]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/mpage.c
jbd2: Remove data=ordered mode support using jbd buffer heads
[net-next-2.6.git] / fs / mpage.c
CommitLineData
1da177e4
LT
1/*
2 * fs/mpage.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to preparing and submitting BIOs which contain
7 * multiple pagecache pages.
8 *
9 * 15May2002 akpm@zip.com.au
10 * Initial version
11 * 27Jun2002 axboe@suse.de
12 * use bio_add_page() to build bio's just the right size
13 */
14
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/mm.h>
18#include <linux/kdev_t.h>
19#include <linux/bio.h>
20#include <linux/fs.h>
21#include <linux/buffer_head.h>
22#include <linux/blkdev.h>
23#include <linux/highmem.h>
24#include <linux/prefetch.h>
25#include <linux/mpage.h>
26#include <linux/writeback.h>
27#include <linux/backing-dev.h>
28#include <linux/pagevec.h>
29
30/*
31 * I/O completion handler for multipage BIOs.
32 *
33 * The mpage code never puts partial pages into a BIO (except for end-of-file).
34 * If a page does not map to a contiguous run of blocks then it simply falls
35 * back to block_read_full_page().
36 *
37 * Why is this? If a page's completion depends on a number of different BIOs
38 * which can complete in any order (or at the same time) then determining the
39 * status of that page is hard. See end_buffer_async_read() for the details.
40 * There is no point in duplicating all that complexity.
41 */
6712ecf8 42static void mpage_end_io_read(struct bio *bio, int err)
1da177e4
LT
43{
44 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
45 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
46
1da177e4
LT
47 do {
48 struct page *page = bvec->bv_page;
49
50 if (--bvec >= bio->bi_io_vec)
51 prefetchw(&bvec->bv_page->flags);
52
53 if (uptodate) {
54 SetPageUptodate(page);
55 } else {
56 ClearPageUptodate(page);
57 SetPageError(page);
58 }
59 unlock_page(page);
60 } while (bvec >= bio->bi_io_vec);
61 bio_put(bio);
1da177e4
LT
62}
63
6712ecf8 64static void mpage_end_io_write(struct bio *bio, int err)
1da177e4
LT
65{
66 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
67 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
68
1da177e4
LT
69 do {
70 struct page *page = bvec->bv_page;
71
72 if (--bvec >= bio->bi_io_vec)
73 prefetchw(&bvec->bv_page->flags);
74
854715be 75 if (!uptodate){
1da177e4 76 SetPageError(page);
854715be
QF
77 if (page->mapping)
78 set_bit(AS_EIO, &page->mapping->flags);
79 }
1da177e4
LT
80 end_page_writeback(page);
81 } while (bvec >= bio->bi_io_vec);
82 bio_put(bio);
1da177e4
LT
83}
84
75c96f85 85static struct bio *mpage_bio_submit(int rw, struct bio *bio)
1da177e4
LT
86{
87 bio->bi_end_io = mpage_end_io_read;
88 if (rw == WRITE)
89 bio->bi_end_io = mpage_end_io_write;
90 submit_bio(rw, bio);
91 return NULL;
92}
93
94static struct bio *
95mpage_alloc(struct block_device *bdev,
96 sector_t first_sector, int nr_vecs,
dd0fc66f 97 gfp_t gfp_flags)
1da177e4
LT
98{
99 struct bio *bio;
100
101 bio = bio_alloc(gfp_flags, nr_vecs);
102
103 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
104 while (!bio && (nr_vecs /= 2))
105 bio = bio_alloc(gfp_flags, nr_vecs);
106 }
107
108 if (bio) {
109 bio->bi_bdev = bdev;
110 bio->bi_sector = first_sector;
111 }
112 return bio;
113}
114
115/*
116 * support function for mpage_readpages. The fs supplied get_block might
117 * return an up to date buffer. This is used to map that buffer into
118 * the page, which allows readpage to avoid triggering a duplicate call
119 * to get_block.
120 *
121 * The idea is to avoid adding buffers to pages that don't already have
122 * them. So when the buffer is up to date and the page size == block size,
123 * this marks the page up to date instead of adding new buffers.
124 */
125static void
126map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
127{
128 struct inode *inode = page->mapping->host;
129 struct buffer_head *page_bh, *head;
130 int block = 0;
131
132 if (!page_has_buffers(page)) {
133 /*
134 * don't make any buffers if there is only one buffer on
135 * the page and the page just needs to be set up to date
136 */
137 if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
138 buffer_uptodate(bh)) {
139 SetPageUptodate(page);
140 return;
141 }
142 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
143 }
144 head = page_buffers(page);
145 page_bh = head;
146 do {
147 if (block == page_block) {
148 page_bh->b_state = bh->b_state;
149 page_bh->b_bdev = bh->b_bdev;
150 page_bh->b_blocknr = bh->b_blocknr;
151 break;
152 }
153 page_bh = page_bh->b_this_page;
154 block++;
155 } while (page_bh != head);
156}
157
fa30bd05
BP
158/*
159 * This is the worker routine which does all the work of mapping the disk
160 * blocks and constructs largest possible bios, submits them for IO if the
161 * blocks are not contiguous on the disk.
162 *
163 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
164 * represent the validity of its disk mapping and to decide when to do the next
165 * get_block() call.
166 */
1da177e4
LT
167static struct bio *
168do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
fa30bd05
BP
169 sector_t *last_block_in_bio, struct buffer_head *map_bh,
170 unsigned long *first_logical_block, get_block_t get_block)
1da177e4
LT
171{
172 struct inode *inode = page->mapping->host;
173 const unsigned blkbits = inode->i_blkbits;
174 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
175 const unsigned blocksize = 1 << blkbits;
176 sector_t block_in_file;
177 sector_t last_block;
fa30bd05 178 sector_t last_block_in_file;
1da177e4
LT
179 sector_t blocks[MAX_BUF_PER_PAGE];
180 unsigned page_block;
181 unsigned first_hole = blocks_per_page;
182 struct block_device *bdev = NULL;
1da177e4
LT
183 int length;
184 int fully_mapped = 1;
fa30bd05
BP
185 unsigned nblocks;
186 unsigned relative_block;
1da177e4
LT
187
188 if (page_has_buffers(page))
189 goto confused;
190
54b21a79 191 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
fa30bd05
BP
192 last_block = block_in_file + nr_pages * blocks_per_page;
193 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
194 if (last_block > last_block_in_file)
195 last_block = last_block_in_file;
196 page_block = 0;
197
198 /*
199 * Map blocks using the result from the previous get_blocks call first.
200 */
201 nblocks = map_bh->b_size >> blkbits;
202 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
203 block_in_file < (*first_logical_block + nblocks)) {
204 unsigned map_offset = block_in_file - *first_logical_block;
205 unsigned last = nblocks - map_offset;
206
207 for (relative_block = 0; ; relative_block++) {
208 if (relative_block == last) {
209 clear_buffer_mapped(map_bh);
210 break;
211 }
212 if (page_block == blocks_per_page)
213 break;
214 blocks[page_block] = map_bh->b_blocknr + map_offset +
215 relative_block;
216 page_block++;
217 block_in_file++;
218 }
219 bdev = map_bh->b_bdev;
220 }
221
222 /*
223 * Then do more get_blocks calls until we are done with this page.
224 */
225 map_bh->b_page = page;
226 while (page_block < blocks_per_page) {
227 map_bh->b_state = 0;
228 map_bh->b_size = 0;
1da177e4 229
1da177e4 230 if (block_in_file < last_block) {
fa30bd05
BP
231 map_bh->b_size = (last_block-block_in_file) << blkbits;
232 if (get_block(inode, block_in_file, map_bh, 0))
1da177e4 233 goto confused;
fa30bd05 234 *first_logical_block = block_in_file;
1da177e4
LT
235 }
236
fa30bd05 237 if (!buffer_mapped(map_bh)) {
1da177e4
LT
238 fully_mapped = 0;
239 if (first_hole == blocks_per_page)
240 first_hole = page_block;
fa30bd05
BP
241 page_block++;
242 block_in_file++;
243 clear_buffer_mapped(map_bh);
1da177e4
LT
244 continue;
245 }
246
247 /* some filesystems will copy data into the page during
248 * the get_block call, in which case we don't want to
249 * read it again. map_buffer_to_page copies the data
250 * we just collected from get_block into the page's buffers
251 * so readpage doesn't have to repeat the get_block call
252 */
fa30bd05
BP
253 if (buffer_uptodate(map_bh)) {
254 map_buffer_to_page(page, map_bh, page_block);
1da177e4
LT
255 goto confused;
256 }
257
258 if (first_hole != blocks_per_page)
259 goto confused; /* hole -> non-hole */
260
261 /* Contiguous blocks? */
fa30bd05 262 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
1da177e4 263 goto confused;
fa30bd05
BP
264 nblocks = map_bh->b_size >> blkbits;
265 for (relative_block = 0; ; relative_block++) {
266 if (relative_block == nblocks) {
267 clear_buffer_mapped(map_bh);
268 break;
269 } else if (page_block == blocks_per_page)
270 break;
271 blocks[page_block] = map_bh->b_blocknr+relative_block;
272 page_block++;
273 block_in_file++;
274 }
275 bdev = map_bh->b_bdev;
1da177e4
LT
276 }
277
278 if (first_hole != blocks_per_page) {
eebd2aa3 279 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
1da177e4
LT
280 if (first_hole == 0) {
281 SetPageUptodate(page);
282 unlock_page(page);
283 goto out;
284 }
285 } else if (fully_mapped) {
286 SetPageMappedToDisk(page);
287 }
288
289 /*
290 * This page will go to BIO. Do we need to send this BIO off first?
291 */
292 if (bio && (*last_block_in_bio != blocks[0] - 1))
293 bio = mpage_bio_submit(READ, bio);
294
295alloc_new:
296 if (bio == NULL) {
297 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
298 min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
299 GFP_KERNEL);
300 if (bio == NULL)
301 goto confused;
302 }
303
304 length = first_hole << blkbits;
305 if (bio_add_page(bio, page, length, 0) < length) {
306 bio = mpage_bio_submit(READ, bio);
307 goto alloc_new;
308 }
309
fa30bd05 310 if (buffer_boundary(map_bh) || (first_hole != blocks_per_page))
1da177e4
LT
311 bio = mpage_bio_submit(READ, bio);
312 else
313 *last_block_in_bio = blocks[blocks_per_page - 1];
314out:
315 return bio;
316
317confused:
318 if (bio)
319 bio = mpage_bio_submit(READ, bio);
320 if (!PageUptodate(page))
321 block_read_full_page(page, get_block);
322 else
323 unlock_page(page);
324 goto out;
325}
326
67be2dd1 327/**
78a4a50a 328 * mpage_readpages - populate an address space with some pages & start reads against them
67be2dd1
MW
329 * @mapping: the address_space
330 * @pages: The address of a list_head which contains the target pages. These
331 * pages have their ->index populated and are otherwise uninitialised.
67be2dd1
MW
332 * The page at @pages->prev has the lowest file offset, and reads should be
333 * issued in @pages->prev to @pages->next order.
67be2dd1
MW
334 * @nr_pages: The number of pages at *@pages
335 * @get_block: The filesystem's block mapper function.
336 *
337 * This function walks the pages and the blocks within each page, building and
338 * emitting large BIOs.
339 *
340 * If anything unusual happens, such as:
341 *
342 * - encountering a page which has buffers
343 * - encountering a page which has a non-hole after a hole
344 * - encountering a page with non-contiguous blocks
345 *
346 * then this code just gives up and calls the buffer_head-based read function.
347 * It does handle a page which has holes at the end - that is a common case:
348 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
349 *
350 * BH_Boundary explanation:
351 *
352 * There is a problem. The mpage read code assembles several pages, gets all
353 * their disk mappings, and then submits them all. That's fine, but obtaining
354 * the disk mappings may require I/O. Reads of indirect blocks, for example.
355 *
356 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
357 * submitted in the following order:
358 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
78a4a50a 359 *
67be2dd1
MW
360 * because the indirect block has to be read to get the mappings of blocks
361 * 13,14,15,16. Obviously, this impacts performance.
362 *
363 * So what we do it to allow the filesystem's get_block() function to set
364 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
365 * after this one will require I/O against a block which is probably close to
366 * this one. So you should push what I/O you have currently accumulated.
367 *
368 * This all causes the disk requests to be issued in the correct order.
369 */
1da177e4
LT
370int
371mpage_readpages(struct address_space *mapping, struct list_head *pages,
372 unsigned nr_pages, get_block_t get_block)
373{
374 struct bio *bio = NULL;
375 unsigned page_idx;
376 sector_t last_block_in_bio = 0;
fa30bd05
BP
377 struct buffer_head map_bh;
378 unsigned long first_logical_block = 0;
1da177e4 379
fa30bd05 380 clear_buffer_mapped(&map_bh);
1da177e4
LT
381 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
382 struct page *page = list_entry(pages->prev, struct page, lru);
383
384 prefetchw(&page->flags);
385 list_del(&page->lru);
eb2be189 386 if (!add_to_page_cache_lru(page, mapping,
1da177e4
LT
387 page->index, GFP_KERNEL)) {
388 bio = do_mpage_readpage(bio, page,
389 nr_pages - page_idx,
fa30bd05
BP
390 &last_block_in_bio, &map_bh,
391 &first_logical_block,
392 get_block);
1da177e4 393 }
eb2be189 394 page_cache_release(page);
1da177e4 395 }
1da177e4
LT
396 BUG_ON(!list_empty(pages));
397 if (bio)
398 mpage_bio_submit(READ, bio);
399 return 0;
400}
401EXPORT_SYMBOL(mpage_readpages);
402
403/*
404 * This isn't called much at all
405 */
406int mpage_readpage(struct page *page, get_block_t get_block)
407{
408 struct bio *bio = NULL;
409 sector_t last_block_in_bio = 0;
fa30bd05
BP
410 struct buffer_head map_bh;
411 unsigned long first_logical_block = 0;
1da177e4 412
fa30bd05
BP
413 clear_buffer_mapped(&map_bh);
414 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
415 &map_bh, &first_logical_block, get_block);
1da177e4
LT
416 if (bio)
417 mpage_bio_submit(READ, bio);
418 return 0;
419}
420EXPORT_SYMBOL(mpage_readpage);
421
422/*
423 * Writing is not so simple.
424 *
425 * If the page has buffers then they will be used for obtaining the disk
426 * mapping. We only support pages which are fully mapped-and-dirty, with a
427 * special case for pages which are unmapped at the end: end-of-file.
428 *
429 * If the page has no buffers (preferred) then the page is mapped here.
430 *
431 * If all blocks are found to be contiguous then the page can go into the
432 * BIO. Otherwise fall back to the mapping's writepage().
433 *
434 * FIXME: This code wants an estimate of how many pages are still to be
435 * written, so it can intelligently allocate a suitably-sized BIO. For now,
436 * just allocate full-size (16-page) BIOs.
437 */
0ea97180
MS
438struct mpage_data {
439 struct bio *bio;
440 sector_t last_block_in_bio;
441 get_block_t *get_block;
442 unsigned use_writepage;
443};
444
445static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
446 void *data)
1da177e4 447{
0ea97180
MS
448 struct mpage_data *mpd = data;
449 struct bio *bio = mpd->bio;
1da177e4
LT
450 struct address_space *mapping = page->mapping;
451 struct inode *inode = page->mapping->host;
452 const unsigned blkbits = inode->i_blkbits;
453 unsigned long end_index;
454 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
455 sector_t last_block;
456 sector_t block_in_file;
457 sector_t blocks[MAX_BUF_PER_PAGE];
458 unsigned page_block;
459 unsigned first_unmapped = blocks_per_page;
460 struct block_device *bdev = NULL;
461 int boundary = 0;
462 sector_t boundary_block = 0;
463 struct block_device *boundary_bdev = NULL;
464 int length;
465 struct buffer_head map_bh;
466 loff_t i_size = i_size_read(inode);
0ea97180 467 int ret = 0;
1da177e4
LT
468
469 if (page_has_buffers(page)) {
470 struct buffer_head *head = page_buffers(page);
471 struct buffer_head *bh = head;
472
473 /* If they're all mapped and dirty, do it */
474 page_block = 0;
475 do {
476 BUG_ON(buffer_locked(bh));
477 if (!buffer_mapped(bh)) {
478 /*
479 * unmapped dirty buffers are created by
480 * __set_page_dirty_buffers -> mmapped data
481 */
482 if (buffer_dirty(bh))
483 goto confused;
484 if (first_unmapped == blocks_per_page)
485 first_unmapped = page_block;
486 continue;
487 }
488
489 if (first_unmapped != blocks_per_page)
490 goto confused; /* hole -> non-hole */
491
492 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
493 goto confused;
494 if (page_block) {
495 if (bh->b_blocknr != blocks[page_block-1] + 1)
496 goto confused;
497 }
498 blocks[page_block++] = bh->b_blocknr;
499 boundary = buffer_boundary(bh);
500 if (boundary) {
501 boundary_block = bh->b_blocknr;
502 boundary_bdev = bh->b_bdev;
503 }
504 bdev = bh->b_bdev;
505 } while ((bh = bh->b_this_page) != head);
506
507 if (first_unmapped)
508 goto page_is_mapped;
509
510 /*
511 * Page has buffers, but they are all unmapped. The page was
512 * created by pagein or read over a hole which was handled by
513 * block_read_full_page(). If this address_space is also
514 * using mpage_readpages then this can rarely happen.
515 */
516 goto confused;
517 }
518
519 /*
520 * The page has no buffers: map it to disk
521 */
522 BUG_ON(!PageUptodate(page));
54b21a79 523 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
524 last_block = (i_size - 1) >> blkbits;
525 map_bh.b_page = page;
526 for (page_block = 0; page_block < blocks_per_page; ) {
527
528 map_bh.b_state = 0;
b0cf2321 529 map_bh.b_size = 1 << blkbits;
0ea97180 530 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
1da177e4
LT
531 goto confused;
532 if (buffer_new(&map_bh))
533 unmap_underlying_metadata(map_bh.b_bdev,
534 map_bh.b_blocknr);
535 if (buffer_boundary(&map_bh)) {
536 boundary_block = map_bh.b_blocknr;
537 boundary_bdev = map_bh.b_bdev;
538 }
539 if (page_block) {
540 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
541 goto confused;
542 }
543 blocks[page_block++] = map_bh.b_blocknr;
544 boundary = buffer_boundary(&map_bh);
545 bdev = map_bh.b_bdev;
546 if (block_in_file == last_block)
547 break;
548 block_in_file++;
549 }
550 BUG_ON(page_block == 0);
551
552 first_unmapped = page_block;
553
554page_is_mapped:
555 end_index = i_size >> PAGE_CACHE_SHIFT;
556 if (page->index >= end_index) {
557 /*
558 * The page straddles i_size. It must be zeroed out on each
559 * and every writepage invokation because it may be mmapped.
560 * "A file is mapped in multiples of the page size. For a file
561 * that is not a multiple of the page size, the remaining memory
562 * is zeroed when mapped, and writes to that region are not
563 * written out to the file."
564 */
565 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
1da177e4
LT
566
567 if (page->index > end_index || !offset)
568 goto confused;
eebd2aa3 569 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
570 }
571
572 /*
573 * This page will go to BIO. Do we need to send this BIO off first?
574 */
0ea97180 575 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
1da177e4
LT
576 bio = mpage_bio_submit(WRITE, bio);
577
578alloc_new:
579 if (bio == NULL) {
580 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
581 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
582 if (bio == NULL)
583 goto confused;
584 }
585
586 /*
587 * Must try to add the page before marking the buffer clean or
588 * the confused fail path above (OOM) will be very confused when
589 * it finds all bh marked clean (i.e. it will not write anything)
590 */
591 length = first_unmapped << blkbits;
592 if (bio_add_page(bio, page, length, 0) < length) {
593 bio = mpage_bio_submit(WRITE, bio);
594 goto alloc_new;
595 }
596
597 /*
598 * OK, we have our BIO, so we can now mark the buffers clean. Make
599 * sure to only clean buffers which we know we'll be writing.
600 */
601 if (page_has_buffers(page)) {
602 struct buffer_head *head = page_buffers(page);
603 struct buffer_head *bh = head;
604 unsigned buffer_counter = 0;
605
606 do {
607 if (buffer_counter++ == first_unmapped)
608 break;
609 clear_buffer_dirty(bh);
610 bh = bh->b_this_page;
611 } while (bh != head);
612
613 /*
614 * we cannot drop the bh if the page is not uptodate
615 * or a concurrent readpage would fail to serialize with the bh
616 * and it would read from disk before we reach the platter.
617 */
618 if (buffer_heads_over_limit && PageUptodate(page))
619 try_to_free_buffers(page);
620 }
621
622 BUG_ON(PageWriteback(page));
623 set_page_writeback(page);
624 unlock_page(page);
625 if (boundary || (first_unmapped != blocks_per_page)) {
626 bio = mpage_bio_submit(WRITE, bio);
627 if (boundary_block) {
628 write_boundary_block(boundary_bdev,
629 boundary_block, 1 << blkbits);
630 }
631 } else {
0ea97180 632 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
1da177e4
LT
633 }
634 goto out;
635
636confused:
637 if (bio)
638 bio = mpage_bio_submit(WRITE, bio);
639
0ea97180
MS
640 if (mpd->use_writepage) {
641 ret = mapping->a_ops->writepage(page, wbc);
1da177e4 642 } else {
0ea97180 643 ret = -EAGAIN;
1da177e4
LT
644 goto out;
645 }
646 /*
647 * The caller has a ref on the inode, so *mapping is stable
648 */
0ea97180 649 mapping_set_error(mapping, ret);
1da177e4 650out:
0ea97180
MS
651 mpd->bio = bio;
652 return ret;
1da177e4
LT
653}
654
655/**
78a4a50a 656 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
1da177e4
LT
657 * @mapping: address space structure to write
658 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
659 * @get_block: the filesystem's block mapper function.
660 * If this is NULL then use a_ops->writepage. Otherwise, go
661 * direct-to-BIO.
662 *
663 * This is a library function, which implements the writepages()
664 * address_space_operation.
665 *
666 * If a page is already under I/O, generic_writepages() skips it, even
667 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
668 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
669 * and msync() need to guarantee that all the data which was dirty at the time
670 * the call was made get new I/O started against them. If wbc->sync_mode is
671 * WB_SYNC_ALL then we were called for data integrity and we must wait for
672 * existing IO to complete.
673 */
674int
675mpage_writepages(struct address_space *mapping,
676 struct writeback_control *wbc, get_block_t get_block)
1da177e4 677{
0ea97180
MS
678 int ret;
679
680 if (!get_block)
681 ret = generic_writepages(mapping, wbc);
682 else {
683 struct mpage_data mpd = {
684 .bio = NULL,
685 .last_block_in_bio = 0,
686 .get_block = get_block,
687 .use_writepage = 1,
688 };
689
690 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
691 if (mpd.bio)
692 mpage_bio_submit(WRITE, mpd.bio);
1da177e4 693 }
1da177e4
LT
694 return ret;
695}
696EXPORT_SYMBOL(mpage_writepages);
1da177e4
LT
697
698int mpage_writepage(struct page *page, get_block_t get_block,
699 struct writeback_control *wbc)
700{
0ea97180
MS
701 struct mpage_data mpd = {
702 .bio = NULL,
703 .last_block_in_bio = 0,
704 .get_block = get_block,
705 .use_writepage = 0,
706 };
707 int ret = __mpage_writepage(page, wbc, &mpd);
708 if (mpd.bio)
709 mpage_bio_submit(WRITE, mpd.bio);
1da177e4
LT
710 return ret;
711}
712EXPORT_SYMBOL(mpage_writepage);