]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ecryptfs/crypto.c
eCryptfs: Check for O_RDONLY lower inodes when opening lower files
[net-next-2.6.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
29335c6a 36#include <asm/unaligned.h>
237fead6
MH
37#include "ecryptfs_kernel.h"
38
39static int
40ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41 struct page *dst_page, int dst_offset,
42 struct page *src_page, int src_offset, int size,
43 unsigned char *iv);
44static int
45ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46 struct page *dst_page, int dst_offset,
47 struct page *src_page, int src_offset, int size,
48 unsigned char *iv);
49
50/**
51 * ecryptfs_to_hex
52 * @dst: Buffer to take hex character representation of contents of
53 * src; must be at least of size (src_size * 2)
54 * @src: Buffer to be converted to a hex string respresentation
55 * @src_size: number of bytes to convert
56 */
57void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58{
59 int x;
60
61 for (x = 0; x < src_size; x++)
62 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
63}
64
65/**
66 * ecryptfs_from_hex
67 * @dst: Buffer to take the bytes from src hex; must be at least of
68 * size (src_size / 2)
69 * @src: Buffer to be converted from a hex string respresentation to raw value
70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71 */
72void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73{
74 int x;
75 char tmp[3] = { 0, };
76
77 for (x = 0; x < dst_size; x++) {
78 tmp[0] = src[x * 2];
79 tmp[1] = src[x * 2 + 1];
80 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
81 }
82}
83
84/**
85 * ecryptfs_calculate_md5 - calculates the md5 of @src
86 * @dst: Pointer to 16 bytes of allocated memory
87 * @crypt_stat: Pointer to crypt_stat struct for the current inode
88 * @src: Data to be md5'd
89 * @len: Length of @src
90 *
91 * Uses the allocated crypto context that crypt_stat references to
92 * generate the MD5 sum of the contents of src.
93 */
94static int ecryptfs_calculate_md5(char *dst,
95 struct ecryptfs_crypt_stat *crypt_stat,
96 char *src, int len)
97{
237fead6 98 struct scatterlist sg;
565d9724
MH
99 struct hash_desc desc = {
100 .tfm = crypt_stat->hash_tfm,
101 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
102 };
103 int rc = 0;
237fead6 104
565d9724 105 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
237fead6 106 sg_init_one(&sg, (u8 *)src, len);
565d9724
MH
107 if (!desc.tfm) {
108 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 CRYPTO_ALG_ASYNC);
110 if (IS_ERR(desc.tfm)) {
111 rc = PTR_ERR(desc.tfm);
237fead6 112 ecryptfs_printk(KERN_ERR, "Error attempting to "
565d9724
MH
113 "allocate crypto context; rc = [%d]\n",
114 rc);
237fead6
MH
115 goto out;
116 }
565d9724 117 crypt_stat->hash_tfm = desc.tfm;
237fead6 118 }
8a29f2b0
MH
119 rc = crypto_hash_init(&desc);
120 if (rc) {
121 printk(KERN_ERR
122 "%s: Error initializing crypto hash; rc = [%d]\n",
18d1dbf1 123 __func__, rc);
8a29f2b0
MH
124 goto out;
125 }
126 rc = crypto_hash_update(&desc, &sg, len);
127 if (rc) {
128 printk(KERN_ERR
129 "%s: Error updating crypto hash; rc = [%d]\n",
18d1dbf1 130 __func__, rc);
8a29f2b0
MH
131 goto out;
132 }
133 rc = crypto_hash_final(&desc, dst);
134 if (rc) {
135 printk(KERN_ERR
136 "%s: Error finalizing crypto hash; rc = [%d]\n",
18d1dbf1 137 __func__, rc);
8a29f2b0
MH
138 goto out;
139 }
237fead6 140out:
8a29f2b0 141 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
237fead6
MH
142 return rc;
143}
144
cd9d67df
MH
145static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146 char *cipher_name,
147 char *chaining_modifier)
8bba066f
MH
148{
149 int cipher_name_len = strlen(cipher_name);
150 int chaining_modifier_len = strlen(chaining_modifier);
151 int algified_name_len;
152 int rc;
153
154 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 156 if (!(*algified_name)) {
8bba066f
MH
157 rc = -ENOMEM;
158 goto out;
159 }
160 snprintf((*algified_name), algified_name_len, "%s(%s)",
161 chaining_modifier, cipher_name);
162 rc = 0;
163out:
164 return rc;
165}
166
237fead6
MH
167/**
168 * ecryptfs_derive_iv
169 * @iv: destination for the derived iv vale
170 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 171 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
172 *
173 * Generate the initialization vector from the given root IV and page
174 * offset.
175 *
176 * Returns zero on success; non-zero on error.
177 */
a34f60f7
MH
178int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179 loff_t offset)
237fead6
MH
180{
181 int rc = 0;
182 char dst[MD5_DIGEST_SIZE];
183 char src[ECRYPTFS_MAX_IV_BYTES + 16];
184
185 if (unlikely(ecryptfs_verbosity > 0)) {
186 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
188 }
189 /* TODO: It is probably secure to just cast the least
190 * significant bits of the root IV into an unsigned long and
191 * add the offset to that rather than go through all this
192 * hashing business. -Halcrow */
193 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 195 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
196 if (unlikely(ecryptfs_verbosity > 0)) {
197 ecryptfs_printk(KERN_DEBUG, "source:\n");
198 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
199 }
200 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201 (crypt_stat->iv_bytes + 16));
202 if (rc) {
203 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204 "MD5 while generating IV for a page\n");
205 goto out;
206 }
207 memcpy(iv, dst, crypt_stat->iv_bytes);
208 if (unlikely(ecryptfs_verbosity > 0)) {
209 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
211 }
212out:
213 return rc;
214}
215
216/**
217 * ecryptfs_init_crypt_stat
218 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219 *
220 * Initialize the crypt_stat structure.
221 */
222void
223ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
224{
225 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
226 INIT_LIST_HEAD(&crypt_stat->keysig_list);
227 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
228 mutex_init(&crypt_stat->cs_mutex);
229 mutex_init(&crypt_stat->cs_tfm_mutex);
565d9724 230 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
e2bd99ec 231 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
237fead6
MH
232}
233
234/**
fcd12835 235 * ecryptfs_destroy_crypt_stat
237fead6
MH
236 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
237 *
238 * Releases all memory associated with a crypt_stat struct.
239 */
fcd12835 240void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 241{
f4aad16a
MH
242 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
243
237fead6 244 if (crypt_stat->tfm)
8bba066f 245 crypto_free_blkcipher(crypt_stat->tfm);
565d9724
MH
246 if (crypt_stat->hash_tfm)
247 crypto_free_hash(crypt_stat->hash_tfm);
f4aad16a
MH
248 list_for_each_entry_safe(key_sig, key_sig_tmp,
249 &crypt_stat->keysig_list, crypt_stat_list) {
250 list_del(&key_sig->crypt_stat_list);
251 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
252 }
237fead6
MH
253 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
254}
255
fcd12835 256void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
257 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
258{
f4aad16a
MH
259 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
260
261 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
262 return;
263 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
264 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
265 &mount_crypt_stat->global_auth_tok_list,
266 mount_crypt_stat_list) {
267 list_del(&auth_tok->mount_crypt_stat_list);
268 mount_crypt_stat->num_global_auth_toks--;
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 }
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276}
277
278/**
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
285 *
286 * Fills in a scatterlist array with page references for a passed
287 * virtual address.
288 *
289 * Returns the number of scatterlist structs in array used
290 */
291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 int sg_size)
293{
294 int i = 0;
295 struct page *pg;
296 int offset;
297 int remainder_of_page;
298
68e3f5dd
HX
299 sg_init_table(sg, sg_size);
300
237fead6
MH
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
642f1490
JA
304 if (sg)
305 sg_set_page(&sg[i], pg, 0, offset);
237fead6
MH
306 remainder_of_page = PAGE_CACHE_SIZE - offset;
307 if (size >= remainder_of_page) {
308 if (sg)
309 sg[i].length = remainder_of_page;
310 addr += remainder_of_page;
311 size -= remainder_of_page;
312 } else {
313 if (sg)
314 sg[i].length = size;
315 addr += size;
316 size = 0;
317 }
318 i++;
319 }
320 if (size > 0)
321 return -ENOMEM;
322 return i;
323}
324
325/**
326 * encrypt_scatterlist
327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328 * @dest_sg: Destination of encrypted data
329 * @src_sg: Data to be encrypted
330 * @size: Length of data to be encrypted
331 * @iv: iv to use during encryption
332 *
333 * Returns the number of bytes encrypted; negative value on error
334 */
335static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336 struct scatterlist *dest_sg,
337 struct scatterlist *src_sg, int size,
338 unsigned char *iv)
339{
8bba066f
MH
340 struct blkcipher_desc desc = {
341 .tfm = crypt_stat->tfm,
342 .info = iv,
343 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
344 };
237fead6
MH
345 int rc = 0;
346
347 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 348 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6
MH
349 if (unlikely(ecryptfs_verbosity > 0)) {
350 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
351 crypt_stat->key_size);
352 ecryptfs_dump_hex(crypt_stat->key,
353 crypt_stat->key_size);
354 }
355 /* Consider doing this once, when the file is opened */
356 mutex_lock(&crypt_stat->cs_tfm_mutex);
8e3a6f16
TH
357 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 crypt_stat->key_size);
360 crypt_stat->flags |= ECRYPTFS_KEY_SET;
361 }
237fead6
MH
362 if (rc) {
363 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
364 rc);
365 mutex_unlock(&crypt_stat->cs_tfm_mutex);
366 rc = -EINVAL;
367 goto out;
368 }
369 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
8bba066f 370 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
371 mutex_unlock(&crypt_stat->cs_tfm_mutex);
372out:
373 return rc;
374}
375
0216f7f7
MH
376/**
377 * ecryptfs_lower_offset_for_extent
378 *
379 * Convert an eCryptfs page index into a lower byte offset
380 */
7896b631
AB
381static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382 struct ecryptfs_crypt_stat *crypt_stat)
0216f7f7 383{
cc11beff 384 (*offset) = (crypt_stat->num_header_bytes_at_front
0216f7f7
MH
385 + (crypt_stat->extent_size * extent_num));
386}
387
388/**
389 * ecryptfs_encrypt_extent
390 * @enc_extent_page: Allocated page into which to encrypt the data in
391 * @page
392 * @crypt_stat: crypt_stat containing cryptographic context for the
393 * encryption operation
394 * @page: Page containing plaintext data extent to encrypt
395 * @extent_offset: Page extent offset for use in generating IV
396 *
397 * Encrypts one extent of data.
398 *
399 * Return zero on success; non-zero otherwise
400 */
401static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402 struct ecryptfs_crypt_stat *crypt_stat,
403 struct page *page,
404 unsigned long extent_offset)
405{
d6a13c17 406 loff_t extent_base;
0216f7f7
MH
407 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
408 int rc;
409
d6a13c17 410 extent_base = (((loff_t)page->index)
0216f7f7
MH
411 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413 (extent_base + extent_offset));
414 if (rc) {
415 ecryptfs_printk(KERN_ERR, "Error attempting to "
416 "derive IV for extent [0x%.16x]; "
417 "rc = [%d]\n", (extent_base + extent_offset),
418 rc);
419 goto out;
420 }
421 if (unlikely(ecryptfs_verbosity > 0)) {
422 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
423 "with iv:\n");
424 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
425 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
426 "encryption:\n");
427 ecryptfs_dump_hex((char *)
428 (page_address(page)
429 + (extent_offset * crypt_stat->extent_size)),
430 8);
431 }
432 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
433 page, (extent_offset
434 * crypt_stat->extent_size),
435 crypt_stat->extent_size, extent_iv);
436 if (rc < 0) {
437 printk(KERN_ERR "%s: Error attempting to encrypt page with "
438 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 439 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
440 rc);
441 goto out;
442 }
443 rc = 0;
444 if (unlikely(ecryptfs_verbosity > 0)) {
445 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
446 "rc = [%d]\n", (extent_base + extent_offset),
447 rc);
448 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
449 "encryption:\n");
450 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
451 }
452out:
453 return rc;
454}
455
237fead6
MH
456/**
457 * ecryptfs_encrypt_page
0216f7f7
MH
458 * @page: Page mapped from the eCryptfs inode for the file; contains
459 * decrypted content that needs to be encrypted (to a temporary
460 * page; not in place) and written out to the lower file
237fead6
MH
461 *
462 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
463 * that eCryptfs pages may straddle the lower pages -- for instance,
464 * if the file was created on a machine with an 8K page size
465 * (resulting in an 8K header), and then the file is copied onto a
466 * host with a 32K page size, then when reading page 0 of the eCryptfs
467 * file, 24K of page 0 of the lower file will be read and decrypted,
468 * and then 8K of page 1 of the lower file will be read and decrypted.
469 *
237fead6
MH
470 * Returns zero on success; negative on error
471 */
0216f7f7 472int ecryptfs_encrypt_page(struct page *page)
237fead6 473{
0216f7f7 474 struct inode *ecryptfs_inode;
237fead6 475 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
476 char *enc_extent_virt;
477 struct page *enc_extent_page = NULL;
0216f7f7 478 loff_t extent_offset;
237fead6 479 int rc = 0;
0216f7f7
MH
480
481 ecryptfs_inode = page->mapping->host;
482 crypt_stat =
483 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 484 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
485 enc_extent_page = alloc_page(GFP_USER);
486 if (!enc_extent_page) {
0216f7f7
MH
487 rc = -ENOMEM;
488 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
489 "encrypted extent\n");
490 goto out;
491 }
7fcba054 492 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
493 for (extent_offset = 0;
494 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
495 extent_offset++) {
496 loff_t offset;
497
498 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
499 extent_offset);
237fead6 500 if (rc) {
0216f7f7 501 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 502 "rc = [%d]\n", __func__, rc);
237fead6
MH
503 goto out;
504 }
0216f7f7 505 ecryptfs_lower_offset_for_extent(
d6a13c17
MH
506 &offset, ((((loff_t)page->index)
507 * (PAGE_CACHE_SIZE
508 / crypt_stat->extent_size))
0216f7f7
MH
509 + extent_offset), crypt_stat);
510 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
511 offset, crypt_stat->extent_size);
512 if (rc) {
513 ecryptfs_printk(KERN_ERR, "Error attempting "
514 "to write lower page; rc = [%d]"
515 "\n", rc);
516 goto out;
237fead6 517 }
237fead6 518 }
0216f7f7 519out:
7fcba054
ES
520 if (enc_extent_page) {
521 kunmap(enc_extent_page);
522 __free_page(enc_extent_page);
523 }
0216f7f7
MH
524 return rc;
525}
526
527static int ecryptfs_decrypt_extent(struct page *page,
528 struct ecryptfs_crypt_stat *crypt_stat,
529 struct page *enc_extent_page,
530 unsigned long extent_offset)
531{
d6a13c17 532 loff_t extent_base;
0216f7f7
MH
533 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
534 int rc;
535
d6a13c17 536 extent_base = (((loff_t)page->index)
0216f7f7
MH
537 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
538 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
539 (extent_base + extent_offset));
237fead6 540 if (rc) {
0216f7f7
MH
541 ecryptfs_printk(KERN_ERR, "Error attempting to "
542 "derive IV for extent [0x%.16x]; "
543 "rc = [%d]\n", (extent_base + extent_offset),
544 rc);
545 goto out;
546 }
547 if (unlikely(ecryptfs_verbosity > 0)) {
548 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
549 "with iv:\n");
550 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
551 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
552 "decryption:\n");
553 ecryptfs_dump_hex((char *)
554 (page_address(enc_extent_page)
555 + (extent_offset * crypt_stat->extent_size)),
556 8);
557 }
558 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
559 (extent_offset
560 * crypt_stat->extent_size),
561 enc_extent_page, 0,
562 crypt_stat->extent_size, extent_iv);
563 if (rc < 0) {
564 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
565 "page->index = [%ld], extent_offset = [%ld]; "
18d1dbf1 566 "rc = [%d]\n", __func__, page->index, extent_offset,
0216f7f7
MH
567 rc);
568 goto out;
569 }
570 rc = 0;
571 if (unlikely(ecryptfs_verbosity > 0)) {
572 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
573 "rc = [%d]\n", (extent_base + extent_offset),
574 rc);
575 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
576 "decryption:\n");
577 ecryptfs_dump_hex((char *)(page_address(page)
578 + (extent_offset
579 * crypt_stat->extent_size)), 8);
237fead6
MH
580 }
581out:
582 return rc;
583}
584
585/**
586 * ecryptfs_decrypt_page
0216f7f7
MH
587 * @page: Page mapped from the eCryptfs inode for the file; data read
588 * and decrypted from the lower file will be written into this
589 * page
237fead6
MH
590 *
591 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
592 * that eCryptfs pages may straddle the lower pages -- for instance,
593 * if the file was created on a machine with an 8K page size
594 * (resulting in an 8K header), and then the file is copied onto a
595 * host with a 32K page size, then when reading page 0 of the eCryptfs
596 * file, 24K of page 0 of the lower file will be read and decrypted,
597 * and then 8K of page 1 of the lower file will be read and decrypted.
598 *
599 * Returns zero on success; negative on error
600 */
0216f7f7 601int ecryptfs_decrypt_page(struct page *page)
237fead6 602{
0216f7f7 603 struct inode *ecryptfs_inode;
237fead6 604 struct ecryptfs_crypt_stat *crypt_stat;
7fcba054
ES
605 char *enc_extent_virt;
606 struct page *enc_extent_page = NULL;
0216f7f7 607 unsigned long extent_offset;
237fead6 608 int rc = 0;
237fead6 609
0216f7f7
MH
610 ecryptfs_inode = page->mapping->host;
611 crypt_stat =
612 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
13a791b4 613 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
7fcba054
ES
614 enc_extent_page = alloc_page(GFP_USER);
615 if (!enc_extent_page) {
237fead6 616 rc = -ENOMEM;
0216f7f7
MH
617 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
618 "encrypted extent\n");
16a72c45 619 goto out;
237fead6 620 }
7fcba054 621 enc_extent_virt = kmap(enc_extent_page);
0216f7f7
MH
622 for (extent_offset = 0;
623 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
624 extent_offset++) {
625 loff_t offset;
626
627 ecryptfs_lower_offset_for_extent(
628 &offset, ((page->index * (PAGE_CACHE_SIZE
629 / crypt_stat->extent_size))
630 + extent_offset), crypt_stat);
631 rc = ecryptfs_read_lower(enc_extent_virt, offset,
632 crypt_stat->extent_size,
633 ecryptfs_inode);
237fead6 634 if (rc) {
0216f7f7
MH
635 ecryptfs_printk(KERN_ERR, "Error attempting "
636 "to read lower page; rc = [%d]"
637 "\n", rc);
16a72c45 638 goto out;
237fead6 639 }
0216f7f7
MH
640 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
641 extent_offset);
642 if (rc) {
643 printk(KERN_ERR "%s: Error encrypting extent; "
18d1dbf1 644 "rc = [%d]\n", __func__, rc);
16a72c45 645 goto out;
237fead6 646 }
237fead6
MH
647 }
648out:
7fcba054
ES
649 if (enc_extent_page) {
650 kunmap(enc_extent_page);
651 __free_page(enc_extent_page);
652 }
237fead6
MH
653 return rc;
654}
655
656/**
657 * decrypt_scatterlist
22e78faf
MH
658 * @crypt_stat: Cryptographic context
659 * @dest_sg: The destination scatterlist to decrypt into
660 * @src_sg: The source scatterlist to decrypt from
661 * @size: The number of bytes to decrypt
662 * @iv: The initialization vector to use for the decryption
237fead6
MH
663 *
664 * Returns the number of bytes decrypted; negative value on error
665 */
666static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
667 struct scatterlist *dest_sg,
668 struct scatterlist *src_sg, int size,
669 unsigned char *iv)
670{
8bba066f
MH
671 struct blkcipher_desc desc = {
672 .tfm = crypt_stat->tfm,
673 .info = iv,
674 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
675 };
237fead6
MH
676 int rc = 0;
677
678 /* Consider doing this once, when the file is opened */
679 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
680 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
681 crypt_stat->key_size);
237fead6
MH
682 if (rc) {
683 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
684 rc);
685 mutex_unlock(&crypt_stat->cs_tfm_mutex);
686 rc = -EINVAL;
687 goto out;
688 }
689 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
8bba066f 690 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
691 mutex_unlock(&crypt_stat->cs_tfm_mutex);
692 if (rc) {
693 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
694 rc);
695 goto out;
696 }
697 rc = size;
698out:
699 return rc;
700}
701
702/**
703 * ecryptfs_encrypt_page_offset
22e78faf
MH
704 * @crypt_stat: The cryptographic context
705 * @dst_page: The page to encrypt into
706 * @dst_offset: The offset in the page to encrypt into
707 * @src_page: The page to encrypt from
708 * @src_offset: The offset in the page to encrypt from
709 * @size: The number of bytes to encrypt
710 * @iv: The initialization vector to use for the encryption
237fead6
MH
711 *
712 * Returns the number of bytes encrypted
713 */
714static int
715ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
716 struct page *dst_page, int dst_offset,
717 struct page *src_page, int src_offset, int size,
718 unsigned char *iv)
719{
720 struct scatterlist src_sg, dst_sg;
721
60c74f81
JA
722 sg_init_table(&src_sg, 1);
723 sg_init_table(&dst_sg, 1);
724
642f1490
JA
725 sg_set_page(&src_sg, src_page, size, src_offset);
726 sg_set_page(&dst_sg, dst_page, size, dst_offset);
237fead6
MH
727 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
728}
729
730/**
731 * ecryptfs_decrypt_page_offset
22e78faf
MH
732 * @crypt_stat: The cryptographic context
733 * @dst_page: The page to decrypt into
734 * @dst_offset: The offset in the page to decrypt into
735 * @src_page: The page to decrypt from
736 * @src_offset: The offset in the page to decrypt from
737 * @size: The number of bytes to decrypt
738 * @iv: The initialization vector to use for the decryption
237fead6
MH
739 *
740 * Returns the number of bytes decrypted
741 */
742static int
743ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
744 struct page *dst_page, int dst_offset,
745 struct page *src_page, int src_offset, int size,
746 unsigned char *iv)
747{
748 struct scatterlist src_sg, dst_sg;
749
60c74f81 750 sg_init_table(&src_sg, 1);
642f1490
JA
751 sg_set_page(&src_sg, src_page, size, src_offset);
752
60c74f81 753 sg_init_table(&dst_sg, 1);
642f1490 754 sg_set_page(&dst_sg, dst_page, size, dst_offset);
60c74f81 755
237fead6
MH
756 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
757}
758
759#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
760
761/**
762 * ecryptfs_init_crypt_ctx
763 * @crypt_stat: Uninitilized crypt stats structure
764 *
765 * Initialize the crypto context.
766 *
767 * TODO: Performance: Keep a cache of initialized cipher contexts;
768 * only init if needed
769 */
770int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
771{
8bba066f 772 char *full_alg_name;
237fead6
MH
773 int rc = -EINVAL;
774
775 if (!crypt_stat->cipher) {
776 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
777 goto out;
778 }
779 ecryptfs_printk(KERN_DEBUG,
780 "Initializing cipher [%s]; strlen = [%d]; "
781 "key_size_bits = [%d]\n",
782 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
783 crypt_stat->key_size << 3);
784 if (crypt_stat->tfm) {
785 rc = 0;
786 goto out;
787 }
788 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
789 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
790 crypt_stat->cipher, "cbc");
791 if (rc)
c8161f64 792 goto out_unlock;
8bba066f
MH
793 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
794 CRYPTO_ALG_ASYNC);
795 kfree(full_alg_name);
de88777e
AM
796 if (IS_ERR(crypt_stat->tfm)) {
797 rc = PTR_ERR(crypt_stat->tfm);
b0105eae 798 crypt_stat->tfm = NULL;
237fead6
MH
799 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
800 "Error initializing cipher [%s]\n",
801 crypt_stat->cipher);
c8161f64 802 goto out_unlock;
237fead6 803 }
f1ddcaf3 804 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
237fead6 805 rc = 0;
c8161f64
ES
806out_unlock:
807 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
808out:
809 return rc;
810}
811
812static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
813{
814 int extent_size_tmp;
815
816 crypt_stat->extent_mask = 0xFFFFFFFF;
817 crypt_stat->extent_shift = 0;
818 if (crypt_stat->extent_size == 0)
819 return;
820 extent_size_tmp = crypt_stat->extent_size;
821 while ((extent_size_tmp & 0x01) == 0) {
822 extent_size_tmp >>= 1;
823 crypt_stat->extent_mask <<= 1;
824 crypt_stat->extent_shift++;
825 }
826}
827
828void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
829{
830 /* Default values; may be overwritten as we are parsing the
831 * packets. */
832 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
833 set_extent_mask_and_shift(crypt_stat);
834 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a 835 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
cc11beff 836 crypt_stat->num_header_bytes_at_front = 0;
45eaab79
MH
837 else {
838 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
cc11beff
MH
839 crypt_stat->num_header_bytes_at_front =
840 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
45eaab79 841 else
cc11beff 842 crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE;
45eaab79 843 }
237fead6
MH
844}
845
846/**
847 * ecryptfs_compute_root_iv
848 * @crypt_stats
849 *
850 * On error, sets the root IV to all 0's.
851 */
852int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
853{
854 int rc = 0;
855 char dst[MD5_DIGEST_SIZE];
856
857 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
858 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 859 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
860 rc = -EINVAL;
861 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
862 "cannot generate root IV\n");
863 goto out;
864 }
865 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
866 crypt_stat->key_size);
867 if (rc) {
868 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
869 "MD5 while generating root IV\n");
870 goto out;
871 }
872 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
873out:
874 if (rc) {
875 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 876 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
877 }
878 return rc;
879}
880
881static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
882{
883 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 884 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
885 ecryptfs_compute_root_iv(crypt_stat);
886 if (unlikely(ecryptfs_verbosity > 0)) {
887 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
888 ecryptfs_dump_hex(crypt_stat->key,
889 crypt_stat->key_size);
890 }
891}
892
17398957
MH
893/**
894 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
895 * @crypt_stat: The inode's cryptographic context
896 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
897 *
898 * This function propagates the mount-wide flags to individual inode
899 * flags.
900 */
901static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
902 struct ecryptfs_crypt_stat *crypt_stat,
903 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
904{
905 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
906 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
907 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
908 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
addd65ad
MH
909 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
910 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
911 if (mount_crypt_stat->flags
912 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
913 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
914 else if (mount_crypt_stat->flags
915 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
916 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
917 }
17398957
MH
918}
919
f4aad16a
MH
920static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
921 struct ecryptfs_crypt_stat *crypt_stat,
922 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
923{
924 struct ecryptfs_global_auth_tok *global_auth_tok;
925 int rc = 0;
926
aa06117f 927 mutex_lock(&crypt_stat->keysig_list_mutex);
f4aad16a 928 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
aa06117f 929
f4aad16a
MH
930 list_for_each_entry(global_auth_tok,
931 &mount_crypt_stat->global_auth_tok_list,
932 mount_crypt_stat_list) {
84814d64
TH
933 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
934 continue;
f4aad16a
MH
935 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
936 if (rc) {
937 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
f4aad16a
MH
938 goto out;
939 }
940 }
aa06117f 941
f4aad16a 942out:
aa06117f
RD
943 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
944 mutex_unlock(&crypt_stat->keysig_list_mutex);
f4aad16a
MH
945 return rc;
946}
947
237fead6
MH
948/**
949 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
950 * @crypt_stat: The inode's cryptographic context
951 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
952 *
953 * Default values in the event that policy does not override them.
954 */
955static void ecryptfs_set_default_crypt_stat_vals(
956 struct ecryptfs_crypt_stat *crypt_stat,
957 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
958{
17398957
MH
959 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
960 mount_crypt_stat);
237fead6
MH
961 ecryptfs_set_default_sizes(crypt_stat);
962 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
963 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 964 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
965 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
966 crypt_stat->mount_crypt_stat = mount_crypt_stat;
967}
968
969/**
970 * ecryptfs_new_file_context
22e78faf 971 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
972 *
973 * If the crypto context for the file has not yet been established,
974 * this is where we do that. Establishing a new crypto context
975 * involves the following decisions:
976 * - What cipher to use?
977 * - What set of authentication tokens to use?
978 * Here we just worry about getting enough information into the
979 * authentication tokens so that we know that they are available.
980 * We associate the available authentication tokens with the new file
981 * via the set of signatures in the crypt_stat struct. Later, when
982 * the headers are actually written out, we may again defer to
983 * userspace to perform the encryption of the session key; for the
984 * foreseeable future, this will be the case with public key packets.
985 *
986 * Returns zero on success; non-zero otherwise
987 */
237fead6
MH
988int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
989{
237fead6
MH
990 struct ecryptfs_crypt_stat *crypt_stat =
991 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
992 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
993 &ecryptfs_superblock_to_private(
994 ecryptfs_dentry->d_sb)->mount_crypt_stat;
995 int cipher_name_len;
f4aad16a 996 int rc = 0;
237fead6
MH
997
998 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 999 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
1000 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1001 mount_crypt_stat);
1002 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1003 mount_crypt_stat);
1004 if (rc) {
1005 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1006 "to the inode key sigs; rc = [%d]\n", rc);
1007 goto out;
1008 }
1009 cipher_name_len =
1010 strlen(mount_crypt_stat->global_default_cipher_name);
1011 memcpy(crypt_stat->cipher,
1012 mount_crypt_stat->global_default_cipher_name,
1013 cipher_name_len);
1014 crypt_stat->cipher[cipher_name_len] = '\0';
1015 crypt_stat->key_size =
1016 mount_crypt_stat->global_default_cipher_key_size;
1017 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
1018 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1019 if (rc)
1020 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1021 "context for cipher [%s]: rc = [%d]\n",
1022 crypt_stat->cipher, rc);
f4aad16a 1023out:
237fead6
MH
1024 return rc;
1025}
1026
1027/**
1028 * contains_ecryptfs_marker - check for the ecryptfs marker
1029 * @data: The data block in which to check
1030 *
1031 * Returns one if marker found; zero if not found
1032 */
dd2a3b7a 1033static int contains_ecryptfs_marker(char *data)
237fead6
MH
1034{
1035 u32 m_1, m_2;
1036
29335c6a
HH
1037 m_1 = get_unaligned_be32(data);
1038 m_2 = get_unaligned_be32(data + 4);
237fead6
MH
1039 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1040 return 1;
1041 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1042 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1043 MAGIC_ECRYPTFS_MARKER);
1044 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1045 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1046 return 0;
1047}
1048
1049struct ecryptfs_flag_map_elem {
1050 u32 file_flag;
1051 u32 local_flag;
1052};
1053
1054/* Add support for additional flags by adding elements here. */
1055static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1056 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a 1057 {0x00000002, ECRYPTFS_ENCRYPTED},
addd65ad
MH
1058 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1059 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
237fead6
MH
1060};
1061
1062/**
1063 * ecryptfs_process_flags
22e78faf 1064 * @crypt_stat: The cryptographic context
237fead6
MH
1065 * @page_virt: Source data to be parsed
1066 * @bytes_read: Updated with the number of bytes read
1067 *
1068 * Returns zero on success; non-zero if the flag set is invalid
1069 */
1070static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1071 char *page_virt, int *bytes_read)
1072{
1073 int rc = 0;
1074 int i;
1075 u32 flags;
1076
29335c6a 1077 flags = get_unaligned_be32(page_virt);
237fead6
MH
1078 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1079 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1080 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 1081 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 1082 } else
e2bd99ec 1083 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
1084 /* Version is in top 8 bits of the 32-bit flag vector */
1085 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1086 (*bytes_read) = 4;
1087 return rc;
1088}
1089
1090/**
1091 * write_ecryptfs_marker
1092 * @page_virt: The pointer to in a page to begin writing the marker
1093 * @written: Number of bytes written
1094 *
1095 * Marker = 0x3c81b7f5
1096 */
1097static void write_ecryptfs_marker(char *page_virt, size_t *written)
1098{
1099 u32 m_1, m_2;
1100
1101 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1102 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
29335c6a
HH
1103 put_unaligned_be32(m_1, page_virt);
1104 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1105 put_unaligned_be32(m_2, page_virt);
237fead6
MH
1106 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1107}
1108
1109static void
1110write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1111 size_t *written)
1112{
1113 u32 flags = 0;
1114 int i;
1115
1116 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1117 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 1118 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
1119 flags |= ecryptfs_flag_map[i].file_flag;
1120 /* Version is in top 8 bits of the 32-bit flag vector */
1121 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
29335c6a 1122 put_unaligned_be32(flags, page_virt);
237fead6
MH
1123 (*written) = 4;
1124}
1125
1126struct ecryptfs_cipher_code_str_map_elem {
1127 char cipher_str[16];
19e66a67 1128 u8 cipher_code;
237fead6
MH
1129};
1130
1131/* Add support for additional ciphers by adding elements here. The
1132 * cipher_code is whatever OpenPGP applicatoins use to identify the
1133 * ciphers. List in order of probability. */
1134static struct ecryptfs_cipher_code_str_map_elem
1135ecryptfs_cipher_code_str_map[] = {
1136 {"aes",RFC2440_CIPHER_AES_128 },
1137 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1138 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1139 {"cast5", RFC2440_CIPHER_CAST_5},
1140 {"twofish", RFC2440_CIPHER_TWOFISH},
1141 {"cast6", RFC2440_CIPHER_CAST_6},
1142 {"aes", RFC2440_CIPHER_AES_192},
1143 {"aes", RFC2440_CIPHER_AES_256}
1144};
1145
1146/**
1147 * ecryptfs_code_for_cipher_string
9c79f34f
MH
1148 * @cipher_name: The string alias for the cipher
1149 * @key_bytes: Length of key in bytes; used for AES code selection
237fead6
MH
1150 *
1151 * Returns zero on no match, or the cipher code on match
1152 */
9c79f34f 1153u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
237fead6
MH
1154{
1155 int i;
19e66a67 1156 u8 code = 0;
237fead6
MH
1157 struct ecryptfs_cipher_code_str_map_elem *map =
1158 ecryptfs_cipher_code_str_map;
1159
9c79f34f
MH
1160 if (strcmp(cipher_name, "aes") == 0) {
1161 switch (key_bytes) {
237fead6
MH
1162 case 16:
1163 code = RFC2440_CIPHER_AES_128;
1164 break;
1165 case 24:
1166 code = RFC2440_CIPHER_AES_192;
1167 break;
1168 case 32:
1169 code = RFC2440_CIPHER_AES_256;
1170 }
1171 } else {
1172 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
9c79f34f 1173 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
237fead6
MH
1174 code = map[i].cipher_code;
1175 break;
1176 }
1177 }
1178 return code;
1179}
1180
1181/**
1182 * ecryptfs_cipher_code_to_string
1183 * @str: Destination to write out the cipher name
1184 * @cipher_code: The code to convert to cipher name string
1185 *
1186 * Returns zero on success
1187 */
19e66a67 1188int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
237fead6
MH
1189{
1190 int rc = 0;
1191 int i;
1192
1193 str[0] = '\0';
1194 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1195 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1196 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1197 if (str[0] == '\0') {
1198 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1199 "[%d]\n", cipher_code);
1200 rc = -EINVAL;
1201 }
1202 return rc;
1203}
1204
d7cdc5fe
MH
1205int ecryptfs_read_and_validate_header_region(char *data,
1206 struct inode *ecryptfs_inode)
dd2a3b7a 1207{
d7cdc5fe
MH
1208 struct ecryptfs_crypt_stat *crypt_stat =
1209 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
dd2a3b7a
MH
1210 int rc;
1211
addd65ad
MH
1212 if (crypt_stat->extent_size == 0)
1213 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
d7cdc5fe
MH
1214 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1215 ecryptfs_inode);
1216 if (rc) {
1217 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
18d1dbf1 1218 __func__, rc);
dd2a3b7a 1219 goto out;
d7cdc5fe
MH
1220 }
1221 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
dd2a3b7a 1222 rc = -EINVAL;
d7cdc5fe 1223 }
dd2a3b7a
MH
1224out:
1225 return rc;
1226}
1227
e77a56dd
MH
1228void
1229ecryptfs_write_header_metadata(char *virt,
1230 struct ecryptfs_crypt_stat *crypt_stat,
1231 size_t *written)
237fead6
MH
1232{
1233 u32 header_extent_size;
1234 u16 num_header_extents_at_front;
1235
45eaab79 1236 header_extent_size = (u32)crypt_stat->extent_size;
237fead6 1237 num_header_extents_at_front =
cc11beff
MH
1238 (u16)(crypt_stat->num_header_bytes_at_front
1239 / crypt_stat->extent_size);
29335c6a 1240 put_unaligned_be32(header_extent_size, virt);
237fead6 1241 virt += 4;
29335c6a 1242 put_unaligned_be16(num_header_extents_at_front, virt);
237fead6
MH
1243 (*written) = 6;
1244}
1245
237fead6
MH
1246struct kmem_cache *ecryptfs_header_cache_1;
1247struct kmem_cache *ecryptfs_header_cache_2;
1248
1249/**
1250 * ecryptfs_write_headers_virt
22e78faf 1251 * @page_virt: The virtual address to write the headers to
87b811c3 1252 * @max: The size of memory allocated at page_virt
22e78faf
MH
1253 * @size: Set to the number of bytes written by this function
1254 * @crypt_stat: The cryptographic context
1255 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1256 *
1257 * Format version: 1
1258 *
1259 * Header Extent:
1260 * Octets 0-7: Unencrypted file size (big-endian)
1261 * Octets 8-15: eCryptfs special marker
1262 * Octets 16-19: Flags
1263 * Octet 16: File format version number (between 0 and 255)
1264 * Octets 17-18: Reserved
1265 * Octet 19: Bit 1 (lsb): Reserved
1266 * Bit 2: Encrypted?
1267 * Bits 3-8: Reserved
1268 * Octets 20-23: Header extent size (big-endian)
1269 * Octets 24-25: Number of header extents at front of file
1270 * (big-endian)
1271 * Octet 26: Begin RFC 2440 authentication token packet set
1272 * Data Extent 0:
1273 * Lower data (CBC encrypted)
1274 * Data Extent 1:
1275 * Lower data (CBC encrypted)
1276 * ...
1277 *
1278 * Returns zero on success
1279 */
87b811c3
ES
1280static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1281 size_t *size,
dd2a3b7a
MH
1282 struct ecryptfs_crypt_stat *crypt_stat,
1283 struct dentry *ecryptfs_dentry)
237fead6
MH
1284{
1285 int rc;
1286 size_t written;
1287 size_t offset;
1288
1289 offset = ECRYPTFS_FILE_SIZE_BYTES;
1290 write_ecryptfs_marker((page_virt + offset), &written);
1291 offset += written;
1292 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1293 offset += written;
e77a56dd
MH
1294 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1295 &written);
237fead6
MH
1296 offset += written;
1297 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1298 ecryptfs_dentry, &written,
87b811c3 1299 max - offset);
237fead6
MH
1300 if (rc)
1301 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1302 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1303 if (size) {
1304 offset += written;
1305 *size = offset;
1306 }
1307 return rc;
1308}
1309
22e78faf 1310static int
8faece5f
TH
1311ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1312 char *virt, size_t virt_len)
dd2a3b7a 1313{
d7cdc5fe 1314 int rc;
dd2a3b7a 1315
cc11beff 1316 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
8faece5f 1317 0, virt_len);
cc11beff 1318 if (rc)
d7cdc5fe 1319 printk(KERN_ERR "%s: Error attempting to write header "
18d1dbf1 1320 "information to lower file; rc = [%d]\n", __func__,
d7cdc5fe 1321 rc);
70456600 1322 return rc;
dd2a3b7a
MH
1323}
1324
22e78faf
MH
1325static int
1326ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
22e78faf 1327 char *page_virt, size_t size)
dd2a3b7a
MH
1328{
1329 int rc;
1330
1331 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1332 size, 0);
237fead6
MH
1333 return rc;
1334}
1335
8faece5f
TH
1336static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1337 unsigned int order)
1338{
1339 struct page *page;
1340
1341 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1342 if (page)
1343 return (unsigned long) page_address(page);
1344 return 0;
1345}
1346
237fead6 1347/**
dd2a3b7a 1348 * ecryptfs_write_metadata
22e78faf 1349 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1350 *
1351 * Write the file headers out. This will likely involve a userspace
1352 * callout, in which the session key is encrypted with one or more
1353 * public keys and/or the passphrase necessary to do the encryption is
1354 * retrieved via a prompt. Exactly what happens at this point should
1355 * be policy-dependent.
1356 *
1357 * Returns zero on success; non-zero on error
1358 */
d7cdc5fe 1359int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
237fead6 1360{
d7cdc5fe
MH
1361 struct ecryptfs_crypt_stat *crypt_stat =
1362 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
8faece5f 1363 unsigned int order;
cc11beff 1364 char *virt;
8faece5f 1365 size_t virt_len;
d7cdc5fe 1366 size_t size = 0;
237fead6
MH
1367 int rc = 0;
1368
e2bd99ec
MH
1369 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1370 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1371 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1372 rc = -EINVAL;
1373 goto out;
1374 }
1375 } else {
cc11beff 1376 printk(KERN_WARNING "%s: Encrypted flag not set\n",
18d1dbf1 1377 __func__);
237fead6 1378 rc = -EINVAL;
237fead6
MH
1379 goto out;
1380 }
8faece5f
TH
1381 virt_len = crypt_stat->num_header_bytes_at_front;
1382 order = get_order(virt_len);
237fead6 1383 /* Released in this function */
8faece5f 1384 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
cc11beff 1385 if (!virt) {
18d1dbf1 1386 printk(KERN_ERR "%s: Out of memory\n", __func__);
237fead6
MH
1387 rc = -ENOMEM;
1388 goto out;
1389 }
8faece5f
TH
1390 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1391 ecryptfs_dentry);
237fead6 1392 if (unlikely(rc)) {
cc11beff 1393 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
18d1dbf1 1394 __func__, rc);
237fead6
MH
1395 goto out_free;
1396 }
dd2a3b7a 1397 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
8faece5f
TH
1398 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1399 size);
dd2a3b7a 1400 else
8faece5f
TH
1401 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1402 virt_len);
dd2a3b7a 1403 if (rc) {
cc11beff 1404 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
18d1dbf1 1405 "rc = [%d]\n", __func__, rc);
dd2a3b7a 1406 goto out_free;
237fead6 1407 }
237fead6 1408out_free:
8faece5f 1409 free_pages((unsigned long)virt, order);
237fead6
MH
1410out:
1411 return rc;
1412}
1413
dd2a3b7a
MH
1414#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1415#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1416static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1417 char *virt, int *bytes_read,
1418 int validate_header_size)
237fead6
MH
1419{
1420 int rc = 0;
1421 u32 header_extent_size;
1422 u16 num_header_extents_at_front;
1423
29335c6a
HH
1424 header_extent_size = get_unaligned_be32(virt);
1425 virt += sizeof(__be32);
1426 num_header_extents_at_front = get_unaligned_be16(virt);
cc11beff
MH
1427 crypt_stat->num_header_bytes_at_front =
1428 (((size_t)num_header_extents_at_front
1429 * (size_t)header_extent_size));
29335c6a 1430 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
dd2a3b7a 1431 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
cc11beff 1432 && (crypt_stat->num_header_bytes_at_front
dd2a3b7a 1433 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1434 rc = -EINVAL;
cc11beff
MH
1435 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1436 crypt_stat->num_header_bytes_at_front);
237fead6
MH
1437 }
1438 return rc;
1439}
1440
1441/**
1442 * set_default_header_data
22e78faf 1443 * @crypt_stat: The cryptographic context
237fead6
MH
1444 *
1445 * For version 0 file format; this function is only for backwards
1446 * compatibility for files created with the prior versions of
1447 * eCryptfs.
1448 */
1449static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1450{
cc11beff
MH
1451 crypt_stat->num_header_bytes_at_front =
1452 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
237fead6
MH
1453}
1454
1455/**
1456 * ecryptfs_read_headers_virt
22e78faf
MH
1457 * @page_virt: The virtual address into which to read the headers
1458 * @crypt_stat: The cryptographic context
1459 * @ecryptfs_dentry: The eCryptfs dentry
1460 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1461 *
1462 * Read/parse the header data. The header format is detailed in the
1463 * comment block for the ecryptfs_write_headers_virt() function.
1464 *
1465 * Returns zero on success
1466 */
1467static int ecryptfs_read_headers_virt(char *page_virt,
1468 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1469 struct dentry *ecryptfs_dentry,
1470 int validate_header_size)
237fead6
MH
1471{
1472 int rc = 0;
1473 int offset;
1474 int bytes_read;
1475
1476 ecryptfs_set_default_sizes(crypt_stat);
1477 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1478 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1479 offset = ECRYPTFS_FILE_SIZE_BYTES;
1480 rc = contains_ecryptfs_marker(page_virt + offset);
1481 if (rc == 0) {
1482 rc = -EINVAL;
1483 goto out;
1484 }
1485 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1486 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1487 &bytes_read);
1488 if (rc) {
1489 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1490 goto out;
1491 }
1492 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1493 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1494 "file version [%d] is supported by this "
1495 "version of eCryptfs\n",
1496 crypt_stat->file_version,
1497 ECRYPTFS_SUPPORTED_FILE_VERSION);
1498 rc = -EINVAL;
1499 goto out;
1500 }
1501 offset += bytes_read;
1502 if (crypt_stat->file_version >= 1) {
1503 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1504 &bytes_read, validate_header_size);
237fead6
MH
1505 if (rc) {
1506 ecryptfs_printk(KERN_WARNING, "Error reading header "
1507 "metadata; rc = [%d]\n", rc);
1508 }
1509 offset += bytes_read;
1510 } else
1511 set_default_header_data(crypt_stat);
1512 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1513 ecryptfs_dentry);
1514out:
1515 return rc;
1516}
1517
1518/**
dd2a3b7a 1519 * ecryptfs_read_xattr_region
22e78faf 1520 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1521 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1522 *
1523 * Attempts to read the crypto metadata from the extended attribute
1524 * region of the lower file.
22e78faf
MH
1525 *
1526 * Returns zero on success; non-zero on error
dd2a3b7a 1527 */
d7cdc5fe 1528int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1529{
d7cdc5fe
MH
1530 struct dentry *lower_dentry =
1531 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
dd2a3b7a
MH
1532 ssize_t size;
1533 int rc = 0;
1534
d7cdc5fe
MH
1535 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1536 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1537 if (size < 0) {
25bd8174
MH
1538 if (unlikely(ecryptfs_verbosity > 0))
1539 printk(KERN_INFO "Error attempting to read the [%s] "
1540 "xattr from the lower file; return value = "
1541 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
dd2a3b7a
MH
1542 rc = -EINVAL;
1543 goto out;
1544 }
1545out:
1546 return rc;
1547}
1548
1549int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1550 struct dentry *ecryptfs_dentry)
1551{
1552 int rc;
1553
d7cdc5fe 1554 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
dd2a3b7a
MH
1555 if (rc)
1556 goto out;
1557 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1558 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1559 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1560 rc = -EINVAL;
1561 }
1562out:
1563 return rc;
1564}
1565
1566/**
1567 * ecryptfs_read_metadata
1568 *
1569 * Common entry point for reading file metadata. From here, we could
1570 * retrieve the header information from the header region of the file,
1571 * the xattr region of the file, or some other repostory that is
1572 * stored separately from the file itself. The current implementation
1573 * supports retrieving the metadata information from the file contents
1574 * and from the xattr region.
237fead6
MH
1575 *
1576 * Returns zero if valid headers found and parsed; non-zero otherwise
1577 */
d7cdc5fe 1578int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6
MH
1579{
1580 int rc = 0;
1581 char *page_virt = NULL;
d7cdc5fe 1582 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
237fead6 1583 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1584 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1585 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1586 &ecryptfs_superblock_to_private(
1587 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1588
e77a56dd
MH
1589 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1590 mount_crypt_stat);
237fead6 1591 /* Read the first page from the underlying file */
f7267c0c 1592 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
237fead6
MH
1593 if (!page_virt) {
1594 rc = -ENOMEM;
d7cdc5fe 1595 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
18d1dbf1 1596 __func__);
237fead6
MH
1597 goto out;
1598 }
d7cdc5fe
MH
1599 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1600 ecryptfs_inode);
1601 if (!rc)
1602 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1603 ecryptfs_dentry,
1604 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1605 if (rc) {
d7cdc5fe 1606 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1607 if (rc) {
1608 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1609 "file header region or xattr region\n");
1610 rc = -EINVAL;
1611 goto out;
1612 }
1613 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1614 ecryptfs_dentry,
1615 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1616 if (rc) {
1617 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1618 "file xattr region either\n");
1619 rc = -EINVAL;
1620 }
1621 if (crypt_stat->mount_crypt_stat->flags
1622 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1623 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1624 } else {
1625 printk(KERN_WARNING "Attempt to access file with "
1626 "crypto metadata only in the extended attribute "
1627 "region, but eCryptfs was mounted without "
1628 "xattr support enabled. eCryptfs will not treat "
1629 "this like an encrypted file.\n");
1630 rc = -EINVAL;
1631 }
237fead6
MH
1632 }
1633out:
1634 if (page_virt) {
1635 memset(page_virt, 0, PAGE_CACHE_SIZE);
1636 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1637 }
1638 return rc;
1639}
1640
51ca58dc
MH
1641/**
1642 * ecryptfs_encrypt_filename - encrypt filename
1643 *
1644 * CBC-encrypts the filename. We do not want to encrypt the same
1645 * filename with the same key and IV, which may happen with hard
1646 * links, so we prepend random bits to each filename.
1647 *
1648 * Returns zero on success; non-zero otherwise
1649 */
1650static int
1651ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1652 struct ecryptfs_crypt_stat *crypt_stat,
1653 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1654{
1655 int rc = 0;
1656
1657 filename->encrypted_filename = NULL;
1658 filename->encrypted_filename_size = 0;
1659 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1660 || (mount_crypt_stat && (mount_crypt_stat->flags
1661 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1662 size_t packet_size;
1663 size_t remaining_bytes;
1664
1665 rc = ecryptfs_write_tag_70_packet(
1666 NULL, NULL,
1667 &filename->encrypted_filename_size,
1668 mount_crypt_stat, NULL,
1669 filename->filename_size);
1670 if (rc) {
1671 printk(KERN_ERR "%s: Error attempting to get packet "
1672 "size for tag 72; rc = [%d]\n", __func__,
1673 rc);
1674 filename->encrypted_filename_size = 0;
1675 goto out;
1676 }
1677 filename->encrypted_filename =
1678 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1679 if (!filename->encrypted_filename) {
1680 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 1681 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
1682 filename->encrypted_filename_size);
1683 rc = -ENOMEM;
1684 goto out;
1685 }
1686 remaining_bytes = filename->encrypted_filename_size;
1687 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1688 &remaining_bytes,
1689 &packet_size,
1690 mount_crypt_stat,
1691 filename->filename,
1692 filename->filename_size);
1693 if (rc) {
1694 printk(KERN_ERR "%s: Error attempting to generate "
1695 "tag 70 packet; rc = [%d]\n", __func__,
1696 rc);
1697 kfree(filename->encrypted_filename);
1698 filename->encrypted_filename = NULL;
1699 filename->encrypted_filename_size = 0;
1700 goto out;
1701 }
1702 filename->encrypted_filename_size = packet_size;
1703 } else {
1704 printk(KERN_ERR "%s: No support for requested filename "
1705 "encryption method in this release\n", __func__);
1706 rc = -ENOTSUPP;
1707 goto out;
1708 }
1709out:
1710 return rc;
1711}
1712
1713static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1714 const char *name, size_t name_size)
1715{
1716 int rc = 0;
1717
fd9fc842 1718 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
51ca58dc
MH
1719 if (!(*copied_name)) {
1720 rc = -ENOMEM;
1721 goto out;
1722 }
1723 memcpy((void *)(*copied_name), (void *)name, name_size);
1724 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1725 * in printing out the
1726 * string in debug
1727 * messages */
fd9fc842 1728 (*copied_name_size) = name_size;
51ca58dc
MH
1729out:
1730 return rc;
1731}
1732
237fead6 1733/**
f4aad16a 1734 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1735 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1736 * @cipher_name: Name of the cipher
1737 * @key_size: Size of the key in bytes
237fead6
MH
1738 *
1739 * Returns zero on success. Any crypto_tfm structs allocated here
1740 * should be released by other functions, such as on a superblock put
1741 * event, regardless of whether this function succeeds for fails.
1742 */
cd9d67df 1743static int
f4aad16a
MH
1744ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1745 char *cipher_name, size_t *key_size)
237fead6
MH
1746{
1747 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
8bba066f 1748 char *full_alg_name;
237fead6
MH
1749 int rc;
1750
e5d9cbde
MH
1751 *key_tfm = NULL;
1752 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6 1753 rc = -EINVAL;
df261c52 1754 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
e5d9cbde 1755 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1756 goto out;
1757 }
8bba066f
MH
1758 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1759 "ecb");
1760 if (rc)
1761 goto out;
1762 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1763 kfree(full_alg_name);
1764 if (IS_ERR(*key_tfm)) {
1765 rc = PTR_ERR(*key_tfm);
237fead6 1766 printk(KERN_ERR "Unable to allocate crypto cipher with name "
38268498 1767 "[%s]; rc = [%d]\n", full_alg_name, rc);
237fead6
MH
1768 goto out;
1769 }
8bba066f
MH
1770 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1771 if (*key_size == 0) {
1772 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1773
1774 *key_size = alg->max_keysize;
1775 }
e5d9cbde 1776 get_random_bytes(dummy_key, *key_size);
8bba066f 1777 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6 1778 if (rc) {
df261c52 1779 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
38268498
DH
1780 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1781 rc);
237fead6
MH
1782 rc = -EINVAL;
1783 goto out;
1784 }
1785out:
1786 return rc;
1787}
f4aad16a
MH
1788
1789struct kmem_cache *ecryptfs_key_tfm_cache;
7896b631 1790static struct list_head key_tfm_list;
af440f52 1791struct mutex key_tfm_list_mutex;
f4aad16a
MH
1792
1793int ecryptfs_init_crypto(void)
1794{
1795 mutex_init(&key_tfm_list_mutex);
1796 INIT_LIST_HEAD(&key_tfm_list);
1797 return 0;
1798}
1799
af440f52
ES
1800/**
1801 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1802 *
1803 * Called only at module unload time
1804 */
fcd12835 1805int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1806{
1807 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1808
1809 mutex_lock(&key_tfm_list_mutex);
1810 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1811 key_tfm_list) {
1812 list_del(&key_tfm->key_tfm_list);
1813 if (key_tfm->key_tfm)
1814 crypto_free_blkcipher(key_tfm->key_tfm);
1815 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1816 }
1817 mutex_unlock(&key_tfm_list_mutex);
1818 return 0;
1819}
1820
1821int
1822ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1823 size_t key_size)
1824{
1825 struct ecryptfs_key_tfm *tmp_tfm;
1826 int rc = 0;
1827
af440f52
ES
1828 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1829
f4aad16a
MH
1830 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1831 if (key_tfm != NULL)
1832 (*key_tfm) = tmp_tfm;
1833 if (!tmp_tfm) {
1834 rc = -ENOMEM;
1835 printk(KERN_ERR "Error attempting to allocate from "
1836 "ecryptfs_key_tfm_cache\n");
1837 goto out;
1838 }
1839 mutex_init(&tmp_tfm->key_tfm_mutex);
1840 strncpy(tmp_tfm->cipher_name, cipher_name,
1841 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
b8862906 1842 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
f4aad16a 1843 tmp_tfm->key_size = key_size;
5dda6992
MH
1844 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1845 tmp_tfm->cipher_name,
1846 &tmp_tfm->key_size);
1847 if (rc) {
f4aad16a
MH
1848 printk(KERN_ERR "Error attempting to initialize key TFM "
1849 "cipher with name = [%s]; rc = [%d]\n",
1850 tmp_tfm->cipher_name, rc);
1851 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1852 if (key_tfm != NULL)
1853 (*key_tfm) = NULL;
1854 goto out;
1855 }
f4aad16a 1856 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
f4aad16a
MH
1857out:
1858 return rc;
1859}
1860
af440f52
ES
1861/**
1862 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1863 * @cipher_name: the name of the cipher to search for
1864 * @key_tfm: set to corresponding tfm if found
1865 *
1866 * Searches for cached key_tfm matching @cipher_name
1867 * Must be called with &key_tfm_list_mutex held
1868 * Returns 1 if found, with @key_tfm set
1869 * Returns 0 if not found, with @key_tfm set to NULL
1870 */
1871int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1872{
1873 struct ecryptfs_key_tfm *tmp_key_tfm;
1874
1875 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1876
1877 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1878 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1879 if (key_tfm)
1880 (*key_tfm) = tmp_key_tfm;
1881 return 1;
1882 }
1883 }
1884 if (key_tfm)
1885 (*key_tfm) = NULL;
1886 return 0;
1887}
1888
1889/**
1890 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1891 *
1892 * @tfm: set to cached tfm found, or new tfm created
1893 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1894 * @cipher_name: the name of the cipher to search for and/or add
1895 *
1896 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1897 * Searches for cached item first, and creates new if not found.
1898 * Returns 0 on success, non-zero if adding new cipher failed
1899 */
f4aad16a
MH
1900int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1901 struct mutex **tfm_mutex,
1902 char *cipher_name)
1903{
1904 struct ecryptfs_key_tfm *key_tfm;
1905 int rc = 0;
1906
1907 (*tfm) = NULL;
1908 (*tfm_mutex) = NULL;
af440f52 1909
f4aad16a 1910 mutex_lock(&key_tfm_list_mutex);
af440f52
ES
1911 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1912 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1913 if (rc) {
1914 printk(KERN_ERR "Error adding new key_tfm to list; "
1915 "rc = [%d]\n", rc);
f4aad16a
MH
1916 goto out;
1917 }
1918 }
f4aad16a
MH
1919 (*tfm) = key_tfm->key_tfm;
1920 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1921out:
71fd5179 1922 mutex_unlock(&key_tfm_list_mutex);
f4aad16a
MH
1923 return rc;
1924}
51ca58dc
MH
1925
1926/* 64 characters forming a 6-bit target field */
1927static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1928 "EFGHIJKLMNOPQRST"
1929 "UVWXYZabcdefghij"
1930 "klmnopqrstuvwxyz");
1931
1932/* We could either offset on every reverse map or just pad some 0x00's
1933 * at the front here */
71c11c37 1934static const unsigned char filename_rev_map[] = {
51ca58dc
MH
1935 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1936 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1937 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1941 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1942 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1943 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1944 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1945 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1946 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1947 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1948 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1949 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1950 0x3D, 0x3E, 0x3F
1951};
1952
1953/**
1954 * ecryptfs_encode_for_filename
1955 * @dst: Destination location for encoded filename
1956 * @dst_size: Size of the encoded filename in bytes
1957 * @src: Source location for the filename to encode
1958 * @src_size: Size of the source in bytes
1959 */
1960void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1961 unsigned char *src, size_t src_size)
1962{
1963 size_t num_blocks;
1964 size_t block_num = 0;
1965 size_t dst_offset = 0;
1966 unsigned char last_block[3];
1967
1968 if (src_size == 0) {
1969 (*dst_size) = 0;
1970 goto out;
1971 }
1972 num_blocks = (src_size / 3);
1973 if ((src_size % 3) == 0) {
1974 memcpy(last_block, (&src[src_size - 3]), 3);
1975 } else {
1976 num_blocks++;
1977 last_block[2] = 0x00;
1978 switch (src_size % 3) {
1979 case 1:
1980 last_block[0] = src[src_size - 1];
1981 last_block[1] = 0x00;
1982 break;
1983 case 2:
1984 last_block[0] = src[src_size - 2];
1985 last_block[1] = src[src_size - 1];
1986 }
1987 }
1988 (*dst_size) = (num_blocks * 4);
1989 if (!dst)
1990 goto out;
1991 while (block_num < num_blocks) {
1992 unsigned char *src_block;
1993 unsigned char dst_block[4];
1994
1995 if (block_num == (num_blocks - 1))
1996 src_block = last_block;
1997 else
1998 src_block = &src[block_num * 3];
1999 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2000 dst_block[1] = (((src_block[0] << 4) & 0x30)
2001 | ((src_block[1] >> 4) & 0x0F));
2002 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2003 | ((src_block[2] >> 6) & 0x03));
2004 dst_block[3] = (src_block[2] & 0x3F);
2005 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2006 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2007 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2008 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2009 block_num++;
2010 }
2011out:
2012 return;
2013}
2014
71c11c37
MH
2015/**
2016 * ecryptfs_decode_from_filename
2017 * @dst: If NULL, this function only sets @dst_size and returns. If
2018 * non-NULL, this function decodes the encoded octets in @src
2019 * into the memory that @dst points to.
2020 * @dst_size: Set to the size of the decoded string.
2021 * @src: The encoded set of octets to decode.
2022 * @src_size: The size of the encoded set of octets to decode.
2023 */
2024static void
2025ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2026 const unsigned char *src, size_t src_size)
51ca58dc
MH
2027{
2028 u8 current_bit_offset = 0;
2029 size_t src_byte_offset = 0;
2030 size_t dst_byte_offset = 0;
51ca58dc
MH
2031
2032 if (dst == NULL) {
71c11c37
MH
2033 /* Not exact; conservatively long. Every block of 4
2034 * encoded characters decodes into a block of 3
2035 * decoded characters. This segment of code provides
2036 * the caller with the maximum amount of allocated
2037 * space that @dst will need to point to in a
2038 * subsequent call. */
51ca58dc
MH
2039 (*dst_size) = (((src_size + 1) * 3) / 4);
2040 goto out;
2041 }
2042 while (src_byte_offset < src_size) {
2043 unsigned char src_byte =
2044 filename_rev_map[(int)src[src_byte_offset]];
2045
2046 switch (current_bit_offset) {
2047 case 0:
2048 dst[dst_byte_offset] = (src_byte << 2);
2049 current_bit_offset = 6;
2050 break;
2051 case 6:
2052 dst[dst_byte_offset++] |= (src_byte >> 4);
2053 dst[dst_byte_offset] = ((src_byte & 0xF)
2054 << 4);
2055 current_bit_offset = 4;
2056 break;
2057 case 4:
2058 dst[dst_byte_offset++] |= (src_byte >> 2);
2059 dst[dst_byte_offset] = (src_byte << 6);
2060 current_bit_offset = 2;
2061 break;
2062 case 2:
2063 dst[dst_byte_offset++] |= (src_byte);
2064 dst[dst_byte_offset] = 0;
2065 current_bit_offset = 0;
2066 break;
2067 }
2068 src_byte_offset++;
2069 }
2070 (*dst_size) = dst_byte_offset;
2071out:
71c11c37 2072 return;
51ca58dc
MH
2073}
2074
2075/**
2076 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2077 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2078 * @name: The plaintext name
2079 * @length: The length of the plaintext
2080 * @encoded_name: The encypted name
2081 *
2082 * Encrypts and encodes a filename into something that constitutes a
2083 * valid filename for a filesystem, with printable characters.
2084 *
2085 * We assume that we have a properly initialized crypto context,
2086 * pointed to by crypt_stat->tfm.
2087 *
2088 * Returns zero on success; non-zero on otherwise
2089 */
2090int ecryptfs_encrypt_and_encode_filename(
2091 char **encoded_name,
2092 size_t *encoded_name_size,
2093 struct ecryptfs_crypt_stat *crypt_stat,
2094 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2095 const char *name, size_t name_size)
2096{
2097 size_t encoded_name_no_prefix_size;
2098 int rc = 0;
2099
2100 (*encoded_name) = NULL;
2101 (*encoded_name_size) = 0;
2102 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2103 || (mount_crypt_stat && (mount_crypt_stat->flags
2104 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2105 struct ecryptfs_filename *filename;
2106
2107 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2108 if (!filename) {
2109 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2110 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2111 sizeof(*filename));
2112 rc = -ENOMEM;
2113 goto out;
2114 }
2115 filename->filename = (char *)name;
2116 filename->filename_size = name_size;
2117 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2118 mount_crypt_stat);
2119 if (rc) {
2120 printk(KERN_ERR "%s: Error attempting to encrypt "
2121 "filename; rc = [%d]\n", __func__, rc);
2122 kfree(filename);
2123 goto out;
2124 }
2125 ecryptfs_encode_for_filename(
2126 NULL, &encoded_name_no_prefix_size,
2127 filename->encrypted_filename,
2128 filename->encrypted_filename_size);
2129 if ((crypt_stat && (crypt_stat->flags
2130 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2131 || (mount_crypt_stat
2132 && (mount_crypt_stat->flags
2133 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2134 (*encoded_name_size) =
2135 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2136 + encoded_name_no_prefix_size);
2137 else
2138 (*encoded_name_size) =
2139 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2140 + encoded_name_no_prefix_size);
2141 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2142 if (!(*encoded_name)) {
2143 printk(KERN_ERR "%s: Out of memory whilst attempting "
a8f12864 2144 "to kzalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2145 (*encoded_name_size));
2146 rc = -ENOMEM;
2147 kfree(filename->encrypted_filename);
2148 kfree(filename);
2149 goto out;
2150 }
2151 if ((crypt_stat && (crypt_stat->flags
2152 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2153 || (mount_crypt_stat
2154 && (mount_crypt_stat->flags
2155 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2156 memcpy((*encoded_name),
2157 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2158 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2159 ecryptfs_encode_for_filename(
2160 ((*encoded_name)
2161 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2162 &encoded_name_no_prefix_size,
2163 filename->encrypted_filename,
2164 filename->encrypted_filename_size);
2165 (*encoded_name_size) =
2166 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2167 + encoded_name_no_prefix_size);
2168 (*encoded_name)[(*encoded_name_size)] = '\0';
2169 (*encoded_name_size)++;
2170 } else {
2171 rc = -ENOTSUPP;
2172 }
2173 if (rc) {
2174 printk(KERN_ERR "%s: Error attempting to encode "
2175 "encrypted filename; rc = [%d]\n", __func__,
2176 rc);
2177 kfree((*encoded_name));
2178 (*encoded_name) = NULL;
2179 (*encoded_name_size) = 0;
2180 }
2181 kfree(filename->encrypted_filename);
2182 kfree(filename);
2183 } else {
2184 rc = ecryptfs_copy_filename(encoded_name,
2185 encoded_name_size,
2186 name, name_size);
2187 }
2188out:
2189 return rc;
2190}
2191
2192/**
2193 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2194 * @plaintext_name: The plaintext name
2195 * @plaintext_name_size: The plaintext name size
2196 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2197 * @name: The filename in cipher text
2198 * @name_size: The cipher text name size
2199 *
2200 * Decrypts and decodes the filename.
2201 *
2202 * Returns zero on error; non-zero otherwise
2203 */
2204int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2205 size_t *plaintext_name_size,
2206 struct dentry *ecryptfs_dir_dentry,
2207 const char *name, size_t name_size)
2208{
2aac0cf8
TH
2209 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2210 &ecryptfs_superblock_to_private(
2211 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
51ca58dc
MH
2212 char *decoded_name;
2213 size_t decoded_name_size;
2214 size_t packet_size;
2215 int rc = 0;
2216
2aac0cf8
TH
2217 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2218 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2219 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
51ca58dc
MH
2220 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2221 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
51ca58dc
MH
2222 const char *orig_name = name;
2223 size_t orig_name_size = name_size;
2224
2225 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2226 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
71c11c37
MH
2227 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2228 name, name_size);
51ca58dc
MH
2229 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2230 if (!decoded_name) {
2231 printk(KERN_ERR "%s: Out of memory whilst attempting "
df261c52 2232 "to kmalloc [%zd] bytes\n", __func__,
51ca58dc
MH
2233 decoded_name_size);
2234 rc = -ENOMEM;
2235 goto out;
2236 }
71c11c37
MH
2237 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2238 name, name_size);
51ca58dc
MH
2239 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2240 plaintext_name_size,
2241 &packet_size,
2242 mount_crypt_stat,
2243 decoded_name,
2244 decoded_name_size);
2245 if (rc) {
2246 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2247 "from filename; copying through filename "
2248 "as-is\n", __func__);
2249 rc = ecryptfs_copy_filename(plaintext_name,
2250 plaintext_name_size,
2251 orig_name, orig_name_size);
2252 goto out_free;
2253 }
2254 } else {
2255 rc = ecryptfs_copy_filename(plaintext_name,
2256 plaintext_name_size,
2257 name, name_size);
2258 goto out;
2259 }
2260out_free:
2261 kfree(decoded_name);
2262out:
2263 return rc;
2264}