]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/inode.c
Btrfs: create special free space cache inode
[net-next-2.6.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
39279cc3
CM
53
54struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57};
58
6e1d5dcc
AD
59static const struct inode_operations btrfs_dir_inode_operations;
60static const struct inode_operations btrfs_symlink_inode_operations;
61static const struct inode_operations btrfs_dir_ro_inode_operations;
62static const struct inode_operations btrfs_special_inode_operations;
63static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
64static const struct address_space_operations btrfs_aops;
65static const struct address_space_operations btrfs_symlink_aops;
828c0950 66static const struct file_operations btrfs_dir_file_operations;
d1310b2e 67static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
68
69static struct kmem_cache *btrfs_inode_cachep;
70struct kmem_cache *btrfs_trans_handle_cachep;
71struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
72struct kmem_cache *btrfs_path_cachep;
73
74#define S_SHIFT 12
75static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83};
84
7b128766 85static void btrfs_truncate(struct inode *inode);
c8b97818 86static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
87static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
7b128766 91
f34f57a3
YZ
92static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
0279b4cd
JO
94{
95 int err;
96
f34f57a3 97 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 98 if (!err)
f34f57a3 99 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
100 return err;
101}
102
c8b97818
CM
103/*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
d397712b 108static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112{
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int use_compress = 0;
126
127 if (compressed_size && compressed_pages) {
128 use_compress = 1;
129 cur_size = compressed_size;
130 }
131
d397712b
CM
132 path = btrfs_alloc_path();
133 if (!path)
c8b97818
CM
134 return -ENOMEM;
135
b9473439 136 path->leave_spinning = 1;
c8b97818
CM
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
c8b97818
CM
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (use_compress) {
163 struct page *cpage;
164 int i = 0;
d397712b 165 while (compressed_size > 0) {
c8b97818 166 cpage = compressed_pages[i];
5b050f04 167 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
168 PAGE_CACHE_SIZE);
169
b9473439 170 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 172 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
c2167754
YZ
193 /*
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
197 *
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
201 */
c8b97818
CM
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
c2167754 204
c8b97818
CM
205 return 0;
206fail:
207 btrfs_free_path(path);
208 return err;
209}
210
211
212/*
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
216 */
7f366cfe 217static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
222{
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
231
232 if (compressed_size)
233 data_len = compressed_size;
234
235 if (start > 0 ||
70b99e69 236 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
243 }
244
920bbbfb 245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 246 &hint_byte, 1);
c8b97818
CM
247 BUG_ON(ret);
248
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
0ca1f7ce 255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
257 return 0;
258}
259
771ed689
CM
260struct async_extent {
261 u64 start;
262 u64 ram_size;
263 u64 compressed_size;
264 struct page **pages;
265 unsigned long nr_pages;
266 struct list_head list;
267};
268
269struct async_cow {
270 struct inode *inode;
271 struct btrfs_root *root;
272 struct page *locked_page;
273 u64 start;
274 u64 end;
275 struct list_head extents;
276 struct btrfs_work work;
277};
278
279static noinline int add_async_extent(struct async_cow *cow,
280 u64 start, u64 ram_size,
281 u64 compressed_size,
282 struct page **pages,
283 unsigned long nr_pages)
284{
285 struct async_extent *async_extent;
286
287 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
288 async_extent->start = start;
289 async_extent->ram_size = ram_size;
290 async_extent->compressed_size = compressed_size;
291 async_extent->pages = pages;
292 async_extent->nr_pages = nr_pages;
293 list_add_tail(&async_extent->list, &cow->extents);
294 return 0;
295}
296
d352ac68 297/*
771ed689
CM
298 * we create compressed extents in two phases. The first
299 * phase compresses a range of pages that have already been
300 * locked (both pages and state bits are locked).
c8b97818 301 *
771ed689
CM
302 * This is done inside an ordered work queue, and the compression
303 * is spread across many cpus. The actual IO submission is step
304 * two, and the ordered work queue takes care of making sure that
305 * happens in the same order things were put onto the queue by
306 * writepages and friends.
c8b97818 307 *
771ed689
CM
308 * If this code finds it can't get good compression, it puts an
309 * entry onto the work queue to write the uncompressed bytes. This
310 * makes sure that both compressed inodes and uncompressed inodes
311 * are written in the same order that pdflush sent them down.
d352ac68 312 */
771ed689
CM
313static noinline int compress_file_range(struct inode *inode,
314 struct page *locked_page,
315 u64 start, u64 end,
316 struct async_cow *async_cow,
317 int *num_added)
b888db2b
CM
318{
319 struct btrfs_root *root = BTRFS_I(inode)->root;
320 struct btrfs_trans_handle *trans;
db94535d 321 u64 num_bytes;
c8b97818
CM
322 u64 orig_start;
323 u64 disk_num_bytes;
db94535d 324 u64 blocksize = root->sectorsize;
c8b97818 325 u64 actual_end;
42dc7bab 326 u64 isize = i_size_read(inode);
e6dcd2dc 327 int ret = 0;
c8b97818
CM
328 struct page **pages = NULL;
329 unsigned long nr_pages;
330 unsigned long nr_pages_ret = 0;
331 unsigned long total_compressed = 0;
332 unsigned long total_in = 0;
333 unsigned long max_compressed = 128 * 1024;
771ed689 334 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
335 int i;
336 int will_compress;
b888db2b 337
c8b97818
CM
338 orig_start = start;
339
42dc7bab 340 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
341again:
342 will_compress = 0;
343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 345
f03d9301
CM
346 /*
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
352 *
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
355 */
356 if (actual_end <= start)
357 goto cleanup_and_bail_uncompressed;
358
c8b97818
CM
359 total_compressed = actual_end - start;
360
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
366 *
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
c8b97818
CM
370 */
371 total_compressed = min(total_compressed, max_uncompressed);
db94535d 372 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 373 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
374 disk_num_bytes = num_bytes;
375 total_in = 0;
376 ret = 0;
db94535d 377
771ed689
CM
378 /*
379 * we do compression for mount -o compress and when the
380 * inode has not been flagged as nocompress. This flag can
381 * change at any time if we discover bad compression ratios.
c8b97818 382 */
6cbff00f 383 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32
CM
384 (btrfs_test_opt(root, COMPRESS) ||
385 (BTRFS_I(inode)->force_compress))) {
c8b97818 386 WARN_ON(pages);
cfbc246e 387 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 388
c8b97818
CM
389 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
390 total_compressed, pages,
391 nr_pages, &nr_pages_ret,
392 &total_in,
393 &total_compressed,
394 max_compressed);
395
396 if (!ret) {
397 unsigned long offset = total_compressed &
398 (PAGE_CACHE_SIZE - 1);
399 struct page *page = pages[nr_pages_ret - 1];
400 char *kaddr;
401
402 /* zero the tail end of the last page, we might be
403 * sending it down to disk
404 */
405 if (offset) {
406 kaddr = kmap_atomic(page, KM_USER0);
407 memset(kaddr + offset, 0,
408 PAGE_CACHE_SIZE - offset);
409 kunmap_atomic(kaddr, KM_USER0);
410 }
411 will_compress = 1;
412 }
413 }
414 if (start == 0) {
771ed689
CM
415 trans = btrfs_join_transaction(root, 1);
416 BUG_ON(!trans);
417 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 418 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 419
c8b97818 420 /* lets try to make an inline extent */
771ed689 421 if (ret || total_in < (actual_end - start)) {
c8b97818 422 /* we didn't compress the entire range, try
771ed689 423 * to make an uncompressed inline extent.
c8b97818
CM
424 */
425 ret = cow_file_range_inline(trans, root, inode,
426 start, end, 0, NULL);
427 } else {
771ed689 428 /* try making a compressed inline extent */
c8b97818
CM
429 ret = cow_file_range_inline(trans, root, inode,
430 start, end,
431 total_compressed, pages);
432 }
433 if (ret == 0) {
771ed689
CM
434 /*
435 * inline extent creation worked, we don't need
436 * to create any more async work items. Unlock
437 * and free up our temp pages.
438 */
c8b97818 439 extent_clear_unlock_delalloc(inode,
a791e35e
CM
440 &BTRFS_I(inode)->io_tree,
441 start, end, NULL,
442 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 443 EXTENT_CLEAR_DELALLOC |
a791e35e 444 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
445
446 btrfs_end_transaction(trans, root);
c8b97818
CM
447 goto free_pages_out;
448 }
c2167754 449 btrfs_end_transaction(trans, root);
c8b97818
CM
450 }
451
452 if (will_compress) {
453 /*
454 * we aren't doing an inline extent round the compressed size
455 * up to a block size boundary so the allocator does sane
456 * things
457 */
458 total_compressed = (total_compressed + blocksize - 1) &
459 ~(blocksize - 1);
460
461 /*
462 * one last check to make sure the compression is really a
463 * win, compare the page count read with the blocks on disk
464 */
465 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
466 ~(PAGE_CACHE_SIZE - 1);
467 if (total_compressed >= total_in) {
468 will_compress = 0;
469 } else {
470 disk_num_bytes = total_compressed;
471 num_bytes = total_in;
472 }
473 }
474 if (!will_compress && pages) {
475 /*
476 * the compression code ran but failed to make things smaller,
477 * free any pages it allocated and our page pointer array
478 */
479 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 480 WARN_ON(pages[i]->mapping);
c8b97818
CM
481 page_cache_release(pages[i]);
482 }
483 kfree(pages);
484 pages = NULL;
485 total_compressed = 0;
486 nr_pages_ret = 0;
487
488 /* flag the file so we don't compress in the future */
1e701a32
CM
489 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
490 !(BTRFS_I(inode)->force_compress)) {
a555f810 491 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 492 }
c8b97818 493 }
771ed689
CM
494 if (will_compress) {
495 *num_added += 1;
c8b97818 496
771ed689
CM
497 /* the async work queues will take care of doing actual
498 * allocation on disk for these compressed pages,
499 * and will submit them to the elevator.
500 */
501 add_async_extent(async_cow, start, num_bytes,
502 total_compressed, pages, nr_pages_ret);
179e29e4 503
42dc7bab 504 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
505 start += num_bytes;
506 pages = NULL;
507 cond_resched();
508 goto again;
509 }
510 } else {
f03d9301 511cleanup_and_bail_uncompressed:
771ed689
CM
512 /*
513 * No compression, but we still need to write the pages in
514 * the file we've been given so far. redirty the locked
515 * page if it corresponds to our extent and set things up
516 * for the async work queue to run cow_file_range to do
517 * the normal delalloc dance
518 */
519 if (page_offset(locked_page) >= start &&
520 page_offset(locked_page) <= end) {
521 __set_page_dirty_nobuffers(locked_page);
522 /* unlocked later on in the async handlers */
523 }
524 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
525 *num_added += 1;
526 }
3b951516 527
771ed689
CM
528out:
529 return 0;
530
531free_pages_out:
532 for (i = 0; i < nr_pages_ret; i++) {
533 WARN_ON(pages[i]->mapping);
534 page_cache_release(pages[i]);
535 }
d397712b 536 kfree(pages);
771ed689
CM
537
538 goto out;
539}
540
541/*
542 * phase two of compressed writeback. This is the ordered portion
543 * of the code, which only gets called in the order the work was
544 * queued. We walk all the async extents created by compress_file_range
545 * and send them down to the disk.
546 */
547static noinline int submit_compressed_extents(struct inode *inode,
548 struct async_cow *async_cow)
549{
550 struct async_extent *async_extent;
551 u64 alloc_hint = 0;
552 struct btrfs_trans_handle *trans;
553 struct btrfs_key ins;
554 struct extent_map *em;
555 struct btrfs_root *root = BTRFS_I(inode)->root;
556 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
557 struct extent_io_tree *io_tree;
f5a84ee3 558 int ret = 0;
771ed689
CM
559
560 if (list_empty(&async_cow->extents))
561 return 0;
562
771ed689 563
d397712b 564 while (!list_empty(&async_cow->extents)) {
771ed689
CM
565 async_extent = list_entry(async_cow->extents.next,
566 struct async_extent, list);
567 list_del(&async_extent->list);
c8b97818 568
771ed689
CM
569 io_tree = &BTRFS_I(inode)->io_tree;
570
f5a84ee3 571retry:
771ed689
CM
572 /* did the compression code fall back to uncompressed IO? */
573 if (!async_extent->pages) {
574 int page_started = 0;
575 unsigned long nr_written = 0;
576
577 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
578 async_extent->start +
579 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
580
581 /* allocate blocks */
f5a84ee3
JB
582 ret = cow_file_range(inode, async_cow->locked_page,
583 async_extent->start,
584 async_extent->start +
585 async_extent->ram_size - 1,
586 &page_started, &nr_written, 0);
771ed689
CM
587
588 /*
589 * if page_started, cow_file_range inserted an
590 * inline extent and took care of all the unlocking
591 * and IO for us. Otherwise, we need to submit
592 * all those pages down to the drive.
593 */
f5a84ee3 594 if (!page_started && !ret)
771ed689
CM
595 extent_write_locked_range(io_tree,
596 inode, async_extent->start,
d397712b 597 async_extent->start +
771ed689
CM
598 async_extent->ram_size - 1,
599 btrfs_get_extent,
600 WB_SYNC_ALL);
601 kfree(async_extent);
602 cond_resched();
603 continue;
604 }
605
606 lock_extent(io_tree, async_extent->start,
607 async_extent->start + async_extent->ram_size - 1,
608 GFP_NOFS);
771ed689 609
c2167754 610 trans = btrfs_join_transaction(root, 1);
771ed689
CM
611 ret = btrfs_reserve_extent(trans, root,
612 async_extent->compressed_size,
613 async_extent->compressed_size,
614 0, alloc_hint,
615 (u64)-1, &ins, 1);
c2167754
YZ
616 btrfs_end_transaction(trans, root);
617
f5a84ee3
JB
618 if (ret) {
619 int i;
620 for (i = 0; i < async_extent->nr_pages; i++) {
621 WARN_ON(async_extent->pages[i]->mapping);
622 page_cache_release(async_extent->pages[i]);
623 }
624 kfree(async_extent->pages);
625 async_extent->nr_pages = 0;
626 async_extent->pages = NULL;
627 unlock_extent(io_tree, async_extent->start,
628 async_extent->start +
629 async_extent->ram_size - 1, GFP_NOFS);
630 goto retry;
631 }
632
c2167754
YZ
633 /*
634 * here we're doing allocation and writeback of the
635 * compressed pages
636 */
637 btrfs_drop_extent_cache(inode, async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1, 0);
640
771ed689
CM
641 em = alloc_extent_map(GFP_NOFS);
642 em->start = async_extent->start;
643 em->len = async_extent->ram_size;
445a6944 644 em->orig_start = em->start;
c8b97818 645
771ed689
CM
646 em->block_start = ins.objectid;
647 em->block_len = ins.offset;
648 em->bdev = root->fs_info->fs_devices->latest_bdev;
649 set_bit(EXTENT_FLAG_PINNED, &em->flags);
650 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
651
d397712b 652 while (1) {
890871be 653 write_lock(&em_tree->lock);
771ed689 654 ret = add_extent_mapping(em_tree, em);
890871be 655 write_unlock(&em_tree->lock);
771ed689
CM
656 if (ret != -EEXIST) {
657 free_extent_map(em);
658 break;
659 }
660 btrfs_drop_extent_cache(inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1, 0);
663 }
664
665 ret = btrfs_add_ordered_extent(inode, async_extent->start,
666 ins.objectid,
667 async_extent->ram_size,
668 ins.offset,
669 BTRFS_ORDERED_COMPRESSED);
670 BUG_ON(ret);
671
771ed689
CM
672 /*
673 * clear dirty, set writeback and unlock the pages.
674 */
675 extent_clear_unlock_delalloc(inode,
a791e35e
CM
676 &BTRFS_I(inode)->io_tree,
677 async_extent->start,
678 async_extent->start +
679 async_extent->ram_size - 1,
680 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
681 EXTENT_CLEAR_UNLOCK |
a3429ab7 682 EXTENT_CLEAR_DELALLOC |
a791e35e 683 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
684
685 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
686 async_extent->start,
687 async_extent->ram_size,
688 ins.objectid,
689 ins.offset, async_extent->pages,
690 async_extent->nr_pages);
771ed689
CM
691
692 BUG_ON(ret);
771ed689
CM
693 alloc_hint = ins.objectid + ins.offset;
694 kfree(async_extent);
695 cond_resched();
696 }
697
771ed689
CM
698 return 0;
699}
700
4b46fce2
JB
701static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
702 u64 num_bytes)
703{
704 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
705 struct extent_map *em;
706 u64 alloc_hint = 0;
707
708 read_lock(&em_tree->lock);
709 em = search_extent_mapping(em_tree, start, num_bytes);
710 if (em) {
711 /*
712 * if block start isn't an actual block number then find the
713 * first block in this inode and use that as a hint. If that
714 * block is also bogus then just don't worry about it.
715 */
716 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
717 free_extent_map(em);
718 em = search_extent_mapping(em_tree, 0, 0);
719 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
720 alloc_hint = em->block_start;
721 if (em)
722 free_extent_map(em);
723 } else {
724 alloc_hint = em->block_start;
725 free_extent_map(em);
726 }
727 }
728 read_unlock(&em_tree->lock);
729
730 return alloc_hint;
731}
732
771ed689
CM
733/*
734 * when extent_io.c finds a delayed allocation range in the file,
735 * the call backs end up in this code. The basic idea is to
736 * allocate extents on disk for the range, and create ordered data structs
737 * in ram to track those extents.
738 *
739 * locked_page is the page that writepage had locked already. We use
740 * it to make sure we don't do extra locks or unlocks.
741 *
742 * *page_started is set to one if we unlock locked_page and do everything
743 * required to start IO on it. It may be clean and already done with
744 * IO when we return.
745 */
746static noinline int cow_file_range(struct inode *inode,
747 struct page *locked_page,
748 u64 start, u64 end, int *page_started,
749 unsigned long *nr_written,
750 int unlock)
751{
752 struct btrfs_root *root = BTRFS_I(inode)->root;
753 struct btrfs_trans_handle *trans;
754 u64 alloc_hint = 0;
755 u64 num_bytes;
756 unsigned long ram_size;
757 u64 disk_num_bytes;
758 u64 cur_alloc_size;
759 u64 blocksize = root->sectorsize;
760 u64 actual_end;
42dc7bab 761 u64 isize = i_size_read(inode);
771ed689
CM
762 struct btrfs_key ins;
763 struct extent_map *em;
764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
765 int ret = 0;
766
767 trans = btrfs_join_transaction(root, 1);
768 BUG_ON(!trans);
769 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 770 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 771
42dc7bab 772 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
773
774 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
775 num_bytes = max(blocksize, num_bytes);
776 disk_num_bytes = num_bytes;
777 ret = 0;
778
779 if (start == 0) {
780 /* lets try to make an inline extent */
781 ret = cow_file_range_inline(trans, root, inode,
782 start, end, 0, NULL);
783 if (ret == 0) {
784 extent_clear_unlock_delalloc(inode,
a791e35e
CM
785 &BTRFS_I(inode)->io_tree,
786 start, end, NULL,
787 EXTENT_CLEAR_UNLOCK_PAGE |
788 EXTENT_CLEAR_UNLOCK |
789 EXTENT_CLEAR_DELALLOC |
790 EXTENT_CLEAR_DIRTY |
791 EXTENT_SET_WRITEBACK |
792 EXTENT_END_WRITEBACK);
c2167754 793
771ed689
CM
794 *nr_written = *nr_written +
795 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
796 *page_started = 1;
797 ret = 0;
798 goto out;
799 }
800 }
801
802 BUG_ON(disk_num_bytes >
803 btrfs_super_total_bytes(&root->fs_info->super_copy));
804
4b46fce2 805 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
806 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
807
d397712b 808 while (disk_num_bytes > 0) {
a791e35e
CM
809 unsigned long op;
810
287a0ab9 811 cur_alloc_size = disk_num_bytes;
e6dcd2dc 812 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 813 root->sectorsize, 0, alloc_hint,
e6dcd2dc 814 (u64)-1, &ins, 1);
d397712b
CM
815 BUG_ON(ret);
816
e6dcd2dc
CM
817 em = alloc_extent_map(GFP_NOFS);
818 em->start = start;
445a6944 819 em->orig_start = em->start;
771ed689
CM
820 ram_size = ins.offset;
821 em->len = ins.offset;
c8b97818 822
e6dcd2dc 823 em->block_start = ins.objectid;
c8b97818 824 em->block_len = ins.offset;
e6dcd2dc 825 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 826 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 827
d397712b 828 while (1) {
890871be 829 write_lock(&em_tree->lock);
e6dcd2dc 830 ret = add_extent_mapping(em_tree, em);
890871be 831 write_unlock(&em_tree->lock);
e6dcd2dc
CM
832 if (ret != -EEXIST) {
833 free_extent_map(em);
834 break;
835 }
836 btrfs_drop_extent_cache(inode, start,
c8b97818 837 start + ram_size - 1, 0);
e6dcd2dc
CM
838 }
839
98d20f67 840 cur_alloc_size = ins.offset;
e6dcd2dc 841 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 842 ram_size, cur_alloc_size, 0);
e6dcd2dc 843 BUG_ON(ret);
c8b97818 844
17d217fe
YZ
845 if (root->root_key.objectid ==
846 BTRFS_DATA_RELOC_TREE_OBJECTID) {
847 ret = btrfs_reloc_clone_csums(inode, start,
848 cur_alloc_size);
849 BUG_ON(ret);
850 }
851
d397712b 852 if (disk_num_bytes < cur_alloc_size)
3b951516 853 break;
d397712b 854
c8b97818
CM
855 /* we're not doing compressed IO, don't unlock the first
856 * page (which the caller expects to stay locked), don't
857 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
858 *
859 * Do set the Private2 bit so we know this page was properly
860 * setup for writepage
c8b97818 861 */
a791e35e
CM
862 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
863 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
864 EXTENT_SET_PRIVATE2;
865
c8b97818
CM
866 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
867 start, start + ram_size - 1,
a791e35e 868 locked_page, op);
c8b97818 869 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
870 num_bytes -= cur_alloc_size;
871 alloc_hint = ins.objectid + ins.offset;
872 start += cur_alloc_size;
b888db2b 873 }
b888db2b 874out:
771ed689 875 ret = 0;
b888db2b 876 btrfs_end_transaction(trans, root);
c8b97818 877
be20aa9d 878 return ret;
771ed689 879}
c8b97818 880
771ed689
CM
881/*
882 * work queue call back to started compression on a file and pages
883 */
884static noinline void async_cow_start(struct btrfs_work *work)
885{
886 struct async_cow *async_cow;
887 int num_added = 0;
888 async_cow = container_of(work, struct async_cow, work);
889
890 compress_file_range(async_cow->inode, async_cow->locked_page,
891 async_cow->start, async_cow->end, async_cow,
892 &num_added);
893 if (num_added == 0)
894 async_cow->inode = NULL;
895}
896
897/*
898 * work queue call back to submit previously compressed pages
899 */
900static noinline void async_cow_submit(struct btrfs_work *work)
901{
902 struct async_cow *async_cow;
903 struct btrfs_root *root;
904 unsigned long nr_pages;
905
906 async_cow = container_of(work, struct async_cow, work);
907
908 root = async_cow->root;
909 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
910 PAGE_CACHE_SHIFT;
911
912 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
913
914 if (atomic_read(&root->fs_info->async_delalloc_pages) <
915 5 * 1042 * 1024 &&
916 waitqueue_active(&root->fs_info->async_submit_wait))
917 wake_up(&root->fs_info->async_submit_wait);
918
d397712b 919 if (async_cow->inode)
771ed689 920 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 921}
c8b97818 922
771ed689
CM
923static noinline void async_cow_free(struct btrfs_work *work)
924{
925 struct async_cow *async_cow;
926 async_cow = container_of(work, struct async_cow, work);
927 kfree(async_cow);
928}
929
930static int cow_file_range_async(struct inode *inode, struct page *locked_page,
931 u64 start, u64 end, int *page_started,
932 unsigned long *nr_written)
933{
934 struct async_cow *async_cow;
935 struct btrfs_root *root = BTRFS_I(inode)->root;
936 unsigned long nr_pages;
937 u64 cur_end;
938 int limit = 10 * 1024 * 1042;
939
a3429ab7
CM
940 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
941 1, 0, NULL, GFP_NOFS);
d397712b 942 while (start < end) {
771ed689
CM
943 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
944 async_cow->inode = inode;
945 async_cow->root = root;
946 async_cow->locked_page = locked_page;
947 async_cow->start = start;
948
6cbff00f 949 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
950 cur_end = end;
951 else
952 cur_end = min(end, start + 512 * 1024 - 1);
953
954 async_cow->end = cur_end;
955 INIT_LIST_HEAD(&async_cow->extents);
956
957 async_cow->work.func = async_cow_start;
958 async_cow->work.ordered_func = async_cow_submit;
959 async_cow->work.ordered_free = async_cow_free;
960 async_cow->work.flags = 0;
961
771ed689
CM
962 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
963 PAGE_CACHE_SHIFT;
964 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
965
966 btrfs_queue_worker(&root->fs_info->delalloc_workers,
967 &async_cow->work);
968
969 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
970 wait_event(root->fs_info->async_submit_wait,
971 (atomic_read(&root->fs_info->async_delalloc_pages) <
972 limit));
973 }
974
d397712b 975 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
976 atomic_read(&root->fs_info->async_delalloc_pages)) {
977 wait_event(root->fs_info->async_submit_wait,
978 (atomic_read(&root->fs_info->async_delalloc_pages) ==
979 0));
980 }
981
982 *nr_written += nr_pages;
983 start = cur_end + 1;
984 }
985 *page_started = 1;
986 return 0;
be20aa9d
CM
987}
988
d397712b 989static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
990 u64 bytenr, u64 num_bytes)
991{
992 int ret;
993 struct btrfs_ordered_sum *sums;
994 LIST_HEAD(list);
995
07d400a6
YZ
996 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
997 bytenr + num_bytes - 1, &list);
17d217fe
YZ
998 if (ret == 0 && list_empty(&list))
999 return 0;
1000
1001 while (!list_empty(&list)) {
1002 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1003 list_del(&sums->list);
1004 kfree(sums);
1005 }
1006 return 1;
1007}
1008
d352ac68
CM
1009/*
1010 * when nowcow writeback call back. This checks for snapshots or COW copies
1011 * of the extents that exist in the file, and COWs the file as required.
1012 *
1013 * If no cow copies or snapshots exist, we write directly to the existing
1014 * blocks on disk
1015 */
7f366cfe
CM
1016static noinline int run_delalloc_nocow(struct inode *inode,
1017 struct page *locked_page,
771ed689
CM
1018 u64 start, u64 end, int *page_started, int force,
1019 unsigned long *nr_written)
be20aa9d 1020{
be20aa9d 1021 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1022 struct btrfs_trans_handle *trans;
be20aa9d 1023 struct extent_buffer *leaf;
be20aa9d 1024 struct btrfs_path *path;
80ff3856 1025 struct btrfs_file_extent_item *fi;
be20aa9d 1026 struct btrfs_key found_key;
80ff3856
YZ
1027 u64 cow_start;
1028 u64 cur_offset;
1029 u64 extent_end;
5d4f98a2 1030 u64 extent_offset;
80ff3856
YZ
1031 u64 disk_bytenr;
1032 u64 num_bytes;
1033 int extent_type;
1034 int ret;
d899e052 1035 int type;
80ff3856
YZ
1036 int nocow;
1037 int check_prev = 1;
be20aa9d
CM
1038
1039 path = btrfs_alloc_path();
1040 BUG_ON(!path);
7ea394f1
YZ
1041 trans = btrfs_join_transaction(root, 1);
1042 BUG_ON(!trans);
be20aa9d 1043
80ff3856
YZ
1044 cow_start = (u64)-1;
1045 cur_offset = start;
1046 while (1) {
1047 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1048 cur_offset, 0);
1049 BUG_ON(ret < 0);
1050 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1051 leaf = path->nodes[0];
1052 btrfs_item_key_to_cpu(leaf, &found_key,
1053 path->slots[0] - 1);
1054 if (found_key.objectid == inode->i_ino &&
1055 found_key.type == BTRFS_EXTENT_DATA_KEY)
1056 path->slots[0]--;
1057 }
1058 check_prev = 0;
1059next_slot:
1060 leaf = path->nodes[0];
1061 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1062 ret = btrfs_next_leaf(root, path);
1063 if (ret < 0)
1064 BUG_ON(1);
1065 if (ret > 0)
1066 break;
1067 leaf = path->nodes[0];
1068 }
be20aa9d 1069
80ff3856
YZ
1070 nocow = 0;
1071 disk_bytenr = 0;
17d217fe 1072 num_bytes = 0;
80ff3856
YZ
1073 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1074
1075 if (found_key.objectid > inode->i_ino ||
1076 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1077 found_key.offset > end)
1078 break;
1079
1080 if (found_key.offset > cur_offset) {
1081 extent_end = found_key.offset;
e9061e21 1082 extent_type = 0;
80ff3856
YZ
1083 goto out_check;
1084 }
1085
1086 fi = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_file_extent_item);
1088 extent_type = btrfs_file_extent_type(leaf, fi);
1089
d899e052
YZ
1090 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1091 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1092 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1093 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1094 extent_end = found_key.offset +
1095 btrfs_file_extent_num_bytes(leaf, fi);
1096 if (extent_end <= start) {
1097 path->slots[0]++;
1098 goto next_slot;
1099 }
17d217fe
YZ
1100 if (disk_bytenr == 0)
1101 goto out_check;
80ff3856
YZ
1102 if (btrfs_file_extent_compression(leaf, fi) ||
1103 btrfs_file_extent_encryption(leaf, fi) ||
1104 btrfs_file_extent_other_encoding(leaf, fi))
1105 goto out_check;
d899e052
YZ
1106 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1107 goto out_check;
d2fb3437 1108 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1109 goto out_check;
17d217fe 1110 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1111 found_key.offset -
1112 extent_offset, disk_bytenr))
17d217fe 1113 goto out_check;
5d4f98a2 1114 disk_bytenr += extent_offset;
17d217fe
YZ
1115 disk_bytenr += cur_offset - found_key.offset;
1116 num_bytes = min(end + 1, extent_end) - cur_offset;
1117 /*
1118 * force cow if csum exists in the range.
1119 * this ensure that csum for a given extent are
1120 * either valid or do not exist.
1121 */
1122 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1123 goto out_check;
80ff3856
YZ
1124 nocow = 1;
1125 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1126 extent_end = found_key.offset +
1127 btrfs_file_extent_inline_len(leaf, fi);
1128 extent_end = ALIGN(extent_end, root->sectorsize);
1129 } else {
1130 BUG_ON(1);
1131 }
1132out_check:
1133 if (extent_end <= start) {
1134 path->slots[0]++;
1135 goto next_slot;
1136 }
1137 if (!nocow) {
1138 if (cow_start == (u64)-1)
1139 cow_start = cur_offset;
1140 cur_offset = extent_end;
1141 if (cur_offset > end)
1142 break;
1143 path->slots[0]++;
1144 goto next_slot;
7ea394f1
YZ
1145 }
1146
1147 btrfs_release_path(root, path);
80ff3856
YZ
1148 if (cow_start != (u64)-1) {
1149 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1150 found_key.offset - 1, page_started,
1151 nr_written, 1);
80ff3856
YZ
1152 BUG_ON(ret);
1153 cow_start = (u64)-1;
7ea394f1 1154 }
80ff3856 1155
d899e052
YZ
1156 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1157 struct extent_map *em;
1158 struct extent_map_tree *em_tree;
1159 em_tree = &BTRFS_I(inode)->extent_tree;
1160 em = alloc_extent_map(GFP_NOFS);
1161 em->start = cur_offset;
445a6944 1162 em->orig_start = em->start;
d899e052
YZ
1163 em->len = num_bytes;
1164 em->block_len = num_bytes;
1165 em->block_start = disk_bytenr;
1166 em->bdev = root->fs_info->fs_devices->latest_bdev;
1167 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1168 while (1) {
890871be 1169 write_lock(&em_tree->lock);
d899e052 1170 ret = add_extent_mapping(em_tree, em);
890871be 1171 write_unlock(&em_tree->lock);
d899e052
YZ
1172 if (ret != -EEXIST) {
1173 free_extent_map(em);
1174 break;
1175 }
1176 btrfs_drop_extent_cache(inode, em->start,
1177 em->start + em->len - 1, 0);
1178 }
1179 type = BTRFS_ORDERED_PREALLOC;
1180 } else {
1181 type = BTRFS_ORDERED_NOCOW;
1182 }
80ff3856
YZ
1183
1184 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1185 num_bytes, num_bytes, type);
1186 BUG_ON(ret);
771ed689 1187
efa56464
YZ
1188 if (root->root_key.objectid ==
1189 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1190 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1191 num_bytes);
1192 BUG_ON(ret);
1193 }
1194
d899e052 1195 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1196 cur_offset, cur_offset + num_bytes - 1,
1197 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1198 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1199 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1200 cur_offset = extent_end;
1201 if (cur_offset > end)
1202 break;
be20aa9d 1203 }
80ff3856
YZ
1204 btrfs_release_path(root, path);
1205
1206 if (cur_offset <= end && cow_start == (u64)-1)
1207 cow_start = cur_offset;
1208 if (cow_start != (u64)-1) {
1209 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1210 page_started, nr_written, 1);
80ff3856
YZ
1211 BUG_ON(ret);
1212 }
1213
1214 ret = btrfs_end_transaction(trans, root);
1215 BUG_ON(ret);
7ea394f1 1216 btrfs_free_path(path);
80ff3856 1217 return 0;
be20aa9d
CM
1218}
1219
d352ac68
CM
1220/*
1221 * extent_io.c call back to do delayed allocation processing
1222 */
c8b97818 1223static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1224 u64 start, u64 end, int *page_started,
1225 unsigned long *nr_written)
be20aa9d 1226{
be20aa9d 1227 int ret;
7f366cfe 1228 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1229
6cbff00f 1230 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1231 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1232 page_started, 1, nr_written);
6cbff00f 1233 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1234 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1235 page_started, 0, nr_written);
1e701a32
CM
1236 else if (!btrfs_test_opt(root, COMPRESS) &&
1237 !(BTRFS_I(inode)->force_compress))
7f366cfe
CM
1238 ret = cow_file_range(inode, locked_page, start, end,
1239 page_started, nr_written, 1);
be20aa9d 1240 else
771ed689 1241 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1242 page_started, nr_written);
b888db2b
CM
1243 return ret;
1244}
1245
9ed74f2d 1246static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1247 struct extent_state *orig, u64 split)
9ed74f2d 1248{
0ca1f7ce 1249 /* not delalloc, ignore it */
9ed74f2d
JB
1250 if (!(orig->state & EXTENT_DELALLOC))
1251 return 0;
1252
0ca1f7ce 1253 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1254 return 0;
1255}
1256
1257/*
1258 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1259 * extents so we can keep track of new extents that are just merged onto old
1260 * extents, such as when we are doing sequential writes, so we can properly
1261 * account for the metadata space we'll need.
1262 */
1263static int btrfs_merge_extent_hook(struct inode *inode,
1264 struct extent_state *new,
1265 struct extent_state *other)
1266{
9ed74f2d
JB
1267 /* not delalloc, ignore it */
1268 if (!(other->state & EXTENT_DELALLOC))
1269 return 0;
1270
0ca1f7ce 1271 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1272 return 0;
1273}
1274
d352ac68
CM
1275/*
1276 * extent_io.c set_bit_hook, used to track delayed allocation
1277 * bytes in this file, and to maintain the list of inodes that
1278 * have pending delalloc work to be done.
1279 */
0ca1f7ce
YZ
1280static int btrfs_set_bit_hook(struct inode *inode,
1281 struct extent_state *state, int *bits)
291d673e 1282{
9ed74f2d 1283
75eff68e
CM
1284 /*
1285 * set_bit and clear bit hooks normally require _irqsave/restore
1286 * but in this case, we are only testeing for the DELALLOC
1287 * bit, which is only set or cleared with irqs on
1288 */
0ca1f7ce 1289 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1290 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1291 u64 len = state->end + 1 - state->start;
9ed74f2d 1292
0ca1f7ce
YZ
1293 if (*bits & EXTENT_FIRST_DELALLOC)
1294 *bits &= ~EXTENT_FIRST_DELALLOC;
1295 else
1296 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1297
75eff68e 1298 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1299 BTRFS_I(inode)->delalloc_bytes += len;
1300 root->fs_info->delalloc_bytes += len;
ea8c2819
CM
1301 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1302 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1303 &root->fs_info->delalloc_inodes);
1304 }
75eff68e 1305 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1306 }
1307 return 0;
1308}
1309
d352ac68
CM
1310/*
1311 * extent_io.c clear_bit_hook, see set_bit_hook for why
1312 */
9ed74f2d 1313static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1314 struct extent_state *state, int *bits)
291d673e 1315{
75eff68e
CM
1316 /*
1317 * set_bit and clear bit hooks normally require _irqsave/restore
1318 * but in this case, we are only testeing for the DELALLOC
1319 * bit, which is only set or cleared with irqs on
1320 */
0ca1f7ce 1321 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1322 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1323 u64 len = state->end + 1 - state->start;
bcbfce8a 1324
0ca1f7ce
YZ
1325 if (*bits & EXTENT_FIRST_DELALLOC)
1326 *bits &= ~EXTENT_FIRST_DELALLOC;
1327 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1328 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1329
1330 if (*bits & EXTENT_DO_ACCOUNTING)
1331 btrfs_delalloc_release_metadata(inode, len);
1332
1333 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1334 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1335
75eff68e 1336 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1337 root->fs_info->delalloc_bytes -= len;
1338 BTRFS_I(inode)->delalloc_bytes -= len;
1339
ea8c2819
CM
1340 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1341 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1342 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1343 }
75eff68e 1344 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1345 }
1346 return 0;
1347}
1348
d352ac68
CM
1349/*
1350 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1351 * we don't create bios that span stripes or chunks
1352 */
239b14b3 1353int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1354 size_t size, struct bio *bio,
1355 unsigned long bio_flags)
239b14b3
CM
1356{
1357 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1358 struct btrfs_mapping_tree *map_tree;
a62b9401 1359 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1360 u64 length = 0;
1361 u64 map_length;
239b14b3
CM
1362 int ret;
1363
771ed689
CM
1364 if (bio_flags & EXTENT_BIO_COMPRESSED)
1365 return 0;
1366
f2d8d74d 1367 length = bio->bi_size;
239b14b3
CM
1368 map_tree = &root->fs_info->mapping_tree;
1369 map_length = length;
cea9e445 1370 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1371 &map_length, NULL, 0);
cea9e445 1372
d397712b 1373 if (map_length < length + size)
239b14b3 1374 return 1;
239b14b3
CM
1375 return 0;
1376}
1377
d352ac68
CM
1378/*
1379 * in order to insert checksums into the metadata in large chunks,
1380 * we wait until bio submission time. All the pages in the bio are
1381 * checksummed and sums are attached onto the ordered extent record.
1382 *
1383 * At IO completion time the cums attached on the ordered extent record
1384 * are inserted into the btree
1385 */
d397712b
CM
1386static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1387 struct bio *bio, int mirror_num,
eaf25d93
CM
1388 unsigned long bio_flags,
1389 u64 bio_offset)
065631f6 1390{
065631f6 1391 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1392 int ret = 0;
e015640f 1393
d20f7043 1394 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1395 BUG_ON(ret);
4a69a410
CM
1396 return 0;
1397}
e015640f 1398
4a69a410
CM
1399/*
1400 * in order to insert checksums into the metadata in large chunks,
1401 * we wait until bio submission time. All the pages in the bio are
1402 * checksummed and sums are attached onto the ordered extent record.
1403 *
1404 * At IO completion time the cums attached on the ordered extent record
1405 * are inserted into the btree
1406 */
b2950863 1407static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1408 int mirror_num, unsigned long bio_flags,
1409 u64 bio_offset)
4a69a410
CM
1410{
1411 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1412 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1413}
1414
d352ac68 1415/*
cad321ad
CM
1416 * extent_io.c submission hook. This does the right thing for csum calculation
1417 * on write, or reading the csums from the tree before a read
d352ac68 1418 */
b2950863 1419static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1420 int mirror_num, unsigned long bio_flags,
1421 u64 bio_offset)
44b8bd7e
CM
1422{
1423 struct btrfs_root *root = BTRFS_I(inode)->root;
1424 int ret = 0;
19b9bdb0 1425 int skip_sum;
44b8bd7e 1426
6cbff00f 1427 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1428
e6dcd2dc
CM
1429 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1430 BUG_ON(ret);
065631f6 1431
7b6d91da 1432 if (!(rw & REQ_WRITE)) {
d20f7043 1433 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1434 return btrfs_submit_compressed_read(inode, bio,
1435 mirror_num, bio_flags);
d20f7043
CM
1436 } else if (!skip_sum)
1437 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1438 goto mapit;
19b9bdb0 1439 } else if (!skip_sum) {
17d217fe
YZ
1440 /* csum items have already been cloned */
1441 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1442 goto mapit;
19b9bdb0
CM
1443 /* we're doing a write, do the async checksumming */
1444 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1445 inode, rw, bio, mirror_num,
eaf25d93
CM
1446 bio_flags, bio_offset,
1447 __btrfs_submit_bio_start,
4a69a410 1448 __btrfs_submit_bio_done);
19b9bdb0
CM
1449 }
1450
0b86a832 1451mapit:
8b712842 1452 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1453}
6885f308 1454
d352ac68
CM
1455/*
1456 * given a list of ordered sums record them in the inode. This happens
1457 * at IO completion time based on sums calculated at bio submission time.
1458 */
ba1da2f4 1459static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1460 struct inode *inode, u64 file_offset,
1461 struct list_head *list)
1462{
e6dcd2dc
CM
1463 struct btrfs_ordered_sum *sum;
1464
1465 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1466
1467 list_for_each_entry(sum, list, list) {
d20f7043
CM
1468 btrfs_csum_file_blocks(trans,
1469 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1470 }
1471 return 0;
1472}
1473
2ac55d41
JB
1474int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1475 struct extent_state **cached_state)
ea8c2819 1476{
d397712b 1477 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1478 WARN_ON(1);
ea8c2819 1479 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1480 cached_state, GFP_NOFS);
ea8c2819
CM
1481}
1482
d352ac68 1483/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1484struct btrfs_writepage_fixup {
1485 struct page *page;
1486 struct btrfs_work work;
1487};
1488
b2950863 1489static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1490{
1491 struct btrfs_writepage_fixup *fixup;
1492 struct btrfs_ordered_extent *ordered;
2ac55d41 1493 struct extent_state *cached_state = NULL;
247e743c
CM
1494 struct page *page;
1495 struct inode *inode;
1496 u64 page_start;
1497 u64 page_end;
1498
1499 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1500 page = fixup->page;
4a096752 1501again:
247e743c
CM
1502 lock_page(page);
1503 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1504 ClearPageChecked(page);
1505 goto out_page;
1506 }
1507
1508 inode = page->mapping->host;
1509 page_start = page_offset(page);
1510 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1511
2ac55d41
JB
1512 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1513 &cached_state, GFP_NOFS);
4a096752
CM
1514
1515 /* already ordered? We're done */
8b62b72b 1516 if (PagePrivate2(page))
247e743c 1517 goto out;
4a096752
CM
1518
1519 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1520 if (ordered) {
2ac55d41
JB
1521 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1522 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1523 unlock_page(page);
1524 btrfs_start_ordered_extent(inode, ordered, 1);
1525 goto again;
1526 }
247e743c 1527
0ca1f7ce 1528 BUG();
2ac55d41 1529 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1530 ClearPageChecked(page);
1531out:
2ac55d41
JB
1532 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1533 &cached_state, GFP_NOFS);
247e743c
CM
1534out_page:
1535 unlock_page(page);
1536 page_cache_release(page);
1537}
1538
1539/*
1540 * There are a few paths in the higher layers of the kernel that directly
1541 * set the page dirty bit without asking the filesystem if it is a
1542 * good idea. This causes problems because we want to make sure COW
1543 * properly happens and the data=ordered rules are followed.
1544 *
c8b97818 1545 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1546 * hasn't been properly setup for IO. We kick off an async process
1547 * to fix it up. The async helper will wait for ordered extents, set
1548 * the delalloc bit and make it safe to write the page.
1549 */
b2950863 1550static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1551{
1552 struct inode *inode = page->mapping->host;
1553 struct btrfs_writepage_fixup *fixup;
1554 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1555
8b62b72b
CM
1556 /* this page is properly in the ordered list */
1557 if (TestClearPagePrivate2(page))
247e743c
CM
1558 return 0;
1559
1560 if (PageChecked(page))
1561 return -EAGAIN;
1562
1563 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1564 if (!fixup)
1565 return -EAGAIN;
f421950f 1566
247e743c
CM
1567 SetPageChecked(page);
1568 page_cache_get(page);
1569 fixup->work.func = btrfs_writepage_fixup_worker;
1570 fixup->page = page;
1571 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1572 return -EAGAIN;
1573}
1574
d899e052
YZ
1575static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1576 struct inode *inode, u64 file_pos,
1577 u64 disk_bytenr, u64 disk_num_bytes,
1578 u64 num_bytes, u64 ram_bytes,
1579 u8 compression, u8 encryption,
1580 u16 other_encoding, int extent_type)
1581{
1582 struct btrfs_root *root = BTRFS_I(inode)->root;
1583 struct btrfs_file_extent_item *fi;
1584 struct btrfs_path *path;
1585 struct extent_buffer *leaf;
1586 struct btrfs_key ins;
1587 u64 hint;
1588 int ret;
1589
1590 path = btrfs_alloc_path();
1591 BUG_ON(!path);
1592
b9473439 1593 path->leave_spinning = 1;
a1ed835e
CM
1594
1595 /*
1596 * we may be replacing one extent in the tree with another.
1597 * The new extent is pinned in the extent map, and we don't want
1598 * to drop it from the cache until it is completely in the btree.
1599 *
1600 * So, tell btrfs_drop_extents to leave this extent in the cache.
1601 * the caller is expected to unpin it and allow it to be merged
1602 * with the others.
1603 */
920bbbfb
YZ
1604 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1605 &hint, 0);
d899e052
YZ
1606 BUG_ON(ret);
1607
1608 ins.objectid = inode->i_ino;
1609 ins.offset = file_pos;
1610 ins.type = BTRFS_EXTENT_DATA_KEY;
1611 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1612 BUG_ON(ret);
1613 leaf = path->nodes[0];
1614 fi = btrfs_item_ptr(leaf, path->slots[0],
1615 struct btrfs_file_extent_item);
1616 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1617 btrfs_set_file_extent_type(leaf, fi, extent_type);
1618 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1619 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1620 btrfs_set_file_extent_offset(leaf, fi, 0);
1621 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1622 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1623 btrfs_set_file_extent_compression(leaf, fi, compression);
1624 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1625 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1626
1627 btrfs_unlock_up_safe(path, 1);
1628 btrfs_set_lock_blocking(leaf);
1629
d899e052
YZ
1630 btrfs_mark_buffer_dirty(leaf);
1631
1632 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1633
1634 ins.objectid = disk_bytenr;
1635 ins.offset = disk_num_bytes;
1636 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1637 ret = btrfs_alloc_reserved_file_extent(trans, root,
1638 root->root_key.objectid,
1639 inode->i_ino, file_pos, &ins);
d899e052 1640 BUG_ON(ret);
d899e052 1641 btrfs_free_path(path);
b9473439 1642
d899e052
YZ
1643 return 0;
1644}
1645
5d13a98f
CM
1646/*
1647 * helper function for btrfs_finish_ordered_io, this
1648 * just reads in some of the csum leaves to prime them into ram
1649 * before we start the transaction. It limits the amount of btree
1650 * reads required while inside the transaction.
1651 */
d352ac68
CM
1652/* as ordered data IO finishes, this gets called so we can finish
1653 * an ordered extent if the range of bytes in the file it covers are
1654 * fully written.
1655 */
211f90e6 1656static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1657{
e6dcd2dc 1658 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1659 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1660 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1661 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1662 struct extent_state *cached_state = NULL;
d899e052 1663 int compressed = 0;
e6dcd2dc
CM
1664 int ret;
1665
5a1a3df1
JB
1666 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1667 end - start + 1);
ba1da2f4 1668 if (!ret)
e6dcd2dc 1669 return 0;
e6dcd2dc 1670 BUG_ON(!ordered_extent);
efd049fb 1671
c2167754
YZ
1672 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1673 BUG_ON(!list_empty(&ordered_extent->list));
1674 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1675 if (!ret) {
1676 trans = btrfs_join_transaction(root, 1);
0ca1f7ce
YZ
1677 btrfs_set_trans_block_group(trans, inode);
1678 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1679 ret = btrfs_update_inode(trans, root, inode);
1680 BUG_ON(ret);
c2167754
YZ
1681 }
1682 goto out;
1683 }
e6dcd2dc 1684
2ac55d41
JB
1685 lock_extent_bits(io_tree, ordered_extent->file_offset,
1686 ordered_extent->file_offset + ordered_extent->len - 1,
1687 0, &cached_state, GFP_NOFS);
e6dcd2dc 1688
c2167754 1689 trans = btrfs_join_transaction(root, 1);
0ca1f7ce
YZ
1690 btrfs_set_trans_block_group(trans, inode);
1691 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1692
c8b97818 1693 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1694 compressed = 1;
1695 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1696 BUG_ON(compressed);
920bbbfb 1697 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1698 ordered_extent->file_offset,
1699 ordered_extent->file_offset +
1700 ordered_extent->len);
1701 BUG_ON(ret);
1702 } else {
0af3d00b 1703 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1704 ret = insert_reserved_file_extent(trans, inode,
1705 ordered_extent->file_offset,
1706 ordered_extent->start,
1707 ordered_extent->disk_len,
1708 ordered_extent->len,
1709 ordered_extent->len,
1710 compressed, 0, 0,
1711 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1712 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1713 ordered_extent->file_offset,
1714 ordered_extent->len);
d899e052
YZ
1715 BUG_ON(ret);
1716 }
2ac55d41
JB
1717 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1718 ordered_extent->file_offset +
1719 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1720
e6dcd2dc
CM
1721 add_pending_csums(trans, inode, ordered_extent->file_offset,
1722 &ordered_extent->list);
1723
c2167754
YZ
1724 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1725 ret = btrfs_update_inode(trans, root, inode);
1726 BUG_ON(ret);
c2167754 1727out:
0ca1f7ce
YZ
1728 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1729 if (trans)
1730 btrfs_end_transaction(trans, root);
e6dcd2dc
CM
1731 /* once for us */
1732 btrfs_put_ordered_extent(ordered_extent);
1733 /* once for the tree */
1734 btrfs_put_ordered_extent(ordered_extent);
1735
e6dcd2dc
CM
1736 return 0;
1737}
1738
b2950863 1739static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1740 struct extent_state *state, int uptodate)
1741{
8b62b72b 1742 ClearPagePrivate2(page);
211f90e6
CM
1743 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1744}
1745
d352ac68
CM
1746/*
1747 * When IO fails, either with EIO or csum verification fails, we
1748 * try other mirrors that might have a good copy of the data. This
1749 * io_failure_record is used to record state as we go through all the
1750 * mirrors. If another mirror has good data, the page is set up to date
1751 * and things continue. If a good mirror can't be found, the original
1752 * bio end_io callback is called to indicate things have failed.
1753 */
7e38326f
CM
1754struct io_failure_record {
1755 struct page *page;
1756 u64 start;
1757 u64 len;
1758 u64 logical;
d20f7043 1759 unsigned long bio_flags;
7e38326f
CM
1760 int last_mirror;
1761};
1762
b2950863 1763static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1764 struct page *page, u64 start, u64 end,
1765 struct extent_state *state)
7e38326f
CM
1766{
1767 struct io_failure_record *failrec = NULL;
1768 u64 private;
1769 struct extent_map *em;
1770 struct inode *inode = page->mapping->host;
1771 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1772 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1773 struct bio *bio;
1774 int num_copies;
1775 int ret;
1259ab75 1776 int rw;
7e38326f
CM
1777 u64 logical;
1778
1779 ret = get_state_private(failure_tree, start, &private);
1780 if (ret) {
7e38326f
CM
1781 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1782 if (!failrec)
1783 return -ENOMEM;
1784 failrec->start = start;
1785 failrec->len = end - start + 1;
1786 failrec->last_mirror = 0;
d20f7043 1787 failrec->bio_flags = 0;
7e38326f 1788
890871be 1789 read_lock(&em_tree->lock);
3b951516
CM
1790 em = lookup_extent_mapping(em_tree, start, failrec->len);
1791 if (em->start > start || em->start + em->len < start) {
1792 free_extent_map(em);
1793 em = NULL;
1794 }
890871be 1795 read_unlock(&em_tree->lock);
7e38326f
CM
1796
1797 if (!em || IS_ERR(em)) {
1798 kfree(failrec);
1799 return -EIO;
1800 }
1801 logical = start - em->start;
1802 logical = em->block_start + logical;
d20f7043
CM
1803 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1804 logical = em->block_start;
1805 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1806 }
7e38326f
CM
1807 failrec->logical = logical;
1808 free_extent_map(em);
1809 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1810 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1811 set_state_private(failure_tree, start,
1812 (u64)(unsigned long)failrec);
7e38326f 1813 } else {
587f7704 1814 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1815 }
1816 num_copies = btrfs_num_copies(
1817 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1818 failrec->logical, failrec->len);
1819 failrec->last_mirror++;
1820 if (!state) {
cad321ad 1821 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1822 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1823 failrec->start,
1824 EXTENT_LOCKED);
1825 if (state && state->start != failrec->start)
1826 state = NULL;
cad321ad 1827 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1828 }
1829 if (!state || failrec->last_mirror > num_copies) {
1830 set_state_private(failure_tree, failrec->start, 0);
1831 clear_extent_bits(failure_tree, failrec->start,
1832 failrec->start + failrec->len - 1,
1833 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1834 kfree(failrec);
1835 return -EIO;
1836 }
1837 bio = bio_alloc(GFP_NOFS, 1);
1838 bio->bi_private = state;
1839 bio->bi_end_io = failed_bio->bi_end_io;
1840 bio->bi_sector = failrec->logical >> 9;
1841 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1842 bio->bi_size = 0;
d20f7043 1843
7e38326f 1844 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1845 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1846 rw = WRITE;
1847 else
1848 rw = READ;
1849
1850 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1851 failrec->last_mirror,
eaf25d93 1852 failrec->bio_flags, 0);
1259ab75
CM
1853 return 0;
1854}
1855
d352ac68
CM
1856/*
1857 * each time an IO finishes, we do a fast check in the IO failure tree
1858 * to see if we need to process or clean up an io_failure_record
1859 */
b2950863 1860static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1861{
1862 u64 private;
1863 u64 private_failure;
1864 struct io_failure_record *failure;
1865 int ret;
1866
1867 private = 0;
1868 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1869 (u64)-1, 1, EXTENT_DIRTY)) {
1870 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1871 start, &private_failure);
1872 if (ret == 0) {
1873 failure = (struct io_failure_record *)(unsigned long)
1874 private_failure;
1875 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1876 failure->start, 0);
1877 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1878 failure->start,
1879 failure->start + failure->len - 1,
1880 EXTENT_DIRTY | EXTENT_LOCKED,
1881 GFP_NOFS);
1882 kfree(failure);
1883 }
1884 }
7e38326f
CM
1885 return 0;
1886}
1887
d352ac68
CM
1888/*
1889 * when reads are done, we need to check csums to verify the data is correct
1890 * if there's a match, we allow the bio to finish. If not, we go through
1891 * the io_failure_record routines to find good copies
1892 */
b2950863 1893static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1894 struct extent_state *state)
07157aac 1895{
35ebb934 1896 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1897 struct inode *inode = page->mapping->host;
d1310b2e 1898 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1899 char *kaddr;
aadfeb6e 1900 u64 private = ~(u32)0;
07157aac 1901 int ret;
ff79f819
CM
1902 struct btrfs_root *root = BTRFS_I(inode)->root;
1903 u32 csum = ~(u32)0;
d1310b2e 1904
d20f7043
CM
1905 if (PageChecked(page)) {
1906 ClearPageChecked(page);
1907 goto good;
1908 }
6cbff00f
CH
1909
1910 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1911 return 0;
1912
1913 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1914 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1915 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1916 GFP_NOFS);
b6cda9bc 1917 return 0;
17d217fe 1918 }
d20f7043 1919
c2e639f0 1920 if (state && state->start == start) {
70dec807
CM
1921 private = state->private;
1922 ret = 0;
1923 } else {
1924 ret = get_state_private(io_tree, start, &private);
1925 }
9ab86c8e 1926 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1927 if (ret)
07157aac 1928 goto zeroit;
d397712b 1929
ff79f819
CM
1930 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1931 btrfs_csum_final(csum, (char *)&csum);
d397712b 1932 if (csum != private)
07157aac 1933 goto zeroit;
d397712b 1934
9ab86c8e 1935 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1936good:
7e38326f
CM
1937 /* if the io failure tree for this inode is non-empty,
1938 * check to see if we've recovered from a failed IO
1939 */
1259ab75 1940 btrfs_clean_io_failures(inode, start);
07157aac
CM
1941 return 0;
1942
1943zeroit:
193f284d
CM
1944 if (printk_ratelimit()) {
1945 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1946 "private %llu\n", page->mapping->host->i_ino,
1947 (unsigned long long)start, csum,
1948 (unsigned long long)private);
1949 }
db94535d
CM
1950 memset(kaddr + offset, 1, end - start + 1);
1951 flush_dcache_page(page);
9ab86c8e 1952 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1953 if (private == 0)
1954 return 0;
7e38326f 1955 return -EIO;
07157aac 1956}
b888db2b 1957
24bbcf04
YZ
1958struct delayed_iput {
1959 struct list_head list;
1960 struct inode *inode;
1961};
1962
1963void btrfs_add_delayed_iput(struct inode *inode)
1964{
1965 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1966 struct delayed_iput *delayed;
1967
1968 if (atomic_add_unless(&inode->i_count, -1, 1))
1969 return;
1970
1971 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1972 delayed->inode = inode;
1973
1974 spin_lock(&fs_info->delayed_iput_lock);
1975 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1976 spin_unlock(&fs_info->delayed_iput_lock);
1977}
1978
1979void btrfs_run_delayed_iputs(struct btrfs_root *root)
1980{
1981 LIST_HEAD(list);
1982 struct btrfs_fs_info *fs_info = root->fs_info;
1983 struct delayed_iput *delayed;
1984 int empty;
1985
1986 spin_lock(&fs_info->delayed_iput_lock);
1987 empty = list_empty(&fs_info->delayed_iputs);
1988 spin_unlock(&fs_info->delayed_iput_lock);
1989 if (empty)
1990 return;
1991
1992 down_read(&root->fs_info->cleanup_work_sem);
1993 spin_lock(&fs_info->delayed_iput_lock);
1994 list_splice_init(&fs_info->delayed_iputs, &list);
1995 spin_unlock(&fs_info->delayed_iput_lock);
1996
1997 while (!list_empty(&list)) {
1998 delayed = list_entry(list.next, struct delayed_iput, list);
1999 list_del(&delayed->list);
2000 iput(delayed->inode);
2001 kfree(delayed);
2002 }
2003 up_read(&root->fs_info->cleanup_work_sem);
2004}
2005
d68fc57b
YZ
2006/*
2007 * calculate extra metadata reservation when snapshotting a subvolume
2008 * contains orphan files.
2009 */
2010void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2011 struct btrfs_pending_snapshot *pending,
2012 u64 *bytes_to_reserve)
2013{
2014 struct btrfs_root *root;
2015 struct btrfs_block_rsv *block_rsv;
2016 u64 num_bytes;
2017 int index;
2018
2019 root = pending->root;
2020 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2021 return;
2022
2023 block_rsv = root->orphan_block_rsv;
2024
2025 /* orphan block reservation for the snapshot */
2026 num_bytes = block_rsv->size;
2027
2028 /*
2029 * after the snapshot is created, COWing tree blocks may use more
2030 * space than it frees. So we should make sure there is enough
2031 * reserved space.
2032 */
2033 index = trans->transid & 0x1;
2034 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2035 num_bytes += block_rsv->size -
2036 (block_rsv->reserved + block_rsv->freed[index]);
2037 }
2038
2039 *bytes_to_reserve += num_bytes;
2040}
2041
2042void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2043 struct btrfs_pending_snapshot *pending)
2044{
2045 struct btrfs_root *root = pending->root;
2046 struct btrfs_root *snap = pending->snap;
2047 struct btrfs_block_rsv *block_rsv;
2048 u64 num_bytes;
2049 int index;
2050 int ret;
2051
2052 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2053 return;
2054
2055 /* refill source subvolume's orphan block reservation */
2056 block_rsv = root->orphan_block_rsv;
2057 index = trans->transid & 0x1;
2058 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2059 num_bytes = block_rsv->size -
2060 (block_rsv->reserved + block_rsv->freed[index]);
2061 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2062 root->orphan_block_rsv,
2063 num_bytes);
2064 BUG_ON(ret);
2065 }
2066
2067 /* setup orphan block reservation for the snapshot */
2068 block_rsv = btrfs_alloc_block_rsv(snap);
2069 BUG_ON(!block_rsv);
2070
2071 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2072 snap->orphan_block_rsv = block_rsv;
2073
2074 num_bytes = root->orphan_block_rsv->size;
2075 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2076 block_rsv, num_bytes);
2077 BUG_ON(ret);
2078
2079#if 0
2080 /* insert orphan item for the snapshot */
2081 WARN_ON(!root->orphan_item_inserted);
2082 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2083 snap->root_key.objectid);
2084 BUG_ON(ret);
2085 snap->orphan_item_inserted = 1;
2086#endif
2087}
2088
2089enum btrfs_orphan_cleanup_state {
2090 ORPHAN_CLEANUP_STARTED = 1,
2091 ORPHAN_CLEANUP_DONE = 2,
2092};
2093
2094/*
2095 * This is called in transaction commmit time. If there are no orphan
2096 * files in the subvolume, it removes orphan item and frees block_rsv
2097 * structure.
2098 */
2099void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root)
2101{
2102 int ret;
2103
2104 if (!list_empty(&root->orphan_list) ||
2105 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2106 return;
2107
2108 if (root->orphan_item_inserted &&
2109 btrfs_root_refs(&root->root_item) > 0) {
2110 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2111 root->root_key.objectid);
2112 BUG_ON(ret);
2113 root->orphan_item_inserted = 0;
2114 }
2115
2116 if (root->orphan_block_rsv) {
2117 WARN_ON(root->orphan_block_rsv->size > 0);
2118 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2119 root->orphan_block_rsv = NULL;
2120 }
2121}
2122
7b128766
JB
2123/*
2124 * This creates an orphan entry for the given inode in case something goes
2125 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2126 *
2127 * NOTE: caller of this function should reserve 5 units of metadata for
2128 * this function.
7b128766
JB
2129 */
2130int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2131{
2132 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2133 struct btrfs_block_rsv *block_rsv = NULL;
2134 int reserve = 0;
2135 int insert = 0;
2136 int ret;
7b128766 2137
d68fc57b
YZ
2138 if (!root->orphan_block_rsv) {
2139 block_rsv = btrfs_alloc_block_rsv(root);
2140 BUG_ON(!block_rsv);
2141 }
7b128766 2142
d68fc57b
YZ
2143 spin_lock(&root->orphan_lock);
2144 if (!root->orphan_block_rsv) {
2145 root->orphan_block_rsv = block_rsv;
2146 } else if (block_rsv) {
2147 btrfs_free_block_rsv(root, block_rsv);
2148 block_rsv = NULL;
7b128766 2149 }
7b128766 2150
d68fc57b
YZ
2151 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2152 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2153#if 0
2154 /*
2155 * For proper ENOSPC handling, we should do orphan
2156 * cleanup when mounting. But this introduces backward
2157 * compatibility issue.
2158 */
2159 if (!xchg(&root->orphan_item_inserted, 1))
2160 insert = 2;
2161 else
2162 insert = 1;
2163#endif
2164 insert = 1;
2165 } else {
2166 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
7b128766
JB
2167 }
2168
d68fc57b
YZ
2169 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2170 BTRFS_I(inode)->orphan_meta_reserved = 1;
2171 reserve = 1;
2172 }
2173 spin_unlock(&root->orphan_lock);
7b128766 2174
d68fc57b
YZ
2175 if (block_rsv)
2176 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2177
d68fc57b
YZ
2178 /* grab metadata reservation from transaction handle */
2179 if (reserve) {
2180 ret = btrfs_orphan_reserve_metadata(trans, inode);
2181 BUG_ON(ret);
2182 }
7b128766 2183
d68fc57b
YZ
2184 /* insert an orphan item to track this unlinked/truncated file */
2185 if (insert >= 1) {
2186 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2187 BUG_ON(ret);
2188 }
2189
2190 /* insert an orphan item to track subvolume contains orphan files */
2191 if (insert >= 2) {
2192 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2193 root->root_key.objectid);
2194 BUG_ON(ret);
2195 }
2196 return 0;
7b128766
JB
2197}
2198
2199/*
2200 * We have done the truncate/delete so we can go ahead and remove the orphan
2201 * item for this particular inode.
2202 */
2203int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2204{
2205 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2206 int delete_item = 0;
2207 int release_rsv = 0;
7b128766
JB
2208 int ret = 0;
2209
d68fc57b
YZ
2210 spin_lock(&root->orphan_lock);
2211 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2212 list_del_init(&BTRFS_I(inode)->i_orphan);
2213 delete_item = 1;
7b128766
JB
2214 }
2215
d68fc57b
YZ
2216 if (BTRFS_I(inode)->orphan_meta_reserved) {
2217 BTRFS_I(inode)->orphan_meta_reserved = 0;
2218 release_rsv = 1;
7b128766 2219 }
d68fc57b 2220 spin_unlock(&root->orphan_lock);
7b128766 2221
d68fc57b
YZ
2222 if (trans && delete_item) {
2223 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2224 BUG_ON(ret);
2225 }
7b128766 2226
d68fc57b
YZ
2227 if (release_rsv)
2228 btrfs_orphan_release_metadata(inode);
7b128766 2229
d68fc57b 2230 return 0;
7b128766
JB
2231}
2232
2233/*
2234 * this cleans up any orphans that may be left on the list from the last use
2235 * of this root.
2236 */
2237void btrfs_orphan_cleanup(struct btrfs_root *root)
2238{
2239 struct btrfs_path *path;
2240 struct extent_buffer *leaf;
2241 struct btrfs_item *item;
2242 struct btrfs_key key, found_key;
2243 struct btrfs_trans_handle *trans;
2244 struct inode *inode;
2245 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2246
d68fc57b 2247 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
7b128766 2248 return;
c71bf099
YZ
2249
2250 path = btrfs_alloc_path();
2251 BUG_ON(!path);
7b128766
JB
2252 path->reada = -1;
2253
2254 key.objectid = BTRFS_ORPHAN_OBJECTID;
2255 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2256 key.offset = (u64)-1;
2257
7b128766
JB
2258 while (1) {
2259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2260 if (ret < 0) {
2261 printk(KERN_ERR "Error searching slot for orphan: %d"
2262 "\n", ret);
2263 break;
2264 }
2265
2266 /*
2267 * if ret == 0 means we found what we were searching for, which
2268 * is weird, but possible, so only screw with path if we didnt
2269 * find the key and see if we have stuff that matches
2270 */
2271 if (ret > 0) {
2272 if (path->slots[0] == 0)
2273 break;
2274 path->slots[0]--;
2275 }
2276
2277 /* pull out the item */
2278 leaf = path->nodes[0];
2279 item = btrfs_item_nr(leaf, path->slots[0]);
2280 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2281
2282 /* make sure the item matches what we want */
2283 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2284 break;
2285 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2286 break;
2287
2288 /* release the path since we're done with it */
2289 btrfs_release_path(root, path);
2290
2291 /*
2292 * this is where we are basically btrfs_lookup, without the
2293 * crossing root thing. we store the inode number in the
2294 * offset of the orphan item.
2295 */
5d4f98a2
YZ
2296 found_key.objectid = found_key.offset;
2297 found_key.type = BTRFS_INODE_ITEM_KEY;
2298 found_key.offset = 0;
73f73415 2299 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
d68fc57b 2300 BUG_ON(IS_ERR(inode));
7b128766 2301
7b128766
JB
2302 /*
2303 * add this inode to the orphan list so btrfs_orphan_del does
2304 * the proper thing when we hit it
2305 */
d68fc57b 2306 spin_lock(&root->orphan_lock);
7b128766 2307 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2308 spin_unlock(&root->orphan_lock);
7b128766
JB
2309
2310 /*
2311 * if this is a bad inode, means we actually succeeded in
2312 * removing the inode, but not the orphan record, which means
2313 * we need to manually delete the orphan since iput will just
2314 * do a destroy_inode
2315 */
2316 if (is_bad_inode(inode)) {
a22285a6 2317 trans = btrfs_start_transaction(root, 0);
7b128766 2318 btrfs_orphan_del(trans, inode);
5b21f2ed 2319 btrfs_end_transaction(trans, root);
7b128766
JB
2320 iput(inode);
2321 continue;
2322 }
2323
2324 /* if we have links, this was a truncate, lets do that */
2325 if (inode->i_nlink) {
2326 nr_truncate++;
2327 btrfs_truncate(inode);
2328 } else {
2329 nr_unlink++;
2330 }
2331
2332 /* this will do delete_inode and everything for us */
2333 iput(inode);
2334 }
d68fc57b
YZ
2335 btrfs_free_path(path);
2336
2337 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2338
2339 if (root->orphan_block_rsv)
2340 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2341 (u64)-1);
2342
2343 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2344 trans = btrfs_join_transaction(root, 1);
2345 btrfs_end_transaction(trans, root);
2346 }
7b128766
JB
2347
2348 if (nr_unlink)
2349 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2350 if (nr_truncate)
2351 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
7b128766
JB
2352}
2353
46a53cca
CM
2354/*
2355 * very simple check to peek ahead in the leaf looking for xattrs. If we
2356 * don't find any xattrs, we know there can't be any acls.
2357 *
2358 * slot is the slot the inode is in, objectid is the objectid of the inode
2359 */
2360static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2361 int slot, u64 objectid)
2362{
2363 u32 nritems = btrfs_header_nritems(leaf);
2364 struct btrfs_key found_key;
2365 int scanned = 0;
2366
2367 slot++;
2368 while (slot < nritems) {
2369 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2370
2371 /* we found a different objectid, there must not be acls */
2372 if (found_key.objectid != objectid)
2373 return 0;
2374
2375 /* we found an xattr, assume we've got an acl */
2376 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2377 return 1;
2378
2379 /*
2380 * we found a key greater than an xattr key, there can't
2381 * be any acls later on
2382 */
2383 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2384 return 0;
2385
2386 slot++;
2387 scanned++;
2388
2389 /*
2390 * it goes inode, inode backrefs, xattrs, extents,
2391 * so if there are a ton of hard links to an inode there can
2392 * be a lot of backrefs. Don't waste time searching too hard,
2393 * this is just an optimization
2394 */
2395 if (scanned >= 8)
2396 break;
2397 }
2398 /* we hit the end of the leaf before we found an xattr or
2399 * something larger than an xattr. We have to assume the inode
2400 * has acls
2401 */
2402 return 1;
2403}
2404
d352ac68
CM
2405/*
2406 * read an inode from the btree into the in-memory inode
2407 */
5d4f98a2 2408static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2409{
2410 struct btrfs_path *path;
5f39d397 2411 struct extent_buffer *leaf;
39279cc3 2412 struct btrfs_inode_item *inode_item;
0b86a832 2413 struct btrfs_timespec *tspec;
39279cc3
CM
2414 struct btrfs_root *root = BTRFS_I(inode)->root;
2415 struct btrfs_key location;
46a53cca 2416 int maybe_acls;
39279cc3 2417 u64 alloc_group_block;
618e21d5 2418 u32 rdev;
39279cc3
CM
2419 int ret;
2420
2421 path = btrfs_alloc_path();
2422 BUG_ON(!path);
39279cc3 2423 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2424
39279cc3 2425 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2426 if (ret)
39279cc3 2427 goto make_bad;
39279cc3 2428
5f39d397
CM
2429 leaf = path->nodes[0];
2430 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2431 struct btrfs_inode_item);
2432
2433 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2434 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2435 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2436 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2437 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2438
2439 tspec = btrfs_inode_atime(inode_item);
2440 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2441 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2442
2443 tspec = btrfs_inode_mtime(inode_item);
2444 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2445 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2446
2447 tspec = btrfs_inode_ctime(inode_item);
2448 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2449 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2450
a76a3cd4 2451 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2452 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2453 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2454 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2455 inode->i_rdev = 0;
5f39d397
CM
2456 rdev = btrfs_inode_rdev(leaf, inode_item);
2457
aec7477b 2458 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2459 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2460
5f39d397 2461 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2462
46a53cca
CM
2463 /*
2464 * try to precache a NULL acl entry for files that don't have
2465 * any xattrs or acls
2466 */
2467 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2468 if (!maybe_acls)
2469 cache_no_acl(inode);
46a53cca 2470
d2fb3437
YZ
2471 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2472 alloc_group_block, 0);
39279cc3
CM
2473 btrfs_free_path(path);
2474 inode_item = NULL;
2475
39279cc3 2476 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2477 case S_IFREG:
2478 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2479 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2480 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2481 inode->i_fop = &btrfs_file_operations;
2482 inode->i_op = &btrfs_file_inode_operations;
2483 break;
2484 case S_IFDIR:
2485 inode->i_fop = &btrfs_dir_file_operations;
2486 if (root == root->fs_info->tree_root)
2487 inode->i_op = &btrfs_dir_ro_inode_operations;
2488 else
2489 inode->i_op = &btrfs_dir_inode_operations;
2490 break;
2491 case S_IFLNK:
2492 inode->i_op = &btrfs_symlink_inode_operations;
2493 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2494 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2495 break;
618e21d5 2496 default:
0279b4cd 2497 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2498 init_special_inode(inode, inode->i_mode, rdev);
2499 break;
39279cc3 2500 }
6cbff00f
CH
2501
2502 btrfs_update_iflags(inode);
39279cc3
CM
2503 return;
2504
2505make_bad:
39279cc3 2506 btrfs_free_path(path);
39279cc3
CM
2507 make_bad_inode(inode);
2508}
2509
d352ac68
CM
2510/*
2511 * given a leaf and an inode, copy the inode fields into the leaf
2512 */
e02119d5
CM
2513static void fill_inode_item(struct btrfs_trans_handle *trans,
2514 struct extent_buffer *leaf,
5f39d397 2515 struct btrfs_inode_item *item,
39279cc3
CM
2516 struct inode *inode)
2517{
5f39d397
CM
2518 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2519 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2520 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2521 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2522 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2523
2524 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2525 inode->i_atime.tv_sec);
2526 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2527 inode->i_atime.tv_nsec);
2528
2529 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2530 inode->i_mtime.tv_sec);
2531 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2532 inode->i_mtime.tv_nsec);
2533
2534 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2535 inode->i_ctime.tv_sec);
2536 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2537 inode->i_ctime.tv_nsec);
2538
a76a3cd4 2539 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2540 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2541 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2542 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2543 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2544 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2545 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2546}
2547
d352ac68
CM
2548/*
2549 * copy everything in the in-memory inode into the btree.
2550 */
d397712b
CM
2551noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2552 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2553{
2554 struct btrfs_inode_item *inode_item;
2555 struct btrfs_path *path;
5f39d397 2556 struct extent_buffer *leaf;
39279cc3
CM
2557 int ret;
2558
2559 path = btrfs_alloc_path();
2560 BUG_ON(!path);
b9473439 2561 path->leave_spinning = 1;
39279cc3
CM
2562 ret = btrfs_lookup_inode(trans, root, path,
2563 &BTRFS_I(inode)->location, 1);
2564 if (ret) {
2565 if (ret > 0)
2566 ret = -ENOENT;
2567 goto failed;
2568 }
2569
b4ce94de 2570 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2571 leaf = path->nodes[0];
2572 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2573 struct btrfs_inode_item);
2574
e02119d5 2575 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2576 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2577 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2578 ret = 0;
2579failed:
39279cc3
CM
2580 btrfs_free_path(path);
2581 return ret;
2582}
2583
2584
d352ac68
CM
2585/*
2586 * unlink helper that gets used here in inode.c and in the tree logging
2587 * recovery code. It remove a link in a directory with a given name, and
2588 * also drops the back refs in the inode to the directory
2589 */
e02119d5
CM
2590int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2591 struct btrfs_root *root,
2592 struct inode *dir, struct inode *inode,
2593 const char *name, int name_len)
39279cc3
CM
2594{
2595 struct btrfs_path *path;
39279cc3 2596 int ret = 0;
5f39d397 2597 struct extent_buffer *leaf;
39279cc3 2598 struct btrfs_dir_item *di;
5f39d397 2599 struct btrfs_key key;
aec7477b 2600 u64 index;
39279cc3
CM
2601
2602 path = btrfs_alloc_path();
54aa1f4d
CM
2603 if (!path) {
2604 ret = -ENOMEM;
2605 goto err;
2606 }
2607
b9473439 2608 path->leave_spinning = 1;
39279cc3
CM
2609 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2610 name, name_len, -1);
2611 if (IS_ERR(di)) {
2612 ret = PTR_ERR(di);
2613 goto err;
2614 }
2615 if (!di) {
2616 ret = -ENOENT;
2617 goto err;
2618 }
5f39d397
CM
2619 leaf = path->nodes[0];
2620 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2621 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2622 if (ret)
2623 goto err;
39279cc3
CM
2624 btrfs_release_path(root, path);
2625
aec7477b 2626 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2627 inode->i_ino,
2628 dir->i_ino, &index);
aec7477b 2629 if (ret) {
d397712b 2630 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2631 "inode %lu parent %lu\n", name_len, name,
e02119d5 2632 inode->i_ino, dir->i_ino);
aec7477b
JB
2633 goto err;
2634 }
2635
39279cc3 2636 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2637 index, name, name_len, -1);
39279cc3
CM
2638 if (IS_ERR(di)) {
2639 ret = PTR_ERR(di);
2640 goto err;
2641 }
2642 if (!di) {
2643 ret = -ENOENT;
2644 goto err;
2645 }
2646 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2647 btrfs_release_path(root, path);
39279cc3 2648
e02119d5
CM
2649 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2650 inode, dir->i_ino);
49eb7e46 2651 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2652
2653 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2654 dir, index);
2655 BUG_ON(ret);
39279cc3
CM
2656err:
2657 btrfs_free_path(path);
e02119d5
CM
2658 if (ret)
2659 goto out;
2660
2661 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2662 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2663 btrfs_update_inode(trans, root, dir);
2664 btrfs_drop_nlink(inode);
2665 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2666out:
39279cc3
CM
2667 return ret;
2668}
2669
a22285a6
YZ
2670/* helper to check if there is any shared block in the path */
2671static int check_path_shared(struct btrfs_root *root,
2672 struct btrfs_path *path)
39279cc3 2673{
a22285a6
YZ
2674 struct extent_buffer *eb;
2675 int level;
39279cc3 2676 int ret;
0e4dcbef 2677 u64 refs = 1;
5df6a9f6 2678
a22285a6
YZ
2679 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2680 if (!path->nodes[level])
2681 break;
2682 eb = path->nodes[level];
2683 if (!btrfs_block_can_be_shared(root, eb))
2684 continue;
2685 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2686 &refs, NULL);
2687 if (refs > 1)
2688 return 1;
5df6a9f6 2689 }
a22285a6 2690 return 0;
39279cc3
CM
2691}
2692
a22285a6
YZ
2693/*
2694 * helper to start transaction for unlink and rmdir.
2695 *
2696 * unlink and rmdir are special in btrfs, they do not always free space.
2697 * so in enospc case, we should make sure they will free space before
2698 * allowing them to use the global metadata reservation.
2699 */
2700static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2701 struct dentry *dentry)
4df27c4d 2702{
39279cc3 2703 struct btrfs_trans_handle *trans;
a22285a6 2704 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2705 struct btrfs_path *path;
a22285a6 2706 struct btrfs_inode_ref *ref;
4df27c4d 2707 struct btrfs_dir_item *di;
7b128766 2708 struct inode *inode = dentry->d_inode;
4df27c4d 2709 u64 index;
a22285a6
YZ
2710 int check_link = 1;
2711 int err = -ENOSPC;
4df27c4d
YZ
2712 int ret;
2713
a22285a6
YZ
2714 trans = btrfs_start_transaction(root, 10);
2715 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2716 return trans;
4df27c4d 2717
a22285a6
YZ
2718 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2719 return ERR_PTR(-ENOSPC);
4df27c4d 2720
a22285a6
YZ
2721 /* check if there is someone else holds reference */
2722 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2723 return ERR_PTR(-ENOSPC);
4df27c4d 2724
a22285a6
YZ
2725 if (atomic_read(&inode->i_count) > 2)
2726 return ERR_PTR(-ENOSPC);
4df27c4d 2727
a22285a6
YZ
2728 if (xchg(&root->fs_info->enospc_unlink, 1))
2729 return ERR_PTR(-ENOSPC);
2730
2731 path = btrfs_alloc_path();
2732 if (!path) {
2733 root->fs_info->enospc_unlink = 0;
2734 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2735 }
2736
a22285a6 2737 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2738 if (IS_ERR(trans)) {
a22285a6
YZ
2739 btrfs_free_path(path);
2740 root->fs_info->enospc_unlink = 0;
2741 return trans;
2742 }
4df27c4d 2743
a22285a6
YZ
2744 path->skip_locking = 1;
2745 path->search_commit_root = 1;
4df27c4d 2746
a22285a6
YZ
2747 ret = btrfs_lookup_inode(trans, root, path,
2748 &BTRFS_I(dir)->location, 0);
2749 if (ret < 0) {
2750 err = ret;
2751 goto out;
2752 }
2753 if (ret == 0) {
2754 if (check_path_shared(root, path))
2755 goto out;
2756 } else {
2757 check_link = 0;
5df6a9f6 2758 }
a22285a6
YZ
2759 btrfs_release_path(root, path);
2760
2761 ret = btrfs_lookup_inode(trans, root, path,
2762 &BTRFS_I(inode)->location, 0);
2763 if (ret < 0) {
2764 err = ret;
2765 goto out;
2766 }
2767 if (ret == 0) {
2768 if (check_path_shared(root, path))
2769 goto out;
2770 } else {
2771 check_link = 0;
2772 }
2773 btrfs_release_path(root, path);
2774
2775 if (ret == 0 && S_ISREG(inode->i_mode)) {
2776 ret = btrfs_lookup_file_extent(trans, root, path,
2777 inode->i_ino, (u64)-1, 0);
2778 if (ret < 0) {
2779 err = ret;
2780 goto out;
2781 }
2782 BUG_ON(ret == 0);
2783 if (check_path_shared(root, path))
2784 goto out;
2785 btrfs_release_path(root, path);
2786 }
2787
2788 if (!check_link) {
2789 err = 0;
2790 goto out;
2791 }
2792
2793 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2794 dentry->d_name.name, dentry->d_name.len, 0);
2795 if (IS_ERR(di)) {
2796 err = PTR_ERR(di);
2797 goto out;
2798 }
2799 if (di) {
2800 if (check_path_shared(root, path))
2801 goto out;
2802 } else {
2803 err = 0;
2804 goto out;
2805 }
2806 btrfs_release_path(root, path);
2807
2808 ref = btrfs_lookup_inode_ref(trans, root, path,
2809 dentry->d_name.name, dentry->d_name.len,
2810 inode->i_ino, dir->i_ino, 0);
2811 if (IS_ERR(ref)) {
2812 err = PTR_ERR(ref);
2813 goto out;
2814 }
2815 BUG_ON(!ref);
2816 if (check_path_shared(root, path))
2817 goto out;
2818 index = btrfs_inode_ref_index(path->nodes[0], ref);
2819 btrfs_release_path(root, path);
2820
2821 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2822 dentry->d_name.name, dentry->d_name.len, 0);
2823 if (IS_ERR(di)) {
2824 err = PTR_ERR(di);
2825 goto out;
2826 }
2827 BUG_ON(ret == -ENOENT);
2828 if (check_path_shared(root, path))
2829 goto out;
2830
2831 err = 0;
2832out:
2833 btrfs_free_path(path);
2834 if (err) {
2835 btrfs_end_transaction(trans, root);
2836 root->fs_info->enospc_unlink = 0;
2837 return ERR_PTR(err);
2838 }
2839
2840 trans->block_rsv = &root->fs_info->global_block_rsv;
2841 return trans;
2842}
2843
2844static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2845 struct btrfs_root *root)
2846{
2847 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2848 BUG_ON(!root->fs_info->enospc_unlink);
2849 root->fs_info->enospc_unlink = 0;
2850 }
2851 btrfs_end_transaction_throttle(trans, root);
2852}
2853
2854static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2855{
2856 struct btrfs_root *root = BTRFS_I(dir)->root;
2857 struct btrfs_trans_handle *trans;
2858 struct inode *inode = dentry->d_inode;
2859 int ret;
2860 unsigned long nr = 0;
2861
2862 trans = __unlink_start_trans(dir, dentry);
2863 if (IS_ERR(trans))
2864 return PTR_ERR(trans);
5f39d397 2865
39279cc3 2866 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2867
2868 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2869
e02119d5
CM
2870 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2871 dentry->d_name.name, dentry->d_name.len);
a22285a6 2872 BUG_ON(ret);
7b128766 2873
a22285a6 2874 if (inode->i_nlink == 0) {
7b128766 2875 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2876 BUG_ON(ret);
2877 }
7b128766 2878
d3c2fdcf 2879 nr = trans->blocks_used;
a22285a6 2880 __unlink_end_trans(trans, root);
d3c2fdcf 2881 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2882 return ret;
2883}
2884
4df27c4d
YZ
2885int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2886 struct btrfs_root *root,
2887 struct inode *dir, u64 objectid,
2888 const char *name, int name_len)
2889{
2890 struct btrfs_path *path;
2891 struct extent_buffer *leaf;
2892 struct btrfs_dir_item *di;
2893 struct btrfs_key key;
2894 u64 index;
2895 int ret;
2896
2897 path = btrfs_alloc_path();
2898 if (!path)
2899 return -ENOMEM;
2900
2901 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2902 name, name_len, -1);
2903 BUG_ON(!di || IS_ERR(di));
2904
2905 leaf = path->nodes[0];
2906 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2907 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2908 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2909 BUG_ON(ret);
2910 btrfs_release_path(root, path);
2911
2912 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2913 objectid, root->root_key.objectid,
2914 dir->i_ino, &index, name, name_len);
2915 if (ret < 0) {
2916 BUG_ON(ret != -ENOENT);
2917 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2918 name, name_len);
2919 BUG_ON(!di || IS_ERR(di));
2920
2921 leaf = path->nodes[0];
2922 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2923 btrfs_release_path(root, path);
2924 index = key.offset;
2925 }
2926
2927 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2928 index, name, name_len, -1);
2929 BUG_ON(!di || IS_ERR(di));
2930
2931 leaf = path->nodes[0];
2932 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2933 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2934 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2935 BUG_ON(ret);
2936 btrfs_release_path(root, path);
2937
2938 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2939 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2940 ret = btrfs_update_inode(trans, root, dir);
2941 BUG_ON(ret);
4df27c4d
YZ
2942
2943 btrfs_free_path(path);
2944 return 0;
2945}
2946
39279cc3
CM
2947static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2948{
2949 struct inode *inode = dentry->d_inode;
1832a6d5 2950 int err = 0;
39279cc3 2951 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2952 struct btrfs_trans_handle *trans;
1832a6d5 2953 unsigned long nr = 0;
39279cc3 2954
3394e160 2955 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2956 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2957 return -ENOTEMPTY;
2958
a22285a6
YZ
2959 trans = __unlink_start_trans(dir, dentry);
2960 if (IS_ERR(trans))
5df6a9f6 2961 return PTR_ERR(trans);
5df6a9f6 2962
39279cc3 2963 btrfs_set_trans_block_group(trans, dir);
39279cc3 2964
4df27c4d
YZ
2965 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2966 err = btrfs_unlink_subvol(trans, root, dir,
2967 BTRFS_I(inode)->location.objectid,
2968 dentry->d_name.name,
2969 dentry->d_name.len);
2970 goto out;
2971 }
2972
7b128766
JB
2973 err = btrfs_orphan_add(trans, inode);
2974 if (err)
4df27c4d 2975 goto out;
7b128766 2976
39279cc3 2977 /* now the directory is empty */
e02119d5
CM
2978 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2979 dentry->d_name.name, dentry->d_name.len);
d397712b 2980 if (!err)
dbe674a9 2981 btrfs_i_size_write(inode, 0);
4df27c4d 2982out:
d3c2fdcf 2983 nr = trans->blocks_used;
a22285a6 2984 __unlink_end_trans(trans, root);
d3c2fdcf 2985 btrfs_btree_balance_dirty(root, nr);
3954401f 2986
39279cc3
CM
2987 return err;
2988}
2989
d20f7043 2990#if 0
323ac95b
CM
2991/*
2992 * when truncating bytes in a file, it is possible to avoid reading
2993 * the leaves that contain only checksum items. This can be the
2994 * majority of the IO required to delete a large file, but it must
2995 * be done carefully.
2996 *
2997 * The keys in the level just above the leaves are checked to make sure
2998 * the lowest key in a given leaf is a csum key, and starts at an offset
2999 * after the new size.
3000 *
3001 * Then the key for the next leaf is checked to make sure it also has
3002 * a checksum item for the same file. If it does, we know our target leaf
3003 * contains only checksum items, and it can be safely freed without reading
3004 * it.
3005 *
3006 * This is just an optimization targeted at large files. It may do
3007 * nothing. It will return 0 unless things went badly.
3008 */
3009static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3010 struct btrfs_root *root,
3011 struct btrfs_path *path,
3012 struct inode *inode, u64 new_size)
3013{
3014 struct btrfs_key key;
3015 int ret;
3016 int nritems;
3017 struct btrfs_key found_key;
3018 struct btrfs_key other_key;
5b84e8d6
YZ
3019 struct btrfs_leaf_ref *ref;
3020 u64 leaf_gen;
3021 u64 leaf_start;
323ac95b
CM
3022
3023 path->lowest_level = 1;
3024 key.objectid = inode->i_ino;
3025 key.type = BTRFS_CSUM_ITEM_KEY;
3026 key.offset = new_size;
3027again:
3028 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3029 if (ret < 0)
3030 goto out;
3031
3032 if (path->nodes[1] == NULL) {
3033 ret = 0;
3034 goto out;
3035 }
3036 ret = 0;
3037 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3038 nritems = btrfs_header_nritems(path->nodes[1]);
3039
3040 if (!nritems)
3041 goto out;
3042
3043 if (path->slots[1] >= nritems)
3044 goto next_node;
3045
3046 /* did we find a key greater than anything we want to delete? */
3047 if (found_key.objectid > inode->i_ino ||
3048 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3049 goto out;
3050
3051 /* we check the next key in the node to make sure the leave contains
3052 * only checksum items. This comparison doesn't work if our
3053 * leaf is the last one in the node
3054 */
3055 if (path->slots[1] + 1 >= nritems) {
3056next_node:
3057 /* search forward from the last key in the node, this
3058 * will bring us into the next node in the tree
3059 */
3060 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3061
3062 /* unlikely, but we inc below, so check to be safe */
3063 if (found_key.offset == (u64)-1)
3064 goto out;
3065
3066 /* search_forward needs a path with locks held, do the
3067 * search again for the original key. It is possible
3068 * this will race with a balance and return a path that
3069 * we could modify, but this drop is just an optimization
3070 * and is allowed to miss some leaves.
3071 */
3072 btrfs_release_path(root, path);
3073 found_key.offset++;
3074
3075 /* setup a max key for search_forward */
3076 other_key.offset = (u64)-1;
3077 other_key.type = key.type;
3078 other_key.objectid = key.objectid;
3079
3080 path->keep_locks = 1;
3081 ret = btrfs_search_forward(root, &found_key, &other_key,
3082 path, 0, 0);
3083 path->keep_locks = 0;
3084 if (ret || found_key.objectid != key.objectid ||
3085 found_key.type != key.type) {
3086 ret = 0;
3087 goto out;
3088 }
3089
3090 key.offset = found_key.offset;
3091 btrfs_release_path(root, path);
3092 cond_resched();
3093 goto again;
3094 }
3095
3096 /* we know there's one more slot after us in the tree,
3097 * read that key so we can verify it is also a checksum item
3098 */
3099 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3100
3101 if (found_key.objectid < inode->i_ino)
3102 goto next_key;
3103
3104 if (found_key.type != key.type || found_key.offset < new_size)
3105 goto next_key;
3106
3107 /*
3108 * if the key for the next leaf isn't a csum key from this objectid,
3109 * we can't be sure there aren't good items inside this leaf.
3110 * Bail out
3111 */
3112 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3113 goto out;
3114
5b84e8d6
YZ
3115 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3116 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3117 /*
3118 * it is safe to delete this leaf, it contains only
3119 * csum items from this inode at an offset >= new_size
3120 */
5b84e8d6 3121 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3122 BUG_ON(ret);
3123
5b84e8d6
YZ
3124 if (root->ref_cows && leaf_gen < trans->transid) {
3125 ref = btrfs_alloc_leaf_ref(root, 0);
3126 if (ref) {
3127 ref->root_gen = root->root_key.offset;
3128 ref->bytenr = leaf_start;
3129 ref->owner = 0;
3130 ref->generation = leaf_gen;
3131 ref->nritems = 0;
3132
bd56b302
CM
3133 btrfs_sort_leaf_ref(ref);
3134
5b84e8d6
YZ
3135 ret = btrfs_add_leaf_ref(root, ref, 0);
3136 WARN_ON(ret);
3137 btrfs_free_leaf_ref(root, ref);
3138 } else {
3139 WARN_ON(1);
3140 }
3141 }
323ac95b
CM
3142next_key:
3143 btrfs_release_path(root, path);
3144
3145 if (other_key.objectid == inode->i_ino &&
3146 other_key.type == key.type && other_key.offset > key.offset) {
3147 key.offset = other_key.offset;
3148 cond_resched();
3149 goto again;
3150 }
3151 ret = 0;
3152out:
3153 /* fixup any changes we've made to the path */
3154 path->lowest_level = 0;
3155 path->keep_locks = 0;
3156 btrfs_release_path(root, path);
3157 return ret;
3158}
3159
d20f7043
CM
3160#endif
3161
39279cc3
CM
3162/*
3163 * this can truncate away extent items, csum items and directory items.
3164 * It starts at a high offset and removes keys until it can't find
d352ac68 3165 * any higher than new_size
39279cc3
CM
3166 *
3167 * csum items that cross the new i_size are truncated to the new size
3168 * as well.
7b128766
JB
3169 *
3170 * min_type is the minimum key type to truncate down to. If set to 0, this
3171 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3172 */
8082510e
YZ
3173int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3174 struct btrfs_root *root,
3175 struct inode *inode,
3176 u64 new_size, u32 min_type)
39279cc3 3177{
39279cc3 3178 struct btrfs_path *path;
5f39d397 3179 struct extent_buffer *leaf;
39279cc3 3180 struct btrfs_file_extent_item *fi;
8082510e
YZ
3181 struct btrfs_key key;
3182 struct btrfs_key found_key;
39279cc3 3183 u64 extent_start = 0;
db94535d 3184 u64 extent_num_bytes = 0;
5d4f98a2 3185 u64 extent_offset = 0;
39279cc3 3186 u64 item_end = 0;
8082510e
YZ
3187 u64 mask = root->sectorsize - 1;
3188 u32 found_type = (u8)-1;
39279cc3
CM
3189 int found_extent;
3190 int del_item;
85e21bac
CM
3191 int pending_del_nr = 0;
3192 int pending_del_slot = 0;
179e29e4 3193 int extent_type = -1;
771ed689 3194 int encoding;
8082510e
YZ
3195 int ret;
3196 int err = 0;
3197
3198 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3199
0af3d00b 3200 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3201 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3202
39279cc3
CM
3203 path = btrfs_alloc_path();
3204 BUG_ON(!path);
33c17ad5 3205 path->reada = -1;
5f39d397 3206
39279cc3
CM
3207 key.objectid = inode->i_ino;
3208 key.offset = (u64)-1;
5f39d397
CM
3209 key.type = (u8)-1;
3210
85e21bac 3211search_again:
b9473439 3212 path->leave_spinning = 1;
85e21bac 3213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3214 if (ret < 0) {
3215 err = ret;
3216 goto out;
3217 }
d397712b 3218
85e21bac 3219 if (ret > 0) {
e02119d5
CM
3220 /* there are no items in the tree for us to truncate, we're
3221 * done
3222 */
8082510e
YZ
3223 if (path->slots[0] == 0)
3224 goto out;
85e21bac
CM
3225 path->slots[0]--;
3226 }
3227
d397712b 3228 while (1) {
39279cc3 3229 fi = NULL;
5f39d397
CM
3230 leaf = path->nodes[0];
3231 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3232 found_type = btrfs_key_type(&found_key);
771ed689 3233 encoding = 0;
39279cc3 3234
5f39d397 3235 if (found_key.objectid != inode->i_ino)
39279cc3 3236 break;
5f39d397 3237
85e21bac 3238 if (found_type < min_type)
39279cc3
CM
3239 break;
3240
5f39d397 3241 item_end = found_key.offset;
39279cc3 3242 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3243 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3244 struct btrfs_file_extent_item);
179e29e4 3245 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3246 encoding = btrfs_file_extent_compression(leaf, fi);
3247 encoding |= btrfs_file_extent_encryption(leaf, fi);
3248 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3249
179e29e4 3250 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3251 item_end +=
db94535d 3252 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3253 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3254 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3255 fi);
39279cc3 3256 }
008630c1 3257 item_end--;
39279cc3 3258 }
8082510e
YZ
3259 if (found_type > min_type) {
3260 del_item = 1;
3261 } else {
3262 if (item_end < new_size)
b888db2b 3263 break;
8082510e
YZ
3264 if (found_key.offset >= new_size)
3265 del_item = 1;
3266 else
3267 del_item = 0;
39279cc3 3268 }
39279cc3 3269 found_extent = 0;
39279cc3 3270 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3271 if (found_type != BTRFS_EXTENT_DATA_KEY)
3272 goto delete;
3273
3274 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3275 u64 num_dec;
db94535d 3276 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3277 if (!del_item && !encoding) {
db94535d
CM
3278 u64 orig_num_bytes =
3279 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3280 extent_num_bytes = new_size -
5f39d397 3281 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3282 extent_num_bytes = extent_num_bytes &
3283 ~((u64)root->sectorsize - 1);
db94535d
CM
3284 btrfs_set_file_extent_num_bytes(leaf, fi,
3285 extent_num_bytes);
3286 num_dec = (orig_num_bytes -
9069218d 3287 extent_num_bytes);
e02119d5 3288 if (root->ref_cows && extent_start != 0)
a76a3cd4 3289 inode_sub_bytes(inode, num_dec);
5f39d397 3290 btrfs_mark_buffer_dirty(leaf);
39279cc3 3291 } else {
db94535d
CM
3292 extent_num_bytes =
3293 btrfs_file_extent_disk_num_bytes(leaf,
3294 fi);
5d4f98a2
YZ
3295 extent_offset = found_key.offset -
3296 btrfs_file_extent_offset(leaf, fi);
3297
39279cc3 3298 /* FIXME blocksize != 4096 */
9069218d 3299 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3300 if (extent_start != 0) {
3301 found_extent = 1;
e02119d5 3302 if (root->ref_cows)
a76a3cd4 3303 inode_sub_bytes(inode, num_dec);
e02119d5 3304 }
39279cc3 3305 }
9069218d 3306 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3307 /*
3308 * we can't truncate inline items that have had
3309 * special encodings
3310 */
3311 if (!del_item &&
3312 btrfs_file_extent_compression(leaf, fi) == 0 &&
3313 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3314 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3315 u32 size = new_size - found_key.offset;
3316
3317 if (root->ref_cows) {
a76a3cd4
YZ
3318 inode_sub_bytes(inode, item_end + 1 -
3319 new_size);
e02119d5
CM
3320 }
3321 size =
3322 btrfs_file_extent_calc_inline_size(size);
9069218d 3323 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3324 size, 1);
9069218d 3325 BUG_ON(ret);
e02119d5 3326 } else if (root->ref_cows) {
a76a3cd4
YZ
3327 inode_sub_bytes(inode, item_end + 1 -
3328 found_key.offset);
9069218d 3329 }
39279cc3 3330 }
179e29e4 3331delete:
39279cc3 3332 if (del_item) {
85e21bac
CM
3333 if (!pending_del_nr) {
3334 /* no pending yet, add ourselves */
3335 pending_del_slot = path->slots[0];
3336 pending_del_nr = 1;
3337 } else if (pending_del_nr &&
3338 path->slots[0] + 1 == pending_del_slot) {
3339 /* hop on the pending chunk */
3340 pending_del_nr++;
3341 pending_del_slot = path->slots[0];
3342 } else {
d397712b 3343 BUG();
85e21bac 3344 }
39279cc3
CM
3345 } else {
3346 break;
3347 }
0af3d00b
JB
3348 if (found_extent && (root->ref_cows ||
3349 root == root->fs_info->tree_root)) {
b9473439 3350 btrfs_set_path_blocking(path);
39279cc3 3351 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3352 extent_num_bytes, 0,
3353 btrfs_header_owner(leaf),
3354 inode->i_ino, extent_offset);
39279cc3
CM
3355 BUG_ON(ret);
3356 }
85e21bac 3357
8082510e
YZ
3358 if (found_type == BTRFS_INODE_ITEM_KEY)
3359 break;
3360
3361 if (path->slots[0] == 0 ||
3362 path->slots[0] != pending_del_slot) {
3363 if (root->ref_cows) {
3364 err = -EAGAIN;
3365 goto out;
3366 }
3367 if (pending_del_nr) {
3368 ret = btrfs_del_items(trans, root, path,
3369 pending_del_slot,
3370 pending_del_nr);
3371 BUG_ON(ret);
3372 pending_del_nr = 0;
3373 }
85e21bac
CM
3374 btrfs_release_path(root, path);
3375 goto search_again;
8082510e
YZ
3376 } else {
3377 path->slots[0]--;
85e21bac 3378 }
39279cc3 3379 }
8082510e 3380out:
85e21bac
CM
3381 if (pending_del_nr) {
3382 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3383 pending_del_nr);
d68fc57b 3384 BUG_ON(ret);
85e21bac 3385 }
39279cc3 3386 btrfs_free_path(path);
8082510e 3387 return err;
39279cc3
CM
3388}
3389
3390/*
3391 * taken from block_truncate_page, but does cow as it zeros out
3392 * any bytes left in the last page in the file.
3393 */
3394static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3395{
3396 struct inode *inode = mapping->host;
db94535d 3397 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3398 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3399 struct btrfs_ordered_extent *ordered;
2ac55d41 3400 struct extent_state *cached_state = NULL;
e6dcd2dc 3401 char *kaddr;
db94535d 3402 u32 blocksize = root->sectorsize;
39279cc3
CM
3403 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3404 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3405 struct page *page;
39279cc3 3406 int ret = 0;
a52d9a80 3407 u64 page_start;
e6dcd2dc 3408 u64 page_end;
39279cc3
CM
3409
3410 if ((offset & (blocksize - 1)) == 0)
3411 goto out;
0ca1f7ce 3412 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3413 if (ret)
3414 goto out;
39279cc3
CM
3415
3416 ret = -ENOMEM;
211c17f5 3417again:
39279cc3 3418 page = grab_cache_page(mapping, index);
5d5e103a 3419 if (!page) {
0ca1f7ce 3420 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3421 goto out;
5d5e103a 3422 }
e6dcd2dc
CM
3423
3424 page_start = page_offset(page);
3425 page_end = page_start + PAGE_CACHE_SIZE - 1;
3426
39279cc3 3427 if (!PageUptodate(page)) {
9ebefb18 3428 ret = btrfs_readpage(NULL, page);
39279cc3 3429 lock_page(page);
211c17f5
CM
3430 if (page->mapping != mapping) {
3431 unlock_page(page);
3432 page_cache_release(page);
3433 goto again;
3434 }
39279cc3
CM
3435 if (!PageUptodate(page)) {
3436 ret = -EIO;
89642229 3437 goto out_unlock;
39279cc3
CM
3438 }
3439 }
211c17f5 3440 wait_on_page_writeback(page);
e6dcd2dc 3441
2ac55d41
JB
3442 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3443 GFP_NOFS);
e6dcd2dc
CM
3444 set_page_extent_mapped(page);
3445
3446 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3447 if (ordered) {
2ac55d41
JB
3448 unlock_extent_cached(io_tree, page_start, page_end,
3449 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3450 unlock_page(page);
3451 page_cache_release(page);
eb84ae03 3452 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3453 btrfs_put_ordered_extent(ordered);
3454 goto again;
3455 }
3456
2ac55d41 3457 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3458 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3459 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3460
2ac55d41
JB
3461 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3462 &cached_state);
9ed74f2d 3463 if (ret) {
2ac55d41
JB
3464 unlock_extent_cached(io_tree, page_start, page_end,
3465 &cached_state, GFP_NOFS);
9ed74f2d
JB
3466 goto out_unlock;
3467 }
3468
e6dcd2dc
CM
3469 ret = 0;
3470 if (offset != PAGE_CACHE_SIZE) {
3471 kaddr = kmap(page);
3472 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3473 flush_dcache_page(page);
3474 kunmap(page);
3475 }
247e743c 3476 ClearPageChecked(page);
e6dcd2dc 3477 set_page_dirty(page);
2ac55d41
JB
3478 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3479 GFP_NOFS);
39279cc3 3480
89642229 3481out_unlock:
5d5e103a 3482 if (ret)
0ca1f7ce 3483 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3484 unlock_page(page);
3485 page_cache_release(page);
3486out:
3487 return ret;
3488}
3489
9036c102 3490int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3491{
9036c102
YZ
3492 struct btrfs_trans_handle *trans;
3493 struct btrfs_root *root = BTRFS_I(inode)->root;
3494 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3495 struct extent_map *em = NULL;
2ac55d41 3496 struct extent_state *cached_state = NULL;
9036c102
YZ
3497 u64 mask = root->sectorsize - 1;
3498 u64 hole_start = (inode->i_size + mask) & ~mask;
3499 u64 block_end = (size + mask) & ~mask;
3500 u64 last_byte;
3501 u64 cur_offset;
3502 u64 hole_size;
9ed74f2d 3503 int err = 0;
39279cc3 3504
9036c102
YZ
3505 if (size <= hole_start)
3506 return 0;
3507
9036c102
YZ
3508 while (1) {
3509 struct btrfs_ordered_extent *ordered;
3510 btrfs_wait_ordered_range(inode, hole_start,
3511 block_end - hole_start);
2ac55d41
JB
3512 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3513 &cached_state, GFP_NOFS);
9036c102
YZ
3514 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3515 if (!ordered)
3516 break;
2ac55d41
JB
3517 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3518 &cached_state, GFP_NOFS);
9036c102
YZ
3519 btrfs_put_ordered_extent(ordered);
3520 }
39279cc3 3521
9036c102
YZ
3522 cur_offset = hole_start;
3523 while (1) {
3524 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3525 block_end - cur_offset, 0);
3526 BUG_ON(IS_ERR(em) || !em);
3527 last_byte = min(extent_map_end(em), block_end);
3528 last_byte = (last_byte + mask) & ~mask;
8082510e 3529 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3530 u64 hint_byte = 0;
9036c102 3531 hole_size = last_byte - cur_offset;
9ed74f2d 3532
a22285a6
YZ
3533 trans = btrfs_start_transaction(root, 2);
3534 if (IS_ERR(trans)) {
3535 err = PTR_ERR(trans);
9ed74f2d 3536 break;
a22285a6 3537 }
8082510e
YZ
3538 btrfs_set_trans_block_group(trans, inode);
3539
3540 err = btrfs_drop_extents(trans, inode, cur_offset,
3541 cur_offset + hole_size,
3542 &hint_byte, 1);
3543 BUG_ON(err);
3544
9036c102
YZ
3545 err = btrfs_insert_file_extent(trans, root,
3546 inode->i_ino, cur_offset, 0,
3547 0, hole_size, 0, hole_size,
3548 0, 0, 0);
8082510e
YZ
3549 BUG_ON(err);
3550
9036c102
YZ
3551 btrfs_drop_extent_cache(inode, hole_start,
3552 last_byte - 1, 0);
8082510e
YZ
3553
3554 btrfs_end_transaction(trans, root);
9036c102
YZ
3555 }
3556 free_extent_map(em);
a22285a6 3557 em = NULL;
9036c102 3558 cur_offset = last_byte;
8082510e 3559 if (cur_offset >= block_end)
9036c102
YZ
3560 break;
3561 }
1832a6d5 3562
a22285a6 3563 free_extent_map(em);
2ac55d41
JB
3564 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3565 GFP_NOFS);
9036c102
YZ
3566 return err;
3567}
39279cc3 3568
8082510e
YZ
3569static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3570{
3571 struct btrfs_root *root = BTRFS_I(inode)->root;
3572 struct btrfs_trans_handle *trans;
3573 unsigned long nr;
3574 int ret;
3575
3576 if (attr->ia_size == inode->i_size)
3577 return 0;
3578
3579 if (attr->ia_size > inode->i_size) {
3580 unsigned long limit;
3581 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3582 if (attr->ia_size > inode->i_sb->s_maxbytes)
3583 return -EFBIG;
3584 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3585 send_sig(SIGXFSZ, current, 0);
3586 return -EFBIG;
3587 }
3588 }
3589
d68fc57b
YZ
3590 trans = btrfs_start_transaction(root, 5);
3591 if (IS_ERR(trans))
3592 return PTR_ERR(trans);
8082510e 3593
8082510e
YZ
3594 btrfs_set_trans_block_group(trans, inode);
3595
3596 ret = btrfs_orphan_add(trans, inode);
3597 BUG_ON(ret);
3598
3599 nr = trans->blocks_used;
3600 btrfs_end_transaction(trans, root);
8082510e
YZ
3601 btrfs_btree_balance_dirty(root, nr);
3602
3603 if (attr->ia_size > inode->i_size) {
3604 ret = btrfs_cont_expand(inode, attr->ia_size);
3605 if (ret) {
3606 btrfs_truncate(inode);
3607 return ret;
3608 }
3609
3610 i_size_write(inode, attr->ia_size);
3611 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3612
d68fc57b
YZ
3613 trans = btrfs_start_transaction(root, 0);
3614 BUG_ON(IS_ERR(trans));
8082510e 3615 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3616 trans->block_rsv = root->orphan_block_rsv;
3617 BUG_ON(!trans->block_rsv);
8082510e
YZ
3618
3619 ret = btrfs_update_inode(trans, root, inode);
3620 BUG_ON(ret);
3621 if (inode->i_nlink > 0) {
3622 ret = btrfs_orphan_del(trans, inode);
3623 BUG_ON(ret);
3624 }
3625 nr = trans->blocks_used;
3626 btrfs_end_transaction(trans, root);
3627 btrfs_btree_balance_dirty(root, nr);
3628 return 0;
3629 }
3630
3631 /*
3632 * We're truncating a file that used to have good data down to
3633 * zero. Make sure it gets into the ordered flush list so that
3634 * any new writes get down to disk quickly.
3635 */
3636 if (attr->ia_size == 0)
3637 BTRFS_I(inode)->ordered_data_close = 1;
3638
3639 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3640 ret = vmtruncate(inode, attr->ia_size);
3641 BUG_ON(ret);
3642
3643 return 0;
3644}
3645
9036c102
YZ
3646static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3647{
3648 struct inode *inode = dentry->d_inode;
3649 int err;
39279cc3 3650
9036c102
YZ
3651 err = inode_change_ok(inode, attr);
3652 if (err)
3653 return err;
2bf5a725 3654
5a3f23d5 3655 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
8082510e
YZ
3656 err = btrfs_setattr_size(inode, attr);
3657 if (err)
3658 return err;
39279cc3 3659 }
9036c102 3660
1025774c
CH
3661 if (attr->ia_valid) {
3662 setattr_copy(inode, attr);
3663 mark_inode_dirty(inode);
3664
3665 if (attr->ia_valid & ATTR_MODE)
3666 err = btrfs_acl_chmod(inode);
3667 }
33268eaf 3668
39279cc3
CM
3669 return err;
3670}
61295eb8 3671
bd555975 3672void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3673{
3674 struct btrfs_trans_handle *trans;
3675 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3676 unsigned long nr;
39279cc3
CM
3677 int ret;
3678
3679 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3680 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3681 root == root->fs_info->tree_root))
bd555975
AV
3682 goto no_delete;
3683
39279cc3 3684 if (is_bad_inode(inode)) {
7b128766 3685 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3686 goto no_delete;
3687 }
bd555975 3688 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3689 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3690
c71bf099
YZ
3691 if (root->fs_info->log_root_recovering) {
3692 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3693 goto no_delete;
3694 }
3695
76dda93c
YZ
3696 if (inode->i_nlink > 0) {
3697 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3698 goto no_delete;
3699 }
3700
dbe674a9 3701 btrfs_i_size_write(inode, 0);
5f39d397 3702
8082510e 3703 while (1) {
d68fc57b
YZ
3704 trans = btrfs_start_transaction(root, 0);
3705 BUG_ON(IS_ERR(trans));
8082510e 3706 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3707 trans->block_rsv = root->orphan_block_rsv;
3708
3709 ret = btrfs_block_rsv_check(trans, root,
3710 root->orphan_block_rsv, 0, 5);
3711 if (ret) {
3712 BUG_ON(ret != -EAGAIN);
3713 ret = btrfs_commit_transaction(trans, root);
3714 BUG_ON(ret);
3715 continue;
3716 }
7b128766 3717
d68fc57b 3718 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3719 if (ret != -EAGAIN)
3720 break;
85e21bac 3721
8082510e
YZ
3722 nr = trans->blocks_used;
3723 btrfs_end_transaction(trans, root);
3724 trans = NULL;
3725 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3726
8082510e 3727 }
5f39d397 3728
8082510e
YZ
3729 if (ret == 0) {
3730 ret = btrfs_orphan_del(trans, inode);
3731 BUG_ON(ret);
3732 }
54aa1f4d 3733
d3c2fdcf 3734 nr = trans->blocks_used;
54aa1f4d 3735 btrfs_end_transaction(trans, root);
d3c2fdcf 3736 btrfs_btree_balance_dirty(root, nr);
39279cc3 3737no_delete:
bd555975 3738 end_writeback(inode);
8082510e 3739 return;
39279cc3
CM
3740}
3741
3742/*
3743 * this returns the key found in the dir entry in the location pointer.
3744 * If no dir entries were found, location->objectid is 0.
3745 */
3746static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3747 struct btrfs_key *location)
3748{
3749 const char *name = dentry->d_name.name;
3750 int namelen = dentry->d_name.len;
3751 struct btrfs_dir_item *di;
3752 struct btrfs_path *path;
3753 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3754 int ret = 0;
39279cc3
CM
3755
3756 path = btrfs_alloc_path();
3757 BUG_ON(!path);
3954401f 3758
39279cc3
CM
3759 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3760 namelen, 0);
0d9f7f3e
Y
3761 if (IS_ERR(di))
3762 ret = PTR_ERR(di);
d397712b
CM
3763
3764 if (!di || IS_ERR(di))
3954401f 3765 goto out_err;
d397712b 3766
5f39d397 3767 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3768out:
39279cc3
CM
3769 btrfs_free_path(path);
3770 return ret;
3954401f
CM
3771out_err:
3772 location->objectid = 0;
3773 goto out;
39279cc3
CM
3774}
3775
3776/*
3777 * when we hit a tree root in a directory, the btrfs part of the inode
3778 * needs to be changed to reflect the root directory of the tree root. This
3779 * is kind of like crossing a mount point.
3780 */
3781static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3782 struct inode *dir,
3783 struct dentry *dentry,
3784 struct btrfs_key *location,
3785 struct btrfs_root **sub_root)
39279cc3 3786{
4df27c4d
YZ
3787 struct btrfs_path *path;
3788 struct btrfs_root *new_root;
3789 struct btrfs_root_ref *ref;
3790 struct extent_buffer *leaf;
3791 int ret;
3792 int err = 0;
39279cc3 3793
4df27c4d
YZ
3794 path = btrfs_alloc_path();
3795 if (!path) {
3796 err = -ENOMEM;
3797 goto out;
3798 }
39279cc3 3799
4df27c4d
YZ
3800 err = -ENOENT;
3801 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3802 BTRFS_I(dir)->root->root_key.objectid,
3803 location->objectid);
3804 if (ret) {
3805 if (ret < 0)
3806 err = ret;
3807 goto out;
3808 }
39279cc3 3809
4df27c4d
YZ
3810 leaf = path->nodes[0];
3811 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3812 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3813 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3814 goto out;
39279cc3 3815
4df27c4d
YZ
3816 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3817 (unsigned long)(ref + 1),
3818 dentry->d_name.len);
3819 if (ret)
3820 goto out;
3821
3822 btrfs_release_path(root->fs_info->tree_root, path);
3823
3824 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3825 if (IS_ERR(new_root)) {
3826 err = PTR_ERR(new_root);
3827 goto out;
3828 }
3829
3830 if (btrfs_root_refs(&new_root->root_item) == 0) {
3831 err = -ENOENT;
3832 goto out;
3833 }
3834
3835 *sub_root = new_root;
3836 location->objectid = btrfs_root_dirid(&new_root->root_item);
3837 location->type = BTRFS_INODE_ITEM_KEY;
3838 location->offset = 0;
3839 err = 0;
3840out:
3841 btrfs_free_path(path);
3842 return err;
39279cc3
CM
3843}
3844
5d4f98a2
YZ
3845static void inode_tree_add(struct inode *inode)
3846{
3847 struct btrfs_root *root = BTRFS_I(inode)->root;
3848 struct btrfs_inode *entry;
03e860bd
FNP
3849 struct rb_node **p;
3850 struct rb_node *parent;
03e860bd
FNP
3851again:
3852 p = &root->inode_tree.rb_node;
3853 parent = NULL;
5d4f98a2 3854
76dda93c
YZ
3855 if (hlist_unhashed(&inode->i_hash))
3856 return;
3857
5d4f98a2
YZ
3858 spin_lock(&root->inode_lock);
3859 while (*p) {
3860 parent = *p;
3861 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3862
3863 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3864 p = &parent->rb_left;
5d4f98a2 3865 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3866 p = &parent->rb_right;
5d4f98a2
YZ
3867 else {
3868 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3869 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3870 rb_erase(parent, &root->inode_tree);
3871 RB_CLEAR_NODE(parent);
3872 spin_unlock(&root->inode_lock);
3873 goto again;
5d4f98a2
YZ
3874 }
3875 }
3876 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3877 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3878 spin_unlock(&root->inode_lock);
3879}
3880
3881static void inode_tree_del(struct inode *inode)
3882{
3883 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3884 int empty = 0;
5d4f98a2 3885
03e860bd 3886 spin_lock(&root->inode_lock);
5d4f98a2 3887 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3888 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3889 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3890 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3891 }
03e860bd 3892 spin_unlock(&root->inode_lock);
76dda93c 3893
0af3d00b
JB
3894 /*
3895 * Free space cache has inodes in the tree root, but the tree root has a
3896 * root_refs of 0, so this could end up dropping the tree root as a
3897 * snapshot, so we need the extra !root->fs_info->tree_root check to
3898 * make sure we don't drop it.
3899 */
3900 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3901 root != root->fs_info->tree_root) {
76dda93c
YZ
3902 synchronize_srcu(&root->fs_info->subvol_srcu);
3903 spin_lock(&root->inode_lock);
3904 empty = RB_EMPTY_ROOT(&root->inode_tree);
3905 spin_unlock(&root->inode_lock);
3906 if (empty)
3907 btrfs_add_dead_root(root);
3908 }
3909}
3910
3911int btrfs_invalidate_inodes(struct btrfs_root *root)
3912{
3913 struct rb_node *node;
3914 struct rb_node *prev;
3915 struct btrfs_inode *entry;
3916 struct inode *inode;
3917 u64 objectid = 0;
3918
3919 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3920
3921 spin_lock(&root->inode_lock);
3922again:
3923 node = root->inode_tree.rb_node;
3924 prev = NULL;
3925 while (node) {
3926 prev = node;
3927 entry = rb_entry(node, struct btrfs_inode, rb_node);
3928
3929 if (objectid < entry->vfs_inode.i_ino)
3930 node = node->rb_left;
3931 else if (objectid > entry->vfs_inode.i_ino)
3932 node = node->rb_right;
3933 else
3934 break;
3935 }
3936 if (!node) {
3937 while (prev) {
3938 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3939 if (objectid <= entry->vfs_inode.i_ino) {
3940 node = prev;
3941 break;
3942 }
3943 prev = rb_next(prev);
3944 }
3945 }
3946 while (node) {
3947 entry = rb_entry(node, struct btrfs_inode, rb_node);
3948 objectid = entry->vfs_inode.i_ino + 1;
3949 inode = igrab(&entry->vfs_inode);
3950 if (inode) {
3951 spin_unlock(&root->inode_lock);
3952 if (atomic_read(&inode->i_count) > 1)
3953 d_prune_aliases(inode);
3954 /*
45321ac5 3955 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3956 * the inode cache when its usage count
3957 * hits zero.
3958 */
3959 iput(inode);
3960 cond_resched();
3961 spin_lock(&root->inode_lock);
3962 goto again;
3963 }
3964
3965 if (cond_resched_lock(&root->inode_lock))
3966 goto again;
3967
3968 node = rb_next(node);
3969 }
3970 spin_unlock(&root->inode_lock);
3971 return 0;
5d4f98a2
YZ
3972}
3973
e02119d5
CM
3974static int btrfs_init_locked_inode(struct inode *inode, void *p)
3975{
3976 struct btrfs_iget_args *args = p;
3977 inode->i_ino = args->ino;
e02119d5 3978 BTRFS_I(inode)->root = args->root;
6a63209f 3979 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3980 return 0;
3981}
3982
3983static int btrfs_find_actor(struct inode *inode, void *opaque)
3984{
3985 struct btrfs_iget_args *args = opaque;
d397712b
CM
3986 return args->ino == inode->i_ino &&
3987 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3988}
3989
5d4f98a2
YZ
3990static struct inode *btrfs_iget_locked(struct super_block *s,
3991 u64 objectid,
3992 struct btrfs_root *root)
39279cc3
CM
3993{
3994 struct inode *inode;
3995 struct btrfs_iget_args args;
3996 args.ino = objectid;
3997 args.root = root;
3998
3999 inode = iget5_locked(s, objectid, btrfs_find_actor,
4000 btrfs_init_locked_inode,
4001 (void *)&args);
4002 return inode;
4003}
4004
1a54ef8c
BR
4005/* Get an inode object given its location and corresponding root.
4006 * Returns in *is_new if the inode was read from disk
4007 */
4008struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4009 struct btrfs_root *root, int *new)
1a54ef8c
BR
4010{
4011 struct inode *inode;
4012
4013 inode = btrfs_iget_locked(s, location->objectid, root);
4014 if (!inode)
5d4f98a2 4015 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4016
4017 if (inode->i_state & I_NEW) {
4018 BTRFS_I(inode)->root = root;
4019 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4020 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
4021
4022 inode_tree_add(inode);
1a54ef8c 4023 unlock_new_inode(inode);
73f73415
JB
4024 if (new)
4025 *new = 1;
1a54ef8c
BR
4026 }
4027
4028 return inode;
4029}
4030
4df27c4d
YZ
4031static struct inode *new_simple_dir(struct super_block *s,
4032 struct btrfs_key *key,
4033 struct btrfs_root *root)
4034{
4035 struct inode *inode = new_inode(s);
4036
4037 if (!inode)
4038 return ERR_PTR(-ENOMEM);
4039
4df27c4d
YZ
4040 BTRFS_I(inode)->root = root;
4041 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4042 BTRFS_I(inode)->dummy_inode = 1;
4043
4044 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4045 inode->i_op = &simple_dir_inode_operations;
4046 inode->i_fop = &simple_dir_operations;
4047 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4048 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4049
4050 return inode;
4051}
4052
3de4586c 4053struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4054{
d397712b 4055 struct inode *inode;
4df27c4d 4056 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4057 struct btrfs_root *sub_root = root;
4058 struct btrfs_key location;
76dda93c 4059 int index;
5d4f98a2 4060 int ret;
39279cc3 4061
76dda93c
YZ
4062 dentry->d_op = &btrfs_dentry_operations;
4063
39279cc3
CM
4064 if (dentry->d_name.len > BTRFS_NAME_LEN)
4065 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4066
39279cc3 4067 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4068
39279cc3
CM
4069 if (ret < 0)
4070 return ERR_PTR(ret);
5f39d397 4071
4df27c4d
YZ
4072 if (location.objectid == 0)
4073 return NULL;
4074
4075 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4076 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4077 return inode;
4078 }
4079
4080 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4081
76dda93c 4082 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4083 ret = fixup_tree_root_location(root, dir, dentry,
4084 &location, &sub_root);
4085 if (ret < 0) {
4086 if (ret != -ENOENT)
4087 inode = ERR_PTR(ret);
4088 else
4089 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4090 } else {
73f73415 4091 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4092 }
76dda93c
YZ
4093 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4094
c71bf099
YZ
4095 if (root != sub_root) {
4096 down_read(&root->fs_info->cleanup_work_sem);
4097 if (!(inode->i_sb->s_flags & MS_RDONLY))
4098 btrfs_orphan_cleanup(sub_root);
4099 up_read(&root->fs_info->cleanup_work_sem);
4100 }
4101
3de4586c
CM
4102 return inode;
4103}
4104
76dda93c
YZ
4105static int btrfs_dentry_delete(struct dentry *dentry)
4106{
4107 struct btrfs_root *root;
4108
efefb143
YZ
4109 if (!dentry->d_inode && !IS_ROOT(dentry))
4110 dentry = dentry->d_parent;
76dda93c 4111
efefb143
YZ
4112 if (dentry->d_inode) {
4113 root = BTRFS_I(dentry->d_inode)->root;
4114 if (btrfs_root_refs(&root->root_item) == 0)
4115 return 1;
4116 }
76dda93c
YZ
4117 return 0;
4118}
4119
3de4586c
CM
4120static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4121 struct nameidata *nd)
4122{
4123 struct inode *inode;
4124
3de4586c
CM
4125 inode = btrfs_lookup_dentry(dir, dentry);
4126 if (IS_ERR(inode))
4127 return ERR_CAST(inode);
7b128766 4128
39279cc3
CM
4129 return d_splice_alias(inode, dentry);
4130}
4131
39279cc3
CM
4132static unsigned char btrfs_filetype_table[] = {
4133 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4134};
4135
cbdf5a24
DW
4136static int btrfs_real_readdir(struct file *filp, void *dirent,
4137 filldir_t filldir)
39279cc3 4138{
6da6abae 4139 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4140 struct btrfs_root *root = BTRFS_I(inode)->root;
4141 struct btrfs_item *item;
4142 struct btrfs_dir_item *di;
4143 struct btrfs_key key;
5f39d397 4144 struct btrfs_key found_key;
39279cc3
CM
4145 struct btrfs_path *path;
4146 int ret;
4147 u32 nritems;
5f39d397 4148 struct extent_buffer *leaf;
39279cc3
CM
4149 int slot;
4150 int advance;
4151 unsigned char d_type;
4152 int over = 0;
4153 u32 di_cur;
4154 u32 di_total;
4155 u32 di_len;
4156 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4157 char tmp_name[32];
4158 char *name_ptr;
4159 int name_len;
39279cc3
CM
4160
4161 /* FIXME, use a real flag for deciding about the key type */
4162 if (root->fs_info->tree_root == root)
4163 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4164
3954401f
CM
4165 /* special case for "." */
4166 if (filp->f_pos == 0) {
4167 over = filldir(dirent, ".", 1,
4168 1, inode->i_ino,
4169 DT_DIR);
4170 if (over)
4171 return 0;
4172 filp->f_pos = 1;
4173 }
3954401f
CM
4174 /* special case for .., just use the back ref */
4175 if (filp->f_pos == 1) {
5ecc7e5d 4176 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4177 over = filldir(dirent, "..", 2,
5ecc7e5d 4178 2, pino, DT_DIR);
3954401f 4179 if (over)
49593bfa 4180 return 0;
3954401f
CM
4181 filp->f_pos = 2;
4182 }
49593bfa
DW
4183 path = btrfs_alloc_path();
4184 path->reada = 2;
4185
39279cc3
CM
4186 btrfs_set_key_type(&key, key_type);
4187 key.offset = filp->f_pos;
49593bfa 4188 key.objectid = inode->i_ino;
5f39d397 4189
39279cc3
CM
4190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4191 if (ret < 0)
4192 goto err;
4193 advance = 0;
49593bfa
DW
4194
4195 while (1) {
5f39d397
CM
4196 leaf = path->nodes[0];
4197 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4198 slot = path->slots[0];
4199 if (advance || slot >= nritems) {
49593bfa 4200 if (slot >= nritems - 1) {
39279cc3
CM
4201 ret = btrfs_next_leaf(root, path);
4202 if (ret)
4203 break;
5f39d397
CM
4204 leaf = path->nodes[0];
4205 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4206 slot = path->slots[0];
4207 } else {
4208 slot++;
4209 path->slots[0]++;
4210 }
4211 }
3de4586c 4212
39279cc3 4213 advance = 1;
5f39d397
CM
4214 item = btrfs_item_nr(leaf, slot);
4215 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4216
4217 if (found_key.objectid != key.objectid)
39279cc3 4218 break;
5f39d397 4219 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4220 break;
5f39d397 4221 if (found_key.offset < filp->f_pos)
39279cc3 4222 continue;
5f39d397
CM
4223
4224 filp->f_pos = found_key.offset;
49593bfa 4225
39279cc3
CM
4226 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4227 di_cur = 0;
5f39d397 4228 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4229
4230 while (di_cur < di_total) {
5f39d397
CM
4231 struct btrfs_key location;
4232
4233 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4234 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4235 name_ptr = tmp_name;
4236 } else {
4237 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4238 if (!name_ptr) {
4239 ret = -ENOMEM;
4240 goto err;
4241 }
5f39d397
CM
4242 }
4243 read_extent_buffer(leaf, name_ptr,
4244 (unsigned long)(di + 1), name_len);
4245
4246 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4247 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4248
4249 /* is this a reference to our own snapshot? If so
4250 * skip it
4251 */
4252 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4253 location.objectid == root->root_key.objectid) {
4254 over = 0;
4255 goto skip;
4256 }
5f39d397 4257 over = filldir(dirent, name_ptr, name_len,
49593bfa 4258 found_key.offset, location.objectid,
39279cc3 4259 d_type);
5f39d397 4260
3de4586c 4261skip:
5f39d397
CM
4262 if (name_ptr != tmp_name)
4263 kfree(name_ptr);
4264
39279cc3
CM
4265 if (over)
4266 goto nopos;
5103e947 4267 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4268 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4269 di_cur += di_len;
4270 di = (struct btrfs_dir_item *)((char *)di + di_len);
4271 }
4272 }
49593bfa
DW
4273
4274 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4275 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4276 /*
4277 * 32-bit glibc will use getdents64, but then strtol -
4278 * so the last number we can serve is this.
4279 */
4280 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4281 else
4282 filp->f_pos++;
39279cc3
CM
4283nopos:
4284 ret = 0;
4285err:
39279cc3 4286 btrfs_free_path(path);
39279cc3
CM
4287 return ret;
4288}
4289
a9185b41 4290int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4291{
4292 struct btrfs_root *root = BTRFS_I(inode)->root;
4293 struct btrfs_trans_handle *trans;
4294 int ret = 0;
0af3d00b 4295 bool nolock = false;
39279cc3 4296
8929ecfa 4297 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4298 return 0;
4299
0af3d00b
JB
4300 smp_mb();
4301 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4302
a9185b41 4303 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4304 if (nolock)
4305 trans = btrfs_join_transaction_nolock(root, 1);
4306 else
4307 trans = btrfs_join_transaction(root, 1);
39279cc3 4308 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4309 if (nolock)
4310 ret = btrfs_end_transaction_nolock(trans, root);
4311 else
4312 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4313 }
4314 return ret;
4315}
4316
4317/*
54aa1f4d 4318 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4319 * inode changes. But, it is most likely to find the inode in cache.
4320 * FIXME, needs more benchmarking...there are no reasons other than performance
4321 * to keep or drop this code.
4322 */
4323void btrfs_dirty_inode(struct inode *inode)
4324{
4325 struct btrfs_root *root = BTRFS_I(inode)->root;
4326 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4327 int ret;
4328
4329 if (BTRFS_I(inode)->dummy_inode)
4330 return;
39279cc3 4331
f9295749 4332 trans = btrfs_join_transaction(root, 1);
39279cc3 4333 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4334
4335 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4336 if (ret && ret == -ENOSPC) {
4337 /* whoops, lets try again with the full transaction */
4338 btrfs_end_transaction(trans, root);
4339 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4340 if (IS_ERR(trans)) {
4341 if (printk_ratelimit()) {
4342 printk(KERN_ERR "btrfs: fail to "
4343 "dirty inode %lu error %ld\n",
4344 inode->i_ino, PTR_ERR(trans));
4345 }
4346 return;
4347 }
94b60442 4348 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4349
94b60442
CM
4350 ret = btrfs_update_inode(trans, root, inode);
4351 if (ret) {
9aeead73
CM
4352 if (printk_ratelimit()) {
4353 printk(KERN_ERR "btrfs: fail to "
4354 "dirty inode %lu error %d\n",
4355 inode->i_ino, ret);
4356 }
94b60442
CM
4357 }
4358 }
39279cc3 4359 btrfs_end_transaction(trans, root);
39279cc3
CM
4360}
4361
d352ac68
CM
4362/*
4363 * find the highest existing sequence number in a directory
4364 * and then set the in-memory index_cnt variable to reflect
4365 * free sequence numbers
4366 */
aec7477b
JB
4367static int btrfs_set_inode_index_count(struct inode *inode)
4368{
4369 struct btrfs_root *root = BTRFS_I(inode)->root;
4370 struct btrfs_key key, found_key;
4371 struct btrfs_path *path;
4372 struct extent_buffer *leaf;
4373 int ret;
4374
4375 key.objectid = inode->i_ino;
4376 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4377 key.offset = (u64)-1;
4378
4379 path = btrfs_alloc_path();
4380 if (!path)
4381 return -ENOMEM;
4382
4383 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4384 if (ret < 0)
4385 goto out;
4386 /* FIXME: we should be able to handle this */
4387 if (ret == 0)
4388 goto out;
4389 ret = 0;
4390
4391 /*
4392 * MAGIC NUMBER EXPLANATION:
4393 * since we search a directory based on f_pos we have to start at 2
4394 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4395 * else has to start at 2
4396 */
4397 if (path->slots[0] == 0) {
4398 BTRFS_I(inode)->index_cnt = 2;
4399 goto out;
4400 }
4401
4402 path->slots[0]--;
4403
4404 leaf = path->nodes[0];
4405 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4406
4407 if (found_key.objectid != inode->i_ino ||
4408 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4409 BTRFS_I(inode)->index_cnt = 2;
4410 goto out;
4411 }
4412
4413 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4414out:
4415 btrfs_free_path(path);
4416 return ret;
4417}
4418
d352ac68
CM
4419/*
4420 * helper to find a free sequence number in a given directory. This current
4421 * code is very simple, later versions will do smarter things in the btree
4422 */
3de4586c 4423int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4424{
4425 int ret = 0;
4426
4427 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4428 ret = btrfs_set_inode_index_count(dir);
d397712b 4429 if (ret)
aec7477b
JB
4430 return ret;
4431 }
4432
00e4e6b3 4433 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4434 BTRFS_I(dir)->index_cnt++;
4435
4436 return ret;
4437}
4438
39279cc3
CM
4439static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4440 struct btrfs_root *root,
aec7477b 4441 struct inode *dir,
9c58309d 4442 const char *name, int name_len,
d2fb3437
YZ
4443 u64 ref_objectid, u64 objectid,
4444 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4445{
4446 struct inode *inode;
5f39d397 4447 struct btrfs_inode_item *inode_item;
39279cc3 4448 struct btrfs_key *location;
5f39d397 4449 struct btrfs_path *path;
9c58309d
CM
4450 struct btrfs_inode_ref *ref;
4451 struct btrfs_key key[2];
4452 u32 sizes[2];
4453 unsigned long ptr;
39279cc3
CM
4454 int ret;
4455 int owner;
4456
5f39d397
CM
4457 path = btrfs_alloc_path();
4458 BUG_ON(!path);
4459
39279cc3
CM
4460 inode = new_inode(root->fs_info->sb);
4461 if (!inode)
4462 return ERR_PTR(-ENOMEM);
4463
aec7477b 4464 if (dir) {
3de4586c 4465 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4466 if (ret) {
4467 iput(inode);
aec7477b 4468 return ERR_PTR(ret);
09771430 4469 }
aec7477b
JB
4470 }
4471 /*
4472 * index_cnt is ignored for everything but a dir,
4473 * btrfs_get_inode_index_count has an explanation for the magic
4474 * number
4475 */
4476 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4477 BTRFS_I(inode)->root = root;
e02119d5 4478 BTRFS_I(inode)->generation = trans->transid;
6a63209f 4479 btrfs_set_inode_space_info(root, inode);
b888db2b 4480
39279cc3
CM
4481 if (mode & S_IFDIR)
4482 owner = 0;
4483 else
4484 owner = 1;
d2fb3437
YZ
4485 BTRFS_I(inode)->block_group =
4486 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4487
4488 key[0].objectid = objectid;
4489 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4490 key[0].offset = 0;
4491
4492 key[1].objectid = objectid;
4493 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4494 key[1].offset = ref_objectid;
4495
4496 sizes[0] = sizeof(struct btrfs_inode_item);
4497 sizes[1] = name_len + sizeof(*ref);
4498
b9473439 4499 path->leave_spinning = 1;
9c58309d
CM
4500 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4501 if (ret != 0)
5f39d397
CM
4502 goto fail;
4503
ecc11fab 4504 inode_init_owner(inode, dir, mode);
39279cc3 4505 inode->i_ino = objectid;
a76a3cd4 4506 inode_set_bytes(inode, 0);
39279cc3 4507 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4508 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4509 struct btrfs_inode_item);
e02119d5 4510 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4511
4512 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4513 struct btrfs_inode_ref);
4514 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4515 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4516 ptr = (unsigned long)(ref + 1);
4517 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4518
5f39d397
CM
4519 btrfs_mark_buffer_dirty(path->nodes[0]);
4520 btrfs_free_path(path);
4521
39279cc3
CM
4522 location = &BTRFS_I(inode)->location;
4523 location->objectid = objectid;
39279cc3
CM
4524 location->offset = 0;
4525 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4526
6cbff00f
CH
4527 btrfs_inherit_iflags(inode, dir);
4528
94272164
CM
4529 if ((mode & S_IFREG)) {
4530 if (btrfs_test_opt(root, NODATASUM))
4531 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4532 if (btrfs_test_opt(root, NODATACOW))
4533 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4534 }
4535
39279cc3 4536 insert_inode_hash(inode);
5d4f98a2 4537 inode_tree_add(inode);
39279cc3 4538 return inode;
5f39d397 4539fail:
aec7477b
JB
4540 if (dir)
4541 BTRFS_I(dir)->index_cnt--;
5f39d397 4542 btrfs_free_path(path);
09771430 4543 iput(inode);
5f39d397 4544 return ERR_PTR(ret);
39279cc3
CM
4545}
4546
4547static inline u8 btrfs_inode_type(struct inode *inode)
4548{
4549 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4550}
4551
d352ac68
CM
4552/*
4553 * utility function to add 'inode' into 'parent_inode' with
4554 * a give name and a given sequence number.
4555 * if 'add_backref' is true, also insert a backref from the
4556 * inode to the parent directory.
4557 */
e02119d5
CM
4558int btrfs_add_link(struct btrfs_trans_handle *trans,
4559 struct inode *parent_inode, struct inode *inode,
4560 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4561{
4df27c4d 4562 int ret = 0;
39279cc3 4563 struct btrfs_key key;
e02119d5 4564 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4565
4df27c4d
YZ
4566 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4567 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4568 } else {
4569 key.objectid = inode->i_ino;
4570 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4571 key.offset = 0;
4572 }
4573
4574 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4575 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4576 key.objectid, root->root_key.objectid,
4577 parent_inode->i_ino,
4578 index, name, name_len);
4579 } else if (add_backref) {
4580 ret = btrfs_insert_inode_ref(trans, root,
4581 name, name_len, inode->i_ino,
4582 parent_inode->i_ino, index);
4583 }
39279cc3 4584
39279cc3 4585 if (ret == 0) {
4df27c4d
YZ
4586 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4587 parent_inode->i_ino, &key,
4588 btrfs_inode_type(inode), index);
4589 BUG_ON(ret);
4590
dbe674a9 4591 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4592 name_len * 2);
79c44584 4593 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4594 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4595 }
4596 return ret;
4597}
4598
4599static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4600 struct dentry *dentry, struct inode *inode,
00e4e6b3 4601 int backref, u64 index)
39279cc3 4602{
e02119d5
CM
4603 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4604 inode, dentry->d_name.name,
4605 dentry->d_name.len, backref, index);
39279cc3
CM
4606 if (!err) {
4607 d_instantiate(dentry, inode);
4608 return 0;
4609 }
4610 if (err > 0)
4611 err = -EEXIST;
4612 return err;
4613}
4614
618e21d5
JB
4615static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4616 int mode, dev_t rdev)
4617{
4618 struct btrfs_trans_handle *trans;
4619 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4620 struct inode *inode = NULL;
618e21d5
JB
4621 int err;
4622 int drop_inode = 0;
4623 u64 objectid;
1832a6d5 4624 unsigned long nr = 0;
00e4e6b3 4625 u64 index = 0;
618e21d5
JB
4626
4627 if (!new_valid_dev(rdev))
4628 return -EINVAL;
4629
a22285a6
YZ
4630 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4631 if (err)
4632 return err;
4633
9ed74f2d
JB
4634 /*
4635 * 2 for inode item and ref
4636 * 2 for dir items
4637 * 1 for xattr if selinux is on
4638 */
a22285a6
YZ
4639 trans = btrfs_start_transaction(root, 5);
4640 if (IS_ERR(trans))
4641 return PTR_ERR(trans);
1832a6d5 4642
618e21d5
JB
4643 btrfs_set_trans_block_group(trans, dir);
4644
aec7477b 4645 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4646 dentry->d_name.len,
4647 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4648 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4649 err = PTR_ERR(inode);
4650 if (IS_ERR(inode))
4651 goto out_unlock;
4652
f34f57a3 4653 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4654 if (err) {
4655 drop_inode = 1;
4656 goto out_unlock;
4657 }
4658
618e21d5 4659 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4660 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4661 if (err)
4662 drop_inode = 1;
4663 else {
4664 inode->i_op = &btrfs_special_inode_operations;
4665 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4666 btrfs_update_inode(trans, root, inode);
618e21d5 4667 }
618e21d5
JB
4668 btrfs_update_inode_block_group(trans, inode);
4669 btrfs_update_inode_block_group(trans, dir);
4670out_unlock:
d3c2fdcf 4671 nr = trans->blocks_used;
89ce8a63 4672 btrfs_end_transaction_throttle(trans, root);
a22285a6 4673 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4674 if (drop_inode) {
4675 inode_dec_link_count(inode);
4676 iput(inode);
4677 }
618e21d5
JB
4678 return err;
4679}
4680
39279cc3
CM
4681static int btrfs_create(struct inode *dir, struct dentry *dentry,
4682 int mode, struct nameidata *nd)
4683{
4684 struct btrfs_trans_handle *trans;
4685 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4686 struct inode *inode = NULL;
39279cc3 4687 int drop_inode = 0;
a22285a6 4688 int err;
1832a6d5 4689 unsigned long nr = 0;
39279cc3 4690 u64 objectid;
00e4e6b3 4691 u64 index = 0;
39279cc3 4692
a22285a6
YZ
4693 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4694 if (err)
4695 return err;
9ed74f2d
JB
4696 /*
4697 * 2 for inode item and ref
4698 * 2 for dir items
4699 * 1 for xattr if selinux is on
4700 */
a22285a6
YZ
4701 trans = btrfs_start_transaction(root, 5);
4702 if (IS_ERR(trans))
4703 return PTR_ERR(trans);
9ed74f2d 4704
39279cc3
CM
4705 btrfs_set_trans_block_group(trans, dir);
4706
aec7477b 4707 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4708 dentry->d_name.len,
4709 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4710 objectid, BTRFS_I(dir)->block_group, mode,
4711 &index);
39279cc3
CM
4712 err = PTR_ERR(inode);
4713 if (IS_ERR(inode))
4714 goto out_unlock;
4715
f34f57a3 4716 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4717 if (err) {
4718 drop_inode = 1;
4719 goto out_unlock;
4720 }
4721
39279cc3 4722 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4723 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4724 if (err)
4725 drop_inode = 1;
4726 else {
4727 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4728 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4729 inode->i_fop = &btrfs_file_operations;
4730 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4731 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4732 }
39279cc3
CM
4733 btrfs_update_inode_block_group(trans, inode);
4734 btrfs_update_inode_block_group(trans, dir);
4735out_unlock:
d3c2fdcf 4736 nr = trans->blocks_used;
ab78c84d 4737 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4738 if (drop_inode) {
4739 inode_dec_link_count(inode);
4740 iput(inode);
4741 }
d3c2fdcf 4742 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4743 return err;
4744}
4745
4746static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4747 struct dentry *dentry)
4748{
4749 struct btrfs_trans_handle *trans;
4750 struct btrfs_root *root = BTRFS_I(dir)->root;
4751 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4752 u64 index;
1832a6d5 4753 unsigned long nr = 0;
39279cc3
CM
4754 int err;
4755 int drop_inode = 0;
4756
4757 if (inode->i_nlink == 0)
4758 return -ENOENT;
4759
4a8be425
TH
4760 /* do not allow sys_link's with other subvols of the same device */
4761 if (root->objectid != BTRFS_I(inode)->root->objectid)
4762 return -EPERM;
4763
9ed74f2d
JB
4764 btrfs_inc_nlink(inode);
4765
3de4586c 4766 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4767 if (err)
4768 goto fail;
4769
a22285a6
YZ
4770 /*
4771 * 1 item for inode ref
4772 * 2 items for dir items
4773 */
4774 trans = btrfs_start_transaction(root, 3);
4775 if (IS_ERR(trans)) {
4776 err = PTR_ERR(trans);
4777 goto fail;
4778 }
5f39d397 4779
39279cc3
CM
4780 btrfs_set_trans_block_group(trans, dir);
4781 atomic_inc(&inode->i_count);
aec7477b 4782
00e4e6b3 4783 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4784
a5719521 4785 if (err) {
54aa1f4d 4786 drop_inode = 1;
a5719521
YZ
4787 } else {
4788 btrfs_update_inode_block_group(trans, dir);
4789 err = btrfs_update_inode(trans, root, inode);
4790 BUG_ON(err);
4791 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4792 }
39279cc3 4793
d3c2fdcf 4794 nr = trans->blocks_used;
ab78c84d 4795 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4796fail:
39279cc3
CM
4797 if (drop_inode) {
4798 inode_dec_link_count(inode);
4799 iput(inode);
4800 }
d3c2fdcf 4801 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4802 return err;
4803}
4804
39279cc3
CM
4805static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4806{
b9d86667 4807 struct inode *inode = NULL;
39279cc3
CM
4808 struct btrfs_trans_handle *trans;
4809 struct btrfs_root *root = BTRFS_I(dir)->root;
4810 int err = 0;
4811 int drop_on_err = 0;
b9d86667 4812 u64 objectid = 0;
00e4e6b3 4813 u64 index = 0;
d3c2fdcf 4814 unsigned long nr = 1;
39279cc3 4815
a22285a6
YZ
4816 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4817 if (err)
4818 return err;
4819
9ed74f2d
JB
4820 /*
4821 * 2 items for inode and ref
4822 * 2 items for dir items
4823 * 1 for xattr if selinux is on
4824 */
a22285a6
YZ
4825 trans = btrfs_start_transaction(root, 5);
4826 if (IS_ERR(trans))
4827 return PTR_ERR(trans);
9ed74f2d 4828 btrfs_set_trans_block_group(trans, dir);
39279cc3 4829
aec7477b 4830 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4831 dentry->d_name.len,
4832 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4833 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4834 &index);
39279cc3
CM
4835 if (IS_ERR(inode)) {
4836 err = PTR_ERR(inode);
4837 goto out_fail;
4838 }
5f39d397 4839
39279cc3 4840 drop_on_err = 1;
33268eaf 4841
f34f57a3 4842 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4843 if (err)
4844 goto out_fail;
4845
39279cc3
CM
4846 inode->i_op = &btrfs_dir_inode_operations;
4847 inode->i_fop = &btrfs_dir_file_operations;
4848 btrfs_set_trans_block_group(trans, inode);
4849
dbe674a9 4850 btrfs_i_size_write(inode, 0);
39279cc3
CM
4851 err = btrfs_update_inode(trans, root, inode);
4852 if (err)
4853 goto out_fail;
5f39d397 4854
e02119d5
CM
4855 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4856 inode, dentry->d_name.name,
4857 dentry->d_name.len, 0, index);
39279cc3
CM
4858 if (err)
4859 goto out_fail;
5f39d397 4860
39279cc3
CM
4861 d_instantiate(dentry, inode);
4862 drop_on_err = 0;
39279cc3
CM
4863 btrfs_update_inode_block_group(trans, inode);
4864 btrfs_update_inode_block_group(trans, dir);
4865
4866out_fail:
d3c2fdcf 4867 nr = trans->blocks_used;
ab78c84d 4868 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4869 if (drop_on_err)
4870 iput(inode);
d3c2fdcf 4871 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4872 return err;
4873}
4874
d352ac68
CM
4875/* helper for btfs_get_extent. Given an existing extent in the tree,
4876 * and an extent that you want to insert, deal with overlap and insert
4877 * the new extent into the tree.
4878 */
3b951516
CM
4879static int merge_extent_mapping(struct extent_map_tree *em_tree,
4880 struct extent_map *existing,
e6dcd2dc
CM
4881 struct extent_map *em,
4882 u64 map_start, u64 map_len)
3b951516
CM
4883{
4884 u64 start_diff;
3b951516 4885
e6dcd2dc
CM
4886 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4887 start_diff = map_start - em->start;
4888 em->start = map_start;
4889 em->len = map_len;
c8b97818
CM
4890 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4891 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4892 em->block_start += start_diff;
c8b97818
CM
4893 em->block_len -= start_diff;
4894 }
e6dcd2dc 4895 return add_extent_mapping(em_tree, em);
3b951516
CM
4896}
4897
c8b97818
CM
4898static noinline int uncompress_inline(struct btrfs_path *path,
4899 struct inode *inode, struct page *page,
4900 size_t pg_offset, u64 extent_offset,
4901 struct btrfs_file_extent_item *item)
4902{
4903 int ret;
4904 struct extent_buffer *leaf = path->nodes[0];
4905 char *tmp;
4906 size_t max_size;
4907 unsigned long inline_size;
4908 unsigned long ptr;
4909
4910 WARN_ON(pg_offset != 0);
4911 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4912 inline_size = btrfs_file_extent_inline_item_len(leaf,
4913 btrfs_item_nr(leaf, path->slots[0]));
4914 tmp = kmalloc(inline_size, GFP_NOFS);
4915 ptr = btrfs_file_extent_inline_start(item);
4916
4917 read_extent_buffer(leaf, tmp, ptr, inline_size);
4918
5b050f04 4919 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4920 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4921 inline_size, max_size);
4922 if (ret) {
4923 char *kaddr = kmap_atomic(page, KM_USER0);
4924 unsigned long copy_size = min_t(u64,
4925 PAGE_CACHE_SIZE - pg_offset,
4926 max_size - extent_offset);
4927 memset(kaddr + pg_offset, 0, copy_size);
4928 kunmap_atomic(kaddr, KM_USER0);
4929 }
4930 kfree(tmp);
4931 return 0;
4932}
4933
d352ac68
CM
4934/*
4935 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4936 * the ugly parts come from merging extents from the disk with the in-ram
4937 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4938 * where the in-ram extents might be locked pending data=ordered completion.
4939 *
4940 * This also copies inline extents directly into the page.
4941 */
d397712b 4942
a52d9a80 4943struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4944 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4945 int create)
4946{
4947 int ret;
4948 int err = 0;
db94535d 4949 u64 bytenr;
a52d9a80
CM
4950 u64 extent_start = 0;
4951 u64 extent_end = 0;
4952 u64 objectid = inode->i_ino;
4953 u32 found_type;
f421950f 4954 struct btrfs_path *path = NULL;
a52d9a80
CM
4955 struct btrfs_root *root = BTRFS_I(inode)->root;
4956 struct btrfs_file_extent_item *item;
5f39d397
CM
4957 struct extent_buffer *leaf;
4958 struct btrfs_key found_key;
a52d9a80
CM
4959 struct extent_map *em = NULL;
4960 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4961 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4962 struct btrfs_trans_handle *trans = NULL;
c8b97818 4963 int compressed;
a52d9a80 4964
a52d9a80 4965again:
890871be 4966 read_lock(&em_tree->lock);
d1310b2e 4967 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4968 if (em)
4969 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4970 read_unlock(&em_tree->lock);
d1310b2e 4971
a52d9a80 4972 if (em) {
e1c4b745
CM
4973 if (em->start > start || em->start + em->len <= start)
4974 free_extent_map(em);
4975 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4976 free_extent_map(em);
4977 else
4978 goto out;
a52d9a80 4979 }
d1310b2e 4980 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4981 if (!em) {
d1310b2e
CM
4982 err = -ENOMEM;
4983 goto out;
a52d9a80 4984 }
e6dcd2dc 4985 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4986 em->start = EXTENT_MAP_HOLE;
445a6944 4987 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4988 em->len = (u64)-1;
c8b97818 4989 em->block_len = (u64)-1;
f421950f
CM
4990
4991 if (!path) {
4992 path = btrfs_alloc_path();
4993 BUG_ON(!path);
4994 }
4995
179e29e4
CM
4996 ret = btrfs_lookup_file_extent(trans, root, path,
4997 objectid, start, trans != NULL);
a52d9a80
CM
4998 if (ret < 0) {
4999 err = ret;
5000 goto out;
5001 }
5002
5003 if (ret != 0) {
5004 if (path->slots[0] == 0)
5005 goto not_found;
5006 path->slots[0]--;
5007 }
5008
5f39d397
CM
5009 leaf = path->nodes[0];
5010 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5011 struct btrfs_file_extent_item);
a52d9a80 5012 /* are we inside the extent that was found? */
5f39d397
CM
5013 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5014 found_type = btrfs_key_type(&found_key);
5015 if (found_key.objectid != objectid ||
a52d9a80
CM
5016 found_type != BTRFS_EXTENT_DATA_KEY) {
5017 goto not_found;
5018 }
5019
5f39d397
CM
5020 found_type = btrfs_file_extent_type(leaf, item);
5021 extent_start = found_key.offset;
c8b97818 5022 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5023 if (found_type == BTRFS_FILE_EXTENT_REG ||
5024 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5025 extent_end = extent_start +
db94535d 5026 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5027 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5028 size_t size;
5029 size = btrfs_file_extent_inline_len(leaf, item);
5030 extent_end = (extent_start + size + root->sectorsize - 1) &
5031 ~((u64)root->sectorsize - 1);
5032 }
5033
5034 if (start >= extent_end) {
5035 path->slots[0]++;
5036 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5037 ret = btrfs_next_leaf(root, path);
5038 if (ret < 0) {
5039 err = ret;
5040 goto out;
a52d9a80 5041 }
9036c102
YZ
5042 if (ret > 0)
5043 goto not_found;
5044 leaf = path->nodes[0];
a52d9a80 5045 }
9036c102
YZ
5046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5047 if (found_key.objectid != objectid ||
5048 found_key.type != BTRFS_EXTENT_DATA_KEY)
5049 goto not_found;
5050 if (start + len <= found_key.offset)
5051 goto not_found;
5052 em->start = start;
5053 em->len = found_key.offset - start;
5054 goto not_found_em;
5055 }
5056
d899e052
YZ
5057 if (found_type == BTRFS_FILE_EXTENT_REG ||
5058 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5059 em->start = extent_start;
5060 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5061 em->orig_start = extent_start -
5062 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5063 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5064 if (bytenr == 0) {
5f39d397 5065 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5066 goto insert;
5067 }
c8b97818
CM
5068 if (compressed) {
5069 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5070 em->block_start = bytenr;
5071 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5072 item);
5073 } else {
5074 bytenr += btrfs_file_extent_offset(leaf, item);
5075 em->block_start = bytenr;
5076 em->block_len = em->len;
d899e052
YZ
5077 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5078 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5079 }
a52d9a80
CM
5080 goto insert;
5081 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5082 unsigned long ptr;
a52d9a80 5083 char *map;
3326d1b0
CM
5084 size_t size;
5085 size_t extent_offset;
5086 size_t copy_size;
a52d9a80 5087
689f9346 5088 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5089 if (!page || create) {
689f9346 5090 em->start = extent_start;
9036c102 5091 em->len = extent_end - extent_start;
689f9346
Y
5092 goto out;
5093 }
5f39d397 5094
9036c102
YZ
5095 size = btrfs_file_extent_inline_len(leaf, item);
5096 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5097 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5098 size - extent_offset);
3326d1b0 5099 em->start = extent_start + extent_offset;
70dec807
CM
5100 em->len = (copy_size + root->sectorsize - 1) &
5101 ~((u64)root->sectorsize - 1);
ff5b7ee3 5102 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
5103 if (compressed)
5104 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 5105 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5106 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
5107 if (btrfs_file_extent_compression(leaf, item) ==
5108 BTRFS_COMPRESS_ZLIB) {
5109 ret = uncompress_inline(path, inode, page,
5110 pg_offset,
5111 extent_offset, item);
5112 BUG_ON(ret);
5113 } else {
5114 map = kmap(page);
5115 read_extent_buffer(leaf, map + pg_offset, ptr,
5116 copy_size);
93c82d57
CM
5117 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5118 memset(map + pg_offset + copy_size, 0,
5119 PAGE_CACHE_SIZE - pg_offset -
5120 copy_size);
5121 }
c8b97818
CM
5122 kunmap(page);
5123 }
179e29e4
CM
5124 flush_dcache_page(page);
5125 } else if (create && PageUptodate(page)) {
0ca1f7ce 5126 WARN_ON(1);
179e29e4
CM
5127 if (!trans) {
5128 kunmap(page);
5129 free_extent_map(em);
5130 em = NULL;
5131 btrfs_release_path(root, path);
f9295749 5132 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
5133 goto again;
5134 }
c8b97818 5135 map = kmap(page);
70dec807 5136 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5137 copy_size);
c8b97818 5138 kunmap(page);
179e29e4 5139 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5140 }
d1310b2e
CM
5141 set_extent_uptodate(io_tree, em->start,
5142 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
5143 goto insert;
5144 } else {
d397712b 5145 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5146 WARN_ON(1);
5147 }
5148not_found:
5149 em->start = start;
d1310b2e 5150 em->len = len;
a52d9a80 5151not_found_em:
5f39d397 5152 em->block_start = EXTENT_MAP_HOLE;
9036c102 5153 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5154insert:
5155 btrfs_release_path(root, path);
d1310b2e 5156 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5157 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5158 "[%llu %llu]\n", (unsigned long long)em->start,
5159 (unsigned long long)em->len,
5160 (unsigned long long)start,
5161 (unsigned long long)len);
a52d9a80
CM
5162 err = -EIO;
5163 goto out;
5164 }
d1310b2e
CM
5165
5166 err = 0;
890871be 5167 write_lock(&em_tree->lock);
a52d9a80 5168 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5169 /* it is possible that someone inserted the extent into the tree
5170 * while we had the lock dropped. It is also possible that
5171 * an overlapping map exists in the tree
5172 */
a52d9a80 5173 if (ret == -EEXIST) {
3b951516 5174 struct extent_map *existing;
e6dcd2dc
CM
5175
5176 ret = 0;
5177
3b951516 5178 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5179 if (existing && (existing->start > start ||
5180 existing->start + existing->len <= start)) {
5181 free_extent_map(existing);
5182 existing = NULL;
5183 }
3b951516
CM
5184 if (!existing) {
5185 existing = lookup_extent_mapping(em_tree, em->start,
5186 em->len);
5187 if (existing) {
5188 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5189 em, start,
5190 root->sectorsize);
3b951516
CM
5191 free_extent_map(existing);
5192 if (err) {
5193 free_extent_map(em);
5194 em = NULL;
5195 }
5196 } else {
5197 err = -EIO;
3b951516
CM
5198 free_extent_map(em);
5199 em = NULL;
5200 }
5201 } else {
5202 free_extent_map(em);
5203 em = existing;
e6dcd2dc 5204 err = 0;
a52d9a80 5205 }
a52d9a80 5206 }
890871be 5207 write_unlock(&em_tree->lock);
a52d9a80 5208out:
f421950f
CM
5209 if (path)
5210 btrfs_free_path(path);
a52d9a80
CM
5211 if (trans) {
5212 ret = btrfs_end_transaction(trans, root);
d397712b 5213 if (!err)
a52d9a80
CM
5214 err = ret;
5215 }
a52d9a80
CM
5216 if (err) {
5217 free_extent_map(em);
a52d9a80
CM
5218 return ERR_PTR(err);
5219 }
5220 return em;
5221}
5222
4b46fce2
JB
5223static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5224 u64 start, u64 len)
5225{
5226 struct btrfs_root *root = BTRFS_I(inode)->root;
5227 struct btrfs_trans_handle *trans;
5228 struct extent_map *em;
5229 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5230 struct btrfs_key ins;
5231 u64 alloc_hint;
5232 int ret;
5233
5234 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5235
5236 trans = btrfs_join_transaction(root, 0);
5237 if (!trans)
5238 return ERR_PTR(-ENOMEM);
5239
5240 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5241
5242 alloc_hint = get_extent_allocation_hint(inode, start, len);
5243 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5244 alloc_hint, (u64)-1, &ins, 1);
5245 if (ret) {
5246 em = ERR_PTR(ret);
5247 goto out;
5248 }
5249
5250 em = alloc_extent_map(GFP_NOFS);
5251 if (!em) {
5252 em = ERR_PTR(-ENOMEM);
5253 goto out;
5254 }
5255
5256 em->start = start;
5257 em->orig_start = em->start;
5258 em->len = ins.offset;
5259
5260 em->block_start = ins.objectid;
5261 em->block_len = ins.offset;
5262 em->bdev = root->fs_info->fs_devices->latest_bdev;
5263 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5264
5265 while (1) {
5266 write_lock(&em_tree->lock);
5267 ret = add_extent_mapping(em_tree, em);
5268 write_unlock(&em_tree->lock);
5269 if (ret != -EEXIST)
5270 break;
5271 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5272 }
5273
5274 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5275 ins.offset, ins.offset, 0);
5276 if (ret) {
5277 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5278 em = ERR_PTR(ret);
5279 }
5280out:
5281 btrfs_end_transaction(trans, root);
5282 return em;
5283}
5284
46bfbb5c
CM
5285/*
5286 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5287 * block must be cow'd
5288 */
5289static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5290 struct inode *inode, u64 offset, u64 len)
5291{
5292 struct btrfs_path *path;
5293 int ret;
5294 struct extent_buffer *leaf;
5295 struct btrfs_root *root = BTRFS_I(inode)->root;
5296 struct btrfs_file_extent_item *fi;
5297 struct btrfs_key key;
5298 u64 disk_bytenr;
5299 u64 backref_offset;
5300 u64 extent_end;
5301 u64 num_bytes;
5302 int slot;
5303 int found_type;
5304
5305 path = btrfs_alloc_path();
5306 if (!path)
5307 return -ENOMEM;
5308
5309 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5310 offset, 0);
5311 if (ret < 0)
5312 goto out;
5313
5314 slot = path->slots[0];
5315 if (ret == 1) {
5316 if (slot == 0) {
5317 /* can't find the item, must cow */
5318 ret = 0;
5319 goto out;
5320 }
5321 slot--;
5322 }
5323 ret = 0;
5324 leaf = path->nodes[0];
5325 btrfs_item_key_to_cpu(leaf, &key, slot);
5326 if (key.objectid != inode->i_ino ||
5327 key.type != BTRFS_EXTENT_DATA_KEY) {
5328 /* not our file or wrong item type, must cow */
5329 goto out;
5330 }
5331
5332 if (key.offset > offset) {
5333 /* Wrong offset, must cow */
5334 goto out;
5335 }
5336
5337 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5338 found_type = btrfs_file_extent_type(leaf, fi);
5339 if (found_type != BTRFS_FILE_EXTENT_REG &&
5340 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5341 /* not a regular extent, must cow */
5342 goto out;
5343 }
5344 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5345 backref_offset = btrfs_file_extent_offset(leaf, fi);
5346
5347 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5348 if (extent_end < offset + len) {
5349 /* extent doesn't include our full range, must cow */
5350 goto out;
5351 }
5352
5353 if (btrfs_extent_readonly(root, disk_bytenr))
5354 goto out;
5355
5356 /*
5357 * look for other files referencing this extent, if we
5358 * find any we must cow
5359 */
5360 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5361 key.offset - backref_offset, disk_bytenr))
5362 goto out;
5363
5364 /*
5365 * adjust disk_bytenr and num_bytes to cover just the bytes
5366 * in this extent we are about to write. If there
5367 * are any csums in that range we have to cow in order
5368 * to keep the csums correct
5369 */
5370 disk_bytenr += backref_offset;
5371 disk_bytenr += offset - key.offset;
5372 num_bytes = min(offset + len, extent_end) - offset;
5373 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5374 goto out;
5375 /*
5376 * all of the above have passed, it is safe to overwrite this extent
5377 * without cow
5378 */
5379 ret = 1;
5380out:
5381 btrfs_free_path(path);
5382 return ret;
5383}
5384
4b46fce2
JB
5385static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5386 struct buffer_head *bh_result, int create)
5387{
5388 struct extent_map *em;
5389 struct btrfs_root *root = BTRFS_I(inode)->root;
5390 u64 start = iblock << inode->i_blkbits;
5391 u64 len = bh_result->b_size;
46bfbb5c 5392 struct btrfs_trans_handle *trans;
4b46fce2
JB
5393
5394 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5395 if (IS_ERR(em))
5396 return PTR_ERR(em);
5397
5398 /*
5399 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5400 * io. INLINE is special, and we could probably kludge it in here, but
5401 * it's still buffered so for safety lets just fall back to the generic
5402 * buffered path.
5403 *
5404 * For COMPRESSED we _have_ to read the entire extent in so we can
5405 * decompress it, so there will be buffering required no matter what we
5406 * do, so go ahead and fallback to buffered.
5407 *
5408 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5409 * to buffered IO. Don't blame me, this is the price we pay for using
5410 * the generic code.
5411 */
5412 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5413 em->block_start == EXTENT_MAP_INLINE) {
5414 free_extent_map(em);
5415 return -ENOTBLK;
5416 }
5417
5418 /* Just a good old fashioned hole, return */
5419 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5420 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5421 free_extent_map(em);
5422 /* DIO will do one hole at a time, so just unlock a sector */
5423 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5424 start + root->sectorsize - 1, GFP_NOFS);
5425 return 0;
5426 }
5427
5428 /*
5429 * We don't allocate a new extent in the following cases
5430 *
5431 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5432 * existing extent.
5433 * 2) The extent is marked as PREALLOC. We're good to go here and can
5434 * just use the extent.
5435 *
5436 */
46bfbb5c
CM
5437 if (!create) {
5438 len = em->len - (start - em->start);
4b46fce2 5439 goto map;
46bfbb5c 5440 }
4b46fce2
JB
5441
5442 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5443 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5444 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5445 int type;
5446 int ret;
46bfbb5c 5447 u64 block_start;
4b46fce2
JB
5448
5449 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5450 type = BTRFS_ORDERED_PREALLOC;
5451 else
5452 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5453 len = min(len, em->len - (start - em->start));
4b46fce2 5454 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5455
5456 /*
5457 * we're not going to log anything, but we do need
5458 * to make sure the current transaction stays open
5459 * while we look for nocow cross refs
5460 */
5461 trans = btrfs_join_transaction(root, 0);
5462 if (!trans)
5463 goto must_cow;
5464
5465 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5466 ret = btrfs_add_ordered_extent_dio(inode, start,
5467 block_start, len, len, type);
5468 btrfs_end_transaction(trans, root);
5469 if (ret) {
5470 free_extent_map(em);
5471 return ret;
5472 }
5473 goto unlock;
4b46fce2 5474 }
46bfbb5c 5475 btrfs_end_transaction(trans, root);
4b46fce2 5476 }
46bfbb5c
CM
5477must_cow:
5478 /*
5479 * this will cow the extent, reset the len in case we changed
5480 * it above
5481 */
5482 len = bh_result->b_size;
5483 free_extent_map(em);
5484 em = btrfs_new_extent_direct(inode, start, len);
5485 if (IS_ERR(em))
5486 return PTR_ERR(em);
5487 len = min(len, em->len - (start - em->start));
5488unlock:
4845e44f
CM
5489 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5490 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5491 0, NULL, GFP_NOFS);
4b46fce2
JB
5492map:
5493 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5494 inode->i_blkbits;
46bfbb5c 5495 bh_result->b_size = len;
4b46fce2
JB
5496 bh_result->b_bdev = em->bdev;
5497 set_buffer_mapped(bh_result);
5498 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5499 set_buffer_new(bh_result);
5500
5501 free_extent_map(em);
5502
5503 return 0;
5504}
5505
5506struct btrfs_dio_private {
5507 struct inode *inode;
5508 u64 logical_offset;
5509 u64 disk_bytenr;
5510 u64 bytes;
5511 u32 *csums;
5512 void *private;
5513};
5514
5515static void btrfs_endio_direct_read(struct bio *bio, int err)
5516{
5517 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5518 struct bio_vec *bvec = bio->bi_io_vec;
5519 struct btrfs_dio_private *dip = bio->bi_private;
5520 struct inode *inode = dip->inode;
5521 struct btrfs_root *root = BTRFS_I(inode)->root;
5522 u64 start;
5523 u32 *private = dip->csums;
5524
5525 start = dip->logical_offset;
5526 do {
5527 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5528 struct page *page = bvec->bv_page;
5529 char *kaddr;
5530 u32 csum = ~(u32)0;
5531 unsigned long flags;
5532
5533 local_irq_save(flags);
5534 kaddr = kmap_atomic(page, KM_IRQ0);
5535 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5536 csum, bvec->bv_len);
5537 btrfs_csum_final(csum, (char *)&csum);
5538 kunmap_atomic(kaddr, KM_IRQ0);
5539 local_irq_restore(flags);
5540
5541 flush_dcache_page(bvec->bv_page);
5542 if (csum != *private) {
5543 printk(KERN_ERR "btrfs csum failed ino %lu off"
5544 " %llu csum %u private %u\n",
5545 inode->i_ino, (unsigned long long)start,
5546 csum, *private);
5547 err = -EIO;
5548 }
5549 }
5550
5551 start += bvec->bv_len;
5552 private++;
5553 bvec++;
5554 } while (bvec <= bvec_end);
5555
5556 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5557 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5558 bio->bi_private = dip->private;
5559
5560 kfree(dip->csums);
5561 kfree(dip);
5562 dio_end_io(bio, err);
5563}
5564
5565static void btrfs_endio_direct_write(struct bio *bio, int err)
5566{
5567 struct btrfs_dio_private *dip = bio->bi_private;
5568 struct inode *inode = dip->inode;
5569 struct btrfs_root *root = BTRFS_I(inode)->root;
5570 struct btrfs_trans_handle *trans;
5571 struct btrfs_ordered_extent *ordered = NULL;
5572 struct extent_state *cached_state = NULL;
5573 int ret;
5574
5575 if (err)
5576 goto out_done;
5577
5578 ret = btrfs_dec_test_ordered_pending(inode, &ordered,
5579 dip->logical_offset, dip->bytes);
5580 if (!ret)
5581 goto out_done;
5582
5583 BUG_ON(!ordered);
5584
5585 trans = btrfs_join_transaction(root, 1);
5586 if (!trans) {
5587 err = -ENOMEM;
5588 goto out;
5589 }
5590 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5591
5592 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5593 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5594 if (!ret)
5595 ret = btrfs_update_inode(trans, root, inode);
5596 err = ret;
5597 goto out;
5598 }
5599
5600 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5601 ordered->file_offset + ordered->len - 1, 0,
5602 &cached_state, GFP_NOFS);
5603
5604 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5605 ret = btrfs_mark_extent_written(trans, inode,
5606 ordered->file_offset,
5607 ordered->file_offset +
5608 ordered->len);
5609 if (ret) {
5610 err = ret;
5611 goto out_unlock;
5612 }
5613 } else {
5614 ret = insert_reserved_file_extent(trans, inode,
5615 ordered->file_offset,
5616 ordered->start,
5617 ordered->disk_len,
5618 ordered->len,
5619 ordered->len,
5620 0, 0, 0,
5621 BTRFS_FILE_EXTENT_REG);
5622 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5623 ordered->file_offset, ordered->len);
5624 if (ret) {
5625 err = ret;
5626 WARN_ON(1);
5627 goto out_unlock;
5628 }
5629 }
5630
5631 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5632 btrfs_ordered_update_i_size(inode, 0, ordered);
5633 btrfs_update_inode(trans, root, inode);
5634out_unlock:
5635 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5636 ordered->file_offset + ordered->len - 1,
5637 &cached_state, GFP_NOFS);
5638out:
5639 btrfs_delalloc_release_metadata(inode, ordered->len);
5640 btrfs_end_transaction(trans, root);
5641 btrfs_put_ordered_extent(ordered);
5642 btrfs_put_ordered_extent(ordered);
5643out_done:
5644 bio->bi_private = dip->private;
5645
5646 kfree(dip->csums);
5647 kfree(dip);
5648 dio_end_io(bio, err);
5649}
5650
eaf25d93
CM
5651static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5652 struct bio *bio, int mirror_num,
5653 unsigned long bio_flags, u64 offset)
5654{
5655 int ret;
5656 struct btrfs_root *root = BTRFS_I(inode)->root;
5657 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5658 BUG_ON(ret);
5659 return 0;
5660}
5661
4b46fce2
JB
5662static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5663 loff_t file_offset)
5664{
5665 struct btrfs_root *root = BTRFS_I(inode)->root;
5666 struct btrfs_dio_private *dip;
5667 struct bio_vec *bvec = bio->bi_io_vec;
5668 u64 start;
5669 int skip_sum;
7b6d91da 5670 int write = rw & REQ_WRITE;
4b46fce2
JB
5671 int ret = 0;
5672
5673 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5674
5675 dip = kmalloc(sizeof(*dip), GFP_NOFS);
5676 if (!dip) {
5677 ret = -ENOMEM;
5678 goto free_ordered;
5679 }
5680 dip->csums = NULL;
5681
5682 if (!skip_sum) {
5683 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5684 if (!dip->csums) {
5685 ret = -ENOMEM;
5686 goto free_ordered;
5687 }
5688 }
5689
5690 dip->private = bio->bi_private;
5691 dip->inode = inode;
5692 dip->logical_offset = file_offset;
5693
5694 start = dip->logical_offset;
5695 dip->bytes = 0;
5696 do {
5697 dip->bytes += bvec->bv_len;
5698 bvec++;
5699 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5700
46bfbb5c 5701 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2
JB
5702 bio->bi_private = dip;
5703
5704 if (write)
5705 bio->bi_end_io = btrfs_endio_direct_write;
5706 else
5707 bio->bi_end_io = btrfs_endio_direct_read;
5708
5709 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5710 if (ret)
5711 goto out_err;
5712
eaf25d93
CM
5713 if (write && !skip_sum) {
5714 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
5715 inode, rw, bio, 0, 0,
5716 dip->logical_offset,
5717 __btrfs_submit_bio_start_direct_io,
5718 __btrfs_submit_bio_done);
5719 if (ret)
5720 goto out_err;
5721 return;
5722 } else if (!skip_sum)
4b46fce2
JB
5723 btrfs_lookup_bio_sums_dio(root, inode, bio,
5724 dip->logical_offset, dip->csums);
5725
eaf25d93 5726 ret = btrfs_map_bio(root, rw, bio, 0, 1);
4b46fce2
JB
5727 if (ret)
5728 goto out_err;
5729 return;
5730out_err:
5731 kfree(dip->csums);
5732 kfree(dip);
5733free_ordered:
5734 /*
5735 * If this is a write, we need to clean up the reserved space and kill
5736 * the ordered extent.
5737 */
5738 if (write) {
5739 struct btrfs_ordered_extent *ordered;
5740 ordered = btrfs_lookup_ordered_extent(inode,
5741 dip->logical_offset);
5742 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5743 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5744 btrfs_free_reserved_extent(root, ordered->start,
5745 ordered->disk_len);
5746 btrfs_put_ordered_extent(ordered);
5747 btrfs_put_ordered_extent(ordered);
5748 }
5749 bio_endio(bio, ret);
5750}
5751
5a5f79b5
CM
5752static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5753 const struct iovec *iov, loff_t offset,
5754 unsigned long nr_segs)
5755{
5756 int seg;
5757 size_t size;
5758 unsigned long addr;
5759 unsigned blocksize_mask = root->sectorsize - 1;
5760 ssize_t retval = -EINVAL;
5761 loff_t end = offset;
5762
5763 if (offset & blocksize_mask)
5764 goto out;
5765
5766 /* Check the memory alignment. Blocks cannot straddle pages */
5767 for (seg = 0; seg < nr_segs; seg++) {
5768 addr = (unsigned long)iov[seg].iov_base;
5769 size = iov[seg].iov_len;
5770 end += size;
5771 if ((addr & blocksize_mask) || (size & blocksize_mask))
5772 goto out;
5773 }
5774 retval = 0;
5775out:
5776 return retval;
5777}
16432985
CM
5778static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5779 const struct iovec *iov, loff_t offset,
5780 unsigned long nr_segs)
5781{
4b46fce2
JB
5782 struct file *file = iocb->ki_filp;
5783 struct inode *inode = file->f_mapping->host;
5784 struct btrfs_ordered_extent *ordered;
4845e44f 5785 struct extent_state *cached_state = NULL;
4b46fce2
JB
5786 u64 lockstart, lockend;
5787 ssize_t ret;
4845e44f
CM
5788 int writing = rw & WRITE;
5789 int write_bits = 0;
3f7c579c 5790 size_t count = iov_length(iov, nr_segs);
4b46fce2 5791
5a5f79b5
CM
5792 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
5793 offset, nr_segs)) {
5794 return 0;
5795 }
5796
4b46fce2 5797 lockstart = offset;
3f7c579c
CM
5798 lockend = offset + count - 1;
5799
5800 if (writing) {
5801 ret = btrfs_delalloc_reserve_space(inode, count);
5802 if (ret)
5803 goto out;
5804 }
4845e44f 5805
4b46fce2 5806 while (1) {
4845e44f
CM
5807 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5808 0, &cached_state, GFP_NOFS);
4b46fce2
JB
5809 /*
5810 * We're concerned with the entire range that we're going to be
5811 * doing DIO to, so we need to make sure theres no ordered
5812 * extents in this range.
5813 */
5814 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5815 lockend - lockstart + 1);
5816 if (!ordered)
5817 break;
4845e44f
CM
5818 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5819 &cached_state, GFP_NOFS);
4b46fce2
JB
5820 btrfs_start_ordered_extent(inode, ordered, 1);
5821 btrfs_put_ordered_extent(ordered);
5822 cond_resched();
5823 }
5824
4845e44f
CM
5825 /*
5826 * we don't use btrfs_set_extent_delalloc because we don't want
5827 * the dirty or uptodate bits
5828 */
5829 if (writing) {
5830 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
5831 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5832 EXTENT_DELALLOC, 0, NULL, &cached_state,
5833 GFP_NOFS);
5834 if (ret) {
5835 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5836 lockend, EXTENT_LOCKED | write_bits,
5837 1, 0, &cached_state, GFP_NOFS);
5838 goto out;
5839 }
5840 }
5841
5842 free_extent_state(cached_state);
5843 cached_state = NULL;
5844
5a5f79b5
CM
5845 ret = __blockdev_direct_IO(rw, iocb, inode,
5846 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
5847 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
5848 btrfs_submit_direct, 0);
4b46fce2
JB
5849
5850 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
5851 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
5852 offset + iov_length(iov, nr_segs) - 1,
5853 EXTENT_LOCKED | write_bits, 1, 0,
5854 &cached_state, GFP_NOFS);
4b46fce2
JB
5855 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
5856 /*
5857 * We're falling back to buffered, unlock the section we didn't
5858 * do IO on.
5859 */
4845e44f
CM
5860 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
5861 offset + iov_length(iov, nr_segs) - 1,
5862 EXTENT_LOCKED | write_bits, 1, 0,
5863 &cached_state, GFP_NOFS);
4b46fce2 5864 }
4845e44f
CM
5865out:
5866 free_extent_state(cached_state);
4b46fce2 5867 return ret;
16432985
CM
5868}
5869
1506fcc8
YS
5870static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5871 __u64 start, __u64 len)
5872{
5873 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
5874}
5875
a52d9a80 5876int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 5877{
d1310b2e
CM
5878 struct extent_io_tree *tree;
5879 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 5880 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 5881}
1832a6d5 5882
a52d9a80 5883static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 5884{
d1310b2e 5885 struct extent_io_tree *tree;
b888db2b
CM
5886
5887
5888 if (current->flags & PF_MEMALLOC) {
5889 redirty_page_for_writepage(wbc, page);
5890 unlock_page(page);
5891 return 0;
5892 }
d1310b2e 5893 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 5894 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
5895}
5896
f421950f
CM
5897int btrfs_writepages(struct address_space *mapping,
5898 struct writeback_control *wbc)
b293f02e 5899{
d1310b2e 5900 struct extent_io_tree *tree;
771ed689 5901
d1310b2e 5902 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
5903 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
5904}
5905
3ab2fb5a
CM
5906static int
5907btrfs_readpages(struct file *file, struct address_space *mapping,
5908 struct list_head *pages, unsigned nr_pages)
5909{
d1310b2e
CM
5910 struct extent_io_tree *tree;
5911 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
5912 return extent_readpages(tree, mapping, pages, nr_pages,
5913 btrfs_get_extent);
5914}
e6dcd2dc 5915static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 5916{
d1310b2e
CM
5917 struct extent_io_tree *tree;
5918 struct extent_map_tree *map;
a52d9a80 5919 int ret;
8c2383c3 5920
d1310b2e
CM
5921 tree = &BTRFS_I(page->mapping->host)->io_tree;
5922 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 5923 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
5924 if (ret == 1) {
5925 ClearPagePrivate(page);
5926 set_page_private(page, 0);
5927 page_cache_release(page);
39279cc3 5928 }
a52d9a80 5929 return ret;
39279cc3
CM
5930}
5931
e6dcd2dc
CM
5932static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5933{
98509cfc
CM
5934 if (PageWriteback(page) || PageDirty(page))
5935 return 0;
b335b003 5936 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
5937}
5938
a52d9a80 5939static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 5940{
d1310b2e 5941 struct extent_io_tree *tree;
e6dcd2dc 5942 struct btrfs_ordered_extent *ordered;
2ac55d41 5943 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
5944 u64 page_start = page_offset(page);
5945 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 5946
8b62b72b
CM
5947
5948 /*
5949 * we have the page locked, so new writeback can't start,
5950 * and the dirty bit won't be cleared while we are here.
5951 *
5952 * Wait for IO on this page so that we can safely clear
5953 * the PagePrivate2 bit and do ordered accounting
5954 */
e6dcd2dc 5955 wait_on_page_writeback(page);
8b62b72b 5956
d1310b2e 5957 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
5958 if (offset) {
5959 btrfs_releasepage(page, GFP_NOFS);
5960 return;
5961 }
2ac55d41
JB
5962 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5963 GFP_NOFS);
e6dcd2dc
CM
5964 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5965 page_offset(page));
5966 if (ordered) {
eb84ae03
CM
5967 /*
5968 * IO on this page will never be started, so we need
5969 * to account for any ordered extents now
5970 */
e6dcd2dc
CM
5971 clear_extent_bit(tree, page_start, page_end,
5972 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 5973 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 5974 &cached_state, GFP_NOFS);
8b62b72b
CM
5975 /*
5976 * whoever cleared the private bit is responsible
5977 * for the finish_ordered_io
5978 */
5979 if (TestClearPagePrivate2(page)) {
5980 btrfs_finish_ordered_io(page->mapping->host,
5981 page_start, page_end);
5982 }
e6dcd2dc 5983 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
5984 cached_state = NULL;
5985 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5986 GFP_NOFS);
e6dcd2dc
CM
5987 }
5988 clear_extent_bit(tree, page_start, page_end,
32c00aff 5989 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 5990 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
5991 __btrfs_releasepage(page, GFP_NOFS);
5992
4a096752 5993 ClearPageChecked(page);
9ad6b7bc 5994 if (PagePrivate(page)) {
9ad6b7bc
CM
5995 ClearPagePrivate(page);
5996 set_page_private(page, 0);
5997 page_cache_release(page);
5998 }
39279cc3
CM
5999}
6000
9ebefb18
CM
6001/*
6002 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6003 * called from a page fault handler when a page is first dirtied. Hence we must
6004 * be careful to check for EOF conditions here. We set the page up correctly
6005 * for a written page which means we get ENOSPC checking when writing into
6006 * holes and correct delalloc and unwritten extent mapping on filesystems that
6007 * support these features.
6008 *
6009 * We are not allowed to take the i_mutex here so we have to play games to
6010 * protect against truncate races as the page could now be beyond EOF. Because
6011 * vmtruncate() writes the inode size before removing pages, once we have the
6012 * page lock we can determine safely if the page is beyond EOF. If it is not
6013 * beyond EOF, then the page is guaranteed safe against truncation until we
6014 * unlock the page.
6015 */
c2ec175c 6016int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6017{
c2ec175c 6018 struct page *page = vmf->page;
6da6abae 6019 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6020 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6021 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6022 struct btrfs_ordered_extent *ordered;
2ac55d41 6023 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6024 char *kaddr;
6025 unsigned long zero_start;
9ebefb18 6026 loff_t size;
1832a6d5 6027 int ret;
a52d9a80 6028 u64 page_start;
e6dcd2dc 6029 u64 page_end;
9ebefb18 6030
0ca1f7ce 6031 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6032 if (ret) {
6033 if (ret == -ENOMEM)
6034 ret = VM_FAULT_OOM;
6035 else /* -ENOSPC, -EIO, etc */
6036 ret = VM_FAULT_SIGBUS;
1832a6d5 6037 goto out;
56a76f82 6038 }
1832a6d5 6039
56a76f82 6040 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6041again:
9ebefb18 6042 lock_page(page);
9ebefb18 6043 size = i_size_read(inode);
e6dcd2dc
CM
6044 page_start = page_offset(page);
6045 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6046
9ebefb18 6047 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6048 (page_start >= size)) {
9ebefb18
CM
6049 /* page got truncated out from underneath us */
6050 goto out_unlock;
6051 }
e6dcd2dc
CM
6052 wait_on_page_writeback(page);
6053
2ac55d41
JB
6054 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6055 GFP_NOFS);
e6dcd2dc
CM
6056 set_page_extent_mapped(page);
6057
eb84ae03
CM
6058 /*
6059 * we can't set the delalloc bits if there are pending ordered
6060 * extents. Drop our locks and wait for them to finish
6061 */
e6dcd2dc
CM
6062 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6063 if (ordered) {
2ac55d41
JB
6064 unlock_extent_cached(io_tree, page_start, page_end,
6065 &cached_state, GFP_NOFS);
e6dcd2dc 6066 unlock_page(page);
eb84ae03 6067 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6068 btrfs_put_ordered_extent(ordered);
6069 goto again;
6070 }
6071
fbf19087
JB
6072 /*
6073 * XXX - page_mkwrite gets called every time the page is dirtied, even
6074 * if it was already dirty, so for space accounting reasons we need to
6075 * clear any delalloc bits for the range we are fixing to save. There
6076 * is probably a better way to do this, but for now keep consistent with
6077 * prepare_pages in the normal write path.
6078 */
2ac55d41 6079 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6080 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6081 0, 0, &cached_state, GFP_NOFS);
fbf19087 6082
2ac55d41
JB
6083 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6084 &cached_state);
9ed74f2d 6085 if (ret) {
2ac55d41
JB
6086 unlock_extent_cached(io_tree, page_start, page_end,
6087 &cached_state, GFP_NOFS);
9ed74f2d
JB
6088 ret = VM_FAULT_SIGBUS;
6089 goto out_unlock;
6090 }
e6dcd2dc 6091 ret = 0;
9ebefb18
CM
6092
6093 /* page is wholly or partially inside EOF */
a52d9a80 6094 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6095 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6096 else
e6dcd2dc 6097 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6098
e6dcd2dc
CM
6099 if (zero_start != PAGE_CACHE_SIZE) {
6100 kaddr = kmap(page);
6101 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6102 flush_dcache_page(page);
6103 kunmap(page);
6104 }
247e743c 6105 ClearPageChecked(page);
e6dcd2dc 6106 set_page_dirty(page);
50a9b214 6107 SetPageUptodate(page);
5a3f23d5 6108
257c62e1
CM
6109 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6110 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6111
2ac55d41 6112 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6113
6114out_unlock:
50a9b214
CM
6115 if (!ret)
6116 return VM_FAULT_LOCKED;
9ebefb18 6117 unlock_page(page);
0ca1f7ce 6118 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6119out:
9ebefb18
CM
6120 return ret;
6121}
6122
39279cc3
CM
6123static void btrfs_truncate(struct inode *inode)
6124{
6125 struct btrfs_root *root = BTRFS_I(inode)->root;
6126 int ret;
6127 struct btrfs_trans_handle *trans;
d3c2fdcf 6128 unsigned long nr;
dbe674a9 6129 u64 mask = root->sectorsize - 1;
39279cc3 6130
8082510e
YZ
6131 if (!S_ISREG(inode->i_mode)) {
6132 WARN_ON(1);
39279cc3 6133 return;
8082510e 6134 }
39279cc3 6135
5d5e103a
JB
6136 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6137 if (ret)
6138 return;
8082510e 6139
4a096752 6140 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6141 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6142
d68fc57b
YZ
6143 trans = btrfs_start_transaction(root, 0);
6144 BUG_ON(IS_ERR(trans));
8082510e 6145 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6146 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6147
6148 /*
6149 * setattr is responsible for setting the ordered_data_close flag,
6150 * but that is only tested during the last file release. That
6151 * could happen well after the next commit, leaving a great big
6152 * window where new writes may get lost if someone chooses to write
6153 * to this file after truncating to zero
6154 *
6155 * The inode doesn't have any dirty data here, and so if we commit
6156 * this is a noop. If someone immediately starts writing to the inode
6157 * it is very likely we'll catch some of their writes in this
6158 * transaction, and the commit will find this file on the ordered
6159 * data list with good things to send down.
6160 *
6161 * This is a best effort solution, there is still a window where
6162 * using truncate to replace the contents of the file will
6163 * end up with a zero length file after a crash.
6164 */
6165 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6166 btrfs_add_ordered_operation(trans, root, inode);
6167
8082510e 6168 while (1) {
d68fc57b
YZ
6169 if (!trans) {
6170 trans = btrfs_start_transaction(root, 0);
6171 BUG_ON(IS_ERR(trans));
6172 btrfs_set_trans_block_group(trans, inode);
6173 trans->block_rsv = root->orphan_block_rsv;
6174 }
6175
6176 ret = btrfs_block_rsv_check(trans, root,
6177 root->orphan_block_rsv, 0, 5);
6178 if (ret) {
6179 BUG_ON(ret != -EAGAIN);
6180 ret = btrfs_commit_transaction(trans, root);
6181 BUG_ON(ret);
6182 trans = NULL;
6183 continue;
6184 }
6185
8082510e
YZ
6186 ret = btrfs_truncate_inode_items(trans, root, inode,
6187 inode->i_size,
6188 BTRFS_EXTENT_DATA_KEY);
6189 if (ret != -EAGAIN)
6190 break;
39279cc3 6191
8082510e
YZ
6192 ret = btrfs_update_inode(trans, root, inode);
6193 BUG_ON(ret);
5f39d397 6194
8082510e
YZ
6195 nr = trans->blocks_used;
6196 btrfs_end_transaction(trans, root);
d68fc57b 6197 trans = NULL;
8082510e 6198 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6199 }
6200
6201 if (ret == 0 && inode->i_nlink > 0) {
6202 ret = btrfs_orphan_del(trans, inode);
6203 BUG_ON(ret);
6204 }
6205
6206 ret = btrfs_update_inode(trans, root, inode);
7b128766
JB
6207 BUG_ON(ret);
6208
7b128766 6209 nr = trans->blocks_used;
89ce8a63 6210 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 6211 BUG_ON(ret);
d3c2fdcf 6212 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
6213}
6214
d352ac68
CM
6215/*
6216 * create a new subvolume directory/inode (helper for the ioctl).
6217 */
d2fb3437 6218int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6219 struct btrfs_root *new_root,
d2fb3437 6220 u64 new_dirid, u64 alloc_hint)
39279cc3 6221{
39279cc3 6222 struct inode *inode;
76dda93c 6223 int err;
00e4e6b3 6224 u64 index = 0;
39279cc3 6225
aec7477b 6226 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6227 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6228 if (IS_ERR(inode))
f46b5a66 6229 return PTR_ERR(inode);
39279cc3
CM
6230 inode->i_op = &btrfs_dir_inode_operations;
6231 inode->i_fop = &btrfs_dir_file_operations;
6232
39279cc3 6233 inode->i_nlink = 1;
dbe674a9 6234 btrfs_i_size_write(inode, 0);
3b96362c 6235
76dda93c
YZ
6236 err = btrfs_update_inode(trans, new_root, inode);
6237 BUG_ON(err);
cb8e7090 6238
76dda93c 6239 iput(inode);
cb8e7090 6240 return 0;
39279cc3
CM
6241}
6242
d352ac68
CM
6243/* helper function for file defrag and space balancing. This
6244 * forces readahead on a given range of bytes in an inode
6245 */
edbd8d4e 6246unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6247 struct file_ra_state *ra, struct file *file,
6248 pgoff_t offset, pgoff_t last_index)
6249{
8e7bf94f 6250 pgoff_t req_size = last_index - offset + 1;
86479a04 6251
86479a04
CM
6252 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6253 return offset + req_size;
86479a04
CM
6254}
6255
39279cc3
CM
6256struct inode *btrfs_alloc_inode(struct super_block *sb)
6257{
6258 struct btrfs_inode *ei;
2ead6ae7 6259 struct inode *inode;
39279cc3
CM
6260
6261 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6262 if (!ei)
6263 return NULL;
2ead6ae7
YZ
6264
6265 ei->root = NULL;
6266 ei->space_info = NULL;
6267 ei->generation = 0;
6268 ei->sequence = 0;
15ee9bc7 6269 ei->last_trans = 0;
257c62e1 6270 ei->last_sub_trans = 0;
e02119d5 6271 ei->logged_trans = 0;
2ead6ae7
YZ
6272 ei->delalloc_bytes = 0;
6273 ei->reserved_bytes = 0;
6274 ei->disk_i_size = 0;
6275 ei->flags = 0;
6276 ei->index_cnt = (u64)-1;
6277 ei->last_unlink_trans = 0;
6278
32c00aff 6279 spin_lock_init(&ei->accounting_lock);
0ca1f7ce 6280 atomic_set(&ei->outstanding_extents, 0);
32c00aff 6281 ei->reserved_extents = 0;
2ead6ae7
YZ
6282
6283 ei->ordered_data_close = 0;
d68fc57b 6284 ei->orphan_meta_reserved = 0;
2ead6ae7
YZ
6285 ei->dummy_inode = 0;
6286 ei->force_compress = 0;
6287
6288 inode = &ei->vfs_inode;
6289 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6290 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6291 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6292 mutex_init(&ei->log_mutex);
e6dcd2dc 6293 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6294 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6295 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6296 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6297 RB_CLEAR_NODE(&ei->rb_node);
6298
6299 return inode;
39279cc3
CM
6300}
6301
6302void btrfs_destroy_inode(struct inode *inode)
6303{
e6dcd2dc 6304 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6305 struct btrfs_root *root = BTRFS_I(inode)->root;
6306
39279cc3
CM
6307 WARN_ON(!list_empty(&inode->i_dentry));
6308 WARN_ON(inode->i_data.nrpages);
0ca1f7ce
YZ
6309 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6310 WARN_ON(BTRFS_I(inode)->reserved_extents);
39279cc3 6311
a6dbd429
JB
6312 /*
6313 * This can happen where we create an inode, but somebody else also
6314 * created the same inode and we need to destroy the one we already
6315 * created.
6316 */
6317 if (!root)
6318 goto free;
6319
5a3f23d5
CM
6320 /*
6321 * Make sure we're properly removed from the ordered operation
6322 * lists.
6323 */
6324 smp_mb();
6325 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6326 spin_lock(&root->fs_info->ordered_extent_lock);
6327 list_del_init(&BTRFS_I(inode)->ordered_operations);
6328 spin_unlock(&root->fs_info->ordered_extent_lock);
6329 }
6330
0af3d00b
JB
6331 if (root == root->fs_info->tree_root) {
6332 struct btrfs_block_group_cache *block_group;
6333
6334 block_group = btrfs_lookup_block_group(root->fs_info,
6335 BTRFS_I(inode)->block_group);
6336 if (block_group && block_group->inode == inode) {
6337 spin_lock(&block_group->lock);
6338 block_group->inode = NULL;
6339 spin_unlock(&block_group->lock);
6340 btrfs_put_block_group(block_group);
6341 } else if (block_group) {
6342 btrfs_put_block_group(block_group);
6343 }
6344 }
6345
d68fc57b 6346 spin_lock(&root->orphan_lock);
7b128766 6347 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6348 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6349 inode->i_ino);
6350 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6351 }
d68fc57b 6352 spin_unlock(&root->orphan_lock);
7b128766 6353
d397712b 6354 while (1) {
e6dcd2dc
CM
6355 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6356 if (!ordered)
6357 break;
6358 else {
d397712b
CM
6359 printk(KERN_ERR "btrfs found ordered "
6360 "extent %llu %llu on inode cleanup\n",
6361 (unsigned long long)ordered->file_offset,
6362 (unsigned long long)ordered->len);
e6dcd2dc
CM
6363 btrfs_remove_ordered_extent(inode, ordered);
6364 btrfs_put_ordered_extent(ordered);
6365 btrfs_put_ordered_extent(ordered);
6366 }
6367 }
5d4f98a2 6368 inode_tree_del(inode);
5b21f2ed 6369 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6370free:
39279cc3
CM
6371 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6372}
6373
45321ac5 6374int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6375{
6376 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6377
0af3d00b
JB
6378 if (btrfs_root_refs(&root->root_item) == 0 &&
6379 root != root->fs_info->tree_root)
45321ac5 6380 return 1;
76dda93c 6381 else
45321ac5 6382 return generic_drop_inode(inode);
76dda93c
YZ
6383}
6384
0ee0fda0 6385static void init_once(void *foo)
39279cc3
CM
6386{
6387 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6388
6389 inode_init_once(&ei->vfs_inode);
6390}
6391
6392void btrfs_destroy_cachep(void)
6393{
6394 if (btrfs_inode_cachep)
6395 kmem_cache_destroy(btrfs_inode_cachep);
6396 if (btrfs_trans_handle_cachep)
6397 kmem_cache_destroy(btrfs_trans_handle_cachep);
6398 if (btrfs_transaction_cachep)
6399 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6400 if (btrfs_path_cachep)
6401 kmem_cache_destroy(btrfs_path_cachep);
6402}
6403
6404int btrfs_init_cachep(void)
6405{
9601e3f6
CH
6406 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6407 sizeof(struct btrfs_inode), 0,
6408 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6409 if (!btrfs_inode_cachep)
6410 goto fail;
9601e3f6
CH
6411
6412 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6413 sizeof(struct btrfs_trans_handle), 0,
6414 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6415 if (!btrfs_trans_handle_cachep)
6416 goto fail;
9601e3f6
CH
6417
6418 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6419 sizeof(struct btrfs_transaction), 0,
6420 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6421 if (!btrfs_transaction_cachep)
6422 goto fail;
9601e3f6
CH
6423
6424 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6425 sizeof(struct btrfs_path), 0,
6426 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6427 if (!btrfs_path_cachep)
6428 goto fail;
9601e3f6 6429
39279cc3
CM
6430 return 0;
6431fail:
6432 btrfs_destroy_cachep();
6433 return -ENOMEM;
6434}
6435
6436static int btrfs_getattr(struct vfsmount *mnt,
6437 struct dentry *dentry, struct kstat *stat)
6438{
6439 struct inode *inode = dentry->d_inode;
6440 generic_fillattr(inode, stat);
3394e160 6441 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6442 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6443 stat->blocks = (inode_get_bytes(inode) +
6444 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6445 return 0;
6446}
6447
d397712b
CM
6448static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6449 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6450{
6451 struct btrfs_trans_handle *trans;
6452 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6453 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6454 struct inode *new_inode = new_dentry->d_inode;
6455 struct inode *old_inode = old_dentry->d_inode;
6456 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6457 u64 index = 0;
4df27c4d 6458 u64 root_objectid;
39279cc3
CM
6459 int ret;
6460
f679a840
YZ
6461 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6462 return -EPERM;
6463
4df27c4d
YZ
6464 /* we only allow rename subvolume link between subvolumes */
6465 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6466 return -EXDEV;
6467
4df27c4d
YZ
6468 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6469 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6470 return -ENOTEMPTY;
5f39d397 6471
4df27c4d
YZ
6472 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6473 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6474 return -ENOTEMPTY;
5a3f23d5
CM
6475 /*
6476 * we're using rename to replace one file with another.
6477 * and the replacement file is large. Start IO on it now so
6478 * we don't add too much work to the end of the transaction
6479 */
4baf8c92 6480 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6481 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6482 filemap_flush(old_inode->i_mapping);
6483
76dda93c
YZ
6484 /* close the racy window with snapshot create/destroy ioctl */
6485 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6486 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6487 /*
6488 * We want to reserve the absolute worst case amount of items. So if
6489 * both inodes are subvols and we need to unlink them then that would
6490 * require 4 item modifications, but if they are both normal inodes it
6491 * would require 5 item modifications, so we'll assume their normal
6492 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6493 * should cover the worst case number of items we'll modify.
6494 */
6495 trans = btrfs_start_transaction(root, 20);
6496 if (IS_ERR(trans))
6497 return PTR_ERR(trans);
76dda93c 6498
a5719521 6499 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 6500
4df27c4d
YZ
6501 if (dest != root)
6502 btrfs_record_root_in_trans(trans, dest);
5f39d397 6503
a5719521
YZ
6504 ret = btrfs_set_inode_index(new_dir, &index);
6505 if (ret)
6506 goto out_fail;
5a3f23d5 6507
a5719521 6508 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6509 /* force full log commit if subvolume involved. */
6510 root->fs_info->last_trans_log_full_commit = trans->transid;
6511 } else {
a5719521
YZ
6512 ret = btrfs_insert_inode_ref(trans, dest,
6513 new_dentry->d_name.name,
6514 new_dentry->d_name.len,
6515 old_inode->i_ino,
6516 new_dir->i_ino, index);
6517 if (ret)
6518 goto out_fail;
4df27c4d
YZ
6519 /*
6520 * this is an ugly little race, but the rename is required
6521 * to make sure that if we crash, the inode is either at the
6522 * old name or the new one. pinning the log transaction lets
6523 * us make sure we don't allow a log commit to come in after
6524 * we unlink the name but before we add the new name back in.
6525 */
6526 btrfs_pin_log_trans(root);
6527 }
5a3f23d5
CM
6528 /*
6529 * make sure the inode gets flushed if it is replacing
6530 * something.
6531 */
6532 if (new_inode && new_inode->i_size &&
6533 old_inode && S_ISREG(old_inode->i_mode)) {
6534 btrfs_add_ordered_operation(trans, root, old_inode);
6535 }
6536
39279cc3
CM
6537 old_dir->i_ctime = old_dir->i_mtime = ctime;
6538 new_dir->i_ctime = new_dir->i_mtime = ctime;
6539 old_inode->i_ctime = ctime;
5f39d397 6540
12fcfd22
CM
6541 if (old_dentry->d_parent != new_dentry->d_parent)
6542 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6543
4df27c4d
YZ
6544 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6545 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6546 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6547 old_dentry->d_name.name,
6548 old_dentry->d_name.len);
6549 } else {
6550 btrfs_inc_nlink(old_dentry->d_inode);
6551 ret = btrfs_unlink_inode(trans, root, old_dir,
6552 old_dentry->d_inode,
6553 old_dentry->d_name.name,
6554 old_dentry->d_name.len);
6555 }
6556 BUG_ON(ret);
39279cc3
CM
6557
6558 if (new_inode) {
6559 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
6560 if (unlikely(new_inode->i_ino ==
6561 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6562 root_objectid = BTRFS_I(new_inode)->location.objectid;
6563 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6564 root_objectid,
6565 new_dentry->d_name.name,
6566 new_dentry->d_name.len);
6567 BUG_ON(new_inode->i_nlink == 0);
6568 } else {
6569 ret = btrfs_unlink_inode(trans, dest, new_dir,
6570 new_dentry->d_inode,
6571 new_dentry->d_name.name,
6572 new_dentry->d_name.len);
6573 }
6574 BUG_ON(ret);
7b128766 6575 if (new_inode->i_nlink == 0) {
e02119d5 6576 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 6577 BUG_ON(ret);
7b128766 6578 }
39279cc3 6579 }
aec7477b 6580
4df27c4d
YZ
6581 ret = btrfs_add_link(trans, new_dir, old_inode,
6582 new_dentry->d_name.name,
a5719521 6583 new_dentry->d_name.len, 0, index);
4df27c4d 6584 BUG_ON(ret);
39279cc3 6585
4df27c4d
YZ
6586 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6587 btrfs_log_new_name(trans, old_inode, old_dir,
6588 new_dentry->d_parent);
6589 btrfs_end_log_trans(root);
6590 }
39279cc3 6591out_fail:
ab78c84d 6592 btrfs_end_transaction_throttle(trans, root);
4df27c4d 6593
76dda93c
YZ
6594 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6595 up_read(&root->fs_info->subvol_sem);
9ed74f2d 6596
39279cc3
CM
6597 return ret;
6598}
6599
d352ac68
CM
6600/*
6601 * some fairly slow code that needs optimization. This walks the list
6602 * of all the inodes with pending delalloc and forces them to disk.
6603 */
24bbcf04 6604int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
6605{
6606 struct list_head *head = &root->fs_info->delalloc_inodes;
6607 struct btrfs_inode *binode;
5b21f2ed 6608 struct inode *inode;
ea8c2819 6609
c146afad
YZ
6610 if (root->fs_info->sb->s_flags & MS_RDONLY)
6611 return -EROFS;
6612
75eff68e 6613 spin_lock(&root->fs_info->delalloc_lock);
d397712b 6614 while (!list_empty(head)) {
ea8c2819
CM
6615 binode = list_entry(head->next, struct btrfs_inode,
6616 delalloc_inodes);
5b21f2ed
ZY
6617 inode = igrab(&binode->vfs_inode);
6618 if (!inode)
6619 list_del_init(&binode->delalloc_inodes);
75eff68e 6620 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 6621 if (inode) {
8c8bee1d 6622 filemap_flush(inode->i_mapping);
24bbcf04
YZ
6623 if (delay_iput)
6624 btrfs_add_delayed_iput(inode);
6625 else
6626 iput(inode);
5b21f2ed
ZY
6627 }
6628 cond_resched();
75eff68e 6629 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 6630 }
75eff68e 6631 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
6632
6633 /* the filemap_flush will queue IO into the worker threads, but
6634 * we have to make sure the IO is actually started and that
6635 * ordered extents get created before we return
6636 */
6637 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 6638 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 6639 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 6640 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
6641 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6642 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
6643 }
6644 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
6645 return 0;
6646}
6647
5da9d01b
YZ
6648int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput)
6649{
6650 struct btrfs_inode *binode;
6651 struct inode *inode = NULL;
6652
6653 spin_lock(&root->fs_info->delalloc_lock);
6654 while (!list_empty(&root->fs_info->delalloc_inodes)) {
6655 binode = list_entry(root->fs_info->delalloc_inodes.next,
6656 struct btrfs_inode, delalloc_inodes);
6657 inode = igrab(&binode->vfs_inode);
6658 if (inode) {
6659 list_move_tail(&binode->delalloc_inodes,
6660 &root->fs_info->delalloc_inodes);
6661 break;
6662 }
6663
6664 list_del_init(&binode->delalloc_inodes);
6665 cond_resched_lock(&root->fs_info->delalloc_lock);
6666 }
6667 spin_unlock(&root->fs_info->delalloc_lock);
6668
6669 if (inode) {
6670 write_inode_now(inode, 0);
6671 if (delay_iput)
6672 btrfs_add_delayed_iput(inode);
6673 else
6674 iput(inode);
6675 return 1;
6676 }
6677 return 0;
6678}
6679
39279cc3
CM
6680static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6681 const char *symname)
6682{
6683 struct btrfs_trans_handle *trans;
6684 struct btrfs_root *root = BTRFS_I(dir)->root;
6685 struct btrfs_path *path;
6686 struct btrfs_key key;
1832a6d5 6687 struct inode *inode = NULL;
39279cc3
CM
6688 int err;
6689 int drop_inode = 0;
6690 u64 objectid;
00e4e6b3 6691 u64 index = 0 ;
39279cc3
CM
6692 int name_len;
6693 int datasize;
5f39d397 6694 unsigned long ptr;
39279cc3 6695 struct btrfs_file_extent_item *ei;
5f39d397 6696 struct extent_buffer *leaf;
1832a6d5 6697 unsigned long nr = 0;
39279cc3
CM
6698
6699 name_len = strlen(symname) + 1;
6700 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6701 return -ENAMETOOLONG;
1832a6d5 6702
a22285a6
YZ
6703 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6704 if (err)
6705 return err;
9ed74f2d
JB
6706 /*
6707 * 2 items for inode item and ref
6708 * 2 items for dir items
6709 * 1 item for xattr if selinux is on
6710 */
a22285a6
YZ
6711 trans = btrfs_start_transaction(root, 5);
6712 if (IS_ERR(trans))
6713 return PTR_ERR(trans);
1832a6d5 6714
39279cc3
CM
6715 btrfs_set_trans_block_group(trans, dir);
6716
aec7477b 6717 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
6718 dentry->d_name.len,
6719 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
6720 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6721 &index);
39279cc3
CM
6722 err = PTR_ERR(inode);
6723 if (IS_ERR(inode))
6724 goto out_unlock;
6725
f34f57a3 6726 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
6727 if (err) {
6728 drop_inode = 1;
6729 goto out_unlock;
6730 }
6731
39279cc3 6732 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 6733 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
6734 if (err)
6735 drop_inode = 1;
6736 else {
6737 inode->i_mapping->a_ops = &btrfs_aops;
04160088 6738 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
6739 inode->i_fop = &btrfs_file_operations;
6740 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 6741 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 6742 }
39279cc3
CM
6743 btrfs_update_inode_block_group(trans, inode);
6744 btrfs_update_inode_block_group(trans, dir);
6745 if (drop_inode)
6746 goto out_unlock;
6747
6748 path = btrfs_alloc_path();
6749 BUG_ON(!path);
6750 key.objectid = inode->i_ino;
6751 key.offset = 0;
39279cc3
CM
6752 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6753 datasize = btrfs_file_extent_calc_inline_size(name_len);
6754 err = btrfs_insert_empty_item(trans, root, path, &key,
6755 datasize);
54aa1f4d
CM
6756 if (err) {
6757 drop_inode = 1;
6758 goto out_unlock;
6759 }
5f39d397
CM
6760 leaf = path->nodes[0];
6761 ei = btrfs_item_ptr(leaf, path->slots[0],
6762 struct btrfs_file_extent_item);
6763 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
6764 btrfs_set_file_extent_type(leaf, ei,
39279cc3 6765 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
6766 btrfs_set_file_extent_encryption(leaf, ei, 0);
6767 btrfs_set_file_extent_compression(leaf, ei, 0);
6768 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
6769 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
6770
39279cc3 6771 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
6772 write_extent_buffer(leaf, symname, ptr, name_len);
6773 btrfs_mark_buffer_dirty(leaf);
39279cc3 6774 btrfs_free_path(path);
5f39d397 6775
39279cc3
CM
6776 inode->i_op = &btrfs_symlink_inode_operations;
6777 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 6778 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 6779 inode_set_bytes(inode, name_len);
dbe674a9 6780 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
6781 err = btrfs_update_inode(trans, root, inode);
6782 if (err)
6783 drop_inode = 1;
39279cc3
CM
6784
6785out_unlock:
d3c2fdcf 6786 nr = trans->blocks_used;
ab78c84d 6787 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
6788 if (drop_inode) {
6789 inode_dec_link_count(inode);
6790 iput(inode);
6791 }
d3c2fdcf 6792 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
6793 return err;
6794}
16432985 6795
0af3d00b
JB
6796static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
6797 u64 start, u64 num_bytes, u64 min_size,
6798 loff_t actual_len, u64 *alloc_hint,
6799 struct btrfs_trans_handle *trans)
d899e052 6800{
d899e052
YZ
6801 struct btrfs_root *root = BTRFS_I(inode)->root;
6802 struct btrfs_key ins;
d899e052 6803 u64 cur_offset = start;
d899e052 6804 int ret = 0;
0af3d00b 6805 bool own_trans = true;
d899e052 6806
0af3d00b
JB
6807 if (trans)
6808 own_trans = false;
d899e052 6809 while (num_bytes > 0) {
0af3d00b
JB
6810 if (own_trans) {
6811 trans = btrfs_start_transaction(root, 3);
6812 if (IS_ERR(trans)) {
6813 ret = PTR_ERR(trans);
6814 break;
6815 }
5a303d5d
YZ
6816 }
6817
efa56464
YZ
6818 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
6819 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 6820 if (ret) {
0af3d00b
JB
6821 if (own_trans)
6822 btrfs_end_transaction(trans, root);
a22285a6 6823 break;
d899e052 6824 }
5a303d5d 6825
d899e052
YZ
6826 ret = insert_reserved_file_extent(trans, inode,
6827 cur_offset, ins.objectid,
6828 ins.offset, ins.offset,
920bbbfb 6829 ins.offset, 0, 0, 0,
d899e052
YZ
6830 BTRFS_FILE_EXTENT_PREALLOC);
6831 BUG_ON(ret);
a1ed835e
CM
6832 btrfs_drop_extent_cache(inode, cur_offset,
6833 cur_offset + ins.offset -1, 0);
5a303d5d 6834
d899e052
YZ
6835 num_bytes -= ins.offset;
6836 cur_offset += ins.offset;
efa56464 6837 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 6838
d899e052 6839 inode->i_ctime = CURRENT_TIME;
6cbff00f 6840 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 6841 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
6842 (actual_len > inode->i_size) &&
6843 (cur_offset > inode->i_size)) {
d1ea6a61 6844 if (cur_offset > actual_len)
efa56464 6845 i_size_write(inode, actual_len);
d1ea6a61 6846 else
efa56464
YZ
6847 i_size_write(inode, cur_offset);
6848 i_size_write(inode, cur_offset);
6849 btrfs_ordered_update_i_size(inode, cur_offset, NULL);
5a303d5d
YZ
6850 }
6851
d899e052
YZ
6852 ret = btrfs_update_inode(trans, root, inode);
6853 BUG_ON(ret);
d899e052 6854
0af3d00b
JB
6855 if (own_trans)
6856 btrfs_end_transaction(trans, root);
5a303d5d 6857 }
d899e052
YZ
6858 return ret;
6859}
6860
0af3d00b
JB
6861int btrfs_prealloc_file_range(struct inode *inode, int mode,
6862 u64 start, u64 num_bytes, u64 min_size,
6863 loff_t actual_len, u64 *alloc_hint)
6864{
6865 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
6866 min_size, actual_len, alloc_hint,
6867 NULL);
6868}
6869
6870int btrfs_prealloc_file_range_trans(struct inode *inode,
6871 struct btrfs_trans_handle *trans, int mode,
6872 u64 start, u64 num_bytes, u64 min_size,
6873 loff_t actual_len, u64 *alloc_hint)
6874{
6875 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
6876 min_size, actual_len, alloc_hint, trans);
6877}
6878
d899e052
YZ
6879static long btrfs_fallocate(struct inode *inode, int mode,
6880 loff_t offset, loff_t len)
6881{
2ac55d41 6882 struct extent_state *cached_state = NULL;
d899e052
YZ
6883 u64 cur_offset;
6884 u64 last_byte;
6885 u64 alloc_start;
6886 u64 alloc_end;
6887 u64 alloc_hint = 0;
e980b50c 6888 u64 locked_end;
d899e052
YZ
6889 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
6890 struct extent_map *em;
6891 int ret;
6892
6893 alloc_start = offset & ~mask;
6894 alloc_end = (offset + len + mask) & ~mask;
6895
546888da
CM
6896 /*
6897 * wait for ordered IO before we have any locks. We'll loop again
6898 * below with the locks held.
6899 */
6900 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
6901
d899e052
YZ
6902 mutex_lock(&inode->i_mutex);
6903 if (alloc_start > inode->i_size) {
6904 ret = btrfs_cont_expand(inode, alloc_start);
6905 if (ret)
6906 goto out;
6907 }
6908
0ca1f7ce 6909 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
a970b0a1
JB
6910 if (ret)
6911 goto out;
6912
e980b50c 6913 locked_end = alloc_end - 1;
d899e052
YZ
6914 while (1) {
6915 struct btrfs_ordered_extent *ordered;
546888da 6916
546888da
CM
6917 /* the extent lock is ordered inside the running
6918 * transaction
6919 */
2ac55d41
JB
6920 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
6921 locked_end, 0, &cached_state, GFP_NOFS);
d899e052
YZ
6922 ordered = btrfs_lookup_first_ordered_extent(inode,
6923 alloc_end - 1);
6924 if (ordered &&
6925 ordered->file_offset + ordered->len > alloc_start &&
6926 ordered->file_offset < alloc_end) {
6927 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6928 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
6929 alloc_start, locked_end,
6930 &cached_state, GFP_NOFS);
546888da
CM
6931 /*
6932 * we can't wait on the range with the transaction
6933 * running or with the extent lock held
6934 */
d899e052
YZ
6935 btrfs_wait_ordered_range(inode, alloc_start,
6936 alloc_end - alloc_start);
6937 } else {
6938 if (ordered)
6939 btrfs_put_ordered_extent(ordered);
6940 break;
6941 }
6942 }
6943
6944 cur_offset = alloc_start;
6945 while (1) {
6946 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
6947 alloc_end - cur_offset, 0);
6948 BUG_ON(IS_ERR(em) || !em);
6949 last_byte = min(extent_map_end(em), alloc_end);
6950 last_byte = (last_byte + mask) & ~mask;
5a303d5d
YZ
6951 if (em->block_start == EXTENT_MAP_HOLE ||
6952 (cur_offset >= inode->i_size &&
6953 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
83609779 6954 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
efa56464
YZ
6955 last_byte - cur_offset,
6956 1 << inode->i_blkbits,
6957 offset + len,
6958 &alloc_hint);
d899e052
YZ
6959 if (ret < 0) {
6960 free_extent_map(em);
6961 break;
6962 }
6963 }
d899e052
YZ
6964 free_extent_map(em);
6965
6966 cur_offset = last_byte;
6967 if (cur_offset >= alloc_end) {
6968 ret = 0;
6969 break;
6970 }
6971 }
2ac55d41
JB
6972 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
6973 &cached_state, GFP_NOFS);
546888da 6974
0ca1f7ce 6975 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
d899e052
YZ
6976out:
6977 mutex_unlock(&inode->i_mutex);
6978 return ret;
6979}
6980
e6dcd2dc
CM
6981static int btrfs_set_page_dirty(struct page *page)
6982{
e6dcd2dc
CM
6983 return __set_page_dirty_nobuffers(page);
6984}
6985
0ee0fda0 6986static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 6987{
6cbff00f 6988 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 6989 return -EACCES;
33268eaf 6990 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 6991}
39279cc3 6992
6e1d5dcc 6993static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 6994 .getattr = btrfs_getattr,
39279cc3
CM
6995 .lookup = btrfs_lookup,
6996 .create = btrfs_create,
6997 .unlink = btrfs_unlink,
6998 .link = btrfs_link,
6999 .mkdir = btrfs_mkdir,
7000 .rmdir = btrfs_rmdir,
7001 .rename = btrfs_rename,
7002 .symlink = btrfs_symlink,
7003 .setattr = btrfs_setattr,
618e21d5 7004 .mknod = btrfs_mknod,
95819c05
CH
7005 .setxattr = btrfs_setxattr,
7006 .getxattr = btrfs_getxattr,
5103e947 7007 .listxattr = btrfs_listxattr,
95819c05 7008 .removexattr = btrfs_removexattr,
fdebe2bd 7009 .permission = btrfs_permission,
39279cc3 7010};
6e1d5dcc 7011static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7012 .lookup = btrfs_lookup,
fdebe2bd 7013 .permission = btrfs_permission,
39279cc3 7014};
76dda93c 7015
828c0950 7016static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7017 .llseek = generic_file_llseek,
7018 .read = generic_read_dir,
cbdf5a24 7019 .readdir = btrfs_real_readdir,
34287aa3 7020 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7021#ifdef CONFIG_COMPAT
34287aa3 7022 .compat_ioctl = btrfs_ioctl,
39279cc3 7023#endif
6bf13c0c 7024 .release = btrfs_release_file,
e02119d5 7025 .fsync = btrfs_sync_file,
39279cc3
CM
7026};
7027
d1310b2e 7028static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7029 .fill_delalloc = run_delalloc_range,
065631f6 7030 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7031 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7032 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7033 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7034 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7035 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7036 .set_bit_hook = btrfs_set_bit_hook,
7037 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7038 .merge_extent_hook = btrfs_merge_extent_hook,
7039 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7040};
7041
35054394
CM
7042/*
7043 * btrfs doesn't support the bmap operation because swapfiles
7044 * use bmap to make a mapping of extents in the file. They assume
7045 * these extents won't change over the life of the file and they
7046 * use the bmap result to do IO directly to the drive.
7047 *
7048 * the btrfs bmap call would return logical addresses that aren't
7049 * suitable for IO and they also will change frequently as COW
7050 * operations happen. So, swapfile + btrfs == corruption.
7051 *
7052 * For now we're avoiding this by dropping bmap.
7053 */
7f09410b 7054static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7055 .readpage = btrfs_readpage,
7056 .writepage = btrfs_writepage,
b293f02e 7057 .writepages = btrfs_writepages,
3ab2fb5a 7058 .readpages = btrfs_readpages,
39279cc3 7059 .sync_page = block_sync_page,
16432985 7060 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7061 .invalidatepage = btrfs_invalidatepage,
7062 .releasepage = btrfs_releasepage,
e6dcd2dc 7063 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7064 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7065};
7066
7f09410b 7067static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7068 .readpage = btrfs_readpage,
7069 .writepage = btrfs_writepage,
2bf5a725
CM
7070 .invalidatepage = btrfs_invalidatepage,
7071 .releasepage = btrfs_releasepage,
39279cc3
CM
7072};
7073
6e1d5dcc 7074static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7075 .truncate = btrfs_truncate,
7076 .getattr = btrfs_getattr,
7077 .setattr = btrfs_setattr,
95819c05
CH
7078 .setxattr = btrfs_setxattr,
7079 .getxattr = btrfs_getxattr,
5103e947 7080 .listxattr = btrfs_listxattr,
95819c05 7081 .removexattr = btrfs_removexattr,
fdebe2bd 7082 .permission = btrfs_permission,
d899e052 7083 .fallocate = btrfs_fallocate,
1506fcc8 7084 .fiemap = btrfs_fiemap,
39279cc3 7085};
6e1d5dcc 7086static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7087 .getattr = btrfs_getattr,
7088 .setattr = btrfs_setattr,
fdebe2bd 7089 .permission = btrfs_permission,
95819c05
CH
7090 .setxattr = btrfs_setxattr,
7091 .getxattr = btrfs_getxattr,
33268eaf 7092 .listxattr = btrfs_listxattr,
95819c05 7093 .removexattr = btrfs_removexattr,
618e21d5 7094};
6e1d5dcc 7095static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7096 .readlink = generic_readlink,
7097 .follow_link = page_follow_link_light,
7098 .put_link = page_put_link,
fdebe2bd 7099 .permission = btrfs_permission,
0279b4cd
JO
7100 .setxattr = btrfs_setxattr,
7101 .getxattr = btrfs_getxattr,
7102 .listxattr = btrfs_listxattr,
7103 .removexattr = btrfs_removexattr,
39279cc3 7104};
76dda93c 7105
82d339d9 7106const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7107 .d_delete = btrfs_dentry_delete,
7108};