NULL;
2067 }
2068 kfree(fscki);
2069 }
2070 }
2071}
2072
2073/**
2074 * check_inodes - checks all inodes.
2075 * @c: UBIFS file-system description object
2076 * @fsckd: FS checking information
2077 *
2078 * This is a helper function for 'dbg_check_filesystem()' which walks the
2079 * RB-tree of inodes after the index scan has been finished, and checks that
2080 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2081 * %-EINVAL if not, and a negative error code in case of failure.
2082 */
2083static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2084{
2085 int n, err;
2086 union ubifs_key key;
2087 struct ubifs_znode *znode;
2088 struct ubifs_zbranch *zbr;
2089 struct ubifs_ino_node *ino;
2090 struct fsck_inode *fscki;
2091 struct rb_node *this = rb_first(&fsckd->inodes);
2092
2093 while (this) {
2094 fscki = rb_entry(this, struct fsck_inode, rb);
2095 this = rb_next(this);
2096
2097 if (S_ISDIR(fscki->mode)) {
2098 /*
2099 * Directories have to have exactly one reference (they
2100 * cannot have hardlinks), although root inode is an
2101 * exception.
2102 */
2103 if (fscki->inum != UBIFS_ROOT_INO &&
2104 fscki->references != 1) {
2105 ubifs_err("directory inode %lu has %d "
2106 "direntries which refer it, but "
e84461ad
AB
2107 "should be 1",
2108 (unsigned long)fscki->inum,
1e51764a
AB
2109 fscki->references);
2110 goto out_dump;
2111 }
2112 if (fscki->inum == UBIFS_ROOT_INO &&
2113 fscki->references != 0) {
2114 ubifs_err("root inode %lu has non-zero (%d) "
2115 "direntries which refer it",
e84461ad
AB
2116 (unsigned long)fscki->inum,
2117 fscki->references);
1e51764a
AB
2118 goto out_dump;
2119 }
2120 if (fscki->calc_sz != fscki->size) {
2121 ubifs_err("directory inode %lu size is %lld, "
2122 "but calculated size is %lld",
e84461ad
AB
2123 (unsigned long)fscki->inum,
2124 fscki->size, fscki->calc_sz);
1e51764a
AB
2125 goto out_dump;
2126 }
2127 if (fscki->calc_cnt != fscki->nlink) {
2128 ubifs_err("directory inode %lu nlink is %d, "
2129 "but calculated nlink is %d",
e84461ad
AB
2130 (unsigned long)fscki->inum,
2131 fscki->nlink, fscki->calc_cnt);
1e51764a
AB
2132 goto out_dump;
2133 }
2134 } else {
2135 if (fscki->references != fscki->nlink) {
2136 ubifs_err("inode %lu nlink is %d, but "
e84461ad
AB
2137 "calculated nlink is %d",
2138 (unsigned long)fscki->inum,
1e51764a
AB
2139 fscki->nlink, fscki->references);
2140 goto out_dump;
2141 }
2142 }
2143 if (fscki->xattr_sz != fscki->calc_xsz) {
2144 ubifs_err("inode %lu has xattr size %u, but "
2145 "calculated size is %lld",
e84461ad 2146 (unsigned long)fscki->inum, fscki->xattr_sz,
1e51764a
AB
2147 fscki->calc_xsz);
2148 goto out_dump;
2149 }
2150 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2151 ubifs_err("inode %lu has %u xattrs, but "
e84461ad
AB
2152 "calculated count is %lld",
2153 (unsigned long)fscki->inum,
1e51764a
AB
2154 fscki->xattr_cnt, fscki->calc_xcnt);
2155 goto out_dump;
2156 }
2157 if (fscki->xattr_nms != fscki->calc_xnms) {
2158 ubifs_err("inode %lu has xattr names' size %u, but "
2159 "calculated names' size is %lld",
e84461ad 2160 (unsigned long)fscki->inum, fscki->xattr_nms,
1e51764a
AB
2161 fscki->calc_xnms);
2162 goto out_dump;
2163 }
2164 }
2165
2166 return 0;
2167
2168out_dump:
2169 /* Read the bad inode and dump it */
2170 ino_key_init(c, &key, fscki->inum);
2171 err = ubifs_lookup_level0(c, &key, &znode, &n);
2172 if (!err) {
e84461ad
AB
2173 ubifs_err("inode %lu not found in index",
2174 (unsigned long)fscki->inum);
1e51764a
AB
2175 return -ENOENT;
2176 } else if (err < 0) {
2177 ubifs_err("error %d while looking up inode %lu",
e84461ad 2178 err, (unsigned long)fscki->inum);
1e51764a
AB
2179 return err;
2180 }
2181
2182 zbr = &znode->zbranch[n];
2183 ino = kmalloc(zbr->len, GFP_NOFS);
2184 if (!ino)
2185 return -ENOMEM;
2186
2187 err = ubifs_tnc_read_node(c, zbr, ino);
2188 if (err) {
2189 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2190 zbr->lnum, zbr->offs, err);
2191 kfree(ino);
2192 return err;
2193 }
2194
2195 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
e84461ad 2196 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
1e51764a
AB
2197 dbg_dump_node(c, ino);
2198 kfree(ino);
2199 return -EINVAL;
2200}
2201
2202/**
2203 * dbg_check_filesystem - check the file-system.
2204 * @c: UBIFS file-system description object
2205 *
2206 * This function checks the file system, namely:
2207 * o makes sure that all leaf nodes exist and their CRCs are correct;
2208 * o makes sure inode nlink, size, xattr size/count are correct (for all
2209 * inodes).
2210 *
2211 * The function reads whole indexing tree and all nodes, so it is pretty
2212 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2213 * not, and a negative error code in case of failure.
2214 */
2215int dbg_check_filesystem(struct ubifs_info *c)
2216{
2217 int err;
2218 struct fsck_data fsckd;
2219
2220 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2221 return 0;
2222
2223 fsckd.inodes = RB_ROOT;
2224 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2225 if (err)
2226 goto out_free;
2227
2228 err = check_inodes(c, &fsckd);
2229 if (err)
2230 goto out_free;
2231
2232 free_inodes(&fsckd);
2233 return 0;
2234
2235out_free:
2236 ubifs_err("file-system check failed with error %d", err);
2237 dump_stack();
2238 free_inodes(&fsckd);
2239 return err;
2240}
2241
3bb66b47
AB
2242/**
2243 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2244 * @c: UBIFS file-system description object
2245 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2246 *
2247 * This function returns zero if the list of data nodes is sorted correctly,
2248 * and %-EINVAL if not.
2249 */
2250int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2251{
2252 struct list_head *cur;
2253 struct ubifs_scan_node *sa, *sb;
2254
2255 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2256 return 0;
2257
2258 for (cur = head->next; cur->next != head; cur = cur->next) {
2259 ino_t inuma, inumb;
2260 uint32_t blka, blkb;
2261
2262 cond_resched();
2263 sa = container_of(cur, struct ubifs_scan_node, list);
2264 sb = container_of(cur->next, struct ubifs_scan_node, list);
2265
2266 if (sa->type != UBIFS_DATA_NODE) {
2267 ubifs_err("bad node type %d", sa->type);
2268 dbg_dump_node(c, sa->node);
2269 return -EINVAL;
2270 }
2271 if (sb->type != UBIFS_DATA_NODE) {
2272 ubifs_err("bad node type %d", sb->type);
2273 dbg_dump_node(c, sb->node);
2274 return -EINVAL;
2275 }
2276
2277 inuma = key_inum(c, &sa->key);
2278 inumb = key_inum(c, &sb->key);
2279
2280 if (inuma < inumb)
2281 continue;
2282 if (inuma > inumb) {
2283 ubifs_err("larger inum %lu goes before inum %lu",
2284 (unsigned long)inuma, (unsigned long)inumb);
2285 goto error_dump;
2286 }
2287
2288 blka = key_block(c, &sa->key);
2289 blkb = key_block(c, &sb->key);
2290
2291 if (blka > blkb) {
2292 ubifs_err("larger block %u goes before %u", blka, blkb);
2293 goto error_dump;
2294 }
2295 if (blka == blkb) {
2296 ubifs_err("two data nodes for the same block");
2297 goto error_dump;
2298 }
2299 }
2300
2301 return 0;
2302
2303error_dump:
2304 dbg_dump_node(c, sa->node);
2305 dbg_dump_node(c, sb->node);
2306 return -EINVAL;
2307}
2308
2309/**
2310 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2311 * @c: UBIFS file-system description object
2312 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2313 *
2314 * This function returns zero if the list of non-data nodes is sorted correctly,
2315 * and %-EINVAL if not.
2316 */
2317int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2318{
2319 struct list_head *cur;
2320 struct ubifs_scan_node *sa, *sb;
2321
2322 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2323 return 0;
2324
2325 for (cur = head->next; cur->next != head; cur = cur->next) {
2326 ino_t inuma, inumb;
2327 uint32_t hasha, hashb;
2328
2329 cond_resched();
2330 sa = container_of(cur, struct ubifs_scan_node, list);
2331 sb = container_of(cur->next, struct ubifs_scan_node, list);
2332
2333 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2334 sa->type != UBIFS_XENT_NODE) {
2335 ubifs_err("bad node type %d", sa->type);
2336 dbg_dump_node(c, sa->node);
2337 return -EINVAL;
2338 }
2339 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2340 sa->type != UBIFS_XENT_NODE) {
2341 ubifs_err("bad node type %d", sb->type);
2342 dbg_dump_node(c, sb->node);
2343 return -EINVAL;
2344 }
2345
2346 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2347 ubifs_err("non-inode node goes before inode node");
2348 goto error_dump;
2349 }
2350
2351 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2352 continue;
2353
2354 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2355 /* Inode nodes are sorted in descending size order */
2356 if (sa->len < sb->len) {
2357 ubifs_err("smaller inode node goes first");
2358 goto error_dump;
2359 }
2360 continue;
2361 }
2362
2363 /*
2364 * This is either a dentry or xentry, which should be sorted in
2365 * ascending (parent ino, hash) order.
2366 */
2367 inuma = key_inum(c, &sa->key);
2368 inumb = key_inum(c, &sb->key);
2369
2370 if (inuma < inumb)
2371 continue;
2372 if (inuma > inumb) {
2373 ubifs_err("larger inum %lu goes before inum %lu",
2374 (unsigned long)inuma, (unsigned long)inumb);
2375 goto error_dump;
2376 }
2377
2378 hasha = key_block(c, &sa->key);
2379 hashb = key_block(c, &sb->key);
2380
2381 if (hasha > hashb) {
2382 ubifs_err("larger hash %u goes before %u", hasha, hashb);
2383 goto error_dump;
2384 }
2385 }
2386
2387 return 0;
2388
2389error_dump:
2390 ubifs_msg("dumping first node");
2391 dbg_dump_node(c, sa->node);
2392 ubifs_msg("dumping second node");
2393 dbg_dump_node(c, sb->node);
2394 return -EINVAL;
2395 return 0;
2396}
2397
1e51764a
AB
2398static int invocation_cnt;
2399
2400int dbg_force_in_the_gaps(void)
2401{
2402 if (!dbg_force_in_the_gaps_enabled)
2403 return 0;
2404 /* Force in-the-gaps every 8th commit */
2405 return !((invocation_cnt++) & 0x7);
2406}
2407
2408/* Failure mode for recovery testing */
2409
2410#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2411
2412struct failure_mode_info {
2413 struct list_head list;
2414 struct ubifs_info *c;
2415};
2416
2417static LIST_HEAD(fmi_list);
2418static DEFINE_SPINLOCK(fmi_lock);
2419
2420static unsigned int next;
2421
2422static int simple_rand(void)
2423{
2424 if (next == 0)
2425 next = current->pid;
2426 next = next * 1103515245 + 12345;
2427 return (next >> 16) & 32767;
2428}
2429
17c2f9f8 2430static void failure_mode_init(struct ubifs_info *c)
1e51764a
AB
2431{
2432 struct failure_mode_info *fmi;
2433
2434 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2435 if (!fmi) {
552ff317 2436 ubifs_err("Failed to register failure mode - no memory");
1e51764a
AB
2437 return;
2438 }
2439 fmi->c = c;
2440 spin_lock(&fmi_lock);
2441 list_add_tail(&fmi->list, &fmi_list);
2442 spin_unlock(&fmi_lock);
2443}
2444
17c2f9f8 2445static void failure_mode_exit(struct ubifs_info *c)
1e51764a
AB
2446{
2447 struct failure_mode_info *fmi, *tmp;
2448
2449 spin_lock(&fmi_lock);
2450 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2451 if (fmi->c == c) {
2452 list_del(&fmi->list);
2453 kfree(fmi);
2454 }
2455 spin_unlock(&fmi_lock);
2456}
2457
2458static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2459{
2460 struct failure_mode_info *fmi;
2461
2462 spin_lock(&fmi_lock);
2463 list_for_each_entry(fmi, &fmi_list, list)
2464 if (fmi->c->ubi == desc) {
2465 struct ubifs_info *c = fmi->c;
2466
2467 spin_unlock(&fmi_lock);
2468 return c;
2469 }
2470 spin_unlock(&fmi_lock);
2471 return NULL;
2472}
2473
2474static int in_failure_mode(struct ubi_volume_desc *desc)
2475{
2476 struct ubifs_info *c = dbg_find_info(desc);
2477
2478 if (c && dbg_failure_mode)
17c2f9f8 2479 return c->dbg->failure_mode;
1e51764a
AB
2480 return 0;
2481}
2482
2483static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2484{
2485 struct ubifs_info *c = dbg_find_info(desc);
17c2f9f8 2486 struct ubifs_debug_info *d;
1e51764a
AB
2487
2488 if (!c || !dbg_failure_mode)
2489 return 0;
17c2f9f8
AB
2490 d = c->dbg;
2491 if (d->failure_mode)
1e51764a 2492 return 1;
17c2f9f8 2493 if (!d->fail_cnt) {
1e51764a
AB
2494 /* First call - decide delay to failure */
2495 if (chance(1, 2)) {
2496 unsigned int delay = 1 << (simple_rand() >> 11);
2497
2498 if (chance(1, 2)) {
17c2f9f8
AB
2499 d->fail_delay = 1;
2500 d->fail_timeout = jiffies +
1e51764a
AB
2501 msecs_to_jiffies(delay);
2502 dbg_rcvry("failing after %ums", delay);
2503 } else {
17c2f9f8
AB
2504 d->fail_delay = 2;
2505 d->fail_cnt_max = delay;
1e51764a
AB
2506 dbg_rcvry("failing after %u calls", delay);
2507 }
2508 }
17c2f9f8 2509 d->fail_cnt += 1;
1e51764a
AB
2510 }
2511 /* Determine if failure delay has expired */
17c2f9f8
AB
2512 if (d->fail_delay == 1) {
2513 if (time_before(jiffies, d->fail_timeout))
1e51764a 2514 return 0;
17c2f9f8
AB
2515 } else if (d->fail_delay == 2)
2516 if (d->fail_cnt++ < d->fail_cnt_max)
1e51764a
AB
2517 return 0;
2518 if (lnum == UBIFS_SB_LNUM) {
2519 if (write) {
2520 if (chance(1, 2))
2521 return 0;
2522 } else if (chance(19, 20))
2523 return 0;
2524 dbg_rcvry("failing in super block LEB %d", lnum);
2525 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2526 if (chance(19, 20))
2527 return 0;
2528 dbg_rcvry("failing in master LEB %d", lnum);
2529 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2530 if (write) {
2531 if (chance(99, 100))
2532 return 0;
2533 } else if (chance(399, 400))
2534 return 0;
2535 dbg_rcvry("failing in log LEB %d", lnum);
2536 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2537 if (write) {
2538 if (chance(7, 8))
2539 return 0;
2540 } else if (chance(19, 20))
2541 return 0;
2542 dbg_rcvry("failing in LPT LEB %d", lnum);
2543 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2544 if (write) {
2545 if (chance(1, 2))
2546 return 0;
2547 } else if (chance(9, 10))
2548 return 0;
2549 dbg_rcvry("failing in orphan LEB %d", lnum);
2550 } else if (lnum == c->ihead_lnum) {
2551 if (chance(99, 100))
2552 return 0;
2553 dbg_rcvry("failing in index head LEB %d", lnum);
2554 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2555 if (chance(9, 10))
2556 return 0;
2557 dbg_rcvry("failing in GC head LEB %d", lnum);
2558 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2559 !ubifs_search_bud(c, lnum)) {
2560 if (chance(19, 20))
2561 return 0;
2562 dbg_rcvry("failing in non-bud LEB %d", lnum);
2563 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2564 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2565 if (chance(999, 1000))
2566 return 0;
2567 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2568 } else {
2569 if (chance(9999, 10000))
2570 return 0;
2571 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2572 }
2573 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
17c2f9f8 2574 d->failure_mode = 1;
1e51764a
AB
2575 dump_stack();
2576 return 1;
2577}
2578
2579static void cut_data(const void *buf, int len)
2580{
2581 int flen, i;
2582 unsigned char *p = (void *)buf;
2583
2584 flen = (len * (long long)simple_rand()) >> 15;
2585 for (i = flen; i < len; i++)
2586 p[i] = 0xff;
2587}
2588
2589int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2590 int len, int check)
2591{
2592 if (in_failure_mode(desc))
2593 return -EIO;
2594 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2595}
2596
2597int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2598 int offset, int len, int dtype)
2599{
16dfd804 2600 int err, failing;
1e51764a
AB
2601
2602 if (in_failure_mode(desc))
2603 return -EIO;
16dfd804
AH
2604 failing = do_fail(desc, lnum, 1);
2605 if (failing)
1e51764a
AB
2606 cut_data(buf, len);
2607 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2608 if (err)
2609 return err;
16dfd804 2610 if (failing)
1e51764a
AB
2611 return -EIO;
2612 return 0;
2613}
2614
2615int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2616 int len, int dtype)
2617{
2618 int err;
2619
2620 if (do_fail(desc, lnum, 1))
2621 return -EIO;
2622 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2623 if (err)
2624 return err;
2625 if (do_fail(desc, lnum, 1))
2626 return -EIO;
2627 return 0;
2628}
2629
2630int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2631{
2632 int err;
2633
2634 if (do_fail(desc, lnum, 0))
2635 return -EIO;
2636 err = ubi_leb_erase(desc, lnum);
2637 if (err)
2638 return err;
2639 if (do_fail(desc, lnum, 0))
2640 return -EIO;
2641 return 0;
2642}
2643
2644int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2645{
2646 int err;
2647
2648 if (do_fail(desc, lnum, 0))
2649 return -EIO;
2650 err = ubi_leb_unmap(desc, lnum);
2651 if (err)
2652 return err;
2653 if (do_fail(desc, lnum, 0))
2654 return -EIO;
2655 return 0;
2656}
2657
2658int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2659{
2660 if (in_failure_mode(desc))
2661 return -EIO;
2662 return ubi_is_mapped(desc, lnum);
2663}
2664
2665int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2666{
2667 int err;
2668
2669 if (do_fail(desc, lnum, 0))
2670 return -EIO;
2671 err = ubi_leb_map(desc, lnum, dtype);
2672 if (err)
2673 return err;
2674 if (do_fail(desc, lnum, 0))
2675 return -EIO;
2676 return 0;
2677}
2678
17c2f9f8
AB
2679/**
2680 * ubifs_debugging_init - initialize UBIFS debugging.
2681 * @c: UBIFS file-system description object
2682 *
2683 * This function initializes debugging-related data for the file system.
2684 * Returns zero in case of success and a negative error code in case of
2685 * failure.
2686 */
2687int ubifs_debugging_init(struct ubifs_info *c)
2688{
2689 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2690 if (!c->dbg)
2691 return -ENOMEM;
2692
2693 c->dbg->buf = vmalloc(c->leb_size);
2694 if (!c->dbg->buf)
2695 goto out;
2696
2697 failure_mode_init(c);
2698 return 0;
2699
2700out:
2701 kfree(c->dbg);
2702 return -ENOMEM;
2703}
2704
2705/**
2706 * ubifs_debugging_exit - free debugging data.
2707 * @c: UBIFS file-system description object
2708 */
2709void ubifs_debugging_exit(struct ubifs_info *c)
2710{
2711 failure_mode_exit(c);
2712 vfree(c->dbg->buf);
2713 kfree(c->dbg);
2714}
2715
552ff317
AB
2716/*
2717 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2718 * contain the stuff specific to particular file-system mounts.
2719 */
84abf972 2720static struct dentry *dfs_rootdir;
552ff317
AB
2721
2722/**
2723 * dbg_debugfs_init - initialize debugfs file-system.
2724 *
2725 * UBIFS uses debugfs file-system to expose various debugging knobs to
2726 * user-space. This function creates "ubifs" directory in the debugfs
2727 * file-system. Returns zero in case of success and a negative error code in
2728 * case of failure.
2729 */
2730int dbg_debugfs_init(void)
2731{
84abf972
AB
2732 dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2733 if (IS_ERR(dfs_rootdir)) {
2734 int err = PTR_ERR(dfs_rootdir);
552ff317
AB
2735 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2736 "error %d\n", err);
2737 return err;
2738 }
2739
2740 return 0;
2741}
2742
2743/**
2744 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2745 */
2746void dbg_debugfs_exit(void)
2747{
84abf972 2748 debugfs_remove(dfs_rootdir);
552ff317
AB
2749}
2750
2751static int open_debugfs_file(struct inode *inode, struct file *file)
2752{
2753 file->private_data = inode->i_private;
2754 return 0;
2755}
2756
2757static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2758 size_t count, loff_t *ppos)
2759{
2760 struct ubifs_info *c = file->private_data;
2761 struct ubifs_debug_info *d = c->dbg;
2762
84abf972 2763 if (file->f_path.dentry == d->dfs_dump_lprops)
552ff317 2764 dbg_dump_lprops(c);
84abf972 2765 else if (file->f_path.dentry == d->dfs_dump_budg) {
552ff317
AB
2766 spin_lock(&c->space_lock);
2767 dbg_dump_budg(c);
2768 spin_unlock(&c->space_lock);
84abf972 2769 } else if (file->f_path.dentry == d->dfs_dump_tnc) {
552ff317
AB
2770 mutex_lock(&c->tnc_mutex);
2771 dbg_dump_tnc(c);
2772 mutex_unlock(&c->tnc_mutex);
2773 } else
2774 return -EINVAL;
2775
2776 *ppos += count;
2777 return count;
2778}
2779
84abf972 2780static const struct file_operations dfs_fops = {
552ff317
AB
2781 .open = open_debugfs_file,
2782 .write = write_debugfs_file,
2783 .owner = THIS_MODULE,
6038f373 2784 .llseek = default_llseek,
552ff317
AB
2785};
2786
2787/**
2788 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2789 * @c: UBIFS file-system description object
2790 *
2791 * This function creates all debugfs files for this instance of UBIFS. Returns
2792 * zero in case of success and a negative error code in case of failure.
2793 *
2794 * Note, the only reason we have not merged this function with the
2795 * 'ubifs_debugging_init()' function is because it is better to initialize
2796 * debugfs interfaces at the very end of the mount process, and remove them at
2797 * the very beginning of the mount process.
2798 */
2799int dbg_debugfs_init_fs(struct ubifs_info *c)
2800{
2801 int err;
2802 const char *fname;
2803 struct dentry *dent;
2804 struct ubifs_debug_info *d = c->dbg;
2805
84abf972
AB
2806 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2807 d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2808 if (IS_ERR(d->dfs_dir)) {
2809 err = PTR_ERR(d->dfs_dir);
552ff317 2810 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
84abf972 2811 d->dfs_dir_name, err);
552ff317
AB
2812 goto out;
2813 }
2814
2815 fname = "dump_lprops";
84abf972 2816 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
552ff317
AB
2817 if (IS_ERR(dent))
2818 goto out_remove;
84abf972 2819 d->dfs_dump_lprops = dent;
552ff317
AB
2820
2821 fname = "dump_budg";
84abf972 2822 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
552ff317
AB
2823 if (IS_ERR(dent))
2824 goto out_remove;
84abf972 2825 d->dfs_dump_budg = dent;
552ff317
AB
2826
2827 fname = "dump_tnc";
84abf972 2828 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
552ff317
AB
2829 if (IS_ERR(dent))
2830 goto out_remove;
84abf972 2831 d->dfs_dump_tnc = dent;
552ff317
AB
2832
2833 return 0;
2834
2835out_remove:
2836 err = PTR_ERR(dent);
2837 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2838 fname, err);
84abf972 2839 debugfs_remove_recursive(d->dfs_dir);
552ff317
AB
2840out:
2841 return err;
2842}
2843
2844/**
2845 * dbg_debugfs_exit_fs - remove all debugfs files.
2846 * @c: UBIFS file-system description object
2847 */
2848void dbg_debugfs_exit_fs(struct ubifs_info *c)
2849{
84abf972 2850 debugfs_remove_recursive(c->dbg->dfs_dir);
552ff317
AB
2851}
2852
1e51764a 2853#endif /* CONFIG_UBIFS_FS_DEBUG */