]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/inode.c
[PATCH] inotify: misc cleanup
[net-next-2.6.git] / fs / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7#include <linux/config.h>
8#include <linux/fs.h>
9#include <linux/mm.h>
10#include <linux/dcache.h>
11#include <linux/init.h>
12#include <linux/quotaops.h>
13#include <linux/slab.h>
14#include <linux/writeback.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/wait.h>
18#include <linux/hash.h>
19#include <linux/swap.h>
20#include <linux/security.h>
21#include <linux/pagemap.h>
22#include <linux/cdev.h>
23#include <linux/bootmem.h>
0eeca283 24#include <linux/inotify.h>
1da177e4
LT
25
26/*
27 * This is needed for the following functions:
28 * - inode_has_buffers
29 * - invalidate_inode_buffers
1da177e4
LT
30 * - invalidate_bdev
31 *
32 * FIXME: remove all knowledge of the buffer layer from this file
33 */
34#include <linux/buffer_head.h>
35
36/*
37 * New inode.c implementation.
38 *
39 * This implementation has the basic premise of trying
40 * to be extremely low-overhead and SMP-safe, yet be
41 * simple enough to be "obviously correct".
42 *
43 * Famous last words.
44 */
45
46/* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47
48/* #define INODE_PARANOIA 1 */
49/* #define INODE_DEBUG 1 */
50
51/*
52 * Inode lookup is no longer as critical as it used to be:
53 * most of the lookups are going to be through the dcache.
54 */
55#define I_HASHBITS i_hash_shift
56#define I_HASHMASK i_hash_mask
57
58static unsigned int i_hash_mask;
59static unsigned int i_hash_shift;
60
61/*
62 * Each inode can be on two separate lists. One is
63 * the hash list of the inode, used for lookups. The
64 * other linked list is the "type" list:
65 * "in_use" - valid inode, i_count > 0, i_nlink > 0
66 * "dirty" - as "in_use" but also dirty
67 * "unused" - valid inode, i_count = 0
68 *
69 * A "dirty" list is maintained for each super block,
70 * allowing for low-overhead inode sync() operations.
71 */
72
73LIST_HEAD(inode_in_use);
74LIST_HEAD(inode_unused);
75static struct hlist_head *inode_hashtable;
76
77/*
78 * A simple spinlock to protect the list manipulations.
79 *
80 * NOTE! You also have to own the lock if you change
81 * the i_state of an inode while it is in use..
82 */
83DEFINE_SPINLOCK(inode_lock);
84
85/*
86 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
87 * icache shrinking path, and the umount path. Without this exclusion,
88 * by the time prune_icache calls iput for the inode whose pages it has
89 * been invalidating, or by the time it calls clear_inode & destroy_inode
90 * from its final dispose_list, the struct super_block they refer to
91 * (for inode->i_sb->s_op) may already have been freed and reused.
92 */
93DECLARE_MUTEX(iprune_sem);
94
95/*
96 * Statistics gathering..
97 */
98struct inodes_stat_t inodes_stat;
99
100static kmem_cache_t * inode_cachep;
101
102static struct inode *alloc_inode(struct super_block *sb)
103{
104 static struct address_space_operations empty_aops;
105 static struct inode_operations empty_iops;
106 static struct file_operations empty_fops;
107 struct inode *inode;
108
109 if (sb->s_op->alloc_inode)
110 inode = sb->s_op->alloc_inode(sb);
111 else
112 inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL);
113
114 if (inode) {
115 struct address_space * const mapping = &inode->i_data;
116
117 inode->i_sb = sb;
118 inode->i_blkbits = sb->s_blocksize_bits;
119 inode->i_flags = 0;
120 atomic_set(&inode->i_count, 1);
121 inode->i_op = &empty_iops;
122 inode->i_fop = &empty_fops;
123 inode->i_nlink = 1;
124 atomic_set(&inode->i_writecount, 0);
125 inode->i_size = 0;
126 inode->i_blocks = 0;
127 inode->i_bytes = 0;
128 inode->i_generation = 0;
129#ifdef CONFIG_QUOTA
130 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
131#endif
132 inode->i_pipe = NULL;
133 inode->i_bdev = NULL;
134 inode->i_cdev = NULL;
135 inode->i_rdev = 0;
136 inode->i_security = NULL;
137 inode->dirtied_when = 0;
138 if (security_inode_alloc(inode)) {
139 if (inode->i_sb->s_op->destroy_inode)
140 inode->i_sb->s_op->destroy_inode(inode);
141 else
142 kmem_cache_free(inode_cachep, (inode));
143 return NULL;
144 }
145
146 mapping->a_ops = &empty_aops;
147 mapping->host = inode;
148 mapping->flags = 0;
149 mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
150 mapping->assoc_mapping = NULL;
151 mapping->backing_dev_info = &default_backing_dev_info;
152
153 /*
154 * If the block_device provides a backing_dev_info for client
155 * inodes then use that. Otherwise the inode share the bdev's
156 * backing_dev_info.
157 */
158 if (sb->s_bdev) {
159 struct backing_dev_info *bdi;
160
161 bdi = sb->s_bdev->bd_inode_backing_dev_info;
162 if (!bdi)
163 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
164 mapping->backing_dev_info = bdi;
165 }
166 memset(&inode->u, 0, sizeof(inode->u));
167 inode->i_mapping = mapping;
168 }
169 return inode;
170}
171
172void destroy_inode(struct inode *inode)
173{
174 if (inode_has_buffers(inode))
175 BUG();
176 security_inode_free(inode);
177 if (inode->i_sb->s_op->destroy_inode)
178 inode->i_sb->s_op->destroy_inode(inode);
179 else
180 kmem_cache_free(inode_cachep, (inode));
181}
182
183
184/*
185 * These are initializations that only need to be done
186 * once, because the fields are idempotent across use
187 * of the inode, so let the slab aware of that.
188 */
189void inode_init_once(struct inode *inode)
190{
191 memset(inode, 0, sizeof(*inode));
192 INIT_HLIST_NODE(&inode->i_hash);
193 INIT_LIST_HEAD(&inode->i_dentry);
194 INIT_LIST_HEAD(&inode->i_devices);
195 sema_init(&inode->i_sem, 1);
196 init_rwsem(&inode->i_alloc_sem);
197 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
198 rwlock_init(&inode->i_data.tree_lock);
199 spin_lock_init(&inode->i_data.i_mmap_lock);
200 INIT_LIST_HEAD(&inode->i_data.private_list);
201 spin_lock_init(&inode->i_data.private_lock);
202 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
203 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
204 spin_lock_init(&inode->i_lock);
205 i_size_ordered_init(inode);
0eeca283
RL
206#ifdef CONFIG_INOTIFY
207 INIT_LIST_HEAD(&inode->inotify_watches);
208 sema_init(&inode->inotify_sem, 1);
209#endif
1da177e4
LT
210}
211
212EXPORT_SYMBOL(inode_init_once);
213
214static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
215{
216 struct inode * inode = (struct inode *) foo;
217
218 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
219 SLAB_CTOR_CONSTRUCTOR)
220 inode_init_once(inode);
221}
222
223/*
224 * inode_lock must be held
225 */
226void __iget(struct inode * inode)
227{
228 if (atomic_read(&inode->i_count)) {
229 atomic_inc(&inode->i_count);
230 return;
231 }
232 atomic_inc(&inode->i_count);
233 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
234 list_move(&inode->i_list, &inode_in_use);
235 inodes_stat.nr_unused--;
236}
237
238/**
239 * clear_inode - clear an inode
240 * @inode: inode to clear
241 *
242 * This is called by the filesystem to tell us
243 * that the inode is no longer useful. We just
244 * terminate it with extreme prejudice.
245 */
246void clear_inode(struct inode *inode)
247{
248 might_sleep();
249 invalidate_inode_buffers(inode);
250
251 if (inode->i_data.nrpages)
252 BUG();
253 if (!(inode->i_state & I_FREEING))
254 BUG();
255 if (inode->i_state & I_CLEAR)
256 BUG();
257 wait_on_inode(inode);
258 DQUOT_DROP(inode);
259 if (inode->i_sb && inode->i_sb->s_op->clear_inode)
260 inode->i_sb->s_op->clear_inode(inode);
261 if (inode->i_bdev)
262 bd_forget(inode);
263 if (inode->i_cdev)
264 cd_forget(inode);
265 inode->i_state = I_CLEAR;
266}
267
268EXPORT_SYMBOL(clear_inode);
269
270/*
271 * dispose_list - dispose of the contents of a local list
272 * @head: the head of the list to free
273 *
274 * Dispose-list gets a local list with local inodes in it, so it doesn't
275 * need to worry about list corruption and SMP locks.
276 */
277static void dispose_list(struct list_head *head)
278{
279 int nr_disposed = 0;
280
281 while (!list_empty(head)) {
282 struct inode *inode;
283
284 inode = list_entry(head->next, struct inode, i_list);
285 list_del(&inode->i_list);
286
287 if (inode->i_data.nrpages)
288 truncate_inode_pages(&inode->i_data, 0);
289 clear_inode(inode);
4120db47
AB
290
291 spin_lock(&inode_lock);
292 hlist_del_init(&inode->i_hash);
293 list_del_init(&inode->i_sb_list);
294 spin_unlock(&inode_lock);
295
296 wake_up_inode(inode);
1da177e4
LT
297 destroy_inode(inode);
298 nr_disposed++;
299 }
300 spin_lock(&inode_lock);
301 inodes_stat.nr_inodes -= nr_disposed;
302 spin_unlock(&inode_lock);
303}
304
305/*
306 * Invalidate all inodes for a device.
307 */
308static int invalidate_list(struct list_head *head, struct list_head *dispose)
309{
310 struct list_head *next;
311 int busy = 0, count = 0;
312
313 next = head->next;
314 for (;;) {
315 struct list_head * tmp = next;
316 struct inode * inode;
317
318 /*
319 * We can reschedule here without worrying about the list's
320 * consistency because the per-sb list of inodes must not
321 * change during umount anymore, and because iprune_sem keeps
322 * shrink_icache_memory() away.
323 */
324 cond_resched_lock(&inode_lock);
325
326 next = next->next;
327 if (tmp == head)
328 break;
329 inode = list_entry(tmp, struct inode, i_sb_list);
330 invalidate_inode_buffers(inode);
331 if (!atomic_read(&inode->i_count)) {
1da177e4
LT
332 list_move(&inode->i_list, dispose);
333 inode->i_state |= I_FREEING;
334 count++;
335 continue;
336 }
337 busy = 1;
338 }
339 /* only unused inodes may be cached with i_count zero */
340 inodes_stat.nr_unused -= count;
341 return busy;
342}
343
1da177e4
LT
344/**
345 * invalidate_inodes - discard the inodes on a device
346 * @sb: superblock
347 *
348 * Discard all of the inodes for a given superblock. If the discard
349 * fails because there are busy inodes then a non zero value is returned.
350 * If the discard is successful all the inodes have been discarded.
351 */
352int invalidate_inodes(struct super_block * sb)
353{
354 int busy;
355 LIST_HEAD(throw_away);
356
357 down(&iprune_sem);
358 spin_lock(&inode_lock);
0eeca283 359 inotify_unmount_inodes(&sb->s_inodes);
1da177e4
LT
360 busy = invalidate_list(&sb->s_inodes, &throw_away);
361 spin_unlock(&inode_lock);
362
363 dispose_list(&throw_away);
364 up(&iprune_sem);
365
366 return busy;
367}
368
369EXPORT_SYMBOL(invalidate_inodes);
370
2ef41634 371int __invalidate_device(struct block_device *bdev)
1da177e4 372{
2ef41634
CH
373 struct super_block *sb = get_super(bdev);
374 int res = 0;
1da177e4 375
1da177e4
LT
376 if (sb) {
377 /*
378 * no need to lock the super, get_super holds the
379 * read semaphore so the filesystem cannot go away
380 * under us (->put_super runs with the write lock
381 * hold).
382 */
383 shrink_dcache_sb(sb);
384 res = invalidate_inodes(sb);
385 drop_super(sb);
386 }
387 invalidate_bdev(bdev, 0);
388 return res;
389}
1da177e4
LT
390EXPORT_SYMBOL(__invalidate_device);
391
392static int can_unuse(struct inode *inode)
393{
394 if (inode->i_state)
395 return 0;
396 if (inode_has_buffers(inode))
397 return 0;
398 if (atomic_read(&inode->i_count))
399 return 0;
400 if (inode->i_data.nrpages)
401 return 0;
402 return 1;
403}
404
405/*
406 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
407 * a temporary list and then are freed outside inode_lock by dispose_list().
408 *
409 * Any inodes which are pinned purely because of attached pagecache have their
410 * pagecache removed. We expect the final iput() on that inode to add it to
411 * the front of the inode_unused list. So look for it there and if the
412 * inode is still freeable, proceed. The right inode is found 99.9% of the
413 * time in testing on a 4-way.
414 *
415 * If the inode has metadata buffers attached to mapping->private_list then
416 * try to remove them.
417 */
418static void prune_icache(int nr_to_scan)
419{
420 LIST_HEAD(freeable);
421 int nr_pruned = 0;
422 int nr_scanned;
423 unsigned long reap = 0;
424
425 down(&iprune_sem);
426 spin_lock(&inode_lock);
427 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
428 struct inode *inode;
429
430 if (list_empty(&inode_unused))
431 break;
432
433 inode = list_entry(inode_unused.prev, struct inode, i_list);
434
435 if (inode->i_state || atomic_read(&inode->i_count)) {
436 list_move(&inode->i_list, &inode_unused);
437 continue;
438 }
439 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
440 __iget(inode);
441 spin_unlock(&inode_lock);
442 if (remove_inode_buffers(inode))
443 reap += invalidate_inode_pages(&inode->i_data);
444 iput(inode);
445 spin_lock(&inode_lock);
446
447 if (inode != list_entry(inode_unused.next,
448 struct inode, i_list))
449 continue; /* wrong inode or list_empty */
450 if (!can_unuse(inode))
451 continue;
452 }
1da177e4
LT
453 list_move(&inode->i_list, &freeable);
454 inode->i_state |= I_FREEING;
455 nr_pruned++;
456 }
457 inodes_stat.nr_unused -= nr_pruned;
458 spin_unlock(&inode_lock);
459
460 dispose_list(&freeable);
461 up(&iprune_sem);
462
463 if (current_is_kswapd())
464 mod_page_state(kswapd_inodesteal, reap);
465 else
466 mod_page_state(pginodesteal, reap);
467}
468
469/*
470 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
471 * "unused" means that no dentries are referring to the inodes: the files are
472 * not open and the dcache references to those inodes have already been
473 * reclaimed.
474 *
475 * This function is passed the number of inodes to scan, and it returns the
476 * total number of remaining possibly-reclaimable inodes.
477 */
478static int shrink_icache_memory(int nr, unsigned int gfp_mask)
479{
480 if (nr) {
481 /*
482 * Nasty deadlock avoidance. We may hold various FS locks,
483 * and we don't want to recurse into the FS that called us
484 * in clear_inode() and friends..
485 */
486 if (!(gfp_mask & __GFP_FS))
487 return -1;
488 prune_icache(nr);
489 }
490 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
491}
492
493static void __wait_on_freeing_inode(struct inode *inode);
494/*
495 * Called with the inode lock held.
496 * NOTE: we are not increasing the inode-refcount, you must call __iget()
497 * by hand after calling find_inode now! This simplifies iunique and won't
498 * add any additional branch in the common code.
499 */
500static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
501{
502 struct hlist_node *node;
503 struct inode * inode = NULL;
504
505repeat:
506 hlist_for_each (node, head) {
507 inode = hlist_entry(node, struct inode, i_hash);
508 if (inode->i_sb != sb)
509 continue;
510 if (!test(inode, data))
511 continue;
991114c6 512 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
1da177e4
LT
513 __wait_on_freeing_inode(inode);
514 goto repeat;
515 }
516 break;
517 }
518 return node ? inode : NULL;
519}
520
521/*
522 * find_inode_fast is the fast path version of find_inode, see the comment at
523 * iget_locked for details.
524 */
525static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
526{
527 struct hlist_node *node;
528 struct inode * inode = NULL;
529
530repeat:
531 hlist_for_each (node, head) {
532 inode = hlist_entry(node, struct inode, i_hash);
533 if (inode->i_ino != ino)
534 continue;
535 if (inode->i_sb != sb)
536 continue;
991114c6 537 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
1da177e4
LT
538 __wait_on_freeing_inode(inode);
539 goto repeat;
540 }
541 break;
542 }
543 return node ? inode : NULL;
544}
545
546/**
547 * new_inode - obtain an inode
548 * @sb: superblock
549 *
550 * Allocates a new inode for given superblock.
551 */
552struct inode *new_inode(struct super_block *sb)
553{
554 static unsigned long last_ino;
555 struct inode * inode;
556
557 spin_lock_prefetch(&inode_lock);
558
559 inode = alloc_inode(sb);
560 if (inode) {
561 spin_lock(&inode_lock);
562 inodes_stat.nr_inodes++;
563 list_add(&inode->i_list, &inode_in_use);
564 list_add(&inode->i_sb_list, &sb->s_inodes);
565 inode->i_ino = ++last_ino;
566 inode->i_state = 0;
567 spin_unlock(&inode_lock);
568 }
569 return inode;
570}
571
572EXPORT_SYMBOL(new_inode);
573
574void unlock_new_inode(struct inode *inode)
575{
576 /*
577 * This is special! We do not need the spinlock
578 * when clearing I_LOCK, because we're guaranteed
579 * that nobody else tries to do anything about the
580 * state of the inode when it is locked, as we
581 * just created it (so there can be no old holders
582 * that haven't tested I_LOCK).
583 */
584 inode->i_state &= ~(I_LOCK|I_NEW);
585 wake_up_inode(inode);
586}
587
588EXPORT_SYMBOL(unlock_new_inode);
589
590/*
591 * This is called without the inode lock held.. Be careful.
592 *
593 * We no longer cache the sb_flags in i_flags - see fs.h
594 * -- rmk@arm.uk.linux.org
595 */
596static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
597{
598 struct inode * inode;
599
600 inode = alloc_inode(sb);
601 if (inode) {
602 struct inode * old;
603
604 spin_lock(&inode_lock);
605 /* We released the lock, so.. */
606 old = find_inode(sb, head, test, data);
607 if (!old) {
608 if (set(inode, data))
609 goto set_failed;
610
611 inodes_stat.nr_inodes++;
612 list_add(&inode->i_list, &inode_in_use);
613 list_add(&inode->i_sb_list, &sb->s_inodes);
614 hlist_add_head(&inode->i_hash, head);
615 inode->i_state = I_LOCK|I_NEW;
616 spin_unlock(&inode_lock);
617
618 /* Return the locked inode with I_NEW set, the
619 * caller is responsible for filling in the contents
620 */
621 return inode;
622 }
623
624 /*
625 * Uhhuh, somebody else created the same inode under
626 * us. Use the old inode instead of the one we just
627 * allocated.
628 */
629 __iget(old);
630 spin_unlock(&inode_lock);
631 destroy_inode(inode);
632 inode = old;
633 wait_on_inode(inode);
634 }
635 return inode;
636
637set_failed:
638 spin_unlock(&inode_lock);
639 destroy_inode(inode);
640 return NULL;
641}
642
643/*
644 * get_new_inode_fast is the fast path version of get_new_inode, see the
645 * comment at iget_locked for details.
646 */
647static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
648{
649 struct inode * inode;
650
651 inode = alloc_inode(sb);
652 if (inode) {
653 struct inode * old;
654
655 spin_lock(&inode_lock);
656 /* We released the lock, so.. */
657 old = find_inode_fast(sb, head, ino);
658 if (!old) {
659 inode->i_ino = ino;
660 inodes_stat.nr_inodes++;
661 list_add(&inode->i_list, &inode_in_use);
662 list_add(&inode->i_sb_list, &sb->s_inodes);
663 hlist_add_head(&inode->i_hash, head);
664 inode->i_state = I_LOCK|I_NEW;
665 spin_unlock(&inode_lock);
666
667 /* Return the locked inode with I_NEW set, the
668 * caller is responsible for filling in the contents
669 */
670 return inode;
671 }
672
673 /*
674 * Uhhuh, somebody else created the same inode under
675 * us. Use the old inode instead of the one we just
676 * allocated.
677 */
678 __iget(old);
679 spin_unlock(&inode_lock);
680 destroy_inode(inode);
681 inode = old;
682 wait_on_inode(inode);
683 }
684 return inode;
685}
686
687static inline unsigned long hash(struct super_block *sb, unsigned long hashval)
688{
689 unsigned long tmp;
690
691 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
692 L1_CACHE_BYTES;
693 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
694 return tmp & I_HASHMASK;
695}
696
697/**
698 * iunique - get a unique inode number
699 * @sb: superblock
700 * @max_reserved: highest reserved inode number
701 *
702 * Obtain an inode number that is unique on the system for a given
703 * superblock. This is used by file systems that have no natural
704 * permanent inode numbering system. An inode number is returned that
705 * is higher than the reserved limit but unique.
706 *
707 * BUGS:
708 * With a large number of inodes live on the file system this function
709 * currently becomes quite slow.
710 */
711ino_t iunique(struct super_block *sb, ino_t max_reserved)
712{
713 static ino_t counter;
714 struct inode *inode;
715 struct hlist_head * head;
716 ino_t res;
717 spin_lock(&inode_lock);
718retry:
719 if (counter > max_reserved) {
720 head = inode_hashtable + hash(sb,counter);
721 res = counter++;
722 inode = find_inode_fast(sb, head, res);
723 if (!inode) {
724 spin_unlock(&inode_lock);
725 return res;
726 }
727 } else {
728 counter = max_reserved + 1;
729 }
730 goto retry;
731
732}
733
734EXPORT_SYMBOL(iunique);
735
736struct inode *igrab(struct inode *inode)
737{
738 spin_lock(&inode_lock);
991114c6 739 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
1da177e4
LT
740 __iget(inode);
741 else
742 /*
743 * Handle the case where s_op->clear_inode is not been
744 * called yet, and somebody is calling igrab
745 * while the inode is getting freed.
746 */
747 inode = NULL;
748 spin_unlock(&inode_lock);
749 return inode;
750}
751
752EXPORT_SYMBOL(igrab);
753
754/**
755 * ifind - internal function, you want ilookup5() or iget5().
756 * @sb: super block of file system to search
757 * @head: the head of the list to search
758 * @test: callback used for comparisons between inodes
759 * @data: opaque data pointer to pass to @test
760 *
761 * ifind() searches for the inode specified by @data in the inode
762 * cache. This is a generalized version of ifind_fast() for file systems where
763 * the inode number is not sufficient for unique identification of an inode.
764 *
765 * If the inode is in the cache, the inode is returned with an incremented
766 * reference count.
767 *
768 * Otherwise NULL is returned.
769 *
770 * Note, @test is called with the inode_lock held, so can't sleep.
771 */
772static inline struct inode *ifind(struct super_block *sb,
773 struct hlist_head *head, int (*test)(struct inode *, void *),
774 void *data)
775{
776 struct inode *inode;
777
778 spin_lock(&inode_lock);
779 inode = find_inode(sb, head, test, data);
780 if (inode) {
781 __iget(inode);
782 spin_unlock(&inode_lock);
783 wait_on_inode(inode);
784 return inode;
785 }
786 spin_unlock(&inode_lock);
787 return NULL;
788}
789
790/**
791 * ifind_fast - internal function, you want ilookup() or iget().
792 * @sb: super block of file system to search
793 * @head: head of the list to search
794 * @ino: inode number to search for
795 *
796 * ifind_fast() searches for the inode @ino in the inode cache. This is for
797 * file systems where the inode number is sufficient for unique identification
798 * of an inode.
799 *
800 * If the inode is in the cache, the inode is returned with an incremented
801 * reference count.
802 *
803 * Otherwise NULL is returned.
804 */
805static inline struct inode *ifind_fast(struct super_block *sb,
806 struct hlist_head *head, unsigned long ino)
807{
808 struct inode *inode;
809
810 spin_lock(&inode_lock);
811 inode = find_inode_fast(sb, head, ino);
812 if (inode) {
813 __iget(inode);
814 spin_unlock(&inode_lock);
815 wait_on_inode(inode);
816 return inode;
817 }
818 spin_unlock(&inode_lock);
819 return NULL;
820}
821
822/**
823 * ilookup5 - search for an inode in the inode cache
824 * @sb: super block of file system to search
825 * @hashval: hash value (usually inode number) to search for
826 * @test: callback used for comparisons between inodes
827 * @data: opaque data pointer to pass to @test
828 *
829 * ilookup5() uses ifind() to search for the inode specified by @hashval and
830 * @data in the inode cache. This is a generalized version of ilookup() for
831 * file systems where the inode number is not sufficient for unique
832 * identification of an inode.
833 *
834 * If the inode is in the cache, the inode is returned with an incremented
835 * reference count.
836 *
837 * Otherwise NULL is returned.
838 *
839 * Note, @test is called with the inode_lock held, so can't sleep.
840 */
841struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
842 int (*test)(struct inode *, void *), void *data)
843{
844 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
845
846 return ifind(sb, head, test, data);
847}
848
849EXPORT_SYMBOL(ilookup5);
850
851/**
852 * ilookup - search for an inode in the inode cache
853 * @sb: super block of file system to search
854 * @ino: inode number to search for
855 *
856 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
857 * This is for file systems where the inode number is sufficient for unique
858 * identification of an inode.
859 *
860 * If the inode is in the cache, the inode is returned with an incremented
861 * reference count.
862 *
863 * Otherwise NULL is returned.
864 */
865struct inode *ilookup(struct super_block *sb, unsigned long ino)
866{
867 struct hlist_head *head = inode_hashtable + hash(sb, ino);
868
869 return ifind_fast(sb, head, ino);
870}
871
872EXPORT_SYMBOL(ilookup);
873
874/**
875 * iget5_locked - obtain an inode from a mounted file system
876 * @sb: super block of file system
877 * @hashval: hash value (usually inode number) to get
878 * @test: callback used for comparisons between inodes
879 * @set: callback used to initialize a new struct inode
880 * @data: opaque data pointer to pass to @test and @set
881 *
882 * This is iget() without the read_inode() portion of get_new_inode().
883 *
884 * iget5_locked() uses ifind() to search for the inode specified by @hashval
885 * and @data in the inode cache and if present it is returned with an increased
886 * reference count. This is a generalized version of iget_locked() for file
887 * systems where the inode number is not sufficient for unique identification
888 * of an inode.
889 *
890 * If the inode is not in cache, get_new_inode() is called to allocate a new
891 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
892 * file system gets to fill it in before unlocking it via unlock_new_inode().
893 *
894 * Note both @test and @set are called with the inode_lock held, so can't sleep.
895 */
896struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
897 int (*test)(struct inode *, void *),
898 int (*set)(struct inode *, void *), void *data)
899{
900 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
901 struct inode *inode;
902
903 inode = ifind(sb, head, test, data);
904 if (inode)
905 return inode;
906 /*
907 * get_new_inode() will do the right thing, re-trying the search
908 * in case it had to block at any point.
909 */
910 return get_new_inode(sb, head, test, set, data);
911}
912
913EXPORT_SYMBOL(iget5_locked);
914
915/**
916 * iget_locked - obtain an inode from a mounted file system
917 * @sb: super block of file system
918 * @ino: inode number to get
919 *
920 * This is iget() without the read_inode() portion of get_new_inode_fast().
921 *
922 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
923 * the inode cache and if present it is returned with an increased reference
924 * count. This is for file systems where the inode number is sufficient for
925 * unique identification of an inode.
926 *
927 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
928 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
929 * The file system gets to fill it in before unlocking it via
930 * unlock_new_inode().
931 */
932struct inode *iget_locked(struct super_block *sb, unsigned long ino)
933{
934 struct hlist_head *head = inode_hashtable + hash(sb, ino);
935 struct inode *inode;
936
937 inode = ifind_fast(sb, head, ino);
938 if (inode)
939 return inode;
940 /*
941 * get_new_inode_fast() will do the right thing, re-trying the search
942 * in case it had to block at any point.
943 */
944 return get_new_inode_fast(sb, head, ino);
945}
946
947EXPORT_SYMBOL(iget_locked);
948
949/**
950 * __insert_inode_hash - hash an inode
951 * @inode: unhashed inode
952 * @hashval: unsigned long value used to locate this object in the
953 * inode_hashtable.
954 *
955 * Add an inode to the inode hash for this superblock.
956 */
957void __insert_inode_hash(struct inode *inode, unsigned long hashval)
958{
959 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
960 spin_lock(&inode_lock);
961 hlist_add_head(&inode->i_hash, head);
962 spin_unlock(&inode_lock);
963}
964
965EXPORT_SYMBOL(__insert_inode_hash);
966
967/**
968 * remove_inode_hash - remove an inode from the hash
969 * @inode: inode to unhash
970 *
971 * Remove an inode from the superblock.
972 */
973void remove_inode_hash(struct inode *inode)
974{
975 spin_lock(&inode_lock);
976 hlist_del_init(&inode->i_hash);
977 spin_unlock(&inode_lock);
978}
979
980EXPORT_SYMBOL(remove_inode_hash);
981
982/*
983 * Tell the filesystem that this inode is no longer of any interest and should
984 * be completely destroyed.
985 *
986 * We leave the inode in the inode hash table until *after* the filesystem's
987 * ->delete_inode completes. This ensures that an iget (such as nfsd might
988 * instigate) will always find up-to-date information either in the hash or on
989 * disk.
990 *
991 * I_FREEING is set so that no-one will take a new reference to the inode while
992 * it is being deleted.
993 */
994void generic_delete_inode(struct inode *inode)
995{
996 struct super_operations *op = inode->i_sb->s_op;
997
998 list_del_init(&inode->i_list);
999 list_del_init(&inode->i_sb_list);
1000 inode->i_state|=I_FREEING;
1001 inodes_stat.nr_inodes--;
1002 spin_unlock(&inode_lock);
1003
1004 if (inode->i_data.nrpages)
1005 truncate_inode_pages(&inode->i_data, 0);
1006
1007 security_inode_delete(inode);
1008
1009 if (op->delete_inode) {
1010 void (*delete)(struct inode *) = op->delete_inode;
1011 if (!is_bad_inode(inode))
1012 DQUOT_INIT(inode);
1013 /* s_op->delete_inode internally recalls clear_inode() */
1014 delete(inode);
1015 } else
1016 clear_inode(inode);
1017 spin_lock(&inode_lock);
1018 hlist_del_init(&inode->i_hash);
1019 spin_unlock(&inode_lock);
1020 wake_up_inode(inode);
1021 if (inode->i_state != I_CLEAR)
1022 BUG();
1023 destroy_inode(inode);
1024}
1025
1026EXPORT_SYMBOL(generic_delete_inode);
1027
1028static void generic_forget_inode(struct inode *inode)
1029{
1030 struct super_block *sb = inode->i_sb;
1031
1032 if (!hlist_unhashed(&inode->i_hash)) {
1033 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1034 list_move(&inode->i_list, &inode_unused);
1035 inodes_stat.nr_unused++;
991114c6
AV
1036 if (!sb || (sb->s_flags & MS_ACTIVE)) {
1037 spin_unlock(&inode_lock);
1da177e4 1038 return;
991114c6
AV
1039 }
1040 inode->i_state |= I_WILL_FREE;
1041 spin_unlock(&inode_lock);
1da177e4
LT
1042 write_inode_now(inode, 1);
1043 spin_lock(&inode_lock);
991114c6 1044 inode->i_state &= ~I_WILL_FREE;
1da177e4
LT
1045 inodes_stat.nr_unused--;
1046 hlist_del_init(&inode->i_hash);
1047 }
1048 list_del_init(&inode->i_list);
1049 list_del_init(&inode->i_sb_list);
991114c6 1050 inode->i_state |= I_FREEING;
1da177e4
LT
1051 inodes_stat.nr_inodes--;
1052 spin_unlock(&inode_lock);
1053 if (inode->i_data.nrpages)
1054 truncate_inode_pages(&inode->i_data, 0);
1055 clear_inode(inode);
1056 destroy_inode(inode);
1057}
1058
1059/*
1060 * Normal UNIX filesystem behaviour: delete the
1061 * inode when the usage count drops to zero, and
1062 * i_nlink is zero.
1063 */
cb2c0233 1064void generic_drop_inode(struct inode *inode)
1da177e4
LT
1065{
1066 if (!inode->i_nlink)
1067 generic_delete_inode(inode);
1068 else
1069 generic_forget_inode(inode);
1070}
1071
cb2c0233
MF
1072EXPORT_SYMBOL_GPL(generic_drop_inode);
1073
1da177e4
LT
1074/*
1075 * Called when we're dropping the last reference
1076 * to an inode.
1077 *
1078 * Call the FS "drop()" function, defaulting to
1079 * the legacy UNIX filesystem behaviour..
1080 *
1081 * NOTE! NOTE! NOTE! We're called with the inode lock
1082 * held, and the drop function is supposed to release
1083 * the lock!
1084 */
1085static inline void iput_final(struct inode *inode)
1086{
1087 struct super_operations *op = inode->i_sb->s_op;
1088 void (*drop)(struct inode *) = generic_drop_inode;
1089
1090 if (op && op->drop_inode)
1091 drop = op->drop_inode;
1092 drop(inode);
1093}
1094
1095/**
1096 * iput - put an inode
1097 * @inode: inode to put
1098 *
1099 * Puts an inode, dropping its usage count. If the inode use count hits
1100 * zero, the inode is then freed and may also be destroyed.
1101 *
1102 * Consequently, iput() can sleep.
1103 */
1104void iput(struct inode *inode)
1105{
1106 if (inode) {
1107 struct super_operations *op = inode->i_sb->s_op;
1108
1109 BUG_ON(inode->i_state == I_CLEAR);
1110
1111 if (op && op->put_inode)
1112 op->put_inode(inode);
1113
1114 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1115 iput_final(inode);
1116 }
1117}
1118
1119EXPORT_SYMBOL(iput);
1120
1121/**
1122 * bmap - find a block number in a file
1123 * @inode: inode of file
1124 * @block: block to find
1125 *
1126 * Returns the block number on the device holding the inode that
1127 * is the disk block number for the block of the file requested.
1128 * That is, asked for block 4 of inode 1 the function will return the
1129 * disk block relative to the disk start that holds that block of the
1130 * file.
1131 */
1132sector_t bmap(struct inode * inode, sector_t block)
1133{
1134 sector_t res = 0;
1135 if (inode->i_mapping->a_ops->bmap)
1136 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1137 return res;
1138}
1139
1140EXPORT_SYMBOL(bmap);
1141
1142/**
1143 * update_atime - update the access time
1144 * @inode: inode accessed
1145 *
1146 * Update the accessed time on an inode and mark it for writeback.
1147 * This function automatically handles read only file systems and media,
1148 * as well as the "noatime" flag and inode specific "noatime" markers.
1149 */
1150void update_atime(struct inode *inode)
1151{
1152 struct timespec now;
1153
1154 if (IS_NOATIME(inode))
1155 return;
1156 if (IS_NODIRATIME(inode) && S_ISDIR(inode->i_mode))
1157 return;
1158 if (IS_RDONLY(inode))
1159 return;
1160
1161 now = current_fs_time(inode->i_sb);
1162 if (!timespec_equal(&inode->i_atime, &now)) {
1163 inode->i_atime = now;
1164 mark_inode_dirty_sync(inode);
1165 } else {
1166 if (!timespec_equal(&inode->i_atime, &now))
1167 inode->i_atime = now;
1168 }
1169}
1170
1171EXPORT_SYMBOL(update_atime);
1172
1173/**
1174 * inode_update_time - update mtime and ctime time
1175 * @inode: inode accessed
1176 * @ctime_too: update ctime too
1177 *
1178 * Update the mtime time on an inode and mark it for writeback.
1179 * When ctime_too is specified update the ctime too.
1180 */
1181
1182void inode_update_time(struct inode *inode, int ctime_too)
1183{
1184 struct timespec now;
1185 int sync_it = 0;
1186
1187 if (IS_NOCMTIME(inode))
1188 return;
1189 if (IS_RDONLY(inode))
1190 return;
1191
1192 now = current_fs_time(inode->i_sb);
1193 if (!timespec_equal(&inode->i_mtime, &now))
1194 sync_it = 1;
1195 inode->i_mtime = now;
1196
1197 if (ctime_too) {
1198 if (!timespec_equal(&inode->i_ctime, &now))
1199 sync_it = 1;
1200 inode->i_ctime = now;
1201 }
1202 if (sync_it)
1203 mark_inode_dirty_sync(inode);
1204}
1205
1206EXPORT_SYMBOL(inode_update_time);
1207
1208int inode_needs_sync(struct inode *inode)
1209{
1210 if (IS_SYNC(inode))
1211 return 1;
1212 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1213 return 1;
1214 return 0;
1215}
1216
1217EXPORT_SYMBOL(inode_needs_sync);
1218
1219/*
1220 * Quota functions that want to walk the inode lists..
1221 */
1222#ifdef CONFIG_QUOTA
1223
1224/* Function back in dquot.c */
1225int remove_inode_dquot_ref(struct inode *, int, struct list_head *);
1226
1227void remove_dquot_ref(struct super_block *sb, int type,
1228 struct list_head *tofree_head)
1229{
1230 struct inode *inode;
1231
1232 if (!sb->dq_op)
1233 return; /* nothing to do */
1234 spin_lock(&inode_lock); /* This lock is for inodes code */
1235
1236 /*
1237 * We don't have to lock against quota code - test IS_QUOTAINIT is
1238 * just for speedup...
1239 */
1240 list_for_each_entry(inode, &sb->s_inodes, i_sb_list)
1241 if (!IS_NOQUOTA(inode))
1242 remove_inode_dquot_ref(inode, type, tofree_head);
1243
1244 spin_unlock(&inode_lock);
1245}
1246
1247#endif
1248
1249int inode_wait(void *word)
1250{
1251 schedule();
1252 return 0;
1253}
1254
1255/*
168a9fd6
MS
1256 * If we try to find an inode in the inode hash while it is being
1257 * deleted, we have to wait until the filesystem completes its
1258 * deletion before reporting that it isn't found. This function waits
1259 * until the deletion _might_ have completed. Callers are responsible
1260 * to recheck inode state.
1261 *
1262 * It doesn't matter if I_LOCK is not set initially, a call to
1263 * wake_up_inode() after removing from the hash list will DTRT.
1264 *
1da177e4
LT
1265 * This is called with inode_lock held.
1266 */
1267static void __wait_on_freeing_inode(struct inode *inode)
1268{
1269 wait_queue_head_t *wq;
1270 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1da177e4
LT
1271 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1272 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1273 spin_unlock(&inode_lock);
1274 schedule();
1275 finish_wait(wq, &wait.wait);
1276 spin_lock(&inode_lock);
1277}
1278
1279void wake_up_inode(struct inode *inode)
1280{
1281 /*
1282 * Prevent speculative execution through spin_unlock(&inode_lock);
1283 */
1284 smp_mb();
1285 wake_up_bit(&inode->i_state, __I_LOCK);
1286}
1287
1288static __initdata unsigned long ihash_entries;
1289static int __init set_ihash_entries(char *str)
1290{
1291 if (!str)
1292 return 0;
1293 ihash_entries = simple_strtoul(str, &str, 0);
1294 return 1;
1295}
1296__setup("ihash_entries=", set_ihash_entries);
1297
1298/*
1299 * Initialize the waitqueues and inode hash table.
1300 */
1301void __init inode_init_early(void)
1302{
1303 int loop;
1304
1305 /* If hashes are distributed across NUMA nodes, defer
1306 * hash allocation until vmalloc space is available.
1307 */
1308 if (hashdist)
1309 return;
1310
1311 inode_hashtable =
1312 alloc_large_system_hash("Inode-cache",
1313 sizeof(struct hlist_head),
1314 ihash_entries,
1315 14,
1316 HASH_EARLY,
1317 &i_hash_shift,
1318 &i_hash_mask,
1319 0);
1320
1321 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1322 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1323}
1324
1325void __init inode_init(unsigned long mempages)
1326{
1327 int loop;
1328
1329 /* inode slab cache */
1330 inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode),
e422fd2c 1331 0, SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_once, NULL);
1da177e4
LT
1332 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1333
1334 /* Hash may have been set up in inode_init_early */
1335 if (!hashdist)
1336 return;
1337
1338 inode_hashtable =
1339 alloc_large_system_hash("Inode-cache",
1340 sizeof(struct hlist_head),
1341 ihash_entries,
1342 14,
1343 0,
1344 &i_hash_shift,
1345 &i_hash_mask,
1346 0);
1347
1348 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1349 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1350}
1351
1352void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1353{
1354 inode->i_mode = mode;
1355 if (S_ISCHR(mode)) {
1356 inode->i_fop = &def_chr_fops;
1357 inode->i_rdev = rdev;
1358 } else if (S_ISBLK(mode)) {
1359 inode->i_fop = &def_blk_fops;
1360 inode->i_rdev = rdev;
1361 } else if (S_ISFIFO(mode))
1362 inode->i_fop = &def_fifo_fops;
1363 else if (S_ISSOCK(mode))
1364 inode->i_fop = &bad_sock_fops;
1365 else
1366 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1367 mode);
1368}
1369EXPORT_SYMBOL(init_special_inode);