]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/dcache.c
[PATCH] sysrq cleanup
[net-next-2.6.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17#include <linux/config.h>
18#include <linux/syscalls.h>
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
7a91bf7f 22#include <linux/fsnotify.h>
1da177e4
LT
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/smp_lock.h>
26#include <linux/hash.h>
27#include <linux/cache.h>
28#include <linux/module.h>
29#include <linux/mount.h>
30#include <linux/file.h>
31#include <asm/uaccess.h>
32#include <linux/security.h>
33#include <linux/seqlock.h>
34#include <linux/swap.h>
35#include <linux/bootmem.h>
36
37/* #define DCACHE_DEBUG 1 */
38
39int sysctl_vfs_cache_pressure = 100;
40EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
41
42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
75c96f85 43static seqlock_t rename_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
1da177e4
LT
44
45EXPORT_SYMBOL(dcache_lock);
46
47static kmem_cache_t *dentry_cache;
48
49#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
50
51/*
52 * This is the single most critical data structure when it comes
53 * to the dcache: the hashtable for lookups. Somebody should try
54 * to make this good - I've just made it work.
55 *
56 * This hash-function tries to avoid losing too many bits of hash
57 * information, yet avoid using a prime hash-size or similar.
58 */
59#define D_HASHBITS d_hash_shift
60#define D_HASHMASK d_hash_mask
61
62static unsigned int d_hash_mask;
63static unsigned int d_hash_shift;
64static struct hlist_head *dentry_hashtable;
65static LIST_HEAD(dentry_unused);
66
67/* Statistics gathering. */
68struct dentry_stat_t dentry_stat = {
69 .age_limit = 45,
70};
71
72static void d_callback(struct rcu_head *head)
73{
5160ee6f 74 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
1da177e4
LT
75
76 if (dname_external(dentry))
77 kfree(dentry->d_name.name);
78 kmem_cache_free(dentry_cache, dentry);
79}
80
81/*
82 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
83 * inside dcache_lock.
84 */
85static void d_free(struct dentry *dentry)
86{
87 if (dentry->d_op && dentry->d_op->d_release)
88 dentry->d_op->d_release(dentry);
5160ee6f 89 call_rcu(&dentry->d_u.d_rcu, d_callback);
1da177e4
LT
90}
91
92/*
93 * Release the dentry's inode, using the filesystem
94 * d_iput() operation if defined.
95 * Called with dcache_lock and per dentry lock held, drops both.
96 */
858119e1 97static void dentry_iput(struct dentry * dentry)
1da177e4
LT
98{
99 struct inode *inode = dentry->d_inode;
100 if (inode) {
101 dentry->d_inode = NULL;
102 list_del_init(&dentry->d_alias);
103 spin_unlock(&dentry->d_lock);
104 spin_unlock(&dcache_lock);
f805fbda
LT
105 if (!inode->i_nlink)
106 fsnotify_inoderemove(inode);
1da177e4
LT
107 if (dentry->d_op && dentry->d_op->d_iput)
108 dentry->d_op->d_iput(dentry, inode);
109 else
110 iput(inode);
111 } else {
112 spin_unlock(&dentry->d_lock);
113 spin_unlock(&dcache_lock);
114 }
115}
116
117/*
118 * This is dput
119 *
120 * This is complicated by the fact that we do not want to put
121 * dentries that are no longer on any hash chain on the unused
122 * list: we'd much rather just get rid of them immediately.
123 *
124 * However, that implies that we have to traverse the dentry
125 * tree upwards to the parents which might _also_ now be
126 * scheduled for deletion (it may have been only waiting for
127 * its last child to go away).
128 *
129 * This tail recursion is done by hand as we don't want to depend
130 * on the compiler to always get this right (gcc generally doesn't).
131 * Real recursion would eat up our stack space.
132 */
133
134/*
135 * dput - release a dentry
136 * @dentry: dentry to release
137 *
138 * Release a dentry. This will drop the usage count and if appropriate
139 * call the dentry unlink method as well as removing it from the queues and
140 * releasing its resources. If the parent dentries were scheduled for release
141 * they too may now get deleted.
142 *
143 * no dcache lock, please.
144 */
145
146void dput(struct dentry *dentry)
147{
148 if (!dentry)
149 return;
150
151repeat:
152 if (atomic_read(&dentry->d_count) == 1)
153 might_sleep();
154 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
155 return;
156
157 spin_lock(&dentry->d_lock);
158 if (atomic_read(&dentry->d_count)) {
159 spin_unlock(&dentry->d_lock);
160 spin_unlock(&dcache_lock);
161 return;
162 }
163
164 /*
165 * AV: ->d_delete() is _NOT_ allowed to block now.
166 */
167 if (dentry->d_op && dentry->d_op->d_delete) {
168 if (dentry->d_op->d_delete(dentry))
169 goto unhash_it;
170 }
171 /* Unreachable? Get rid of it */
172 if (d_unhashed(dentry))
173 goto kill_it;
174 if (list_empty(&dentry->d_lru)) {
175 dentry->d_flags |= DCACHE_REFERENCED;
176 list_add(&dentry->d_lru, &dentry_unused);
177 dentry_stat.nr_unused++;
178 }
179 spin_unlock(&dentry->d_lock);
180 spin_unlock(&dcache_lock);
181 return;
182
183unhash_it:
184 __d_drop(dentry);
185
186kill_it: {
187 struct dentry *parent;
188
189 /* If dentry was on d_lru list
190 * delete it from there
191 */
192 if (!list_empty(&dentry->d_lru)) {
193 list_del(&dentry->d_lru);
194 dentry_stat.nr_unused--;
195 }
5160ee6f 196 list_del(&dentry->d_u.d_child);
1da177e4
LT
197 dentry_stat.nr_dentry--; /* For d_free, below */
198 /*drops the locks, at that point nobody can reach this dentry */
199 dentry_iput(dentry);
200 parent = dentry->d_parent;
201 d_free(dentry);
202 if (dentry == parent)
203 return;
204 dentry = parent;
205 goto repeat;
206 }
207}
208
209/**
210 * d_invalidate - invalidate a dentry
211 * @dentry: dentry to invalidate
212 *
213 * Try to invalidate the dentry if it turns out to be
214 * possible. If there are other dentries that can be
215 * reached through this one we can't delete it and we
216 * return -EBUSY. On success we return 0.
217 *
218 * no dcache lock.
219 */
220
221int d_invalidate(struct dentry * dentry)
222{
223 /*
224 * If it's already been dropped, return OK.
225 */
226 spin_lock(&dcache_lock);
227 if (d_unhashed(dentry)) {
228 spin_unlock(&dcache_lock);
229 return 0;
230 }
231 /*
232 * Check whether to do a partial shrink_dcache
233 * to get rid of unused child entries.
234 */
235 if (!list_empty(&dentry->d_subdirs)) {
236 spin_unlock(&dcache_lock);
237 shrink_dcache_parent(dentry);
238 spin_lock(&dcache_lock);
239 }
240
241 /*
242 * Somebody else still using it?
243 *
244 * If it's a directory, we can't drop it
245 * for fear of somebody re-populating it
246 * with children (even though dropping it
247 * would make it unreachable from the root,
248 * we might still populate it if it was a
249 * working directory or similar).
250 */
251 spin_lock(&dentry->d_lock);
252 if (atomic_read(&dentry->d_count) > 1) {
253 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
254 spin_unlock(&dentry->d_lock);
255 spin_unlock(&dcache_lock);
256 return -EBUSY;
257 }
258 }
259
260 __d_drop(dentry);
261 spin_unlock(&dentry->d_lock);
262 spin_unlock(&dcache_lock);
263 return 0;
264}
265
266/* This should be called _only_ with dcache_lock held */
267
268static inline struct dentry * __dget_locked(struct dentry *dentry)
269{
270 atomic_inc(&dentry->d_count);
271 if (!list_empty(&dentry->d_lru)) {
272 dentry_stat.nr_unused--;
273 list_del_init(&dentry->d_lru);
274 }
275 return dentry;
276}
277
278struct dentry * dget_locked(struct dentry *dentry)
279{
280 return __dget_locked(dentry);
281}
282
283/**
284 * d_find_alias - grab a hashed alias of inode
285 * @inode: inode in question
286 * @want_discon: flag, used by d_splice_alias, to request
287 * that only a DISCONNECTED alias be returned.
288 *
289 * If inode has a hashed alias, or is a directory and has any alias,
290 * acquire the reference to alias and return it. Otherwise return NULL.
291 * Notice that if inode is a directory there can be only one alias and
292 * it can be unhashed only if it has no children, or if it is the root
293 * of a filesystem.
294 *
295 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
296 * any other hashed alias over that one unless @want_discon is set,
297 * in which case only return a DCACHE_DISCONNECTED alias.
298 */
299
300static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
301{
302 struct list_head *head, *next, *tmp;
303 struct dentry *alias, *discon_alias=NULL;
304
305 head = &inode->i_dentry;
306 next = inode->i_dentry.next;
307 while (next != head) {
308 tmp = next;
309 next = tmp->next;
310 prefetch(next);
311 alias = list_entry(tmp, struct dentry, d_alias);
312 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
313 if (alias->d_flags & DCACHE_DISCONNECTED)
314 discon_alias = alias;
315 else if (!want_discon) {
316 __dget_locked(alias);
317 return alias;
318 }
319 }
320 }
321 if (discon_alias)
322 __dget_locked(discon_alias);
323 return discon_alias;
324}
325
326struct dentry * d_find_alias(struct inode *inode)
327{
214fda1f
DH
328 struct dentry *de = NULL;
329
330 if (!list_empty(&inode->i_dentry)) {
331 spin_lock(&dcache_lock);
332 de = __d_find_alias(inode, 0);
333 spin_unlock(&dcache_lock);
334 }
1da177e4
LT
335 return de;
336}
337
338/*
339 * Try to kill dentries associated with this inode.
340 * WARNING: you must own a reference to inode.
341 */
342void d_prune_aliases(struct inode *inode)
343{
0cdca3f9 344 struct dentry *dentry;
1da177e4
LT
345restart:
346 spin_lock(&dcache_lock);
0cdca3f9 347 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4
LT
348 spin_lock(&dentry->d_lock);
349 if (!atomic_read(&dentry->d_count)) {
350 __dget_locked(dentry);
351 __d_drop(dentry);
352 spin_unlock(&dentry->d_lock);
353 spin_unlock(&dcache_lock);
354 dput(dentry);
355 goto restart;
356 }
357 spin_unlock(&dentry->d_lock);
358 }
359 spin_unlock(&dcache_lock);
360}
361
362/*
363 * Throw away a dentry - free the inode, dput the parent.
364 * This requires that the LRU list has already been
365 * removed.
366 * Called with dcache_lock, drops it and then regains.
367 */
368static inline void prune_one_dentry(struct dentry * dentry)
369{
370 struct dentry * parent;
371
372 __d_drop(dentry);
5160ee6f 373 list_del(&dentry->d_u.d_child);
1da177e4
LT
374 dentry_stat.nr_dentry--; /* For d_free, below */
375 dentry_iput(dentry);
376 parent = dentry->d_parent;
377 d_free(dentry);
378 if (parent != dentry)
379 dput(parent);
380 spin_lock(&dcache_lock);
381}
382
383/**
384 * prune_dcache - shrink the dcache
385 * @count: number of entries to try and free
386 *
387 * Shrink the dcache. This is done when we need
388 * more memory, or simply when we need to unmount
389 * something (at which point we need to unuse
390 * all dentries).
391 *
392 * This function may fail to free any resources if
393 * all the dentries are in use.
394 */
395
396static void prune_dcache(int count)
397{
398 spin_lock(&dcache_lock);
399 for (; count ; count--) {
400 struct dentry *dentry;
401 struct list_head *tmp;
402
403 cond_resched_lock(&dcache_lock);
404
405 tmp = dentry_unused.prev;
406 if (tmp == &dentry_unused)
407 break;
408 list_del_init(tmp);
409 prefetch(dentry_unused.prev);
410 dentry_stat.nr_unused--;
411 dentry = list_entry(tmp, struct dentry, d_lru);
412
413 spin_lock(&dentry->d_lock);
414 /*
415 * We found an inuse dentry which was not removed from
416 * dentry_unused because of laziness during lookup. Do not free
417 * it - just keep it off the dentry_unused list.
418 */
419 if (atomic_read(&dentry->d_count)) {
420 spin_unlock(&dentry->d_lock);
421 continue;
422 }
423 /* If the dentry was recently referenced, don't free it. */
424 if (dentry->d_flags & DCACHE_REFERENCED) {
425 dentry->d_flags &= ~DCACHE_REFERENCED;
426 list_add(&dentry->d_lru, &dentry_unused);
427 dentry_stat.nr_unused++;
428 spin_unlock(&dentry->d_lock);
429 continue;
430 }
431 prune_one_dentry(dentry);
432 }
433 spin_unlock(&dcache_lock);
434}
435
436/*
437 * Shrink the dcache for the specified super block.
438 * This allows us to unmount a device without disturbing
439 * the dcache for the other devices.
440 *
441 * This implementation makes just two traversals of the
442 * unused list. On the first pass we move the selected
443 * dentries to the most recent end, and on the second
444 * pass we free them. The second pass must restart after
445 * each dput(), but since the target dentries are all at
446 * the end, it's really just a single traversal.
447 */
448
449/**
450 * shrink_dcache_sb - shrink dcache for a superblock
451 * @sb: superblock
452 *
453 * Shrink the dcache for the specified super block. This
454 * is used to free the dcache before unmounting a file
455 * system
456 */
457
458void shrink_dcache_sb(struct super_block * sb)
459{
460 struct list_head *tmp, *next;
461 struct dentry *dentry;
462
463 /*
464 * Pass one ... move the dentries for the specified
465 * superblock to the most recent end of the unused list.
466 */
467 spin_lock(&dcache_lock);
0cdca3f9 468 list_for_each_safe(tmp, next, &dentry_unused) {
1da177e4
LT
469 dentry = list_entry(tmp, struct dentry, d_lru);
470 if (dentry->d_sb != sb)
471 continue;
472 list_del(tmp);
473 list_add(tmp, &dentry_unused);
474 }
475
476 /*
477 * Pass two ... free the dentries for this superblock.
478 */
479repeat:
0cdca3f9 480 list_for_each_safe(tmp, next, &dentry_unused) {
1da177e4
LT
481 dentry = list_entry(tmp, struct dentry, d_lru);
482 if (dentry->d_sb != sb)
483 continue;
484 dentry_stat.nr_unused--;
485 list_del_init(tmp);
486 spin_lock(&dentry->d_lock);
487 if (atomic_read(&dentry->d_count)) {
488 spin_unlock(&dentry->d_lock);
489 continue;
490 }
491 prune_one_dentry(dentry);
492 goto repeat;
493 }
494 spin_unlock(&dcache_lock);
495}
496
497/*
498 * Search for at least 1 mount point in the dentry's subdirs.
499 * We descend to the next level whenever the d_subdirs
500 * list is non-empty and continue searching.
501 */
502
503/**
504 * have_submounts - check for mounts over a dentry
505 * @parent: dentry to check.
506 *
507 * Return true if the parent or its subdirectories contain
508 * a mount point
509 */
510
511int have_submounts(struct dentry *parent)
512{
513 struct dentry *this_parent = parent;
514 struct list_head *next;
515
516 spin_lock(&dcache_lock);
517 if (d_mountpoint(parent))
518 goto positive;
519repeat:
520 next = this_parent->d_subdirs.next;
521resume:
522 while (next != &this_parent->d_subdirs) {
523 struct list_head *tmp = next;
5160ee6f 524 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
525 next = tmp->next;
526 /* Have we found a mount point ? */
527 if (d_mountpoint(dentry))
528 goto positive;
529 if (!list_empty(&dentry->d_subdirs)) {
530 this_parent = dentry;
531 goto repeat;
532 }
533 }
534 /*
535 * All done at this level ... ascend and resume the search.
536 */
537 if (this_parent != parent) {
5160ee6f 538 next = this_parent->d_u.d_child.next;
1da177e4
LT
539 this_parent = this_parent->d_parent;
540 goto resume;
541 }
542 spin_unlock(&dcache_lock);
543 return 0; /* No mount points found in tree */
544positive:
545 spin_unlock(&dcache_lock);
546 return 1;
547}
548
549/*
550 * Search the dentry child list for the specified parent,
551 * and move any unused dentries to the end of the unused
552 * list for prune_dcache(). We descend to the next level
553 * whenever the d_subdirs list is non-empty and continue
554 * searching.
555 *
556 * It returns zero iff there are no unused children,
557 * otherwise it returns the number of children moved to
558 * the end of the unused list. This may not be the total
559 * number of unused children, because select_parent can
560 * drop the lock and return early due to latency
561 * constraints.
562 */
563static int select_parent(struct dentry * parent)
564{
565 struct dentry *this_parent = parent;
566 struct list_head *next;
567 int found = 0;
568
569 spin_lock(&dcache_lock);
570repeat:
571 next = this_parent->d_subdirs.next;
572resume:
573 while (next != &this_parent->d_subdirs) {
574 struct list_head *tmp = next;
5160ee6f 575 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
576 next = tmp->next;
577
578 if (!list_empty(&dentry->d_lru)) {
579 dentry_stat.nr_unused--;
580 list_del_init(&dentry->d_lru);
581 }
582 /*
583 * move only zero ref count dentries to the end
584 * of the unused list for prune_dcache
585 */
586 if (!atomic_read(&dentry->d_count)) {
587 list_add(&dentry->d_lru, dentry_unused.prev);
588 dentry_stat.nr_unused++;
589 found++;
590 }
591
592 /*
593 * We can return to the caller if we have found some (this
594 * ensures forward progress). We'll be coming back to find
595 * the rest.
596 */
597 if (found && need_resched())
598 goto out;
599
600 /*
601 * Descend a level if the d_subdirs list is non-empty.
602 */
603 if (!list_empty(&dentry->d_subdirs)) {
604 this_parent = dentry;
605#ifdef DCACHE_DEBUG
606printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n",
607dentry->d_parent->d_name.name, dentry->d_name.name, found);
608#endif
609 goto repeat;
610 }
611 }
612 /*
613 * All done at this level ... ascend and resume the search.
614 */
615 if (this_parent != parent) {
5160ee6f 616 next = this_parent->d_u.d_child.next;
1da177e4
LT
617 this_parent = this_parent->d_parent;
618#ifdef DCACHE_DEBUG
619printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n",
620this_parent->d_parent->d_name.name, this_parent->d_name.name, found);
621#endif
622 goto resume;
623 }
624out:
625 spin_unlock(&dcache_lock);
626 return found;
627}
628
629/**
630 * shrink_dcache_parent - prune dcache
631 * @parent: parent of entries to prune
632 *
633 * Prune the dcache to remove unused children of the parent dentry.
634 */
635
636void shrink_dcache_parent(struct dentry * parent)
637{
638 int found;
639
640 while ((found = select_parent(parent)) != 0)
641 prune_dcache(found);
642}
643
644/**
645 * shrink_dcache_anon - further prune the cache
646 * @head: head of d_hash list of dentries to prune
647 *
648 * Prune the dentries that are anonymous
649 *
665a7583 650 * parsing d_hash list does not hlist_for_each_entry_rcu() as it
1da177e4
LT
651 * done under dcache_lock.
652 *
653 */
654void shrink_dcache_anon(struct hlist_head *head)
655{
656 struct hlist_node *lp;
657 int found;
658 do {
659 found = 0;
660 spin_lock(&dcache_lock);
661 hlist_for_each(lp, head) {
662 struct dentry *this = hlist_entry(lp, struct dentry, d_hash);
663 if (!list_empty(&this->d_lru)) {
664 dentry_stat.nr_unused--;
665 list_del_init(&this->d_lru);
666 }
667
668 /*
669 * move only zero ref count dentries to the end
670 * of the unused list for prune_dcache
671 */
672 if (!atomic_read(&this->d_count)) {
673 list_add_tail(&this->d_lru, &dentry_unused);
674 dentry_stat.nr_unused++;
675 found++;
676 }
677 }
678 spin_unlock(&dcache_lock);
679 prune_dcache(found);
680 } while(found);
681}
682
683/*
684 * Scan `nr' dentries and return the number which remain.
685 *
686 * We need to avoid reentering the filesystem if the caller is performing a
687 * GFP_NOFS allocation attempt. One example deadlock is:
688 *
689 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
690 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
691 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
692 *
693 * In this case we return -1 to tell the caller that we baled.
694 */
27496a8c 695static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
1da177e4
LT
696{
697 if (nr) {
698 if (!(gfp_mask & __GFP_FS))
699 return -1;
700 prune_dcache(nr);
701 }
702 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
703}
704
705/**
706 * d_alloc - allocate a dcache entry
707 * @parent: parent of entry to allocate
708 * @name: qstr of the name
709 *
710 * Allocates a dentry. It returns %NULL if there is insufficient memory
711 * available. On a success the dentry is returned. The name passed in is
712 * copied and the copy passed in may be reused after this call.
713 */
714
715struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
716{
717 struct dentry *dentry;
718 char *dname;
719
720 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
721 if (!dentry)
722 return NULL;
723
724 if (name->len > DNAME_INLINE_LEN-1) {
725 dname = kmalloc(name->len + 1, GFP_KERNEL);
726 if (!dname) {
727 kmem_cache_free(dentry_cache, dentry);
728 return NULL;
729 }
730 } else {
731 dname = dentry->d_iname;
732 }
733 dentry->d_name.name = dname;
734
735 dentry->d_name.len = name->len;
736 dentry->d_name.hash = name->hash;
737 memcpy(dname, name->name, name->len);
738 dname[name->len] = 0;
739
740 atomic_set(&dentry->d_count, 1);
741 dentry->d_flags = DCACHE_UNHASHED;
742 spin_lock_init(&dentry->d_lock);
743 dentry->d_inode = NULL;
744 dentry->d_parent = NULL;
745 dentry->d_sb = NULL;
746 dentry->d_op = NULL;
747 dentry->d_fsdata = NULL;
748 dentry->d_mounted = 0;
47ba87e0 749#ifdef CONFIG_PROFILING
1da177e4 750 dentry->d_cookie = NULL;
47ba87e0 751#endif
1da177e4
LT
752 INIT_HLIST_NODE(&dentry->d_hash);
753 INIT_LIST_HEAD(&dentry->d_lru);
754 INIT_LIST_HEAD(&dentry->d_subdirs);
755 INIT_LIST_HEAD(&dentry->d_alias);
756
757 if (parent) {
758 dentry->d_parent = dget(parent);
759 dentry->d_sb = parent->d_sb;
760 } else {
5160ee6f 761 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
762 }
763
764 spin_lock(&dcache_lock);
765 if (parent)
5160ee6f 766 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1da177e4
LT
767 dentry_stat.nr_dentry++;
768 spin_unlock(&dcache_lock);
769
770 return dentry;
771}
772
773struct dentry *d_alloc_name(struct dentry *parent, const char *name)
774{
775 struct qstr q;
776
777 q.name = name;
778 q.len = strlen(name);
779 q.hash = full_name_hash(q.name, q.len);
780 return d_alloc(parent, &q);
781}
782
783/**
784 * d_instantiate - fill in inode information for a dentry
785 * @entry: dentry to complete
786 * @inode: inode to attach to this dentry
787 *
788 * Fill in inode information in the entry.
789 *
790 * This turns negative dentries into productive full members
791 * of society.
792 *
793 * NOTE! This assumes that the inode count has been incremented
794 * (or otherwise set) by the caller to indicate that it is now
795 * in use by the dcache.
796 */
797
798void d_instantiate(struct dentry *entry, struct inode * inode)
799{
800 if (!list_empty(&entry->d_alias)) BUG();
801 spin_lock(&dcache_lock);
802 if (inode)
803 list_add(&entry->d_alias, &inode->i_dentry);
804 entry->d_inode = inode;
805 spin_unlock(&dcache_lock);
806 security_d_instantiate(entry, inode);
807}
808
809/**
810 * d_instantiate_unique - instantiate a non-aliased dentry
811 * @entry: dentry to instantiate
812 * @inode: inode to attach to this dentry
813 *
814 * Fill in inode information in the entry. On success, it returns NULL.
815 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 816 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
817 *
818 * Note that in order to avoid conflicts with rename() etc, the caller
819 * had better be holding the parent directory semaphore.
e866cfa9
OD
820 *
821 * This also assumes that the inode count has been incremented
822 * (or otherwise set) by the caller to indicate that it is now
823 * in use by the dcache.
1da177e4
LT
824 */
825struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
826{
827 struct dentry *alias;
828 int len = entry->d_name.len;
829 const char *name = entry->d_name.name;
830 unsigned int hash = entry->d_name.hash;
831
832 BUG_ON(!list_empty(&entry->d_alias));
833 spin_lock(&dcache_lock);
834 if (!inode)
835 goto do_negative;
836 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
837 struct qstr *qstr = &alias->d_name;
838
839 if (qstr->hash != hash)
840 continue;
841 if (alias->d_parent != entry->d_parent)
842 continue;
843 if (qstr->len != len)
844 continue;
845 if (memcmp(qstr->name, name, len))
846 continue;
847 dget_locked(alias);
848 spin_unlock(&dcache_lock);
849 BUG_ON(!d_unhashed(alias));
e866cfa9 850 iput(inode);
1da177e4
LT
851 return alias;
852 }
853 list_add(&entry->d_alias, &inode->i_dentry);
854do_negative:
855 entry->d_inode = inode;
856 spin_unlock(&dcache_lock);
857 security_d_instantiate(entry, inode);
858 return NULL;
859}
860EXPORT_SYMBOL(d_instantiate_unique);
861
862/**
863 * d_alloc_root - allocate root dentry
864 * @root_inode: inode to allocate the root for
865 *
866 * Allocate a root ("/") dentry for the inode given. The inode is
867 * instantiated and returned. %NULL is returned if there is insufficient
868 * memory or the inode passed is %NULL.
869 */
870
871struct dentry * d_alloc_root(struct inode * root_inode)
872{
873 struct dentry *res = NULL;
874
875 if (root_inode) {
876 static const struct qstr name = { .name = "/", .len = 1 };
877
878 res = d_alloc(NULL, &name);
879 if (res) {
880 res->d_sb = root_inode->i_sb;
881 res->d_parent = res;
882 d_instantiate(res, root_inode);
883 }
884 }
885 return res;
886}
887
888static inline struct hlist_head *d_hash(struct dentry *parent,
889 unsigned long hash)
890{
891 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
892 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
893 return dentry_hashtable + (hash & D_HASHMASK);
894}
895
896/**
897 * d_alloc_anon - allocate an anonymous dentry
898 * @inode: inode to allocate the dentry for
899 *
900 * This is similar to d_alloc_root. It is used by filesystems when
901 * creating a dentry for a given inode, often in the process of
902 * mapping a filehandle to a dentry. The returned dentry may be
903 * anonymous, or may have a full name (if the inode was already
904 * in the cache). The file system may need to make further
905 * efforts to connect this dentry into the dcache properly.
906 *
907 * When called on a directory inode, we must ensure that
908 * the inode only ever has one dentry. If a dentry is
909 * found, that is returned instead of allocating a new one.
910 *
911 * On successful return, the reference to the inode has been transferred
912 * to the dentry. If %NULL is returned (indicating kmalloc failure),
913 * the reference on the inode has not been released.
914 */
915
916struct dentry * d_alloc_anon(struct inode *inode)
917{
918 static const struct qstr anonstring = { .name = "" };
919 struct dentry *tmp;
920 struct dentry *res;
921
922 if ((res = d_find_alias(inode))) {
923 iput(inode);
924 return res;
925 }
926
927 tmp = d_alloc(NULL, &anonstring);
928 if (!tmp)
929 return NULL;
930
931 tmp->d_parent = tmp; /* make sure dput doesn't croak */
932
933 spin_lock(&dcache_lock);
934 res = __d_find_alias(inode, 0);
935 if (!res) {
936 /* attach a disconnected dentry */
937 res = tmp;
938 tmp = NULL;
939 spin_lock(&res->d_lock);
940 res->d_sb = inode->i_sb;
941 res->d_parent = res;
942 res->d_inode = inode;
943 res->d_flags |= DCACHE_DISCONNECTED;
944 res->d_flags &= ~DCACHE_UNHASHED;
945 list_add(&res->d_alias, &inode->i_dentry);
946 hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
947 spin_unlock(&res->d_lock);
948
949 inode = NULL; /* don't drop reference */
950 }
951 spin_unlock(&dcache_lock);
952
953 if (inode)
954 iput(inode);
955 if (tmp)
956 dput(tmp);
957 return res;
958}
959
960
961/**
962 * d_splice_alias - splice a disconnected dentry into the tree if one exists
963 * @inode: the inode which may have a disconnected dentry
964 * @dentry: a negative dentry which we want to point to the inode.
965 *
966 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
967 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
968 * and return it, else simply d_add the inode to the dentry and return NULL.
969 *
970 * This is needed in the lookup routine of any filesystem that is exportable
971 * (via knfsd) so that we can build dcache paths to directories effectively.
972 *
973 * If a dentry was found and moved, then it is returned. Otherwise NULL
974 * is returned. This matches the expected return value of ->lookup.
975 *
976 */
977struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
978{
979 struct dentry *new = NULL;
980
981 if (inode) {
982 spin_lock(&dcache_lock);
983 new = __d_find_alias(inode, 1);
984 if (new) {
985 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
986 spin_unlock(&dcache_lock);
987 security_d_instantiate(new, inode);
988 d_rehash(dentry);
989 d_move(new, dentry);
990 iput(inode);
991 } else {
992 /* d_instantiate takes dcache_lock, so we do it by hand */
993 list_add(&dentry->d_alias, &inode->i_dentry);
994 dentry->d_inode = inode;
995 spin_unlock(&dcache_lock);
996 security_d_instantiate(dentry, inode);
997 d_rehash(dentry);
998 }
999 } else
1000 d_add(dentry, inode);
1001 return new;
1002}
1003
1004
1005/**
1006 * d_lookup - search for a dentry
1007 * @parent: parent dentry
1008 * @name: qstr of name we wish to find
1009 *
1010 * Searches the children of the parent dentry for the name in question. If
1011 * the dentry is found its reference count is incremented and the dentry
1012 * is returned. The caller must use d_put to free the entry when it has
1013 * finished using it. %NULL is returned on failure.
1014 *
1015 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1016 * Memory barriers are used while updating and doing lockless traversal.
1017 * To avoid races with d_move while rename is happening, d_lock is used.
1018 *
1019 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1020 * and name pointer in one structure pointed by d_qstr.
1021 *
1022 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1023 * lookup is going on.
1024 *
1025 * dentry_unused list is not updated even if lookup finds the required dentry
1026 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1027 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1028 * acquisition.
1029 *
1030 * d_lookup() is protected against the concurrent renames in some unrelated
1031 * directory using the seqlockt_t rename_lock.
1032 */
1033
1034struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1035{
1036 struct dentry * dentry = NULL;
1037 unsigned long seq;
1038
1039 do {
1040 seq = read_seqbegin(&rename_lock);
1041 dentry = __d_lookup(parent, name);
1042 if (dentry)
1043 break;
1044 } while (read_seqretry(&rename_lock, seq));
1045 return dentry;
1046}
1047
1048struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1049{
1050 unsigned int len = name->len;
1051 unsigned int hash = name->hash;
1052 const unsigned char *str = name->name;
1053 struct hlist_head *head = d_hash(parent,hash);
1054 struct dentry *found = NULL;
1055 struct hlist_node *node;
665a7583 1056 struct dentry *dentry;
1da177e4
LT
1057
1058 rcu_read_lock();
1059
665a7583 1060 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1da177e4
LT
1061 struct qstr *qstr;
1062
1da177e4
LT
1063 if (dentry->d_name.hash != hash)
1064 continue;
1065 if (dentry->d_parent != parent)
1066 continue;
1067
1068 spin_lock(&dentry->d_lock);
1069
1070 /*
1071 * Recheck the dentry after taking the lock - d_move may have
1072 * changed things. Don't bother checking the hash because we're
1073 * about to compare the whole name anyway.
1074 */
1075 if (dentry->d_parent != parent)
1076 goto next;
1077
1078 /*
1079 * It is safe to compare names since d_move() cannot
1080 * change the qstr (protected by d_lock).
1081 */
1082 qstr = &dentry->d_name;
1083 if (parent->d_op && parent->d_op->d_compare) {
1084 if (parent->d_op->d_compare(parent, qstr, name))
1085 goto next;
1086 } else {
1087 if (qstr->len != len)
1088 goto next;
1089 if (memcmp(qstr->name, str, len))
1090 goto next;
1091 }
1092
1093 if (!d_unhashed(dentry)) {
1094 atomic_inc(&dentry->d_count);
1095 found = dentry;
1096 }
1097 spin_unlock(&dentry->d_lock);
1098 break;
1099next:
1100 spin_unlock(&dentry->d_lock);
1101 }
1102 rcu_read_unlock();
1103
1104 return found;
1105}
1106
1107/**
1108 * d_validate - verify dentry provided from insecure source
1109 * @dentry: The dentry alleged to be valid child of @dparent
1110 * @dparent: The parent dentry (known to be valid)
1111 * @hash: Hash of the dentry
1112 * @len: Length of the name
1113 *
1114 * An insecure source has sent us a dentry, here we verify it and dget() it.
1115 * This is used by ncpfs in its readdir implementation.
1116 * Zero is returned in the dentry is invalid.
1117 */
1118
1119int d_validate(struct dentry *dentry, struct dentry *dparent)
1120{
1121 struct hlist_head *base;
1122 struct hlist_node *lhp;
1123
1124 /* Check whether the ptr might be valid at all.. */
1125 if (!kmem_ptr_validate(dentry_cache, dentry))
1126 goto out;
1127
1128 if (dentry->d_parent != dparent)
1129 goto out;
1130
1131 spin_lock(&dcache_lock);
1132 base = d_hash(dparent, dentry->d_name.hash);
1133 hlist_for_each(lhp,base) {
665a7583 1134 /* hlist_for_each_entry_rcu() not required for d_hash list
1da177e4
LT
1135 * as it is parsed under dcache_lock
1136 */
1137 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1138 __dget_locked(dentry);
1139 spin_unlock(&dcache_lock);
1140 return 1;
1141 }
1142 }
1143 spin_unlock(&dcache_lock);
1144out:
1145 return 0;
1146}
1147
1148/*
1149 * When a file is deleted, we have two options:
1150 * - turn this dentry into a negative dentry
1151 * - unhash this dentry and free it.
1152 *
1153 * Usually, we want to just turn this into
1154 * a negative dentry, but if anybody else is
1155 * currently using the dentry or the inode
1156 * we can't do that and we fall back on removing
1157 * it from the hash queues and waiting for
1158 * it to be deleted later when it has no users
1159 */
1160
1161/**
1162 * d_delete - delete a dentry
1163 * @dentry: The dentry to delete
1164 *
1165 * Turn the dentry into a negative dentry if possible, otherwise
1166 * remove it from the hash queues so it can be deleted later
1167 */
1168
1169void d_delete(struct dentry * dentry)
1170{
7a91bf7f 1171 int isdir = 0;
1da177e4
LT
1172 /*
1173 * Are we the only user?
1174 */
1175 spin_lock(&dcache_lock);
1176 spin_lock(&dentry->d_lock);
7a91bf7f 1177 isdir = S_ISDIR(dentry->d_inode->i_mode);
1da177e4
LT
1178 if (atomic_read(&dentry->d_count) == 1) {
1179 dentry_iput(dentry);
7a91bf7f 1180 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1181 return;
1182 }
1183
1184 if (!d_unhashed(dentry))
1185 __d_drop(dentry);
1186
1187 spin_unlock(&dentry->d_lock);
1188 spin_unlock(&dcache_lock);
7a91bf7f
JM
1189
1190 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1191}
1192
1193static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1194{
1195
1196 entry->d_flags &= ~DCACHE_UNHASHED;
1197 hlist_add_head_rcu(&entry->d_hash, list);
1198}
1199
1200/**
1201 * d_rehash - add an entry back to the hash
1202 * @entry: dentry to add to the hash
1203 *
1204 * Adds a dentry to the hash according to its name.
1205 */
1206
1207void d_rehash(struct dentry * entry)
1208{
1209 struct hlist_head *list = d_hash(entry->d_parent, entry->d_name.hash);
1210
1211 spin_lock(&dcache_lock);
1212 spin_lock(&entry->d_lock);
1213 __d_rehash(entry, list);
1214 spin_unlock(&entry->d_lock);
1215 spin_unlock(&dcache_lock);
1216}
1217
1218#define do_switch(x,y) do { \
1219 __typeof__ (x) __tmp = x; \
1220 x = y; y = __tmp; } while (0)
1221
1222/*
1223 * When switching names, the actual string doesn't strictly have to
1224 * be preserved in the target - because we're dropping the target
1225 * anyway. As such, we can just do a simple memcpy() to copy over
1226 * the new name before we switch.
1227 *
1228 * Note that we have to be a lot more careful about getting the hash
1229 * switched - we have to switch the hash value properly even if it
1230 * then no longer matches the actual (corrupted) string of the target.
1231 * The hash value has to match the hash queue that the dentry is on..
1232 */
1233static void switch_names(struct dentry *dentry, struct dentry *target)
1234{
1235 if (dname_external(target)) {
1236 if (dname_external(dentry)) {
1237 /*
1238 * Both external: swap the pointers
1239 */
1240 do_switch(target->d_name.name, dentry->d_name.name);
1241 } else {
1242 /*
1243 * dentry:internal, target:external. Steal target's
1244 * storage and make target internal.
1245 */
1246 dentry->d_name.name = target->d_name.name;
1247 target->d_name.name = target->d_iname;
1248 }
1249 } else {
1250 if (dname_external(dentry)) {
1251 /*
1252 * dentry:external, target:internal. Give dentry's
1253 * storage to target and make dentry internal
1254 */
1255 memcpy(dentry->d_iname, target->d_name.name,
1256 target->d_name.len + 1);
1257 target->d_name.name = dentry->d_name.name;
1258 dentry->d_name.name = dentry->d_iname;
1259 } else {
1260 /*
1261 * Both are internal. Just copy target to dentry
1262 */
1263 memcpy(dentry->d_iname, target->d_name.name,
1264 target->d_name.len + 1);
1265 }
1266 }
1267}
1268
1269/*
1270 * We cannibalize "target" when moving dentry on top of it,
1271 * because it's going to be thrown away anyway. We could be more
1272 * polite about it, though.
1273 *
1274 * This forceful removal will result in ugly /proc output if
1275 * somebody holds a file open that got deleted due to a rename.
1276 * We could be nicer about the deleted file, and let it show
1277 * up under the name it got deleted rather than the name that
1278 * deleted it.
1279 */
1280
1281/**
1282 * d_move - move a dentry
1283 * @dentry: entry to move
1284 * @target: new dentry
1285 *
1286 * Update the dcache to reflect the move of a file name. Negative
1287 * dcache entries should not be moved in this way.
1288 */
1289
1290void d_move(struct dentry * dentry, struct dentry * target)
1291{
1292 struct hlist_head *list;
1293
1294 if (!dentry->d_inode)
1295 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1296
1297 spin_lock(&dcache_lock);
1298 write_seqlock(&rename_lock);
1299 /*
1300 * XXXX: do we really need to take target->d_lock?
1301 */
1302 if (target < dentry) {
1303 spin_lock(&target->d_lock);
1304 spin_lock(&dentry->d_lock);
1305 } else {
1306 spin_lock(&dentry->d_lock);
1307 spin_lock(&target->d_lock);
1308 }
1309
1310 /* Move the dentry to the target hash queue, if on different bucket */
1311 if (dentry->d_flags & DCACHE_UNHASHED)
1312 goto already_unhashed;
1313
1314 hlist_del_rcu(&dentry->d_hash);
1315
1316already_unhashed:
1317 list = d_hash(target->d_parent, target->d_name.hash);
1318 __d_rehash(dentry, list);
1319
1320 /* Unhash the target: dput() will then get rid of it */
1321 __d_drop(target);
1322
5160ee6f
ED
1323 list_del(&dentry->d_u.d_child);
1324 list_del(&target->d_u.d_child);
1da177e4
LT
1325
1326 /* Switch the names.. */
1327 switch_names(dentry, target);
1328 do_switch(dentry->d_name.len, target->d_name.len);
1329 do_switch(dentry->d_name.hash, target->d_name.hash);
1330
1331 /* ... and switch the parents */
1332 if (IS_ROOT(dentry)) {
1333 dentry->d_parent = target->d_parent;
1334 target->d_parent = target;
5160ee6f 1335 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4
LT
1336 } else {
1337 do_switch(dentry->d_parent, target->d_parent);
1338
1339 /* And add them back to the (new) parent lists */
5160ee6f 1340 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
1341 }
1342
5160ee6f 1343 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1da177e4
LT
1344 spin_unlock(&target->d_lock);
1345 spin_unlock(&dentry->d_lock);
1346 write_sequnlock(&rename_lock);
1347 spin_unlock(&dcache_lock);
1348}
1349
1350/**
1351 * d_path - return the path of a dentry
1352 * @dentry: dentry to report
1353 * @vfsmnt: vfsmnt to which the dentry belongs
1354 * @root: root dentry
1355 * @rootmnt: vfsmnt to which the root dentry belongs
1356 * @buffer: buffer to return value in
1357 * @buflen: buffer length
1358 *
1359 * Convert a dentry into an ASCII path name. If the entry has been deleted
1360 * the string " (deleted)" is appended. Note that this is ambiguous.
1361 *
1362 * Returns the buffer or an error code if the path was too long.
1363 *
1364 * "buflen" should be positive. Caller holds the dcache_lock.
1365 */
1366static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1367 struct dentry *root, struct vfsmount *rootmnt,
1368 char *buffer, int buflen)
1369{
1370 char * end = buffer+buflen;
1371 char * retval;
1372 int namelen;
1373
1374 *--end = '\0';
1375 buflen--;
1376 if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1377 buflen -= 10;
1378 end -= 10;
1379 if (buflen < 0)
1380 goto Elong;
1381 memcpy(end, " (deleted)", 10);
1382 }
1383
1384 if (buflen < 1)
1385 goto Elong;
1386 /* Get '/' right */
1387 retval = end-1;
1388 *retval = '/';
1389
1390 for (;;) {
1391 struct dentry * parent;
1392
1393 if (dentry == root && vfsmnt == rootmnt)
1394 break;
1395 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1396 /* Global root? */
1397 spin_lock(&vfsmount_lock);
1398 if (vfsmnt->mnt_parent == vfsmnt) {
1399 spin_unlock(&vfsmount_lock);
1400 goto global_root;
1401 }
1402 dentry = vfsmnt->mnt_mountpoint;
1403 vfsmnt = vfsmnt->mnt_parent;
1404 spin_unlock(&vfsmount_lock);
1405 continue;
1406 }
1407 parent = dentry->d_parent;
1408 prefetch(parent);
1409 namelen = dentry->d_name.len;
1410 buflen -= namelen + 1;
1411 if (buflen < 0)
1412 goto Elong;
1413 end -= namelen;
1414 memcpy(end, dentry->d_name.name, namelen);
1415 *--end = '/';
1416 retval = end;
1417 dentry = parent;
1418 }
1419
1420 return retval;
1421
1422global_root:
1423 namelen = dentry->d_name.len;
1424 buflen -= namelen;
1425 if (buflen < 0)
1426 goto Elong;
1427 retval -= namelen-1; /* hit the slash */
1428 memcpy(retval, dentry->d_name.name, namelen);
1429 return retval;
1430Elong:
1431 return ERR_PTR(-ENAMETOOLONG);
1432}
1433
1434/* write full pathname into buffer and return start of pathname */
1435char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1436 char *buf, int buflen)
1437{
1438 char *res;
1439 struct vfsmount *rootmnt;
1440 struct dentry *root;
1441
1442 read_lock(&current->fs->lock);
1443 rootmnt = mntget(current->fs->rootmnt);
1444 root = dget(current->fs->root);
1445 read_unlock(&current->fs->lock);
1446 spin_lock(&dcache_lock);
1447 res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1448 spin_unlock(&dcache_lock);
1449 dput(root);
1450 mntput(rootmnt);
1451 return res;
1452}
1453
1454/*
1455 * NOTE! The user-level library version returns a
1456 * character pointer. The kernel system call just
1457 * returns the length of the buffer filled (which
1458 * includes the ending '\0' character), or a negative
1459 * error value. So libc would do something like
1460 *
1461 * char *getcwd(char * buf, size_t size)
1462 * {
1463 * int retval;
1464 *
1465 * retval = sys_getcwd(buf, size);
1466 * if (retval >= 0)
1467 * return buf;
1468 * errno = -retval;
1469 * return NULL;
1470 * }
1471 */
1472asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1473{
1474 int error;
1475 struct vfsmount *pwdmnt, *rootmnt;
1476 struct dentry *pwd, *root;
1477 char *page = (char *) __get_free_page(GFP_USER);
1478
1479 if (!page)
1480 return -ENOMEM;
1481
1482 read_lock(&current->fs->lock);
1483 pwdmnt = mntget(current->fs->pwdmnt);
1484 pwd = dget(current->fs->pwd);
1485 rootmnt = mntget(current->fs->rootmnt);
1486 root = dget(current->fs->root);
1487 read_unlock(&current->fs->lock);
1488
1489 error = -ENOENT;
1490 /* Has the current directory has been unlinked? */
1491 spin_lock(&dcache_lock);
1492 if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1493 unsigned long len;
1494 char * cwd;
1495
1496 cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1497 spin_unlock(&dcache_lock);
1498
1499 error = PTR_ERR(cwd);
1500 if (IS_ERR(cwd))
1501 goto out;
1502
1503 error = -ERANGE;
1504 len = PAGE_SIZE + page - cwd;
1505 if (len <= size) {
1506 error = len;
1507 if (copy_to_user(buf, cwd, len))
1508 error = -EFAULT;
1509 }
1510 } else
1511 spin_unlock(&dcache_lock);
1512
1513out:
1514 dput(pwd);
1515 mntput(pwdmnt);
1516 dput(root);
1517 mntput(rootmnt);
1518 free_page((unsigned long) page);
1519 return error;
1520}
1521
1522/*
1523 * Test whether new_dentry is a subdirectory of old_dentry.
1524 *
1525 * Trivially implemented using the dcache structure
1526 */
1527
1528/**
1529 * is_subdir - is new dentry a subdirectory of old_dentry
1530 * @new_dentry: new dentry
1531 * @old_dentry: old dentry
1532 *
1533 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1534 * Returns 0 otherwise.
1535 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1536 */
1537
1538int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1539{
1540 int result;
1541 struct dentry * saved = new_dentry;
1542 unsigned long seq;
1543
1544 /* need rcu_readlock to protect against the d_parent trashing due to
1545 * d_move
1546 */
1547 rcu_read_lock();
1548 do {
1549 /* for restarting inner loop in case of seq retry */
1550 new_dentry = saved;
1551 result = 0;
1552 seq = read_seqbegin(&rename_lock);
1553 for (;;) {
1554 if (new_dentry != old_dentry) {
1555 struct dentry * parent = new_dentry->d_parent;
1556 if (parent == new_dentry)
1557 break;
1558 new_dentry = parent;
1559 continue;
1560 }
1561 result = 1;
1562 break;
1563 }
1564 } while (read_seqretry(&rename_lock, seq));
1565 rcu_read_unlock();
1566
1567 return result;
1568}
1569
1570void d_genocide(struct dentry *root)
1571{
1572 struct dentry *this_parent = root;
1573 struct list_head *next;
1574
1575 spin_lock(&dcache_lock);
1576repeat:
1577 next = this_parent->d_subdirs.next;
1578resume:
1579 while (next != &this_parent->d_subdirs) {
1580 struct list_head *tmp = next;
5160ee6f 1581 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1582 next = tmp->next;
1583 if (d_unhashed(dentry)||!dentry->d_inode)
1584 continue;
1585 if (!list_empty(&dentry->d_subdirs)) {
1586 this_parent = dentry;
1587 goto repeat;
1588 }
1589 atomic_dec(&dentry->d_count);
1590 }
1591 if (this_parent != root) {
5160ee6f 1592 next = this_parent->d_u.d_child.next;
1da177e4
LT
1593 atomic_dec(&this_parent->d_count);
1594 this_parent = this_parent->d_parent;
1595 goto resume;
1596 }
1597 spin_unlock(&dcache_lock);
1598}
1599
1600/**
1601 * find_inode_number - check for dentry with name
1602 * @dir: directory to check
1603 * @name: Name to find.
1604 *
1605 * Check whether a dentry already exists for the given name,
1606 * and return the inode number if it has an inode. Otherwise
1607 * 0 is returned.
1608 *
1609 * This routine is used to post-process directory listings for
1610 * filesystems using synthetic inode numbers, and is necessary
1611 * to keep getcwd() working.
1612 */
1613
1614ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1615{
1616 struct dentry * dentry;
1617 ino_t ino = 0;
1618
1619 /*
1620 * Check for a fs-specific hash function. Note that we must
1621 * calculate the standard hash first, as the d_op->d_hash()
1622 * routine may choose to leave the hash value unchanged.
1623 */
1624 name->hash = full_name_hash(name->name, name->len);
1625 if (dir->d_op && dir->d_op->d_hash)
1626 {
1627 if (dir->d_op->d_hash(dir, name) != 0)
1628 goto out;
1629 }
1630
1631 dentry = d_lookup(dir, name);
1632 if (dentry)
1633 {
1634 if (dentry->d_inode)
1635 ino = dentry->d_inode->i_ino;
1636 dput(dentry);
1637 }
1638out:
1639 return ino;
1640}
1641
1642static __initdata unsigned long dhash_entries;
1643static int __init set_dhash_entries(char *str)
1644{
1645 if (!str)
1646 return 0;
1647 dhash_entries = simple_strtoul(str, &str, 0);
1648 return 1;
1649}
1650__setup("dhash_entries=", set_dhash_entries);
1651
1652static void __init dcache_init_early(void)
1653{
1654 int loop;
1655
1656 /* If hashes are distributed across NUMA nodes, defer
1657 * hash allocation until vmalloc space is available.
1658 */
1659 if (hashdist)
1660 return;
1661
1662 dentry_hashtable =
1663 alloc_large_system_hash("Dentry cache",
1664 sizeof(struct hlist_head),
1665 dhash_entries,
1666 13,
1667 HASH_EARLY,
1668 &d_hash_shift,
1669 &d_hash_mask,
1670 0);
1671
1672 for (loop = 0; loop < (1 << d_hash_shift); loop++)
1673 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1674}
1675
1676static void __init dcache_init(unsigned long mempages)
1677{
1678 int loop;
1679
1680 /*
1681 * A constructor could be added for stable state like the lists,
1682 * but it is probably not worth it because of the cache nature
1683 * of the dcache.
1684 */
1685 dentry_cache = kmem_cache_create("dentry_cache",
1686 sizeof(struct dentry),
1687 0,
b0196009
PJ
1688 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1689 SLAB_MEM_SPREAD),
1da177e4
LT
1690 NULL, NULL);
1691
1692 set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1693
1694 /* Hash may have been set up in dcache_init_early */
1695 if (!hashdist)
1696 return;
1697
1698 dentry_hashtable =
1699 alloc_large_system_hash("Dentry cache",
1700 sizeof(struct hlist_head),
1701 dhash_entries,
1702 13,
1703 0,
1704 &d_hash_shift,
1705 &d_hash_mask,
1706 0);
1707
1708 for (loop = 0; loop < (1 << d_hash_shift); loop++)
1709 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1710}
1711
1712/* SLAB cache for __getname() consumers */
1713kmem_cache_t *names_cachep;
1714
1715/* SLAB cache for file structures */
1716kmem_cache_t *filp_cachep;
1717
1718EXPORT_SYMBOL(d_genocide);
1719
1720extern void bdev_cache_init(void);
1721extern void chrdev_init(void);
1722
1723void __init vfs_caches_init_early(void)
1724{
1725 dcache_init_early();
1726 inode_init_early();
1727}
1728
1729void __init vfs_caches_init(unsigned long mempages)
1730{
1731 unsigned long reserve;
1732
1733 /* Base hash sizes on available memory, with a reserve equal to
1734 150% of current kernel size */
1735
1736 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
1737 mempages -= reserve;
1738
1739 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
1740 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1741
1742 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
529bf6be 1743 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1da177e4
LT
1744
1745 dcache_init(mempages);
1746 inode_init(mempages);
1747 files_init(mempages);
1748 mnt_init(mempages);
1749 bdev_cache_init();
1750 chrdev_init();
1751}
1752
1753EXPORT_SYMBOL(d_alloc);
1754EXPORT_SYMBOL(d_alloc_anon);
1755EXPORT_SYMBOL(d_alloc_root);
1756EXPORT_SYMBOL(d_delete);
1757EXPORT_SYMBOL(d_find_alias);
1758EXPORT_SYMBOL(d_instantiate);
1759EXPORT_SYMBOL(d_invalidate);
1760EXPORT_SYMBOL(d_lookup);
1761EXPORT_SYMBOL(d_move);
1762EXPORT_SYMBOL(d_path);
1763EXPORT_SYMBOL(d_prune_aliases);
1764EXPORT_SYMBOL(d_rehash);
1765EXPORT_SYMBOL(d_splice_alias);
1766EXPORT_SYMBOL(d_validate);
1767EXPORT_SYMBOL(dget_locked);
1768EXPORT_SYMBOL(dput);
1769EXPORT_SYMBOL(find_inode_number);
1770EXPORT_SYMBOL(have_submounts);
1771EXPORT_SYMBOL(names_cachep);
1772EXPORT_SYMBOL(shrink_dcache_parent);
1773EXPORT_SYMBOL(shrink_dcache_sb);