]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ocfs2/journal.c
xps: Transmit Packet Steering
[net-next-2.6.git] / fs / ocfs2 / journal.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/kthread.h>
83273932
SE
31#include <linux/time.h>
32#include <linux/random.h>
ccd979bd
MF
33
34#define MLOG_MASK_PREFIX ML_JOURNAL
35#include <cluster/masklog.h>
36
37#include "ocfs2.h"
38
39#include "alloc.h"
50655ae9 40#include "blockcheck.h"
316f4b9f 41#include "dir.h"
ccd979bd
MF
42#include "dlmglue.h"
43#include "extent_map.h"
44#include "heartbeat.h"
45#include "inode.h"
46#include "journal.h"
47#include "localalloc.h"
ccd979bd
MF
48#include "slot_map.h"
49#include "super.h"
ccd979bd 50#include "sysfile.h"
0cf2f763 51#include "uptodate.h"
2205363d 52#include "quota.h"
ccd979bd
MF
53
54#include "buffer_head_io.h"
55
34af946a 56DEFINE_SPINLOCK(trans_inc_lock);
ccd979bd 57
83273932
SE
58#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
ccd979bd
MF
60static int ocfs2_force_read_journal(struct inode *inode);
61static int ocfs2_recover_node(struct ocfs2_super *osb,
2205363d 62 int node_num, int slot_num);
ccd979bd
MF
63static int __ocfs2_recovery_thread(void *arg);
64static int ocfs2_commit_cache(struct ocfs2_super *osb);
19ece546 65static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
ccd979bd 66static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
539d8264 67 int dirty, int replayed);
ccd979bd
MF
68static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 int slot_num);
70static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 int slot);
72static int ocfs2_commit_thread(void *arg);
9140db04
SE
73static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 int slot_num,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
ccd979bd 78
19ece546
JK
79static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80{
81 return __ocfs2_wait_on_mount(osb, 0);
82}
83
84static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85{
86 return __ocfs2_wait_on_mount(osb, 1);
87}
88
9140db04
SE
89/*
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
92 */
93
94enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
98};
99
100struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
104};
105
106void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107{
108 if (!osb->replay_map)
109 return;
110
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
113 return;
114
115 osb->replay_map->rm_state = state;
116}
117
118int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119{
120 struct ocfs2_replay_map *replay_map;
121 int i, node_num;
122
123 /* If replay map is already set, we don't do it again */
124 if (osb->replay_map)
125 return 0;
126
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130 if (!replay_map) {
131 mlog_errno(-ENOMEM);
132 return -ENOMEM;
133 }
134
135 spin_lock(&osb->osb_lock);
136
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
139
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
144 }
145
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
148 return 0;
149}
150
151void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152{
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
154 int i;
155
156 if (!replay_map)
157 return;
158
159 if (replay_map->rm_state != REPLAY_NEEDED)
160 return;
161
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 NULL, NULL);
166 replay_map->rm_state = REPLAY_DONE;
167}
168
169void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170{
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173 if (!osb->replay_map)
174 return;
175
176 kfree(replay_map);
177 osb->replay_map = NULL;
178}
179
553abd04
JB
180int ocfs2_recovery_init(struct ocfs2_super *osb)
181{
182 struct ocfs2_recovery_map *rm;
183
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
188
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
191 GFP_KERNEL);
192 if (!rm) {
193 mlog_errno(-ENOMEM);
194 return -ENOMEM;
195 }
196
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
200
201 return 0;
202}
203
204/* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208{
209 mb();
210 return osb->recovery_thread_task != NULL;
211}
212
213void ocfs2_recovery_exit(struct ocfs2_super *osb)
214{
215 struct ocfs2_recovery_map *rm;
216
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
226 * complete. */
227 flush_workqueue(ocfs2_wq);
228
229 /*
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
232 */
233 rm = osb->recovery_map;
234 /* XXX: Should we bug if there are dirty entries? */
235
236 kfree(rm);
237}
238
239static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 unsigned int node_num)
241{
242 int i;
243 struct ocfs2_recovery_map *rm = osb->recovery_map;
244
245 assert_spin_locked(&osb->osb_lock);
246
247 for (i = 0; i < rm->rm_used; i++) {
248 if (rm->rm_entries[i] == node_num)
249 return 1;
250 }
251
252 return 0;
253}
254
255/* Behaves like test-and-set. Returns the previous value */
256static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 unsigned int node_num)
258{
259 struct ocfs2_recovery_map *rm = osb->recovery_map;
260
261 spin_lock(&osb->osb_lock);
262 if (__ocfs2_recovery_map_test(osb, node_num)) {
263 spin_unlock(&osb->osb_lock);
264 return 1;
265 }
266
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm->rm_used >= osb->max_slots);
269
270 rm->rm_entries[rm->rm_used] = node_num;
271 rm->rm_used++;
272 spin_unlock(&osb->osb_lock);
273
274 return 0;
275}
276
277static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 unsigned int node_num)
279{
280 int i;
281 struct ocfs2_recovery_map *rm = osb->recovery_map;
282
283 spin_lock(&osb->osb_lock);
284
285 for (i = 0; i < rm->rm_used; i++) {
286 if (rm->rm_entries[i] == node_num)
287 break;
288 }
289
290 if (i < rm->rm_used) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 (rm->rm_used - i - 1) * sizeof(unsigned int));
294 rm->rm_used--;
295 }
296
297 spin_unlock(&osb->osb_lock);
298}
299
ccd979bd
MF
300static int ocfs2_commit_cache(struct ocfs2_super *osb)
301{
302 int status = 0;
303 unsigned int flushed;
ccd979bd
MF
304 struct ocfs2_journal *journal = NULL;
305
306 mlog_entry_void();
307
308 journal = osb->journal;
309
310 /* Flush all pending commits and checkpoint the journal. */
311 down_write(&journal->j_trans_barrier);
312
313 if (atomic_read(&journal->j_num_trans) == 0) {
314 up_write(&journal->j_trans_barrier);
315 mlog(0, "No transactions for me to flush!\n");
316 goto finally;
317 }
318
2b4e30fb
JB
319 jbd2_journal_lock_updates(journal->j_journal);
320 status = jbd2_journal_flush(journal->j_journal);
321 jbd2_journal_unlock_updates(journal->j_journal);
ccd979bd
MF
322 if (status < 0) {
323 up_write(&journal->j_trans_barrier);
324 mlog_errno(status);
325 goto finally;
326 }
327
f9c57ada 328 ocfs2_inc_trans_id(journal);
ccd979bd
MF
329
330 flushed = atomic_read(&journal->j_num_trans);
331 atomic_set(&journal->j_num_trans, 0);
332 up_write(&journal->j_trans_barrier);
333
334 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
335 journal->j_trans_id, flushed);
336
34d024f8 337 ocfs2_wake_downconvert_thread(osb);
ccd979bd
MF
338 wake_up(&journal->j_checkpointed);
339finally:
340 mlog_exit(status);
341 return status;
342}
343
1fabe148 344handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
ccd979bd 345{
ccd979bd 346 journal_t *journal = osb->journal->j_journal;
1fabe148 347 handle_t *handle;
ccd979bd 348
ebdec83b 349 BUG_ON(!osb || !osb->journal->j_journal);
ccd979bd 350
65eff9cc
MF
351 if (ocfs2_is_hard_readonly(osb))
352 return ERR_PTR(-EROFS);
ccd979bd
MF
353
354 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
355 BUG_ON(max_buffs <= 0);
356
90e86a63
JK
357 /* Nested transaction? Just return the handle... */
358 if (journal_current_handle())
359 return jbd2_journal_start(journal, max_buffs);
ccd979bd 360
ccd979bd
MF
361 down_read(&osb->journal->j_trans_barrier);
362
2b4e30fb 363 handle = jbd2_journal_start(journal, max_buffs);
1fabe148 364 if (IS_ERR(handle)) {
ccd979bd
MF
365 up_read(&osb->journal->j_trans_barrier);
366
1fabe148 367 mlog_errno(PTR_ERR(handle));
ccd979bd
MF
368
369 if (is_journal_aborted(journal)) {
370 ocfs2_abort(osb->sb, "Detected aborted journal");
1fabe148 371 handle = ERR_PTR(-EROFS);
ccd979bd 372 }
c271c5c2
SM
373 } else {
374 if (!ocfs2_mount_local(osb))
375 atomic_inc(&(osb->journal->j_num_trans));
376 }
ccd979bd 377
ccd979bd 378 return handle;
ccd979bd
MF
379}
380
1fabe148
MF
381int ocfs2_commit_trans(struct ocfs2_super *osb,
382 handle_t *handle)
ccd979bd 383{
90e86a63 384 int ret, nested;
02dc1af4 385 struct ocfs2_journal *journal = osb->journal;
ccd979bd
MF
386
387 BUG_ON(!handle);
388
90e86a63 389 nested = handle->h_ref > 1;
2b4e30fb 390 ret = jbd2_journal_stop(handle);
1fabe148
MF
391 if (ret < 0)
392 mlog_errno(ret);
ccd979bd 393
90e86a63
JK
394 if (!nested)
395 up_read(&journal->j_trans_barrier);
ccd979bd 396
1fabe148 397 return ret;
ccd979bd
MF
398}
399
400/*
c901fb00 401 * 'nblocks' is what you want to add to the current transaction.
ccd979bd 402 *
2b4e30fb 403 * This might call jbd2_journal_restart() which will commit dirty buffers
e8aed345
MF
404 * and then restart the transaction. Before calling
405 * ocfs2_extend_trans(), any changed blocks should have been
406 * dirtied. After calling it, all blocks which need to be changed must
407 * go through another set of journal_access/journal_dirty calls.
408 *
ccd979bd
MF
409 * WARNING: This will not release any semaphores or disk locks taken
410 * during the transaction, so make sure they were taken *before*
411 * start_trans or we'll have ordering deadlocks.
412 *
413 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
414 * good because transaction ids haven't yet been recorded on the
415 * cluster locks associated with this handle.
416 */
1fc58146 417int ocfs2_extend_trans(handle_t *handle, int nblocks)
ccd979bd 418{
c901fb00 419 int status, old_nblocks;
ccd979bd
MF
420
421 BUG_ON(!handle);
c901fb00 422 BUG_ON(nblocks < 0);
ccd979bd 423
c901fb00
TM
424 if (!nblocks)
425 return 0;
426
427 old_nblocks = handle->h_buffer_credits;
ccd979bd
MF
428 mlog_entry_void();
429
430 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
431
e407e397 432#ifdef CONFIG_OCFS2_DEBUG_FS
0879c584
MF
433 status = 1;
434#else
2b4e30fb 435 status = jbd2_journal_extend(handle, nblocks);
ccd979bd
MF
436 if (status < 0) {
437 mlog_errno(status);
438 goto bail;
439 }
0879c584 440#endif
ccd979bd
MF
441
442 if (status > 0) {
2b4e30fb
JB
443 mlog(0,
444 "jbd2_journal_extend failed, trying "
445 "jbd2_journal_restart\n");
c901fb00
TM
446 status = jbd2_journal_restart(handle,
447 old_nblocks + nblocks);
ccd979bd 448 if (status < 0) {
ccd979bd
MF
449 mlog_errno(status);
450 goto bail;
451 }
01ddf1e1 452 }
ccd979bd
MF
453
454 status = 0;
455bail:
456
457 mlog_exit(status);
458 return status;
459}
460
50655ae9
JB
461struct ocfs2_triggers {
462 struct jbd2_buffer_trigger_type ot_triggers;
463 int ot_offset;
464};
465
466static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
467{
468 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
469}
470
13ceef09 471static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
50655ae9
JB
472 struct buffer_head *bh,
473 void *data, size_t size)
474{
475 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
476
477 /*
478 * We aren't guaranteed to have the superblock here, so we
479 * must unconditionally compute the ecc data.
480 * __ocfs2_journal_access() will only set the triggers if
481 * metaecc is enabled.
482 */
483 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
484}
485
486/*
487 * Quota blocks have their own trigger because the struct ocfs2_block_check
488 * offset depends on the blocksize.
489 */
13ceef09 490static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
50655ae9
JB
491 struct buffer_head *bh,
492 void *data, size_t size)
493{
494 struct ocfs2_disk_dqtrailer *dqt =
495 ocfs2_block_dqtrailer(size, data);
496
497 /*
498 * We aren't guaranteed to have the superblock here, so we
499 * must unconditionally compute the ecc data.
500 * __ocfs2_journal_access() will only set the triggers if
501 * metaecc is enabled.
502 */
503 ocfs2_block_check_compute(data, size, &dqt->dq_check);
504}
505
c175a518
JB
506/*
507 * Directory blocks also have their own trigger because the
508 * struct ocfs2_block_check offset depends on the blocksize.
509 */
13ceef09 510static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
c175a518
JB
511 struct buffer_head *bh,
512 void *data, size_t size)
513{
514 struct ocfs2_dir_block_trailer *trailer =
515 ocfs2_dir_trailer_from_size(size, data);
516
517 /*
518 * We aren't guaranteed to have the superblock here, so we
519 * must unconditionally compute the ecc data.
520 * __ocfs2_journal_access() will only set the triggers if
521 * metaecc is enabled.
522 */
523 ocfs2_block_check_compute(data, size, &trailer->db_check);
524}
525
50655ae9
JB
526static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
527 struct buffer_head *bh)
528{
529 mlog(ML_ERROR,
530 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
531 "bh->b_blocknr = %llu\n",
532 (unsigned long)bh,
533 (unsigned long long)bh->b_blocknr);
534
535 /* We aren't guaranteed to have the superblock here - but if we
536 * don't, it'll just crash. */
537 ocfs2_error(bh->b_assoc_map->host->i_sb,
538 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
539}
540
541static struct ocfs2_triggers di_triggers = {
542 .ot_triggers = {
13ceef09 543 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
544 .t_abort = ocfs2_abort_trigger,
545 },
546 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
547};
548
549static struct ocfs2_triggers eb_triggers = {
550 .ot_triggers = {
13ceef09 551 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
552 .t_abort = ocfs2_abort_trigger,
553 },
554 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
555};
556
93c97087
TM
557static struct ocfs2_triggers rb_triggers = {
558 .ot_triggers = {
13ceef09 559 .t_frozen = ocfs2_frozen_trigger,
93c97087
TM
560 .t_abort = ocfs2_abort_trigger,
561 },
562 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
563};
564
50655ae9
JB
565static struct ocfs2_triggers gd_triggers = {
566 .ot_triggers = {
13ceef09 567 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
568 .t_abort = ocfs2_abort_trigger,
569 },
570 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
571};
572
c175a518
JB
573static struct ocfs2_triggers db_triggers = {
574 .ot_triggers = {
13ceef09 575 .t_frozen = ocfs2_db_frozen_trigger,
c175a518
JB
576 .t_abort = ocfs2_abort_trigger,
577 },
578};
579
50655ae9
JB
580static struct ocfs2_triggers xb_triggers = {
581 .ot_triggers = {
13ceef09 582 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
583 .t_abort = ocfs2_abort_trigger,
584 },
585 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
586};
587
588static struct ocfs2_triggers dq_triggers = {
589 .ot_triggers = {
13ceef09 590 .t_frozen = ocfs2_dq_frozen_trigger,
50655ae9
JB
591 .t_abort = ocfs2_abort_trigger,
592 },
593};
594
9b7895ef
MF
595static struct ocfs2_triggers dr_triggers = {
596 .ot_triggers = {
13ceef09 597 .t_frozen = ocfs2_frozen_trigger,
9b7895ef
MF
598 .t_abort = ocfs2_abort_trigger,
599 },
600 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
601};
602
603static struct ocfs2_triggers dl_triggers = {
604 .ot_triggers = {
13ceef09 605 .t_frozen = ocfs2_frozen_trigger,
9b7895ef
MF
606 .t_abort = ocfs2_abort_trigger,
607 },
608 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
609};
610
50655ae9 611static int __ocfs2_journal_access(handle_t *handle,
0cf2f763 612 struct ocfs2_caching_info *ci,
50655ae9
JB
613 struct buffer_head *bh,
614 struct ocfs2_triggers *triggers,
615 int type)
ccd979bd
MF
616{
617 int status;
0cf2f763
JB
618 struct ocfs2_super *osb =
619 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
ccd979bd 620
0cf2f763 621 BUG_ON(!ci || !ci->ci_ops);
ccd979bd
MF
622 BUG_ON(!handle);
623 BUG_ON(!bh);
ccd979bd 624
205f87f6 625 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
ccd979bd
MF
626 (unsigned long long)bh->b_blocknr, type,
627 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
628 "OCFS2_JOURNAL_ACCESS_CREATE" :
629 "OCFS2_JOURNAL_ACCESS_WRITE",
630 bh->b_size);
631
632 /* we can safely remove this assertion after testing. */
633 if (!buffer_uptodate(bh)) {
634 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
635 mlog(ML_ERROR, "b_blocknr=%llu\n",
636 (unsigned long long)bh->b_blocknr);
637 BUG();
638 }
639
0cf2f763 640 /* Set the current transaction information on the ci so
ccd979bd 641 * that the locking code knows whether it can drop it's locks
0cf2f763 642 * on this ci or not. We're protected from the commit
ccd979bd
MF
643 * thread updating the current transaction id until
644 * ocfs2_commit_trans() because ocfs2_start_trans() took
645 * j_trans_barrier for us. */
0cf2f763 646 ocfs2_set_ci_lock_trans(osb->journal, ci);
ccd979bd 647
0cf2f763 648 ocfs2_metadata_cache_io_lock(ci);
ccd979bd
MF
649 switch (type) {
650 case OCFS2_JOURNAL_ACCESS_CREATE:
651 case OCFS2_JOURNAL_ACCESS_WRITE:
2b4e30fb 652 status = jbd2_journal_get_write_access(handle, bh);
ccd979bd
MF
653 break;
654
655 case OCFS2_JOURNAL_ACCESS_UNDO:
2b4e30fb 656 status = jbd2_journal_get_undo_access(handle, bh);
ccd979bd
MF
657 break;
658
659 default:
660 status = -EINVAL;
af901ca1 661 mlog(ML_ERROR, "Unknown access type!\n");
ccd979bd 662 }
0cf2f763 663 if (!status && ocfs2_meta_ecc(osb) && triggers)
50655ae9 664 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
0cf2f763 665 ocfs2_metadata_cache_io_unlock(ci);
ccd979bd
MF
666
667 if (status < 0)
668 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
669 status, type);
670
671 mlog_exit(status);
672 return status;
673}
674
0cf2f763
JB
675int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
676 struct buffer_head *bh, int type)
50655ae9 677{
0cf2f763 678 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
50655ae9
JB
679}
680
0cf2f763 681int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
682 struct buffer_head *bh, int type)
683{
0cf2f763 684 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
50655ae9
JB
685}
686
93c97087
TM
687int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
688 struct buffer_head *bh, int type)
689{
690 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
691 type);
692}
693
0cf2f763 694int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
695 struct buffer_head *bh, int type)
696{
0cf2f763 697 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
50655ae9
JB
698}
699
0cf2f763 700int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
701 struct buffer_head *bh, int type)
702{
0cf2f763 703 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
50655ae9
JB
704}
705
0cf2f763 706int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
707 struct buffer_head *bh, int type)
708{
0cf2f763 709 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
50655ae9
JB
710}
711
0cf2f763 712int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
713 struct buffer_head *bh, int type)
714{
0cf2f763 715 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
50655ae9
JB
716}
717
0cf2f763 718int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
9b7895ef
MF
719 struct buffer_head *bh, int type)
720{
0cf2f763 721 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
9b7895ef
MF
722}
723
0cf2f763 724int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
9b7895ef
MF
725 struct buffer_head *bh, int type)
726{
0cf2f763 727 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
9b7895ef
MF
728}
729
0cf2f763 730int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
731 struct buffer_head *bh, int type)
732{
0cf2f763 733 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
50655ae9
JB
734}
735
ec20cec7 736void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
ccd979bd
MF
737{
738 int status;
739
ccd979bd
MF
740 mlog_entry("(bh->b_blocknr=%llu)\n",
741 (unsigned long long)bh->b_blocknr);
742
2b4e30fb 743 status = jbd2_journal_dirty_metadata(handle, bh);
ec20cec7 744 BUG_ON(status);
ccd979bd 745
ec20cec7 746 mlog_exit_void();
ccd979bd
MF
747}
748
2b4e30fb 749#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
ccd979bd
MF
750
751void ocfs2_set_journal_params(struct ocfs2_super *osb)
752{
753 journal_t *journal = osb->journal->j_journal;
d147b3d6
MF
754 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
755
756 if (osb->osb_commit_interval)
757 commit_interval = osb->osb_commit_interval;
ccd979bd 758
a931da6a 759 write_lock(&journal->j_state_lock);
d147b3d6 760 journal->j_commit_interval = commit_interval;
ccd979bd 761 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
2b4e30fb 762 journal->j_flags |= JBD2_BARRIER;
ccd979bd 763 else
2b4e30fb 764 journal->j_flags &= ~JBD2_BARRIER;
a931da6a 765 write_unlock(&journal->j_state_lock);
ccd979bd
MF
766}
767
768int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
769{
770 int status = -1;
771 struct inode *inode = NULL; /* the journal inode */
772 journal_t *j_journal = NULL;
773 struct ocfs2_dinode *di = NULL;
774 struct buffer_head *bh = NULL;
775 struct ocfs2_super *osb;
e63aecb6 776 int inode_lock = 0;
ccd979bd
MF
777
778 mlog_entry_void();
779
780 BUG_ON(!journal);
781
782 osb = journal->j_osb;
783
784 /* already have the inode for our journal */
785 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
786 osb->slot_num);
787 if (inode == NULL) {
788 status = -EACCES;
789 mlog_errno(status);
790 goto done;
791 }
792 if (is_bad_inode(inode)) {
793 mlog(ML_ERROR, "access error (bad inode)\n");
794 iput(inode);
795 inode = NULL;
796 status = -EACCES;
797 goto done;
798 }
799
800 SET_INODE_JOURNAL(inode);
801 OCFS2_I(inode)->ip_open_count++;
802
6eff5790
MF
803 /* Skip recovery waits here - journal inode metadata never
804 * changes in a live cluster so it can be considered an
805 * exception to the rule. */
e63aecb6 806 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd
MF
807 if (status < 0) {
808 if (status != -ERESTARTSYS)
809 mlog(ML_ERROR, "Could not get lock on journal!\n");
810 goto done;
811 }
812
e63aecb6 813 inode_lock = 1;
ccd979bd
MF
814 di = (struct ocfs2_dinode *)bh->b_data;
815
816 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
817 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
818 inode->i_size);
819 status = -EINVAL;
820 goto done;
821 }
822
823 mlog(0, "inode->i_size = %lld\n", inode->i_size);
5515eff8
AM
824 mlog(0, "inode->i_blocks = %llu\n",
825 (unsigned long long)inode->i_blocks);
ccd979bd
MF
826 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
827
828 /* call the kernels journal init function now */
2b4e30fb 829 j_journal = jbd2_journal_init_inode(inode);
ccd979bd
MF
830 if (j_journal == NULL) {
831 mlog(ML_ERROR, "Linux journal layer error\n");
832 status = -EINVAL;
833 goto done;
834 }
835
2b4e30fb 836 mlog(0, "Returned from jbd2_journal_init_inode\n");
ccd979bd
MF
837 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
838
839 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
840 OCFS2_JOURNAL_DIRTY_FL);
841
842 journal->j_journal = j_journal;
843 journal->j_inode = inode;
844 journal->j_bh = bh;
845
846 ocfs2_set_journal_params(osb);
847
848 journal->j_state = OCFS2_JOURNAL_LOADED;
849
850 status = 0;
851done:
852 if (status < 0) {
e63aecb6
MF
853 if (inode_lock)
854 ocfs2_inode_unlock(inode, 1);
a81cb88b 855 brelse(bh);
ccd979bd
MF
856 if (inode) {
857 OCFS2_I(inode)->ip_open_count--;
858 iput(inode);
859 }
860 }
861
862 mlog_exit(status);
863 return status;
864}
865
539d8264
SM
866static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
867{
868 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
869}
870
871static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
872{
873 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
874}
875
ccd979bd 876static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
539d8264 877 int dirty, int replayed)
ccd979bd
MF
878{
879 int status;
880 unsigned int flags;
881 struct ocfs2_journal *journal = osb->journal;
882 struct buffer_head *bh = journal->j_bh;
883 struct ocfs2_dinode *fe;
884
885 mlog_entry_void();
886
887 fe = (struct ocfs2_dinode *)bh->b_data;
10995aa2
JB
888
889 /* The journal bh on the osb always comes from ocfs2_journal_init()
890 * and was validated there inside ocfs2_inode_lock_full(). It's a
891 * code bug if we mess it up. */
892 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
ccd979bd
MF
893
894 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
895 if (dirty)
896 flags |= OCFS2_JOURNAL_DIRTY_FL;
897 else
898 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
899 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
900
539d8264
SM
901 if (replayed)
902 ocfs2_bump_recovery_generation(fe);
903
13723d00 904 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
8cb471e8 905 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
ccd979bd
MF
906 if (status < 0)
907 mlog_errno(status);
908
ccd979bd
MF
909 mlog_exit(status);
910 return status;
911}
912
913/*
914 * If the journal has been kmalloc'd it needs to be freed after this
915 * call.
916 */
917void ocfs2_journal_shutdown(struct ocfs2_super *osb)
918{
919 struct ocfs2_journal *journal = NULL;
920 int status = 0;
921 struct inode *inode = NULL;
922 int num_running_trans = 0;
923
924 mlog_entry_void();
925
ebdec83b 926 BUG_ON(!osb);
ccd979bd
MF
927
928 journal = osb->journal;
929 if (!journal)
930 goto done;
931
932 inode = journal->j_inode;
933
934 if (journal->j_state != OCFS2_JOURNAL_LOADED)
935 goto done;
936
2b4e30fb 937 /* need to inc inode use count - jbd2_journal_destroy will iput. */
ccd979bd
MF
938 if (!igrab(inode))
939 BUG();
940
941 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
942 if (num_running_trans > 0)
943 mlog(0, "Shutting down journal: must wait on %d "
944 "running transactions!\n",
945 num_running_trans);
946
947 /* Do a commit_cache here. It will flush our journal, *and*
948 * release any locks that are still held.
949 * set the SHUTDOWN flag and release the trans lock.
950 * the commit thread will take the trans lock for us below. */
951 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
952
953 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
954 * drop the trans_lock (which we want to hold until we
955 * completely destroy the journal. */
956 if (osb->commit_task) {
957 /* Wait for the commit thread */
958 mlog(0, "Waiting for ocfs2commit to exit....\n");
959 kthread_stop(osb->commit_task);
960 osb->commit_task = NULL;
961 }
962
963 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
964
c271c5c2 965 if (ocfs2_mount_local(osb)) {
2b4e30fb
JB
966 jbd2_journal_lock_updates(journal->j_journal);
967 status = jbd2_journal_flush(journal->j_journal);
968 jbd2_journal_unlock_updates(journal->j_journal);
c271c5c2
SM
969 if (status < 0)
970 mlog_errno(status);
971 }
972
973 if (status == 0) {
974 /*
975 * Do not toggle if flush was unsuccessful otherwise
976 * will leave dirty metadata in a "clean" journal
977 */
539d8264 978 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
c271c5c2
SM
979 if (status < 0)
980 mlog_errno(status);
981 }
ccd979bd
MF
982
983 /* Shutdown the kernel journal system */
2b4e30fb 984 jbd2_journal_destroy(journal->j_journal);
ae0dff68 985 journal->j_journal = NULL;
ccd979bd
MF
986
987 OCFS2_I(inode)->ip_open_count--;
988
989 /* unlock our journal */
e63aecb6 990 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
991
992 brelse(journal->j_bh);
993 journal->j_bh = NULL;
994
995 journal->j_state = OCFS2_JOURNAL_FREE;
996
997// up_write(&journal->j_trans_barrier);
998done:
999 if (inode)
1000 iput(inode);
1001 mlog_exit_void();
1002}
1003
1004static void ocfs2_clear_journal_error(struct super_block *sb,
1005 journal_t *journal,
1006 int slot)
1007{
1008 int olderr;
1009
2b4e30fb 1010 olderr = jbd2_journal_errno(journal);
ccd979bd
MF
1011 if (olderr) {
1012 mlog(ML_ERROR, "File system error %d recorded in "
1013 "journal %u.\n", olderr, slot);
1014 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1015 sb->s_id);
1016
2b4e30fb
JB
1017 jbd2_journal_ack_err(journal);
1018 jbd2_journal_clear_err(journal);
ccd979bd
MF
1019 }
1020}
1021
539d8264 1022int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
ccd979bd
MF
1023{
1024 int status = 0;
1025 struct ocfs2_super *osb;
1026
1027 mlog_entry_void();
1028
b1f3550f 1029 BUG_ON(!journal);
ccd979bd
MF
1030
1031 osb = journal->j_osb;
1032
2b4e30fb 1033 status = jbd2_journal_load(journal->j_journal);
ccd979bd
MF
1034 if (status < 0) {
1035 mlog(ML_ERROR, "Failed to load journal!\n");
1036 goto done;
1037 }
1038
1039 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1040
539d8264 1041 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
ccd979bd
MF
1042 if (status < 0) {
1043 mlog_errno(status);
1044 goto done;
1045 }
1046
1047 /* Launch the commit thread */
c271c5c2
SM
1048 if (!local) {
1049 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1050 "ocfs2cmt");
1051 if (IS_ERR(osb->commit_task)) {
1052 status = PTR_ERR(osb->commit_task);
1053 osb->commit_task = NULL;
1054 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1055 "error=%d", status);
1056 goto done;
1057 }
1058 } else
ccd979bd 1059 osb->commit_task = NULL;
ccd979bd
MF
1060
1061done:
1062 mlog_exit(status);
1063 return status;
1064}
1065
1066
1067/* 'full' flag tells us whether we clear out all blocks or if we just
1068 * mark the journal clean */
1069int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1070{
1071 int status;
1072
1073 mlog_entry_void();
1074
ebdec83b 1075 BUG_ON(!journal);
ccd979bd 1076
2b4e30fb 1077 status = jbd2_journal_wipe(journal->j_journal, full);
ccd979bd
MF
1078 if (status < 0) {
1079 mlog_errno(status);
1080 goto bail;
1081 }
1082
539d8264 1083 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
ccd979bd
MF
1084 if (status < 0)
1085 mlog_errno(status);
1086
1087bail:
1088 mlog_exit(status);
1089 return status;
1090}
1091
553abd04
JB
1092static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1093{
1094 int empty;
1095 struct ocfs2_recovery_map *rm = osb->recovery_map;
1096
1097 spin_lock(&osb->osb_lock);
1098 empty = (rm->rm_used == 0);
1099 spin_unlock(&osb->osb_lock);
1100
1101 return empty;
1102}
1103
1104void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1105{
1106 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1107}
1108
ccd979bd
MF
1109/*
1110 * JBD Might read a cached version of another nodes journal file. We
1111 * don't want this as this file changes often and we get no
1112 * notification on those changes. The only way to be sure that we've
1113 * got the most up to date version of those blocks then is to force
1114 * read them off disk. Just searching through the buffer cache won't
1115 * work as there may be pages backing this file which are still marked
1116 * up to date. We know things can't change on this file underneath us
1117 * as we have the lock by now :)
1118 */
1119static int ocfs2_force_read_journal(struct inode *inode)
1120{
1121 int status = 0;
4f902c37 1122 int i;
8110b073 1123 u64 v_blkno, p_blkno, p_blocks, num_blocks;
4f902c37 1124#define CONCURRENT_JOURNAL_FILL 32ULL
ccd979bd
MF
1125 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1126
1127 mlog_entry_void();
1128
ccd979bd
MF
1129 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1130
8110b073 1131 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
ccd979bd 1132 v_blkno = 0;
8110b073 1133 while (v_blkno < num_blocks) {
ccd979bd 1134 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
49cb8d2d 1135 &p_blkno, &p_blocks, NULL);
ccd979bd
MF
1136 if (status < 0) {
1137 mlog_errno(status);
1138 goto bail;
1139 }
1140
1141 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1142 p_blocks = CONCURRENT_JOURNAL_FILL;
1143
dd4a2c2b
MF
1144 /* We are reading journal data which should not
1145 * be put in the uptodate cache */
da1e9098
JB
1146 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1147 p_blkno, p_blocks, bhs);
ccd979bd
MF
1148 if (status < 0) {
1149 mlog_errno(status);
1150 goto bail;
1151 }
1152
1153 for(i = 0; i < p_blocks; i++) {
1154 brelse(bhs[i]);
1155 bhs[i] = NULL;
1156 }
1157
1158 v_blkno += p_blocks;
1159 }
1160
1161bail:
1162 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
a81cb88b 1163 brelse(bhs[i]);
ccd979bd
MF
1164 mlog_exit(status);
1165 return status;
1166}
1167
1168struct ocfs2_la_recovery_item {
1169 struct list_head lri_list;
1170 int lri_slot;
1171 struct ocfs2_dinode *lri_la_dinode;
1172 struct ocfs2_dinode *lri_tl_dinode;
2205363d 1173 struct ocfs2_quota_recovery *lri_qrec;
ccd979bd
MF
1174};
1175
1176/* Does the second half of the recovery process. By this point, the
1177 * node is marked clean and can actually be considered recovered,
1178 * hence it's no longer in the recovery map, but there's still some
1179 * cleanup we can do which shouldn't happen within the recovery thread
1180 * as locking in that context becomes very difficult if we are to take
1181 * recovering nodes into account.
1182 *
1183 * NOTE: This function can and will sleep on recovery of other nodes
1184 * during cluster locking, just like any other ocfs2 process.
1185 */
c4028958 1186void ocfs2_complete_recovery(struct work_struct *work)
ccd979bd
MF
1187{
1188 int ret;
c4028958
DH
1189 struct ocfs2_journal *journal =
1190 container_of(work, struct ocfs2_journal, j_recovery_work);
1191 struct ocfs2_super *osb = journal->j_osb;
ccd979bd 1192 struct ocfs2_dinode *la_dinode, *tl_dinode;
800deef3 1193 struct ocfs2_la_recovery_item *item, *n;
2205363d 1194 struct ocfs2_quota_recovery *qrec;
ccd979bd
MF
1195 LIST_HEAD(tmp_la_list);
1196
1197 mlog_entry_void();
1198
1199 mlog(0, "completing recovery from keventd\n");
1200
1201 spin_lock(&journal->j_lock);
1202 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1203 spin_unlock(&journal->j_lock);
1204
800deef3 1205 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
ccd979bd
MF
1206 list_del_init(&item->lri_list);
1207
1208 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1209
19ece546
JK
1210 ocfs2_wait_on_quotas(osb);
1211
ccd979bd
MF
1212 la_dinode = item->lri_la_dinode;
1213 if (la_dinode) {
b0697053 1214 mlog(0, "Clean up local alloc %llu\n",
1ca1a111 1215 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
ccd979bd
MF
1216
1217 ret = ocfs2_complete_local_alloc_recovery(osb,
1218 la_dinode);
1219 if (ret < 0)
1220 mlog_errno(ret);
1221
1222 kfree(la_dinode);
1223 }
1224
1225 tl_dinode = item->lri_tl_dinode;
1226 if (tl_dinode) {
b0697053 1227 mlog(0, "Clean up truncate log %llu\n",
1ca1a111 1228 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
ccd979bd
MF
1229
1230 ret = ocfs2_complete_truncate_log_recovery(osb,
1231 tl_dinode);
1232 if (ret < 0)
1233 mlog_errno(ret);
1234
1235 kfree(tl_dinode);
1236 }
1237
1238 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1239 if (ret < 0)
1240 mlog_errno(ret);
1241
2205363d
JK
1242 qrec = item->lri_qrec;
1243 if (qrec) {
1244 mlog(0, "Recovering quota files");
1245 ret = ocfs2_finish_quota_recovery(osb, qrec,
1246 item->lri_slot);
1247 if (ret < 0)
1248 mlog_errno(ret);
1249 /* Recovery info is already freed now */
1250 }
1251
ccd979bd
MF
1252 kfree(item);
1253 }
1254
1255 mlog(0, "Recovery completion\n");
1256 mlog_exit_void();
1257}
1258
1259/* NOTE: This function always eats your references to la_dinode and
1260 * tl_dinode, either manually on error, or by passing them to
1261 * ocfs2_complete_recovery */
1262static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1263 int slot_num,
1264 struct ocfs2_dinode *la_dinode,
2205363d
JK
1265 struct ocfs2_dinode *tl_dinode,
1266 struct ocfs2_quota_recovery *qrec)
ccd979bd
MF
1267{
1268 struct ocfs2_la_recovery_item *item;
1269
afae00ab 1270 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
ccd979bd
MF
1271 if (!item) {
1272 /* Though we wish to avoid it, we are in fact safe in
1273 * skipping local alloc cleanup as fsck.ocfs2 is more
1274 * than capable of reclaiming unused space. */
1275 if (la_dinode)
1276 kfree(la_dinode);
1277
1278 if (tl_dinode)
1279 kfree(tl_dinode);
1280
2205363d
JK
1281 if (qrec)
1282 ocfs2_free_quota_recovery(qrec);
1283
ccd979bd
MF
1284 mlog_errno(-ENOMEM);
1285 return;
1286 }
1287
1288 INIT_LIST_HEAD(&item->lri_list);
1289 item->lri_la_dinode = la_dinode;
1290 item->lri_slot = slot_num;
1291 item->lri_tl_dinode = tl_dinode;
2205363d 1292 item->lri_qrec = qrec;
ccd979bd
MF
1293
1294 spin_lock(&journal->j_lock);
1295 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1296 queue_work(ocfs2_wq, &journal->j_recovery_work);
1297 spin_unlock(&journal->j_lock);
1298}
1299
1300/* Called by the mount code to queue recovery the last part of
9140db04 1301 * recovery for it's own and offline slot(s). */
ccd979bd
MF
1302void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1303{
1304 struct ocfs2_journal *journal = osb->journal;
1305
9140db04
SE
1306 /* No need to queue up our truncate_log as regular cleanup will catch
1307 * that */
1308 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1309 osb->local_alloc_copy, NULL, NULL);
1310 ocfs2_schedule_truncate_log_flush(osb, 0);
ccd979bd 1311
9140db04
SE
1312 osb->local_alloc_copy = NULL;
1313 osb->dirty = 0;
1314
1315 /* queue to recover orphan slots for all offline slots */
1316 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1317 ocfs2_queue_replay_slots(osb);
1318 ocfs2_free_replay_slots(osb);
ccd979bd
MF
1319}
1320
2205363d
JK
1321void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1322{
1323 if (osb->quota_rec) {
1324 ocfs2_queue_recovery_completion(osb->journal,
1325 osb->slot_num,
1326 NULL,
1327 NULL,
1328 osb->quota_rec);
1329 osb->quota_rec = NULL;
1330 }
1331}
1332
ccd979bd
MF
1333static int __ocfs2_recovery_thread(void *arg)
1334{
2205363d 1335 int status, node_num, slot_num;
ccd979bd 1336 struct ocfs2_super *osb = arg;
553abd04 1337 struct ocfs2_recovery_map *rm = osb->recovery_map;
2205363d
JK
1338 int *rm_quota = NULL;
1339 int rm_quota_used = 0, i;
1340 struct ocfs2_quota_recovery *qrec;
ccd979bd
MF
1341
1342 mlog_entry_void();
1343
1344 status = ocfs2_wait_on_mount(osb);
1345 if (status < 0) {
1346 goto bail;
1347 }
1348
2205363d
JK
1349 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1350 if (!rm_quota) {
1351 status = -ENOMEM;
1352 goto bail;
1353 }
ccd979bd
MF
1354restart:
1355 status = ocfs2_super_lock(osb, 1);
1356 if (status < 0) {
1357 mlog_errno(status);
1358 goto bail;
1359 }
1360
9140db04
SE
1361 status = ocfs2_compute_replay_slots(osb);
1362 if (status < 0)
1363 mlog_errno(status);
1364
1365 /* queue recovery for our own slot */
1366 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1367 NULL, NULL);
1368
553abd04
JB
1369 spin_lock(&osb->osb_lock);
1370 while (rm->rm_used) {
1371 /* It's always safe to remove entry zero, as we won't
1372 * clear it until ocfs2_recover_node() has succeeded. */
1373 node_num = rm->rm_entries[0];
1374 spin_unlock(&osb->osb_lock);
2205363d
JK
1375 mlog(0, "checking node %d\n", node_num);
1376 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1377 if (slot_num == -ENOENT) {
1378 status = 0;
1379 mlog(0, "no slot for this node, so no recovery"
1380 "required.\n");
1381 goto skip_recovery;
1382 }
1383 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1384
1385 /* It is a bit subtle with quota recovery. We cannot do it
1386 * immediately because we have to obtain cluster locks from
1387 * quota files and we also don't want to just skip it because
1388 * then quota usage would be out of sync until some node takes
1389 * the slot. So we remember which nodes need quota recovery
1390 * and when everything else is done, we recover quotas. */
1391 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1392 if (i == rm_quota_used)
1393 rm_quota[rm_quota_used++] = slot_num;
1394
1395 status = ocfs2_recover_node(osb, node_num, slot_num);
1396skip_recovery:
553abd04
JB
1397 if (!status) {
1398 ocfs2_recovery_map_clear(osb, node_num);
1399 } else {
ccd979bd
MF
1400 mlog(ML_ERROR,
1401 "Error %d recovering node %d on device (%u,%u)!\n",
1402 status, node_num,
1403 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1404 mlog(ML_ERROR, "Volume requires unmount.\n");
ccd979bd
MF
1405 }
1406
553abd04 1407 spin_lock(&osb->osb_lock);
ccd979bd 1408 }
553abd04
JB
1409 spin_unlock(&osb->osb_lock);
1410 mlog(0, "All nodes recovered\n");
1411
539d8264
SM
1412 /* Refresh all journal recovery generations from disk */
1413 status = ocfs2_check_journals_nolocks(osb);
1414 status = (status == -EROFS) ? 0 : status;
1415 if (status < 0)
1416 mlog_errno(status);
1417
2205363d
JK
1418 /* Now it is right time to recover quotas... We have to do this under
1419 * superblock lock so that noone can start using the slot (and crash)
1420 * before we recover it */
1421 for (i = 0; i < rm_quota_used; i++) {
1422 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1423 if (IS_ERR(qrec)) {
1424 status = PTR_ERR(qrec);
1425 mlog_errno(status);
1426 continue;
1427 }
1428 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1429 NULL, NULL, qrec);
1430 }
1431
ccd979bd
MF
1432 ocfs2_super_unlock(osb, 1);
1433
9140db04
SE
1434 /* queue recovery for offline slots */
1435 ocfs2_queue_replay_slots(osb);
ccd979bd
MF
1436
1437bail:
c74ec2f7 1438 mutex_lock(&osb->recovery_lock);
553abd04 1439 if (!status && !ocfs2_recovery_completed(osb)) {
c74ec2f7 1440 mutex_unlock(&osb->recovery_lock);
ccd979bd
MF
1441 goto restart;
1442 }
1443
9140db04 1444 ocfs2_free_replay_slots(osb);
ccd979bd
MF
1445 osb->recovery_thread_task = NULL;
1446 mb(); /* sync with ocfs2_recovery_thread_running */
1447 wake_up(&osb->recovery_event);
1448
c74ec2f7 1449 mutex_unlock(&osb->recovery_lock);
ccd979bd 1450
2205363d
JK
1451 if (rm_quota)
1452 kfree(rm_quota);
1453
ccd979bd
MF
1454 mlog_exit(status);
1455 /* no one is callint kthread_stop() for us so the kthread() api
1456 * requires that we call do_exit(). And it isn't exported, but
1457 * complete_and_exit() seems to be a minimal wrapper around it. */
1458 complete_and_exit(NULL, status);
1459 return status;
1460}
1461
1462void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1463{
1464 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1465 node_num, osb->node_num);
1466
c74ec2f7 1467 mutex_lock(&osb->recovery_lock);
ccd979bd
MF
1468 if (osb->disable_recovery)
1469 goto out;
1470
1471 /* People waiting on recovery will wait on
1472 * the recovery map to empty. */
553abd04
JB
1473 if (ocfs2_recovery_map_set(osb, node_num))
1474 mlog(0, "node %d already in recovery map.\n", node_num);
ccd979bd
MF
1475
1476 mlog(0, "starting recovery thread...\n");
1477
1478 if (osb->recovery_thread_task)
1479 goto out;
1480
1481 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
78427043 1482 "ocfs2rec");
ccd979bd
MF
1483 if (IS_ERR(osb->recovery_thread_task)) {
1484 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1485 osb->recovery_thread_task = NULL;
1486 }
1487
1488out:
c74ec2f7 1489 mutex_unlock(&osb->recovery_lock);
ccd979bd
MF
1490 wake_up(&osb->recovery_event);
1491
1492 mlog_exit_void();
1493}
1494
539d8264
SM
1495static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1496 int slot_num,
1497 struct buffer_head **bh,
1498 struct inode **ret_inode)
1499{
1500 int status = -EACCES;
1501 struct inode *inode = NULL;
1502
1503 BUG_ON(slot_num >= osb->max_slots);
1504
1505 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1506 slot_num);
1507 if (!inode || is_bad_inode(inode)) {
1508 mlog_errno(status);
1509 goto bail;
1510 }
1511 SET_INODE_JOURNAL(inode);
1512
b657c95c 1513 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
539d8264
SM
1514 if (status < 0) {
1515 mlog_errno(status);
1516 goto bail;
1517 }
1518
1519 status = 0;
1520
1521bail:
1522 if (inode) {
1523 if (status || !ret_inode)
1524 iput(inode);
1525 else
1526 *ret_inode = inode;
1527 }
1528 return status;
1529}
1530
ccd979bd
MF
1531/* Does the actual journal replay and marks the journal inode as
1532 * clean. Will only replay if the journal inode is marked dirty. */
1533static int ocfs2_replay_journal(struct ocfs2_super *osb,
1534 int node_num,
1535 int slot_num)
1536{
1537 int status;
1538 int got_lock = 0;
1539 unsigned int flags;
1540 struct inode *inode = NULL;
1541 struct ocfs2_dinode *fe;
1542 journal_t *journal = NULL;
1543 struct buffer_head *bh = NULL;
539d8264 1544 u32 slot_reco_gen;
ccd979bd 1545
539d8264
SM
1546 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1547 if (status) {
ccd979bd
MF
1548 mlog_errno(status);
1549 goto done;
1550 }
539d8264
SM
1551
1552 fe = (struct ocfs2_dinode *)bh->b_data;
1553 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1554 brelse(bh);
1555 bh = NULL;
1556
1557 /*
1558 * As the fs recovery is asynchronous, there is a small chance that
1559 * another node mounted (and recovered) the slot before the recovery
1560 * thread could get the lock. To handle that, we dirty read the journal
1561 * inode for that slot to get the recovery generation. If it is
1562 * different than what we expected, the slot has been recovered.
1563 * If not, it needs recovery.
1564 */
1565 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1566 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1567 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1568 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1569 status = -EBUSY;
ccd979bd
MF
1570 goto done;
1571 }
539d8264
SM
1572
1573 /* Continue with recovery as the journal has not yet been recovered */
ccd979bd 1574
e63aecb6 1575 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd 1576 if (status < 0) {
e63aecb6 1577 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
ccd979bd
MF
1578 if (status != -ERESTARTSYS)
1579 mlog(ML_ERROR, "Could not lock journal!\n");
1580 goto done;
1581 }
1582 got_lock = 1;
1583
1584 fe = (struct ocfs2_dinode *) bh->b_data;
1585
1586 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
539d8264 1587 slot_reco_gen = ocfs2_get_recovery_generation(fe);
ccd979bd
MF
1588
1589 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1590 mlog(0, "No recovery required for node %d\n", node_num);
539d8264
SM
1591 /* Refresh recovery generation for the slot */
1592 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
ccd979bd
MF
1593 goto done;
1594 }
1595
9140db04
SE
1596 /* we need to run complete recovery for offline orphan slots */
1597 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1598
ccd979bd
MF
1599 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1600 node_num, slot_num,
1601 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1602
1603 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1604
1605 status = ocfs2_force_read_journal(inode);
1606 if (status < 0) {
1607 mlog_errno(status);
1608 goto done;
1609 }
1610
1611 mlog(0, "calling journal_init_inode\n");
2b4e30fb 1612 journal = jbd2_journal_init_inode(inode);
ccd979bd
MF
1613 if (journal == NULL) {
1614 mlog(ML_ERROR, "Linux journal layer error\n");
1615 status = -EIO;
1616 goto done;
1617 }
1618
2b4e30fb 1619 status = jbd2_journal_load(journal);
ccd979bd
MF
1620 if (status < 0) {
1621 mlog_errno(status);
1622 if (!igrab(inode))
1623 BUG();
2b4e30fb 1624 jbd2_journal_destroy(journal);
ccd979bd
MF
1625 goto done;
1626 }
1627
1628 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1629
1630 /* wipe the journal */
1631 mlog(0, "flushing the journal.\n");
2b4e30fb
JB
1632 jbd2_journal_lock_updates(journal);
1633 status = jbd2_journal_flush(journal);
1634 jbd2_journal_unlock_updates(journal);
ccd979bd
MF
1635 if (status < 0)
1636 mlog_errno(status);
1637
1638 /* This will mark the node clean */
1639 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1640 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1641 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1642
539d8264
SM
1643 /* Increment recovery generation to indicate successful recovery */
1644 ocfs2_bump_recovery_generation(fe);
1645 osb->slot_recovery_generations[slot_num] =
1646 ocfs2_get_recovery_generation(fe);
1647
13723d00 1648 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
8cb471e8 1649 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
ccd979bd
MF
1650 if (status < 0)
1651 mlog_errno(status);
1652
1653 if (!igrab(inode))
1654 BUG();
1655
2b4e30fb 1656 jbd2_journal_destroy(journal);
ccd979bd
MF
1657
1658done:
1659 /* drop the lock on this nodes journal */
1660 if (got_lock)
e63aecb6 1661 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
1662
1663 if (inode)
1664 iput(inode);
1665
a81cb88b 1666 brelse(bh);
ccd979bd
MF
1667
1668 mlog_exit(status);
1669 return status;
1670}
1671
1672/*
1673 * Do the most important parts of node recovery:
1674 * - Replay it's journal
1675 * - Stamp a clean local allocator file
1676 * - Stamp a clean truncate log
1677 * - Mark the node clean
1678 *
1679 * If this function completes without error, a node in OCFS2 can be
1680 * said to have been safely recovered. As a result, failure during the
1681 * second part of a nodes recovery process (local alloc recovery) is
1682 * far less concerning.
1683 */
1684static int ocfs2_recover_node(struct ocfs2_super *osb,
2205363d 1685 int node_num, int slot_num)
ccd979bd
MF
1686{
1687 int status = 0;
ccd979bd
MF
1688 struct ocfs2_dinode *la_copy = NULL;
1689 struct ocfs2_dinode *tl_copy = NULL;
1690
2205363d
JK
1691 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1692 node_num, slot_num, osb->node_num);
ccd979bd
MF
1693
1694 /* Should not ever be called to recover ourselves -- in that
1695 * case we should've called ocfs2_journal_load instead. */
ebdec83b 1696 BUG_ON(osb->node_num == node_num);
ccd979bd 1697
ccd979bd
MF
1698 status = ocfs2_replay_journal(osb, node_num, slot_num);
1699 if (status < 0) {
539d8264
SM
1700 if (status == -EBUSY) {
1701 mlog(0, "Skipping recovery for slot %u (node %u) "
1702 "as another node has recovered it\n", slot_num,
1703 node_num);
1704 status = 0;
1705 goto done;
1706 }
ccd979bd
MF
1707 mlog_errno(status);
1708 goto done;
1709 }
1710
1711 /* Stamp a clean local alloc file AFTER recovering the journal... */
1712 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1713 if (status < 0) {
1714 mlog_errno(status);
1715 goto done;
1716 }
1717
1718 /* An error from begin_truncate_log_recovery is not
1719 * serious enough to warrant halting the rest of
1720 * recovery. */
1721 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1722 if (status < 0)
1723 mlog_errno(status);
1724
1725 /* Likewise, this would be a strange but ultimately not so
1726 * harmful place to get an error... */
8e8a4603 1727 status = ocfs2_clear_slot(osb, slot_num);
ccd979bd
MF
1728 if (status < 0)
1729 mlog_errno(status);
1730
1731 /* This will kfree the memory pointed to by la_copy and tl_copy */
1732 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
2205363d 1733 tl_copy, NULL);
ccd979bd
MF
1734
1735 status = 0;
1736done:
1737
1738 mlog_exit(status);
1739 return status;
1740}
1741
1742/* Test node liveness by trylocking his journal. If we get the lock,
1743 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1744 * still alive (we couldn't get the lock) and < 0 on error. */
1745static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1746 int slot_num)
1747{
1748 int status, flags;
1749 struct inode *inode = NULL;
1750
1751 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1752 slot_num);
1753 if (inode == NULL) {
1754 mlog(ML_ERROR, "access error\n");
1755 status = -EACCES;
1756 goto bail;
1757 }
1758 if (is_bad_inode(inode)) {
1759 mlog(ML_ERROR, "access error (bad inode)\n");
1760 iput(inode);
1761 inode = NULL;
1762 status = -EACCES;
1763 goto bail;
1764 }
1765 SET_INODE_JOURNAL(inode);
1766
1767 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
e63aecb6 1768 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
ccd979bd
MF
1769 if (status < 0) {
1770 if (status != -EAGAIN)
1771 mlog_errno(status);
1772 goto bail;
1773 }
1774
e63aecb6 1775 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
1776bail:
1777 if (inode)
1778 iput(inode);
1779
1780 return status;
1781}
1782
1783/* Call this underneath ocfs2_super_lock. It also assumes that the
1784 * slot info struct has been updated from disk. */
1785int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1786{
d85b20e4
JB
1787 unsigned int node_num;
1788 int status, i;
a1af7d15 1789 u32 gen;
539d8264
SM
1790 struct buffer_head *bh = NULL;
1791 struct ocfs2_dinode *di;
ccd979bd
MF
1792
1793 /* This is called with the super block cluster lock, so we
1794 * know that the slot map can't change underneath us. */
1795
d85b20e4 1796 for (i = 0; i < osb->max_slots; i++) {
539d8264
SM
1797 /* Read journal inode to get the recovery generation */
1798 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1799 if (status) {
1800 mlog_errno(status);
1801 goto bail;
1802 }
1803 di = (struct ocfs2_dinode *)bh->b_data;
a1af7d15 1804 gen = ocfs2_get_recovery_generation(di);
539d8264
SM
1805 brelse(bh);
1806 bh = NULL;
1807
a1af7d15
MF
1808 spin_lock(&osb->osb_lock);
1809 osb->slot_recovery_generations[i] = gen;
1810
539d8264
SM
1811 mlog(0, "Slot %u recovery generation is %u\n", i,
1812 osb->slot_recovery_generations[i]);
1813
a1af7d15
MF
1814 if (i == osb->slot_num) {
1815 spin_unlock(&osb->osb_lock);
ccd979bd 1816 continue;
a1af7d15 1817 }
d85b20e4
JB
1818
1819 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
a1af7d15
MF
1820 if (status == -ENOENT) {
1821 spin_unlock(&osb->osb_lock);
ccd979bd 1822 continue;
a1af7d15 1823 }
ccd979bd 1824
a1af7d15
MF
1825 if (__ocfs2_recovery_map_test(osb, node_num)) {
1826 spin_unlock(&osb->osb_lock);
ccd979bd 1827 continue;
a1af7d15 1828 }
d85b20e4 1829 spin_unlock(&osb->osb_lock);
ccd979bd
MF
1830
1831 /* Ok, we have a slot occupied by another node which
1832 * is not in the recovery map. We trylock his journal
1833 * file here to test if he's alive. */
1834 status = ocfs2_trylock_journal(osb, i);
1835 if (!status) {
1836 /* Since we're called from mount, we know that
1837 * the recovery thread can't race us on
1838 * setting / checking the recovery bits. */
1839 ocfs2_recovery_thread(osb, node_num);
1840 } else if ((status < 0) && (status != -EAGAIN)) {
1841 mlog_errno(status);
1842 goto bail;
1843 }
ccd979bd 1844 }
ccd979bd
MF
1845
1846 status = 0;
1847bail:
1848 mlog_exit(status);
1849 return status;
1850}
1851
83273932
SE
1852/*
1853 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1854 * randomness to the timeout to minimize multple nodes firing the timer at the
1855 * same time.
1856 */
1857static inline unsigned long ocfs2_orphan_scan_timeout(void)
1858{
1859 unsigned long time;
1860
1861 get_random_bytes(&time, sizeof(time));
1862 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1863 return msecs_to_jiffies(time);
1864}
1865
1866/*
1867 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1868 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1869 * is done to catch any orphans that are left over in orphan directories.
1870 *
1871 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1872 * seconds. It gets an EX lock on os_lockres and checks sequence number
1873 * stored in LVB. If the sequence number has changed, it means some other
1874 * node has done the scan. This node skips the scan and tracks the
1875 * sequence number. If the sequence number didn't change, it means a scan
1876 * hasn't happened. The node queues a scan and increments the
1877 * sequence number in the LVB.
1878 */
1879void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1880{
1881 struct ocfs2_orphan_scan *os;
1882 int status, i;
1883 u32 seqno = 0;
1884
1885 os = &osb->osb_orphan_scan;
1886
3c3f20c9
TM
1887 mlog(0, "Begin orphan scan\n");
1888
692684e1
SM
1889 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1890 goto out;
1891
df152c24 1892 status = ocfs2_orphan_scan_lock(osb, &seqno);
83273932
SE
1893 if (status < 0) {
1894 if (status != -EAGAIN)
1895 mlog_errno(status);
1896 goto out;
1897 }
1898
692684e1
SM
1899 /* Do no queue the tasks if the volume is being umounted */
1900 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1901 goto unlock;
1902
83273932
SE
1903 if (os->os_seqno != seqno) {
1904 os->os_seqno = seqno;
1905 goto unlock;
1906 }
1907
1908 for (i = 0; i < osb->max_slots; i++)
1909 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1910 NULL);
1911 /*
1912 * We queued a recovery on orphan slots, increment the sequence
1913 * number and update LVB so other node will skip the scan for a while
1914 */
1915 seqno++;
15633a22
SE
1916 os->os_count++;
1917 os->os_scantime = CURRENT_TIME;
83273932 1918unlock:
df152c24 1919 ocfs2_orphan_scan_unlock(osb, seqno);
83273932 1920out:
3c3f20c9 1921 mlog(0, "Orphan scan completed\n");
83273932
SE
1922 return;
1923}
1924
1925/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1926void ocfs2_orphan_scan_work(struct work_struct *work)
1927{
1928 struct ocfs2_orphan_scan *os;
1929 struct ocfs2_super *osb;
1930
1931 os = container_of(work, struct ocfs2_orphan_scan,
1932 os_orphan_scan_work.work);
1933 osb = os->os_osb;
1934
1935 mutex_lock(&os->os_lock);
1936 ocfs2_queue_orphan_scan(osb);
692684e1 1937 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
40f165f4 1938 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
692684e1 1939 ocfs2_orphan_scan_timeout());
83273932
SE
1940 mutex_unlock(&os->os_lock);
1941}
1942
1943void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1944{
1945 struct ocfs2_orphan_scan *os;
1946
1947 os = &osb->osb_orphan_scan;
df152c24
SM
1948 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1949 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1950 mutex_lock(&os->os_lock);
1951 cancel_delayed_work(&os->os_orphan_scan_work);
1952 mutex_unlock(&os->os_lock);
1953 }
83273932
SE
1954}
1955
df152c24 1956void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
83273932
SE
1957{
1958 struct ocfs2_orphan_scan *os;
1959
1960 os = &osb->osb_orphan_scan;
1961 os->os_osb = osb;
15633a22 1962 os->os_count = 0;
3211949f 1963 os->os_seqno = 0;
83273932 1964 mutex_init(&os->os_lock);
df152c24 1965 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
8b712cd5 1966}
83273932 1967
8b712cd5
JM
1968void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1969{
1970 struct ocfs2_orphan_scan *os;
1971
1972 os = &osb->osb_orphan_scan;
1973 os->os_scantime = CURRENT_TIME;
df152c24
SM
1974 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1975 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1976 else {
1977 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
40f165f4
TM
1978 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1979 ocfs2_orphan_scan_timeout());
df152c24 1980 }
83273932
SE
1981}
1982
5eae5b96
MF
1983struct ocfs2_orphan_filldir_priv {
1984 struct inode *head;
1985 struct ocfs2_super *osb;
1986};
1987
1988static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1989 loff_t pos, u64 ino, unsigned type)
1990{
1991 struct ocfs2_orphan_filldir_priv *p = priv;
1992 struct inode *iter;
1993
1994 if (name_len == 1 && !strncmp(".", name, 1))
1995 return 0;
1996 if (name_len == 2 && !strncmp("..", name, 2))
1997 return 0;
1998
1999 /* Skip bad inodes so that recovery can continue */
2000 iter = ocfs2_iget(p->osb, ino,
5fa0613e 2001 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
5eae5b96
MF
2002 if (IS_ERR(iter))
2003 return 0;
2004
2005 mlog(0, "queue orphan %llu\n",
2006 (unsigned long long)OCFS2_I(iter)->ip_blkno);
2007 /* No locking is required for the next_orphan queue as there
2008 * is only ever a single process doing orphan recovery. */
2009 OCFS2_I(iter)->ip_next_orphan = p->head;
2010 p->head = iter;
2011
2012 return 0;
2013}
2014
b4df6ed8
MF
2015static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2016 int slot,
2017 struct inode **head)
ccd979bd 2018{
b4df6ed8 2019 int status;
ccd979bd 2020 struct inode *orphan_dir_inode = NULL;
5eae5b96
MF
2021 struct ocfs2_orphan_filldir_priv priv;
2022 loff_t pos = 0;
2023
2024 priv.osb = osb;
2025 priv.head = *head;
ccd979bd
MF
2026
2027 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2028 ORPHAN_DIR_SYSTEM_INODE,
2029 slot);
2030 if (!orphan_dir_inode) {
2031 status = -ENOENT;
2032 mlog_errno(status);
b4df6ed8 2033 return status;
2bd63216 2034 }
ccd979bd 2035
1b1dcc1b 2036 mutex_lock(&orphan_dir_inode->i_mutex);
e63aecb6 2037 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
ccd979bd 2038 if (status < 0) {
ccd979bd
MF
2039 mlog_errno(status);
2040 goto out;
2041 }
ccd979bd 2042
5eae5b96
MF
2043 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2044 ocfs2_orphan_filldir);
2045 if (status) {
2046 mlog_errno(status);
a86370fb 2047 goto out_cluster;
ccd979bd 2048 }
ccd979bd 2049
5eae5b96
MF
2050 *head = priv.head;
2051
a86370fb 2052out_cluster:
e63aecb6 2053 ocfs2_inode_unlock(orphan_dir_inode, 0);
b4df6ed8
MF
2054out:
2055 mutex_unlock(&orphan_dir_inode->i_mutex);
ccd979bd 2056 iput(orphan_dir_inode);
b4df6ed8
MF
2057 return status;
2058}
2059
2060static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2061 int slot)
2062{
2063 int ret;
2064
2065 spin_lock(&osb->osb_lock);
2066 ret = !osb->osb_orphan_wipes[slot];
2067 spin_unlock(&osb->osb_lock);
2068 return ret;
2069}
2070
2071static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2072 int slot)
2073{
2074 spin_lock(&osb->osb_lock);
2075 /* Mark ourselves such that new processes in delete_inode()
2076 * know to quit early. */
2077 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2078 while (osb->osb_orphan_wipes[slot]) {
2079 /* If any processes are already in the middle of an
2080 * orphan wipe on this dir, then we need to wait for
2081 * them. */
2082 spin_unlock(&osb->osb_lock);
2083 wait_event_interruptible(osb->osb_wipe_event,
2084 ocfs2_orphan_recovery_can_continue(osb, slot));
2085 spin_lock(&osb->osb_lock);
2086 }
2087 spin_unlock(&osb->osb_lock);
2088}
2089
2090static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2091 int slot)
2092{
2093 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2094}
2095
2096/*
2097 * Orphan recovery. Each mounted node has it's own orphan dir which we
2098 * must run during recovery. Our strategy here is to build a list of
2099 * the inodes in the orphan dir and iget/iput them. The VFS does
2100 * (most) of the rest of the work.
2101 *
2102 * Orphan recovery can happen at any time, not just mount so we have a
2103 * couple of extra considerations.
2104 *
2105 * - We grab as many inodes as we can under the orphan dir lock -
2106 * doing iget() outside the orphan dir risks getting a reference on
2107 * an invalid inode.
2108 * - We must be sure not to deadlock with other processes on the
2109 * system wanting to run delete_inode(). This can happen when they go
2110 * to lock the orphan dir and the orphan recovery process attempts to
2111 * iget() inside the orphan dir lock. This can be avoided by
2112 * advertising our state to ocfs2_delete_inode().
2113 */
2114static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2115 int slot)
2116{
2117 int ret = 0;
2118 struct inode *inode = NULL;
2119 struct inode *iter;
2120 struct ocfs2_inode_info *oi;
2121
2122 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2123
2124 ocfs2_mark_recovering_orphan_dir(osb, slot);
2125 ret = ocfs2_queue_orphans(osb, slot, &inode);
2126 ocfs2_clear_recovering_orphan_dir(osb, slot);
2127
2128 /* Error here should be noted, but we want to continue with as
2129 * many queued inodes as we've got. */
2130 if (ret)
2131 mlog_errno(ret);
ccd979bd
MF
2132
2133 while (inode) {
2134 oi = OCFS2_I(inode);
b0697053 2135 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
ccd979bd
MF
2136
2137 iter = oi->ip_next_orphan;
2138
2139 spin_lock(&oi->ip_lock);
34d024f8
MF
2140 /* The remote delete code may have set these on the
2141 * assumption that the other node would wipe them
2142 * successfully. If they are still in the node's
2143 * orphan dir, we need to reset that state. */
ccd979bd
MF
2144 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2145
2146 /* Set the proper information to get us going into
2147 * ocfs2_delete_inode. */
2148 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
ccd979bd
MF
2149 spin_unlock(&oi->ip_lock);
2150
2151 iput(inode);
2152
2153 inode = iter;
2154 }
2155
b4df6ed8 2156 return ret;
ccd979bd
MF
2157}
2158
19ece546 2159static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
ccd979bd
MF
2160{
2161 /* This check is good because ocfs2 will wait on our recovery
2162 * thread before changing it to something other than MOUNTED
2163 * or DISABLED. */
2164 wait_event(osb->osb_mount_event,
19ece546
JK
2165 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2166 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
ccd979bd
MF
2167 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2168
2169 /* If there's an error on mount, then we may never get to the
2170 * MOUNTED flag, but this is set right before
2171 * dismount_volume() so we can trust it. */
2172 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2173 mlog(0, "mount error, exiting!\n");
2174 return -EBUSY;
2175 }
2176
2177 return 0;
2178}
2179
2180static int ocfs2_commit_thread(void *arg)
2181{
2182 int status;
2183 struct ocfs2_super *osb = arg;
2184 struct ocfs2_journal *journal = osb->journal;
2185
2186 /* we can trust j_num_trans here because _should_stop() is only set in
2187 * shutdown and nobody other than ourselves should be able to start
2188 * transactions. committing on shutdown might take a few iterations
2189 * as final transactions put deleted inodes on the list */
2190 while (!(kthread_should_stop() &&
2191 atomic_read(&journal->j_num_trans) == 0)) {
2192
745ae8ba
MF
2193 wait_event_interruptible(osb->checkpoint_event,
2194 atomic_read(&journal->j_num_trans)
2195 || kthread_should_stop());
ccd979bd
MF
2196
2197 status = ocfs2_commit_cache(osb);
2198 if (status < 0)
2199 mlog_errno(status);
2200
2201 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2202 mlog(ML_KTHREAD,
2203 "commit_thread: %u transactions pending on "
2204 "shutdown\n",
2205 atomic_read(&journal->j_num_trans));
2206 }
2207 }
2208
2209 return 0;
2210}
2211
539d8264
SM
2212/* Reads all the journal inodes without taking any cluster locks. Used
2213 * for hard readonly access to determine whether any journal requires
2214 * recovery. Also used to refresh the recovery generation numbers after
2215 * a journal has been recovered by another node.
2216 */
ccd979bd
MF
2217int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2218{
2219 int ret = 0;
2220 unsigned int slot;
539d8264 2221 struct buffer_head *di_bh = NULL;
ccd979bd 2222 struct ocfs2_dinode *di;
539d8264 2223 int journal_dirty = 0;
ccd979bd
MF
2224
2225 for(slot = 0; slot < osb->max_slots; slot++) {
539d8264
SM
2226 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2227 if (ret) {
ccd979bd
MF
2228 mlog_errno(ret);
2229 goto out;
2230 }
2231
2232 di = (struct ocfs2_dinode *) di_bh->b_data;
2233
539d8264
SM
2234 osb->slot_recovery_generations[slot] =
2235 ocfs2_get_recovery_generation(di);
2236
ccd979bd
MF
2237 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2238 OCFS2_JOURNAL_DIRTY_FL)
539d8264 2239 journal_dirty = 1;
ccd979bd
MF
2240
2241 brelse(di_bh);
539d8264 2242 di_bh = NULL;
ccd979bd
MF
2243 }
2244
2245out:
539d8264
SM
2246 if (journal_dirty)
2247 ret = -EROFS;
ccd979bd
MF
2248 return ret;
2249}