]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/fsync.c
xps: Transmit Packet Steering
[net-next-2.6.git] / fs / ext4 / fsync.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/fsync.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1993 Stephen Tweedie (sct@redhat.com)
5 * from
6 * Copyright (C) 1992 Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 * from
10 * linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
11 *
617ba13b 12 * ext4fs fsync primitive
ac27a0ec
DK
13 *
14 * Big-endian to little-endian byte-swapping/bitmaps by
15 * David S. Miller (davem@caip.rutgers.edu), 1995
16 *
17 * Removed unnecessary code duplication for little endian machines
18 * and excessive __inline__s.
19 * Andi Kleen, 1997
20 *
21 * Major simplications and cleanup - we only need to do the metadata, because
22 * we can depend on generic_block_fdatasync() to sync the data blocks.
23 */
24
25#include <linux/time.h>
26#include <linux/fs.h>
27#include <linux/sched.h>
28#include <linux/writeback.h>
dab291af 29#include <linux/jbd2.h>
d755fb38 30#include <linux/blkdev.h>
9bffad1e 31
3dcf5451
CH
32#include "ext4.h"
33#include "ext4_jbd2.h"
ac27a0ec 34
9bffad1e
TT
35#include <trace/events/ext4.h>
36
4a873a47
TT
37static void dump_completed_IO(struct inode * inode)
38{
39#ifdef EXT4_DEBUG
40 struct list_head *cur, *before, *after;
41 ext4_io_end_t *io, *io0, *io1;
42 unsigned long flags;
43
44 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
45 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
46 return;
47 }
48
49 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
50 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
51 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
52 cur = &io->list;
53 before = cur->prev;
54 io0 = container_of(before, ext4_io_end_t, list);
55 after = cur->next;
56 io1 = container_of(after, ext4_io_end_t, list);
57
58 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
59 io, inode->i_ino, io0, io1);
60 }
61 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
62#endif
63}
64
65/*
66 * This function is called from ext4_sync_file().
67 *
68 * When IO is completed, the work to convert unwritten extents to
69 * written is queued on workqueue but may not get immediately
70 * scheduled. When fsync is called, we need to ensure the
71 * conversion is complete before fsync returns.
72 * The inode keeps track of a list of pending/completed IO that
73 * might needs to do the conversion. This function walks through
74 * the list and convert the related unwritten extents for completed IO
75 * to written.
76 * The function return the number of pending IOs on success.
77 */
78static int flush_completed_IO(struct inode *inode)
79{
80 ext4_io_end_t *io;
81 struct ext4_inode_info *ei = EXT4_I(inode);
82 unsigned long flags;
83 int ret = 0;
84 int ret2 = 0;
85
86 if (list_empty(&ei->i_completed_io_list))
87 return ret;
88
89 dump_completed_IO(inode);
90 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
91 while (!list_empty(&ei->i_completed_io_list)){
92 io = list_entry(ei->i_completed_io_list.next,
93 ext4_io_end_t, list);
94 /*
95 * Calling ext4_end_io_nolock() to convert completed
96 * IO to written.
97 *
98 * When ext4_sync_file() is called, run_queue() may already
99 * about to flush the work corresponding to this io structure.
100 * It will be upset if it founds the io structure related
101 * to the work-to-be schedule is freed.
102 *
103 * Thus we need to keep the io structure still valid here after
104 * convertion finished. The io structure has a flag to
105 * avoid double converting from both fsync and background work
106 * queue work.
107 */
108 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
109 ret = ext4_end_io_nolock(io);
110 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
111 if (ret < 0)
112 ret2 = ret;
113 else
114 list_del_init(&io->list);
115 }
116 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
117 return (ret2 < 0) ? ret2 : 0;
118}
119
14ece102
FM
120/*
121 * If we're not journaling and this is a just-created file, we have to
122 * sync our parent directory (if it was freshly created) since
123 * otherwise it will only be written by writeback, leaving a huge
124 * window during which a crash may lose the file. This may apply for
125 * the parent directory's parent as well, and so on recursively, if
126 * they are also freshly created.
127 */
128static void ext4_sync_parent(struct inode *inode)
129{
130 struct dentry *dentry = NULL;
131
132 while (inode && ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
133 ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
134 dentry = list_entry(inode->i_dentry.next,
135 struct dentry, d_alias);
136 if (!dentry || !dentry->d_parent || !dentry->d_parent->d_inode)
137 break;
138 inode = dentry->d_parent->d_inode;
139 sync_mapping_buffers(inode->i_mapping);
140 }
141}
142
ac27a0ec 143/*
617ba13b 144 * akpm: A new design for ext4_sync_file().
ac27a0ec
DK
145 *
146 * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
147 * There cannot be a transaction open by this task.
148 * Another task could have dirtied this inode. Its data can be in any
149 * state in the journalling system.
150 *
151 * What we do is just kick off a commit and wait on it. This will snapshot the
152 * inode to disk.
8d5d02e6
MC
153 *
154 * i_mutex lock is held when entering and exiting this function
ac27a0ec
DK
155 */
156
7ea80859 157int ext4_sync_file(struct file *file, int datasync)
ac27a0ec 158{
7ea80859 159 struct inode *inode = file->f_mapping->host;
b436b9be 160 struct ext4_inode_info *ei = EXT4_I(inode);
d755fb38 161 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
b436b9be
JK
162 int ret;
163 tid_t commit_tid;
ac27a0ec 164
ac39849d 165 J_ASSERT(ext4_journal_current_handle() == NULL);
ac27a0ec 166
7ea80859 167 trace_ext4_sync_file(file, datasync);
ede86cc4 168
b436b9be
JK
169 if (inode->i_sb->s_flags & MS_RDONLY)
170 return 0;
171
c7064ef1 172 ret = flush_completed_IO(inode);
8d5d02e6 173 if (ret < 0)
6b17d902 174 return ret;
60e6679e 175
14ece102 176 if (!journal) {
1b061d92 177 ret = generic_file_fsync(file, datasync);
14ece102
FM
178 if (!ret && !list_empty(&inode->i_dentry))
179 ext4_sync_parent(inode);
180 return ret;
181 }
b436b9be 182
ac27a0ec 183 /*
b436b9be 184 * data=writeback,ordered:
ac27a0ec 185 * The caller's filemap_fdatawrite()/wait will sync the data.
b436b9be
JK
186 * Metadata is in the journal, we wait for proper transaction to
187 * commit here.
ac27a0ec
DK
188 *
189 * data=journal:
190 * filemap_fdatawrite won't do anything (the buffers are clean).
617ba13b 191 * ext4_force_commit will write the file data into the journal and
ac27a0ec
DK
192 * will wait on that.
193 * filemap_fdatawait() will encounter a ton of newly-dirtied pages
194 * (they were dirtied by commit). But that's OK - the blocks are
195 * safe in-journal, which is all fsync() needs to ensure.
196 */
6b17d902
TT
197 if (ext4_should_journal_data(inode))
198 return ext4_force_commit(inode->i_sb);
ac27a0ec 199
b436b9be 200 commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
cc3e1bea
TT
201 if (jbd2_log_start_commit(journal, commit_tid)) {
202 /*
203 * When the journal is on a different device than the
204 * fs data disk, we need to issue the barrier in
205 * writeback mode. (In ordered mode, the jbd2 layer
206 * will take care of issuing the barrier. In
207 * data=journal, all of the data blocks are written to
208 * the journal device.)
209 */
210 if (ext4_should_writeback_data(inode) &&
211 (journal->j_fs_dev != journal->j_dev) &&
212 (journal->j_flags & JBD2_BARRIER))
fbd9b09a 213 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL,
dd3932ed 214 NULL);
0671e704 215 ret = jbd2_log_wait_commit(journal, commit_tid);
cc3e1bea 216 } else if (journal->j_flags & JBD2_BARRIER)
dd3932ed 217 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
ac27a0ec
DK
218 return ret;
219}