]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/free-space-cache.c
xps: Transmit Packet Steering
[net-next-2.6.git] / fs / btrfs / free-space-cache.c
CommitLineData
0f9dd46c
JB
1/*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
96303081 19#include <linux/pagemap.h>
0f9dd46c 20#include <linux/sched.h>
5a0e3ad6 21#include <linux/slab.h>
96303081 22#include <linux/math64.h>
0f9dd46c 23#include "ctree.h"
fa9c0d79
CM
24#include "free-space-cache.h"
25#include "transaction.h"
0af3d00b 26#include "disk-io.h"
fa9c0d79 27
96303081
JB
28#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
29#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
0f9dd46c 30
0cb59c99
JB
31static void recalculate_thresholds(struct btrfs_block_group_cache
32 *block_group);
33static int link_free_space(struct btrfs_block_group_cache *block_group,
34 struct btrfs_free_space *info);
35
0af3d00b
JB
36struct inode *lookup_free_space_inode(struct btrfs_root *root,
37 struct btrfs_block_group_cache
38 *block_group, struct btrfs_path *path)
39{
40 struct btrfs_key key;
41 struct btrfs_key location;
42 struct btrfs_disk_key disk_key;
43 struct btrfs_free_space_header *header;
44 struct extent_buffer *leaf;
45 struct inode *inode = NULL;
46 int ret;
47
48 spin_lock(&block_group->lock);
49 if (block_group->inode)
50 inode = igrab(block_group->inode);
51 spin_unlock(&block_group->lock);
52 if (inode)
53 return inode;
54
55 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
56 key.offset = block_group->key.objectid;
57 key.type = 0;
58
59 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
60 if (ret < 0)
61 return ERR_PTR(ret);
62 if (ret > 0) {
63 btrfs_release_path(root, path);
64 return ERR_PTR(-ENOENT);
65 }
66
67 leaf = path->nodes[0];
68 header = btrfs_item_ptr(leaf, path->slots[0],
69 struct btrfs_free_space_header);
70 btrfs_free_space_key(leaf, header, &disk_key);
71 btrfs_disk_key_to_cpu(&location, &disk_key);
72 btrfs_release_path(root, path);
73
74 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
75 if (!inode)
76 return ERR_PTR(-ENOENT);
77 if (IS_ERR(inode))
78 return inode;
79 if (is_bad_inode(inode)) {
80 iput(inode);
81 return ERR_PTR(-ENOENT);
82 }
83
84 spin_lock(&block_group->lock);
85 if (!root->fs_info->closing) {
86 block_group->inode = igrab(inode);
87 block_group->iref = 1;
88 }
89 spin_unlock(&block_group->lock);
90
91 return inode;
92}
93
94int create_free_space_inode(struct btrfs_root *root,
95 struct btrfs_trans_handle *trans,
96 struct btrfs_block_group_cache *block_group,
97 struct btrfs_path *path)
98{
99 struct btrfs_key key;
100 struct btrfs_disk_key disk_key;
101 struct btrfs_free_space_header *header;
102 struct btrfs_inode_item *inode_item;
103 struct extent_buffer *leaf;
104 u64 objectid;
105 int ret;
106
107 ret = btrfs_find_free_objectid(trans, root, 0, &objectid);
108 if (ret < 0)
109 return ret;
110
111 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
112 if (ret)
113 return ret;
114
115 leaf = path->nodes[0];
116 inode_item = btrfs_item_ptr(leaf, path->slots[0],
117 struct btrfs_inode_item);
118 btrfs_item_key(leaf, &disk_key, path->slots[0]);
119 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
120 sizeof(*inode_item));
121 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
122 btrfs_set_inode_size(leaf, inode_item, 0);
123 btrfs_set_inode_nbytes(leaf, inode_item, 0);
124 btrfs_set_inode_uid(leaf, inode_item, 0);
125 btrfs_set_inode_gid(leaf, inode_item, 0);
126 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
127 btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
128 BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
129 btrfs_set_inode_nlink(leaf, inode_item, 1);
130 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
131 btrfs_set_inode_block_group(leaf, inode_item,
132 block_group->key.objectid);
133 btrfs_mark_buffer_dirty(leaf);
134 btrfs_release_path(root, path);
135
136 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
137 key.offset = block_group->key.objectid;
138 key.type = 0;
139
140 ret = btrfs_insert_empty_item(trans, root, path, &key,
141 sizeof(struct btrfs_free_space_header));
142 if (ret < 0) {
143 btrfs_release_path(root, path);
144 return ret;
145 }
146 leaf = path->nodes[0];
147 header = btrfs_item_ptr(leaf, path->slots[0],
148 struct btrfs_free_space_header);
149 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
150 btrfs_set_free_space_key(leaf, header, &disk_key);
151 btrfs_mark_buffer_dirty(leaf);
152 btrfs_release_path(root, path);
153
154 return 0;
155}
156
157int btrfs_truncate_free_space_cache(struct btrfs_root *root,
158 struct btrfs_trans_handle *trans,
159 struct btrfs_path *path,
160 struct inode *inode)
161{
162 loff_t oldsize;
163 int ret = 0;
164
165 trans->block_rsv = root->orphan_block_rsv;
166 ret = btrfs_block_rsv_check(trans, root,
167 root->orphan_block_rsv,
168 0, 5);
169 if (ret)
170 return ret;
171
172 oldsize = i_size_read(inode);
173 btrfs_i_size_write(inode, 0);
174 truncate_pagecache(inode, oldsize, 0);
175
176 /*
177 * We don't need an orphan item because truncating the free space cache
178 * will never be split across transactions.
179 */
180 ret = btrfs_truncate_inode_items(trans, root, inode,
181 0, BTRFS_EXTENT_DATA_KEY);
182 if (ret) {
183 WARN_ON(1);
184 return ret;
185 }
186
187 return btrfs_update_inode(trans, root, inode);
188}
189
9d66e233
JB
190static int readahead_cache(struct inode *inode)
191{
192 struct file_ra_state *ra;
193 unsigned long last_index;
194
195 ra = kzalloc(sizeof(*ra), GFP_NOFS);
196 if (!ra)
197 return -ENOMEM;
198
199 file_ra_state_init(ra, inode->i_mapping);
200 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
201
202 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
203
204 kfree(ra);
205
206 return 0;
207}
208
209int load_free_space_cache(struct btrfs_fs_info *fs_info,
210 struct btrfs_block_group_cache *block_group)
211{
212 struct btrfs_root *root = fs_info->tree_root;
213 struct inode *inode;
214 struct btrfs_free_space_header *header;
215 struct extent_buffer *leaf;
216 struct page *page;
217 struct btrfs_path *path;
218 u32 *checksums = NULL, *crc;
219 char *disk_crcs = NULL;
220 struct btrfs_key key;
221 struct list_head bitmaps;
222 u64 num_entries;
223 u64 num_bitmaps;
224 u64 generation;
225 u32 cur_crc = ~(u32)0;
226 pgoff_t index = 0;
227 unsigned long first_page_offset;
228 int num_checksums;
229 int ret = 0;
230
231 /*
232 * If we're unmounting then just return, since this does a search on the
233 * normal root and not the commit root and we could deadlock.
234 */
235 smp_mb();
236 if (fs_info->closing)
237 return 0;
238
239 /*
240 * If this block group has been marked to be cleared for one reason or
241 * another then we can't trust the on disk cache, so just return.
242 */
243 spin_lock(&block_group->lock);
244 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
9d66e233
JB
245 spin_unlock(&block_group->lock);
246 return 0;
247 }
248 spin_unlock(&block_group->lock);
249
250 INIT_LIST_HEAD(&bitmaps);
251
252 path = btrfs_alloc_path();
253 if (!path)
254 return 0;
255
256 inode = lookup_free_space_inode(root, block_group, path);
257 if (IS_ERR(inode)) {
258 btrfs_free_path(path);
259 return 0;
260 }
261
262 /* Nothing in the space cache, goodbye */
263 if (!i_size_read(inode)) {
264 btrfs_free_path(path);
265 goto out;
266 }
267
268 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
269 key.offset = block_group->key.objectid;
270 key.type = 0;
271
272 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
273 if (ret) {
274 btrfs_free_path(path);
275 goto out;
276 }
277
278 leaf = path->nodes[0];
279 header = btrfs_item_ptr(leaf, path->slots[0],
280 struct btrfs_free_space_header);
281 num_entries = btrfs_free_space_entries(leaf, header);
282 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
283 generation = btrfs_free_space_generation(leaf, header);
284 btrfs_free_path(path);
285
286 if (BTRFS_I(inode)->generation != generation) {
287 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
288 " not match free space cache generation (%llu) for "
289 "block group %llu\n",
290 (unsigned long long)BTRFS_I(inode)->generation,
291 (unsigned long long)generation,
292 (unsigned long long)block_group->key.objectid);
293 goto out;
294 }
295
296 if (!num_entries)
297 goto out;
298
299 /* Setup everything for doing checksumming */
300 num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
301 checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
302 if (!checksums)
303 goto out;
304 first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
305 disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
306 if (!disk_crcs)
307 goto out;
308
309 ret = readahead_cache(inode);
310 if (ret) {
311 ret = 0;
312 goto out;
313 }
314
315 while (1) {
316 struct btrfs_free_space_entry *entry;
317 struct btrfs_free_space *e;
318 void *addr;
319 unsigned long offset = 0;
320 unsigned long start_offset = 0;
321 int need_loop = 0;
322
323 if (!num_entries && !num_bitmaps)
324 break;
325
326 if (index == 0) {
327 start_offset = first_page_offset;
328 offset = start_offset;
329 }
330
331 page = grab_cache_page(inode->i_mapping, index);
332 if (!page) {
333 ret = 0;
334 goto free_cache;
335 }
336
337 if (!PageUptodate(page)) {
338 btrfs_readpage(NULL, page);
339 lock_page(page);
340 if (!PageUptodate(page)) {
341 unlock_page(page);
342 page_cache_release(page);
343 printk(KERN_ERR "btrfs: error reading free "
344 "space cache: %llu\n",
345 (unsigned long long)
346 block_group->key.objectid);
347 goto free_cache;
348 }
349 }
350 addr = kmap(page);
351
352 if (index == 0) {
353 u64 *gen;
354
355 memcpy(disk_crcs, addr, first_page_offset);
356 gen = addr + (sizeof(u32) * num_checksums);
357 if (*gen != BTRFS_I(inode)->generation) {
358 printk(KERN_ERR "btrfs: space cache generation"
359 " (%llu) does not match inode (%llu) "
360 "for block group %llu\n",
361 (unsigned long long)*gen,
362 (unsigned long long)
363 BTRFS_I(inode)->generation,
364 (unsigned long long)
365 block_group->key.objectid);
366 kunmap(page);
367 unlock_page(page);
368 page_cache_release(page);
369 goto free_cache;
370 }
371 crc = (u32 *)disk_crcs;
372 }
373 entry = addr + start_offset;
374
375 /* First lets check our crc before we do anything fun */
376 cur_crc = ~(u32)0;
377 cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
378 PAGE_CACHE_SIZE - start_offset);
379 btrfs_csum_final(cur_crc, (char *)&cur_crc);
380 if (cur_crc != *crc) {
381 printk(KERN_ERR "btrfs: crc mismatch for page %lu in "
382 "block group %llu\n", index,
383 (unsigned long long)block_group->key.objectid);
384 kunmap(page);
385 unlock_page(page);
386 page_cache_release(page);
387 goto free_cache;
388 }
389 crc++;
390
391 while (1) {
392 if (!num_entries)
393 break;
394
395 need_loop = 1;
396 e = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
397 if (!e) {
398 kunmap(page);
399 unlock_page(page);
400 page_cache_release(page);
401 goto free_cache;
402 }
403
404 e->offset = le64_to_cpu(entry->offset);
405 e->bytes = le64_to_cpu(entry->bytes);
406 if (!e->bytes) {
407 kunmap(page);
408 kfree(e);
409 unlock_page(page);
410 page_cache_release(page);
411 goto free_cache;
412 }
413
414 if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
415 spin_lock(&block_group->tree_lock);
416 ret = link_free_space(block_group, e);
417 spin_unlock(&block_group->tree_lock);
418 BUG_ON(ret);
419 } else {
420 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
421 if (!e->bitmap) {
422 kunmap(page);
423 kfree(e);
424 unlock_page(page);
425 page_cache_release(page);
426 goto free_cache;
427 }
428 spin_lock(&block_group->tree_lock);
429 ret = link_free_space(block_group, e);
430 block_group->total_bitmaps++;
431 recalculate_thresholds(block_group);
432 spin_unlock(&block_group->tree_lock);
433 list_add_tail(&e->list, &bitmaps);
434 }
435
436 num_entries--;
437 offset += sizeof(struct btrfs_free_space_entry);
438 if (offset + sizeof(struct btrfs_free_space_entry) >=
439 PAGE_CACHE_SIZE)
440 break;
441 entry++;
442 }
443
444 /*
445 * We read an entry out of this page, we need to move on to the
446 * next page.
447 */
448 if (need_loop) {
449 kunmap(page);
450 goto next;
451 }
452
453 /*
454 * We add the bitmaps at the end of the entries in order that
455 * the bitmap entries are added to the cache.
456 */
457 e = list_entry(bitmaps.next, struct btrfs_free_space, list);
458 list_del_init(&e->list);
459 memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
460 kunmap(page);
461 num_bitmaps--;
462next:
463 unlock_page(page);
464 page_cache_release(page);
465 index++;
466 }
467
468 ret = 1;
469out:
470 kfree(checksums);
471 kfree(disk_crcs);
472 iput(inode);
473 return ret;
474
475free_cache:
476 /* This cache is bogus, make sure it gets cleared */
477 spin_lock(&block_group->lock);
478 block_group->disk_cache_state = BTRFS_DC_CLEAR;
479 spin_unlock(&block_group->lock);
480 btrfs_remove_free_space_cache(block_group);
481 goto out;
482}
483
0cb59c99
JB
484int btrfs_write_out_cache(struct btrfs_root *root,
485 struct btrfs_trans_handle *trans,
486 struct btrfs_block_group_cache *block_group,
487 struct btrfs_path *path)
488{
489 struct btrfs_free_space_header *header;
490 struct extent_buffer *leaf;
491 struct inode *inode;
492 struct rb_node *node;
493 struct list_head *pos, *n;
494 struct page *page;
495 struct extent_state *cached_state = NULL;
496 struct list_head bitmap_list;
497 struct btrfs_key key;
498 u64 bytes = 0;
499 u32 *crc, *checksums;
500 pgoff_t index = 0, last_index = 0;
501 unsigned long first_page_offset;
502 int num_checksums;
503 int entries = 0;
504 int bitmaps = 0;
505 int ret = 0;
506
507 root = root->fs_info->tree_root;
508
509 INIT_LIST_HEAD(&bitmap_list);
510
511 spin_lock(&block_group->lock);
512 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
513 spin_unlock(&block_group->lock);
514 return 0;
515 }
516 spin_unlock(&block_group->lock);
517
518 inode = lookup_free_space_inode(root, block_group, path);
519 if (IS_ERR(inode))
520 return 0;
521
522 if (!i_size_read(inode)) {
523 iput(inode);
524 return 0;
525 }
526
527 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
528 filemap_write_and_wait(inode->i_mapping);
529 btrfs_wait_ordered_range(inode, inode->i_size &
530 ~(root->sectorsize - 1), (u64)-1);
531
532 /* We need a checksum per page. */
533 num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
534 crc = checksums = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
535 if (!crc) {
536 iput(inode);
537 return 0;
538 }
539
540 /* Since the first page has all of our checksums and our generation we
541 * need to calculate the offset into the page that we can start writing
542 * our entries.
543 */
544 first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
545
546 node = rb_first(&block_group->free_space_offset);
547 if (!node)
548 goto out_free;
549
550 /*
551 * Lock all pages first so we can lock the extent safely.
552 *
553 * NOTE: Because we hold the ref the entire time we're going to write to
554 * the page find_get_page should never fail, so we don't do a check
555 * after find_get_page at this point. Just putting this here so people
556 * know and don't freak out.
557 */
558 while (index <= last_index) {
559 page = grab_cache_page(inode->i_mapping, index);
560 if (!page) {
561 pgoff_t i = 0;
562
563 while (i < index) {
564 page = find_get_page(inode->i_mapping, i);
565 unlock_page(page);
566 page_cache_release(page);
567 page_cache_release(page);
568 i++;
569 }
570 goto out_free;
571 }
572 index++;
573 }
574
575 index = 0;
576 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
577 0, &cached_state, GFP_NOFS);
578
579 /* Write out the extent entries */
580 do {
581 struct btrfs_free_space_entry *entry;
582 void *addr;
583 unsigned long offset = 0;
584 unsigned long start_offset = 0;
585
586 if (index == 0) {
587 start_offset = first_page_offset;
588 offset = start_offset;
589 }
590
591 page = find_get_page(inode->i_mapping, index);
592
593 addr = kmap(page);
594 entry = addr + start_offset;
595
596 memset(addr, 0, PAGE_CACHE_SIZE);
597 while (1) {
598 struct btrfs_free_space *e;
599
600 e = rb_entry(node, struct btrfs_free_space, offset_index);
601 entries++;
602
603 entry->offset = cpu_to_le64(e->offset);
604 entry->bytes = cpu_to_le64(e->bytes);
605 if (e->bitmap) {
606 entry->type = BTRFS_FREE_SPACE_BITMAP;
607 list_add_tail(&e->list, &bitmap_list);
608 bitmaps++;
609 } else {
610 entry->type = BTRFS_FREE_SPACE_EXTENT;
611 }
612 node = rb_next(node);
613 if (!node)
614 break;
615 offset += sizeof(struct btrfs_free_space_entry);
616 if (offset + sizeof(struct btrfs_free_space_entry) >=
617 PAGE_CACHE_SIZE)
618 break;
619 entry++;
620 }
621 *crc = ~(u32)0;
622 *crc = btrfs_csum_data(root, addr + start_offset, *crc,
623 PAGE_CACHE_SIZE - start_offset);
624 kunmap(page);
625
626 btrfs_csum_final(*crc, (char *)crc);
627 crc++;
628
629 bytes += PAGE_CACHE_SIZE;
630
631 ClearPageChecked(page);
632 set_page_extent_mapped(page);
633 SetPageUptodate(page);
634 set_page_dirty(page);
635
636 /*
637 * We need to release our reference we got for grab_cache_page,
638 * except for the first page which will hold our checksums, we
639 * do that below.
640 */
641 if (index != 0) {
642 unlock_page(page);
643 page_cache_release(page);
644 }
645
646 page_cache_release(page);
647
648 index++;
649 } while (node);
650
651 /* Write out the bitmaps */
652 list_for_each_safe(pos, n, &bitmap_list) {
653 void *addr;
654 struct btrfs_free_space *entry =
655 list_entry(pos, struct btrfs_free_space, list);
656
657 page = find_get_page(inode->i_mapping, index);
658
659 addr = kmap(page);
660 memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
661 *crc = ~(u32)0;
662 *crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
663 kunmap(page);
664 btrfs_csum_final(*crc, (char *)crc);
665 crc++;
666 bytes += PAGE_CACHE_SIZE;
667
668 ClearPageChecked(page);
669 set_page_extent_mapped(page);
670 SetPageUptodate(page);
671 set_page_dirty(page);
672 unlock_page(page);
673 page_cache_release(page);
674 page_cache_release(page);
675 list_del_init(&entry->list);
676 index++;
677 }
678
679 /* Zero out the rest of the pages just to make sure */
680 while (index <= last_index) {
681 void *addr;
682
683 page = find_get_page(inode->i_mapping, index);
684
685 addr = kmap(page);
686 memset(addr, 0, PAGE_CACHE_SIZE);
687 kunmap(page);
688 ClearPageChecked(page);
689 set_page_extent_mapped(page);
690 SetPageUptodate(page);
691 set_page_dirty(page);
692 unlock_page(page);
693 page_cache_release(page);
694 page_cache_release(page);
695 bytes += PAGE_CACHE_SIZE;
696 index++;
697 }
698
699 btrfs_set_extent_delalloc(inode, 0, bytes - 1, &cached_state);
700
701 /* Write the checksums and trans id to the first page */
702 {
703 void *addr;
704 u64 *gen;
705
706 page = find_get_page(inode->i_mapping, 0);
707
708 addr = kmap(page);
709 memcpy(addr, checksums, sizeof(u32) * num_checksums);
710 gen = addr + (sizeof(u32) * num_checksums);
711 *gen = trans->transid;
712 kunmap(page);
713 ClearPageChecked(page);
714 set_page_extent_mapped(page);
715 SetPageUptodate(page);
716 set_page_dirty(page);
717 unlock_page(page);
718 page_cache_release(page);
719 page_cache_release(page);
720 }
721 BTRFS_I(inode)->generation = trans->transid;
722
723 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
724 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
725
726 filemap_write_and_wait(inode->i_mapping);
727
728 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
729 key.offset = block_group->key.objectid;
730 key.type = 0;
731
732 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
733 if (ret < 0) {
734 ret = 0;
735 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
736 EXTENT_DIRTY | EXTENT_DELALLOC |
737 EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
738 goto out_free;
739 }
740 leaf = path->nodes[0];
741 if (ret > 0) {
742 struct btrfs_key found_key;
743 BUG_ON(!path->slots[0]);
744 path->slots[0]--;
745 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
746 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
747 found_key.offset != block_group->key.objectid) {
748 ret = 0;
749 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
750 EXTENT_DIRTY | EXTENT_DELALLOC |
751 EXTENT_DO_ACCOUNTING, 0, 0, NULL,
752 GFP_NOFS);
753 btrfs_release_path(root, path);
754 goto out_free;
755 }
756 }
757 header = btrfs_item_ptr(leaf, path->slots[0],
758 struct btrfs_free_space_header);
759 btrfs_set_free_space_entries(leaf, header, entries);
760 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
761 btrfs_set_free_space_generation(leaf, header, trans->transid);
762 btrfs_mark_buffer_dirty(leaf);
763 btrfs_release_path(root, path);
764
765 ret = 1;
766
767out_free:
768 if (ret == 0) {
769 invalidate_inode_pages2_range(inode->i_mapping, 0, index);
770 spin_lock(&block_group->lock);
771 block_group->disk_cache_state = BTRFS_DC_ERROR;
772 spin_unlock(&block_group->lock);
773 BTRFS_I(inode)->generation = 0;
774 }
775 kfree(checksums);
776 btrfs_update_inode(trans, root, inode);
777 iput(inode);
778 return ret;
779}
780
96303081
JB
781static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
782 u64 offset)
0f9dd46c 783{
96303081
JB
784 BUG_ON(offset < bitmap_start);
785 offset -= bitmap_start;
786 return (unsigned long)(div64_u64(offset, sectorsize));
787}
0f9dd46c 788
96303081
JB
789static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
790{
791 return (unsigned long)(div64_u64(bytes, sectorsize));
792}
0f9dd46c 793
96303081
JB
794static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
795 u64 offset)
796{
797 u64 bitmap_start;
798 u64 bytes_per_bitmap;
0f9dd46c 799
96303081
JB
800 bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
801 bitmap_start = offset - block_group->key.objectid;
802 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
803 bitmap_start *= bytes_per_bitmap;
804 bitmap_start += block_group->key.objectid;
0f9dd46c 805
96303081 806 return bitmap_start;
0f9dd46c
JB
807}
808
96303081
JB
809static int tree_insert_offset(struct rb_root *root, u64 offset,
810 struct rb_node *node, int bitmap)
0f9dd46c
JB
811{
812 struct rb_node **p = &root->rb_node;
813 struct rb_node *parent = NULL;
814 struct btrfs_free_space *info;
815
816 while (*p) {
817 parent = *p;
96303081 818 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 819
96303081 820 if (offset < info->offset) {
0f9dd46c 821 p = &(*p)->rb_left;
96303081 822 } else if (offset > info->offset) {
0f9dd46c 823 p = &(*p)->rb_right;
96303081
JB
824 } else {
825 /*
826 * we could have a bitmap entry and an extent entry
827 * share the same offset. If this is the case, we want
828 * the extent entry to always be found first if we do a
829 * linear search through the tree, since we want to have
830 * the quickest allocation time, and allocating from an
831 * extent is faster than allocating from a bitmap. So
832 * if we're inserting a bitmap and we find an entry at
833 * this offset, we want to go right, or after this entry
834 * logically. If we are inserting an extent and we've
835 * found a bitmap, we want to go left, or before
836 * logically.
837 */
838 if (bitmap) {
839 WARN_ON(info->bitmap);
840 p = &(*p)->rb_right;
841 } else {
842 WARN_ON(!info->bitmap);
843 p = &(*p)->rb_left;
844 }
845 }
0f9dd46c
JB
846 }
847
848 rb_link_node(node, parent, p);
849 rb_insert_color(node, root);
850
851 return 0;
852}
853
854/*
70cb0743
JB
855 * searches the tree for the given offset.
856 *
96303081
JB
857 * fuzzy - If this is set, then we are trying to make an allocation, and we just
858 * want a section that has at least bytes size and comes at or after the given
859 * offset.
0f9dd46c 860 */
96303081
JB
861static struct btrfs_free_space *
862tree_search_offset(struct btrfs_block_group_cache *block_group,
863 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 864{
96303081
JB
865 struct rb_node *n = block_group->free_space_offset.rb_node;
866 struct btrfs_free_space *entry, *prev = NULL;
867
868 /* find entry that is closest to the 'offset' */
869 while (1) {
870 if (!n) {
871 entry = NULL;
872 break;
873 }
0f9dd46c 874
0f9dd46c 875 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 876 prev = entry;
0f9dd46c 877
96303081 878 if (offset < entry->offset)
0f9dd46c 879 n = n->rb_left;
96303081 880 else if (offset > entry->offset)
0f9dd46c 881 n = n->rb_right;
96303081 882 else
0f9dd46c 883 break;
0f9dd46c
JB
884 }
885
96303081
JB
886 if (bitmap_only) {
887 if (!entry)
888 return NULL;
889 if (entry->bitmap)
890 return entry;
0f9dd46c 891
96303081
JB
892 /*
893 * bitmap entry and extent entry may share same offset,
894 * in that case, bitmap entry comes after extent entry.
895 */
896 n = rb_next(n);
897 if (!n)
898 return NULL;
899 entry = rb_entry(n, struct btrfs_free_space, offset_index);
900 if (entry->offset != offset)
901 return NULL;
0f9dd46c 902
96303081
JB
903 WARN_ON(!entry->bitmap);
904 return entry;
905 } else if (entry) {
906 if (entry->bitmap) {
0f9dd46c 907 /*
96303081
JB
908 * if previous extent entry covers the offset,
909 * we should return it instead of the bitmap entry
0f9dd46c 910 */
96303081
JB
911 n = &entry->offset_index;
912 while (1) {
913 n = rb_prev(n);
914 if (!n)
915 break;
916 prev = rb_entry(n, struct btrfs_free_space,
917 offset_index);
918 if (!prev->bitmap) {
919 if (prev->offset + prev->bytes > offset)
920 entry = prev;
921 break;
922 }
0f9dd46c 923 }
96303081
JB
924 }
925 return entry;
926 }
927
928 if (!prev)
929 return NULL;
930
931 /* find last entry before the 'offset' */
932 entry = prev;
933 if (entry->offset > offset) {
934 n = rb_prev(&entry->offset_index);
935 if (n) {
936 entry = rb_entry(n, struct btrfs_free_space,
937 offset_index);
938 BUG_ON(entry->offset > offset);
0f9dd46c 939 } else {
96303081
JB
940 if (fuzzy)
941 return entry;
942 else
943 return NULL;
0f9dd46c
JB
944 }
945 }
946
96303081
JB
947 if (entry->bitmap) {
948 n = &entry->offset_index;
949 while (1) {
950 n = rb_prev(n);
951 if (!n)
952 break;
953 prev = rb_entry(n, struct btrfs_free_space,
954 offset_index);
955 if (!prev->bitmap) {
956 if (prev->offset + prev->bytes > offset)
957 return prev;
958 break;
959 }
960 }
961 if (entry->offset + BITS_PER_BITMAP *
962 block_group->sectorsize > offset)
963 return entry;
964 } else if (entry->offset + entry->bytes > offset)
965 return entry;
966
967 if (!fuzzy)
968 return NULL;
969
970 while (1) {
971 if (entry->bitmap) {
972 if (entry->offset + BITS_PER_BITMAP *
973 block_group->sectorsize > offset)
974 break;
975 } else {
976 if (entry->offset + entry->bytes > offset)
977 break;
978 }
979
980 n = rb_next(&entry->offset_index);
981 if (!n)
982 return NULL;
983 entry = rb_entry(n, struct btrfs_free_space, offset_index);
984 }
985 return entry;
0f9dd46c
JB
986}
987
988static void unlink_free_space(struct btrfs_block_group_cache *block_group,
989 struct btrfs_free_space *info)
990{
991 rb_erase(&info->offset_index, &block_group->free_space_offset);
96303081 992 block_group->free_extents--;
817d52f8 993 block_group->free_space -= info->bytes;
0f9dd46c
JB
994}
995
996static int link_free_space(struct btrfs_block_group_cache *block_group,
997 struct btrfs_free_space *info)
998{
999 int ret = 0;
1000
96303081 1001 BUG_ON(!info->bitmap && !info->bytes);
0f9dd46c 1002 ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
96303081 1003 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1004 if (ret)
1005 return ret;
1006
817d52f8 1007 block_group->free_space += info->bytes;
96303081
JB
1008 block_group->free_extents++;
1009 return ret;
1010}
1011
1012static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
1013{
25891f79
JB
1014 u64 max_bytes;
1015 u64 bitmap_bytes;
1016 u64 extent_bytes;
96303081
JB
1017
1018 /*
1019 * The goal is to keep the total amount of memory used per 1gb of space
1020 * at or below 32k, so we need to adjust how much memory we allow to be
1021 * used by extent based free space tracking
1022 */
1023 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1024 (div64_u64(block_group->key.offset, 1024 * 1024 * 1024));
1025
25891f79
JB
1026 /*
1027 * we want to account for 1 more bitmap than what we have so we can make
1028 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1029 * we add more bitmaps.
1030 */
1031 bitmap_bytes = (block_group->total_bitmaps + 1) * PAGE_CACHE_SIZE;
96303081 1032
25891f79
JB
1033 if (bitmap_bytes >= max_bytes) {
1034 block_group->extents_thresh = 0;
1035 return;
1036 }
96303081 1037
25891f79
JB
1038 /*
1039 * we want the extent entry threshold to always be at most 1/2 the maxw
1040 * bytes we can have, or whatever is less than that.
1041 */
1042 extent_bytes = max_bytes - bitmap_bytes;
1043 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
96303081 1044
25891f79
JB
1045 block_group->extents_thresh =
1046 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
96303081
JB
1047}
1048
817d52f8
JB
1049static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
1050 struct btrfs_free_space *info, u64 offset,
1051 u64 bytes)
96303081
JB
1052{
1053 unsigned long start, end;
1054 unsigned long i;
1055
817d52f8
JB
1056 start = offset_to_bit(info->offset, block_group->sectorsize, offset);
1057 end = start + bytes_to_bits(bytes, block_group->sectorsize);
96303081
JB
1058 BUG_ON(end > BITS_PER_BITMAP);
1059
1060 for (i = start; i < end; i++)
1061 clear_bit(i, info->bitmap);
1062
1063 info->bytes -= bytes;
817d52f8 1064 block_group->free_space -= bytes;
96303081
JB
1065}
1066
817d52f8
JB
1067static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
1068 struct btrfs_free_space *info, u64 offset,
1069 u64 bytes)
96303081
JB
1070{
1071 unsigned long start, end;
1072 unsigned long i;
1073
817d52f8
JB
1074 start = offset_to_bit(info->offset, block_group->sectorsize, offset);
1075 end = start + bytes_to_bits(bytes, block_group->sectorsize);
96303081
JB
1076 BUG_ON(end > BITS_PER_BITMAP);
1077
1078 for (i = start; i < end; i++)
1079 set_bit(i, info->bitmap);
1080
1081 info->bytes += bytes;
817d52f8 1082 block_group->free_space += bytes;
96303081
JB
1083}
1084
1085static int search_bitmap(struct btrfs_block_group_cache *block_group,
1086 struct btrfs_free_space *bitmap_info, u64 *offset,
1087 u64 *bytes)
1088{
1089 unsigned long found_bits = 0;
1090 unsigned long bits, i;
1091 unsigned long next_zero;
1092
1093 i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
1094 max_t(u64, *offset, bitmap_info->offset));
1095 bits = bytes_to_bits(*bytes, block_group->sectorsize);
1096
1097 for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1098 i < BITS_PER_BITMAP;
1099 i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1100 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1101 BITS_PER_BITMAP, i);
1102 if ((next_zero - i) >= bits) {
1103 found_bits = next_zero - i;
1104 break;
1105 }
1106 i = next_zero;
1107 }
1108
1109 if (found_bits) {
1110 *offset = (u64)(i * block_group->sectorsize) +
1111 bitmap_info->offset;
1112 *bytes = (u64)(found_bits) * block_group->sectorsize;
1113 return 0;
1114 }
1115
1116 return -1;
1117}
1118
1119static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
1120 *block_group, u64 *offset,
1121 u64 *bytes, int debug)
1122{
1123 struct btrfs_free_space *entry;
1124 struct rb_node *node;
1125 int ret;
1126
1127 if (!block_group->free_space_offset.rb_node)
1128 return NULL;
1129
1130 entry = tree_search_offset(block_group,
1131 offset_to_bitmap(block_group, *offset),
1132 0, 1);
1133 if (!entry)
1134 return NULL;
1135
1136 for (node = &entry->offset_index; node; node = rb_next(node)) {
1137 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1138 if (entry->bytes < *bytes)
1139 continue;
1140
1141 if (entry->bitmap) {
1142 ret = search_bitmap(block_group, entry, offset, bytes);
1143 if (!ret)
1144 return entry;
1145 continue;
1146 }
1147
1148 *offset = entry->offset;
1149 *bytes = entry->bytes;
1150 return entry;
1151 }
1152
1153 return NULL;
1154}
1155
1156static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
1157 struct btrfs_free_space *info, u64 offset)
1158{
1159 u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1160 int max_bitmaps = (int)div64_u64(block_group->key.offset +
1161 bytes_per_bg - 1, bytes_per_bg);
1162 BUG_ON(block_group->total_bitmaps >= max_bitmaps);
1163
1164 info->offset = offset_to_bitmap(block_group, offset);
f019f426 1165 info->bytes = 0;
96303081
JB
1166 link_free_space(block_group, info);
1167 block_group->total_bitmaps++;
1168
1169 recalculate_thresholds(block_group);
1170}
1171
1172static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
1173 struct btrfs_free_space *bitmap_info,
1174 u64 *offset, u64 *bytes)
1175{
1176 u64 end;
6606bb97
JB
1177 u64 search_start, search_bytes;
1178 int ret;
96303081
JB
1179
1180again:
1181 end = bitmap_info->offset +
1182 (u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
1183
6606bb97
JB
1184 /*
1185 * XXX - this can go away after a few releases.
1186 *
1187 * since the only user of btrfs_remove_free_space is the tree logging
1188 * stuff, and the only way to test that is under crash conditions, we
1189 * want to have this debug stuff here just in case somethings not
1190 * working. Search the bitmap for the space we are trying to use to
1191 * make sure its actually there. If its not there then we need to stop
1192 * because something has gone wrong.
1193 */
1194 search_start = *offset;
1195 search_bytes = *bytes;
1196 ret = search_bitmap(block_group, bitmap_info, &search_start,
1197 &search_bytes);
1198 BUG_ON(ret < 0 || search_start != *offset);
1199
96303081 1200 if (*offset > bitmap_info->offset && *offset + *bytes > end) {
817d52f8
JB
1201 bitmap_clear_bits(block_group, bitmap_info, *offset,
1202 end - *offset + 1);
96303081
JB
1203 *bytes -= end - *offset + 1;
1204 *offset = end + 1;
1205 } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
817d52f8 1206 bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
96303081
JB
1207 *bytes = 0;
1208 }
1209
1210 if (*bytes) {
6606bb97 1211 struct rb_node *next = rb_next(&bitmap_info->offset_index);
96303081
JB
1212 if (!bitmap_info->bytes) {
1213 unlink_free_space(block_group, bitmap_info);
1214 kfree(bitmap_info->bitmap);
1215 kfree(bitmap_info);
1216 block_group->total_bitmaps--;
1217 recalculate_thresholds(block_group);
1218 }
1219
6606bb97
JB
1220 /*
1221 * no entry after this bitmap, but we still have bytes to
1222 * remove, so something has gone wrong.
1223 */
1224 if (!next)
96303081
JB
1225 return -EINVAL;
1226
6606bb97
JB
1227 bitmap_info = rb_entry(next, struct btrfs_free_space,
1228 offset_index);
1229
1230 /*
1231 * if the next entry isn't a bitmap we need to return to let the
1232 * extent stuff do its work.
1233 */
96303081
JB
1234 if (!bitmap_info->bitmap)
1235 return -EAGAIN;
1236
6606bb97
JB
1237 /*
1238 * Ok the next item is a bitmap, but it may not actually hold
1239 * the information for the rest of this free space stuff, so
1240 * look for it, and if we don't find it return so we can try
1241 * everything over again.
1242 */
1243 search_start = *offset;
1244 search_bytes = *bytes;
1245 ret = search_bitmap(block_group, bitmap_info, &search_start,
1246 &search_bytes);
1247 if (ret < 0 || search_start != *offset)
1248 return -EAGAIN;
1249
96303081
JB
1250 goto again;
1251 } else if (!bitmap_info->bytes) {
1252 unlink_free_space(block_group, bitmap_info);
1253 kfree(bitmap_info->bitmap);
1254 kfree(bitmap_info);
1255 block_group->total_bitmaps--;
1256 recalculate_thresholds(block_group);
1257 }
1258
1259 return 0;
1260}
1261
1262static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
1263 struct btrfs_free_space *info)
1264{
1265 struct btrfs_free_space *bitmap_info;
1266 int added = 0;
1267 u64 bytes, offset, end;
1268 int ret;
1269
1270 /*
1271 * If we are below the extents threshold then we can add this as an
1272 * extent, and don't have to deal with the bitmap
1273 */
1274 if (block_group->free_extents < block_group->extents_thresh &&
1275 info->bytes > block_group->sectorsize * 4)
1276 return 0;
1277
1278 /*
1279 * some block groups are so tiny they can't be enveloped by a bitmap, so
1280 * don't even bother to create a bitmap for this
1281 */
1282 if (BITS_PER_BITMAP * block_group->sectorsize >
1283 block_group->key.offset)
1284 return 0;
1285
1286 bytes = info->bytes;
1287 offset = info->offset;
1288
1289again:
1290 bitmap_info = tree_search_offset(block_group,
1291 offset_to_bitmap(block_group, offset),
1292 1, 0);
1293 if (!bitmap_info) {
1294 BUG_ON(added);
1295 goto new_bitmap;
1296 }
1297
1298 end = bitmap_info->offset +
1299 (u64)(BITS_PER_BITMAP * block_group->sectorsize);
1300
1301 if (offset >= bitmap_info->offset && offset + bytes > end) {
817d52f8
JB
1302 bitmap_set_bits(block_group, bitmap_info, offset,
1303 end - offset);
96303081
JB
1304 bytes -= end - offset;
1305 offset = end;
1306 added = 0;
1307 } else if (offset >= bitmap_info->offset && offset + bytes <= end) {
817d52f8 1308 bitmap_set_bits(block_group, bitmap_info, offset, bytes);
96303081
JB
1309 bytes = 0;
1310 } else {
1311 BUG();
1312 }
1313
1314 if (!bytes) {
1315 ret = 1;
1316 goto out;
1317 } else
1318 goto again;
1319
1320new_bitmap:
1321 if (info && info->bitmap) {
1322 add_new_bitmap(block_group, info, offset);
1323 added = 1;
1324 info = NULL;
1325 goto again;
1326 } else {
1327 spin_unlock(&block_group->tree_lock);
1328
1329 /* no pre-allocated info, allocate a new one */
1330 if (!info) {
1331 info = kzalloc(sizeof(struct btrfs_free_space),
1332 GFP_NOFS);
1333 if (!info) {
1334 spin_lock(&block_group->tree_lock);
1335 ret = -ENOMEM;
1336 goto out;
1337 }
1338 }
1339
1340 /* allocate the bitmap */
1341 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1342 spin_lock(&block_group->tree_lock);
1343 if (!info->bitmap) {
1344 ret = -ENOMEM;
1345 goto out;
1346 }
1347 goto again;
1348 }
1349
1350out:
1351 if (info) {
1352 if (info->bitmap)
1353 kfree(info->bitmap);
1354 kfree(info);
1355 }
0f9dd46c
JB
1356
1357 return ret;
1358}
1359
6226cb0a
JB
1360int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
1361 u64 offset, u64 bytes)
0f9dd46c 1362{
96303081
JB
1363 struct btrfs_free_space *right_info = NULL;
1364 struct btrfs_free_space *left_info = NULL;
0f9dd46c 1365 struct btrfs_free_space *info = NULL;
0f9dd46c
JB
1366 int ret = 0;
1367
6226cb0a
JB
1368 info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
1369 if (!info)
1370 return -ENOMEM;
1371
1372 info->offset = offset;
1373 info->bytes = bytes;
1374
1375 spin_lock(&block_group->tree_lock);
1376
0f9dd46c
JB
1377 /*
1378 * first we want to see if there is free space adjacent to the range we
1379 * are adding, if there is remove that struct and add a new one to
1380 * cover the entire range
1381 */
96303081
JB
1382 right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
1383 if (right_info && rb_prev(&right_info->offset_index))
1384 left_info = rb_entry(rb_prev(&right_info->offset_index),
1385 struct btrfs_free_space, offset_index);
1386 else
1387 left_info = tree_search_offset(block_group, offset - 1, 0, 0);
0f9dd46c 1388
96303081
JB
1389 /*
1390 * If there was no extent directly to the left or right of this new
1391 * extent then we know we're going to have to allocate a new extent, so
1392 * before we do that see if we need to drop this into a bitmap
1393 */
1394 if ((!left_info || left_info->bitmap) &&
1395 (!right_info || right_info->bitmap)) {
1396 ret = insert_into_bitmap(block_group, info);
1397
1398 if (ret < 0) {
1399 goto out;
1400 } else if (ret) {
1401 ret = 0;
1402 goto out;
1403 }
1404 }
1405
1406 if (right_info && !right_info->bitmap) {
0f9dd46c 1407 unlink_free_space(block_group, right_info);
6226cb0a
JB
1408 info->bytes += right_info->bytes;
1409 kfree(right_info);
0f9dd46c
JB
1410 }
1411
96303081
JB
1412 if (left_info && !left_info->bitmap &&
1413 left_info->offset + left_info->bytes == offset) {
0f9dd46c 1414 unlink_free_space(block_group, left_info);
6226cb0a
JB
1415 info->offset = left_info->offset;
1416 info->bytes += left_info->bytes;
1417 kfree(left_info);
0f9dd46c
JB
1418 }
1419
0f9dd46c
JB
1420 ret = link_free_space(block_group, info);
1421 if (ret)
1422 kfree(info);
96303081 1423out:
6226cb0a
JB
1424 spin_unlock(&block_group->tree_lock);
1425
0f9dd46c 1426 if (ret) {
96303081 1427 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
c293498b 1428 BUG_ON(ret == -EEXIST);
0f9dd46c
JB
1429 }
1430
0f9dd46c
JB
1431 return ret;
1432}
1433
6226cb0a
JB
1434int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1435 u64 offset, u64 bytes)
0f9dd46c
JB
1436{
1437 struct btrfs_free_space *info;
96303081 1438 struct btrfs_free_space *next_info = NULL;
0f9dd46c
JB
1439 int ret = 0;
1440
6226cb0a
JB
1441 spin_lock(&block_group->tree_lock);
1442
96303081
JB
1443again:
1444 info = tree_search_offset(block_group, offset, 0, 0);
1445 if (!info) {
6606bb97
JB
1446 /*
1447 * oops didn't find an extent that matched the space we wanted
1448 * to remove, look for a bitmap instead
1449 */
1450 info = tree_search_offset(block_group,
1451 offset_to_bitmap(block_group, offset),
1452 1, 0);
1453 if (!info) {
1454 WARN_ON(1);
1455 goto out_lock;
1456 }
96303081
JB
1457 }
1458
1459 if (info->bytes < bytes && rb_next(&info->offset_index)) {
1460 u64 end;
1461 next_info = rb_entry(rb_next(&info->offset_index),
1462 struct btrfs_free_space,
1463 offset_index);
1464
1465 if (next_info->bitmap)
1466 end = next_info->offset + BITS_PER_BITMAP *
1467 block_group->sectorsize - 1;
1468 else
1469 end = next_info->offset + next_info->bytes;
1470
1471 if (next_info->bytes < bytes ||
1472 next_info->offset > offset || offset > end) {
1473 printk(KERN_CRIT "Found free space at %llu, size %llu,"
1474 " trying to use %llu\n",
1475 (unsigned long long)info->offset,
1476 (unsigned long long)info->bytes,
1477 (unsigned long long)bytes);
0f9dd46c
JB
1478 WARN_ON(1);
1479 ret = -EINVAL;
96303081 1480 goto out_lock;
0f9dd46c 1481 }
0f9dd46c 1482
96303081
JB
1483 info = next_info;
1484 }
1485
1486 if (info->bytes == bytes) {
1487 unlink_free_space(block_group, info);
1488 if (info->bitmap) {
1489 kfree(info->bitmap);
1490 block_group->total_bitmaps--;
0f9dd46c 1491 }
96303081
JB
1492 kfree(info);
1493 goto out_lock;
1494 }
0f9dd46c 1495
96303081
JB
1496 if (!info->bitmap && info->offset == offset) {
1497 unlink_free_space(block_group, info);
0f9dd46c
JB
1498 info->offset += bytes;
1499 info->bytes -= bytes;
96303081
JB
1500 link_free_space(block_group, info);
1501 goto out_lock;
1502 }
0f9dd46c 1503
96303081
JB
1504 if (!info->bitmap && info->offset <= offset &&
1505 info->offset + info->bytes >= offset + bytes) {
9b49c9b9
CM
1506 u64 old_start = info->offset;
1507 /*
1508 * we're freeing space in the middle of the info,
1509 * this can happen during tree log replay
1510 *
1511 * first unlink the old info and then
1512 * insert it again after the hole we're creating
1513 */
1514 unlink_free_space(block_group, info);
1515 if (offset + bytes < info->offset + info->bytes) {
1516 u64 old_end = info->offset + info->bytes;
1517
1518 info->offset = offset + bytes;
1519 info->bytes = old_end - info->offset;
1520 ret = link_free_space(block_group, info);
96303081
JB
1521 WARN_ON(ret);
1522 if (ret)
1523 goto out_lock;
9b49c9b9
CM
1524 } else {
1525 /* the hole we're creating ends at the end
1526 * of the info struct, just free the info
1527 */
1528 kfree(info);
1529 }
6226cb0a 1530 spin_unlock(&block_group->tree_lock);
96303081
JB
1531
1532 /* step two, insert a new info struct to cover
1533 * anything before the hole
9b49c9b9 1534 */
6226cb0a
JB
1535 ret = btrfs_add_free_space(block_group, old_start,
1536 offset - old_start);
96303081
JB
1537 WARN_ON(ret);
1538 goto out;
0f9dd46c 1539 }
96303081
JB
1540
1541 ret = remove_from_bitmap(block_group, info, &offset, &bytes);
1542 if (ret == -EAGAIN)
1543 goto again;
1544 BUG_ON(ret);
1545out_lock:
1546 spin_unlock(&block_group->tree_lock);
0f9dd46c 1547out:
25179201
JB
1548 return ret;
1549}
1550
0f9dd46c
JB
1551void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1552 u64 bytes)
1553{
1554 struct btrfs_free_space *info;
1555 struct rb_node *n;
1556 int count = 0;
1557
1558 for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
1559 info = rb_entry(n, struct btrfs_free_space, offset_index);
1560 if (info->bytes >= bytes)
1561 count++;
96303081 1562 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
21380931 1563 (unsigned long long)info->offset,
96303081
JB
1564 (unsigned long long)info->bytes,
1565 (info->bitmap) ? "yes" : "no");
0f9dd46c 1566 }
96303081
JB
1567 printk(KERN_INFO "block group has cluster?: %s\n",
1568 list_empty(&block_group->cluster_list) ? "no" : "yes");
0f9dd46c
JB
1569 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1570 "\n", count);
1571}
1572
1573u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
1574{
1575 struct btrfs_free_space *info;
1576 struct rb_node *n;
1577 u64 ret = 0;
1578
1579 for (n = rb_first(&block_group->free_space_offset); n;
1580 n = rb_next(n)) {
1581 info = rb_entry(n, struct btrfs_free_space, offset_index);
1582 ret += info->bytes;
1583 }
1584
1585 return ret;
1586}
1587
fa9c0d79
CM
1588/*
1589 * for a given cluster, put all of its extents back into the free
1590 * space cache. If the block group passed doesn't match the block group
1591 * pointed to by the cluster, someone else raced in and freed the
1592 * cluster already. In that case, we just return without changing anything
1593 */
1594static int
1595__btrfs_return_cluster_to_free_space(
1596 struct btrfs_block_group_cache *block_group,
1597 struct btrfs_free_cluster *cluster)
1598{
1599 struct btrfs_free_space *entry;
1600 struct rb_node *node;
96303081 1601 bool bitmap;
fa9c0d79
CM
1602
1603 spin_lock(&cluster->lock);
1604 if (cluster->block_group != block_group)
1605 goto out;
1606
96303081
JB
1607 bitmap = cluster->points_to_bitmap;
1608 cluster->block_group = NULL;
fa9c0d79 1609 cluster->window_start = 0;
96303081
JB
1610 list_del_init(&cluster->block_group_list);
1611 cluster->points_to_bitmap = false;
1612
1613 if (bitmap)
1614 goto out;
1615
fa9c0d79 1616 node = rb_first(&cluster->root);
96303081 1617 while (node) {
fa9c0d79
CM
1618 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1619 node = rb_next(&entry->offset_index);
1620 rb_erase(&entry->offset_index, &cluster->root);
96303081
JB
1621 BUG_ON(entry->bitmap);
1622 tree_insert_offset(&block_group->free_space_offset,
1623 entry->offset, &entry->offset_index, 0);
fa9c0d79 1624 }
6bef4d31 1625 cluster->root = RB_ROOT;
96303081 1626
fa9c0d79
CM
1627out:
1628 spin_unlock(&cluster->lock);
96303081 1629 btrfs_put_block_group(block_group);
fa9c0d79
CM
1630 return 0;
1631}
1632
0f9dd46c
JB
1633void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
1634{
1635 struct btrfs_free_space *info;
1636 struct rb_node *node;
fa9c0d79 1637 struct btrfs_free_cluster *cluster;
96303081 1638 struct list_head *head;
0f9dd46c 1639
6226cb0a 1640 spin_lock(&block_group->tree_lock);
96303081
JB
1641 while ((head = block_group->cluster_list.next) !=
1642 &block_group->cluster_list) {
1643 cluster = list_entry(head, struct btrfs_free_cluster,
1644 block_group_list);
fa9c0d79
CM
1645
1646 WARN_ON(cluster->block_group != block_group);
1647 __btrfs_return_cluster_to_free_space(block_group, cluster);
96303081
JB
1648 if (need_resched()) {
1649 spin_unlock(&block_group->tree_lock);
1650 cond_resched();
1651 spin_lock(&block_group->tree_lock);
1652 }
fa9c0d79
CM
1653 }
1654
96303081
JB
1655 while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
1656 info = rb_entry(node, struct btrfs_free_space, offset_index);
0f9dd46c 1657 unlink_free_space(block_group, info);
96303081
JB
1658 if (info->bitmap)
1659 kfree(info->bitmap);
0f9dd46c
JB
1660 kfree(info);
1661 if (need_resched()) {
6226cb0a 1662 spin_unlock(&block_group->tree_lock);
0f9dd46c 1663 cond_resched();
6226cb0a 1664 spin_lock(&block_group->tree_lock);
0f9dd46c
JB
1665 }
1666 }
96303081 1667
6226cb0a 1668 spin_unlock(&block_group->tree_lock);
0f9dd46c
JB
1669}
1670
6226cb0a
JB
1671u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
1672 u64 offset, u64 bytes, u64 empty_size)
0f9dd46c 1673{
6226cb0a 1674 struct btrfs_free_space *entry = NULL;
96303081 1675 u64 bytes_search = bytes + empty_size;
6226cb0a 1676 u64 ret = 0;
0f9dd46c 1677
6226cb0a 1678 spin_lock(&block_group->tree_lock);
96303081 1679 entry = find_free_space(block_group, &offset, &bytes_search, 0);
6226cb0a 1680 if (!entry)
96303081
JB
1681 goto out;
1682
1683 ret = offset;
1684 if (entry->bitmap) {
817d52f8 1685 bitmap_clear_bits(block_group, entry, offset, bytes);
96303081
JB
1686 if (!entry->bytes) {
1687 unlink_free_space(block_group, entry);
1688 kfree(entry->bitmap);
1689 kfree(entry);
1690 block_group->total_bitmaps--;
1691 recalculate_thresholds(block_group);
1692 }
1693 } else {
6226cb0a 1694 unlink_free_space(block_group, entry);
6226cb0a
JB
1695 entry->offset += bytes;
1696 entry->bytes -= bytes;
6226cb0a
JB
1697 if (!entry->bytes)
1698 kfree(entry);
1699 else
1700 link_free_space(block_group, entry);
1701 }
0f9dd46c 1702
96303081
JB
1703out:
1704 spin_unlock(&block_group->tree_lock);
817d52f8 1705
0f9dd46c
JB
1706 return ret;
1707}
fa9c0d79
CM
1708
1709/*
1710 * given a cluster, put all of its extents back into the free space
1711 * cache. If a block group is passed, this function will only free
1712 * a cluster that belongs to the passed block group.
1713 *
1714 * Otherwise, it'll get a reference on the block group pointed to by the
1715 * cluster and remove the cluster from it.
1716 */
1717int btrfs_return_cluster_to_free_space(
1718 struct btrfs_block_group_cache *block_group,
1719 struct btrfs_free_cluster *cluster)
1720{
1721 int ret;
1722
1723 /* first, get a safe pointer to the block group */
1724 spin_lock(&cluster->lock);
1725 if (!block_group) {
1726 block_group = cluster->block_group;
1727 if (!block_group) {
1728 spin_unlock(&cluster->lock);
1729 return 0;
1730 }
1731 } else if (cluster->block_group != block_group) {
1732 /* someone else has already freed it don't redo their work */
1733 spin_unlock(&cluster->lock);
1734 return 0;
1735 }
1736 atomic_inc(&block_group->count);
1737 spin_unlock(&cluster->lock);
1738
1739 /* now return any extents the cluster had on it */
1740 spin_lock(&block_group->tree_lock);
1741 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
1742 spin_unlock(&block_group->tree_lock);
1743
1744 /* finally drop our ref */
1745 btrfs_put_block_group(block_group);
1746 return ret;
1747}
1748
96303081
JB
1749static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
1750 struct btrfs_free_cluster *cluster,
1751 u64 bytes, u64 min_start)
1752{
1753 struct btrfs_free_space *entry;
1754 int err;
1755 u64 search_start = cluster->window_start;
1756 u64 search_bytes = bytes;
1757 u64 ret = 0;
1758
1759 spin_lock(&block_group->tree_lock);
1760 spin_lock(&cluster->lock);
1761
1762 if (!cluster->points_to_bitmap)
1763 goto out;
1764
1765 if (cluster->block_group != block_group)
1766 goto out;
1767
6606bb97
JB
1768 /*
1769 * search_start is the beginning of the bitmap, but at some point it may
1770 * be a good idea to point to the actual start of the free area in the
1771 * bitmap, so do the offset_to_bitmap trick anyway, and set bitmap_only
1772 * to 1 to make sure we get the bitmap entry
1773 */
1774 entry = tree_search_offset(block_group,
1775 offset_to_bitmap(block_group, search_start),
1776 1, 0);
96303081
JB
1777 if (!entry || !entry->bitmap)
1778 goto out;
1779
1780 search_start = min_start;
1781 search_bytes = bytes;
1782
1783 err = search_bitmap(block_group, entry, &search_start,
1784 &search_bytes);
1785 if (err)
1786 goto out;
1787
1788 ret = search_start;
817d52f8 1789 bitmap_clear_bits(block_group, entry, ret, bytes);
96303081
JB
1790out:
1791 spin_unlock(&cluster->lock);
1792 spin_unlock(&block_group->tree_lock);
1793
1794 return ret;
1795}
1796
fa9c0d79
CM
1797/*
1798 * given a cluster, try to allocate 'bytes' from it, returns 0
1799 * if it couldn't find anything suitably large, or a logical disk offset
1800 * if things worked out
1801 */
1802u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
1803 struct btrfs_free_cluster *cluster, u64 bytes,
1804 u64 min_start)
1805{
1806 struct btrfs_free_space *entry = NULL;
1807 struct rb_node *node;
1808 u64 ret = 0;
1809
96303081
JB
1810 if (cluster->points_to_bitmap)
1811 return btrfs_alloc_from_bitmap(block_group, cluster, bytes,
1812 min_start);
1813
fa9c0d79
CM
1814 spin_lock(&cluster->lock);
1815 if (bytes > cluster->max_size)
1816 goto out;
1817
1818 if (cluster->block_group != block_group)
1819 goto out;
1820
1821 node = rb_first(&cluster->root);
1822 if (!node)
1823 goto out;
1824
1825 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1826
1827 while(1) {
1828 if (entry->bytes < bytes || entry->offset < min_start) {
1829 struct rb_node *node;
1830
1831 node = rb_next(&entry->offset_index);
1832 if (!node)
1833 break;
1834 entry = rb_entry(node, struct btrfs_free_space,
1835 offset_index);
1836 continue;
1837 }
1838 ret = entry->offset;
1839
1840 entry->offset += bytes;
1841 entry->bytes -= bytes;
1842
1843 if (entry->bytes == 0) {
1844 rb_erase(&entry->offset_index, &cluster->root);
1845 kfree(entry);
1846 }
1847 break;
1848 }
1849out:
1850 spin_unlock(&cluster->lock);
96303081 1851
fa9c0d79
CM
1852 return ret;
1853}
1854
96303081
JB
1855static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
1856 struct btrfs_free_space *entry,
1857 struct btrfs_free_cluster *cluster,
1858 u64 offset, u64 bytes, u64 min_bytes)
1859{
1860 unsigned long next_zero;
1861 unsigned long i;
1862 unsigned long search_bits;
1863 unsigned long total_bits;
1864 unsigned long found_bits;
1865 unsigned long start = 0;
1866 unsigned long total_found = 0;
1867 bool found = false;
1868
1869 i = offset_to_bit(entry->offset, block_group->sectorsize,
1870 max_t(u64, offset, entry->offset));
1871 search_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
1872 total_bits = bytes_to_bits(bytes, block_group->sectorsize);
1873
1874again:
1875 found_bits = 0;
1876 for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
1877 i < BITS_PER_BITMAP;
1878 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
1879 next_zero = find_next_zero_bit(entry->bitmap,
1880 BITS_PER_BITMAP, i);
1881 if (next_zero - i >= search_bits) {
1882 found_bits = next_zero - i;
1883 break;
1884 }
1885 i = next_zero;
1886 }
1887
1888 if (!found_bits)
1889 return -1;
1890
1891 if (!found) {
1892 start = i;
1893 found = true;
1894 }
1895
1896 total_found += found_bits;
1897
1898 if (cluster->max_size < found_bits * block_group->sectorsize)
1899 cluster->max_size = found_bits * block_group->sectorsize;
1900
1901 if (total_found < total_bits) {
1902 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
1903 if (i - start > total_bits * 2) {
1904 total_found = 0;
1905 cluster->max_size = 0;
1906 found = false;
1907 }
1908 goto again;
1909 }
1910
1911 cluster->window_start = start * block_group->sectorsize +
1912 entry->offset;
1913 cluster->points_to_bitmap = true;
1914
1915 return 0;
1916}
1917
fa9c0d79
CM
1918/*
1919 * here we try to find a cluster of blocks in a block group. The goal
1920 * is to find at least bytes free and up to empty_size + bytes free.
1921 * We might not find them all in one contiguous area.
1922 *
1923 * returns zero and sets up cluster if things worked out, otherwise
1924 * it returns -enospc
1925 */
1926int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
451d7585 1927 struct btrfs_root *root,
fa9c0d79
CM
1928 struct btrfs_block_group_cache *block_group,
1929 struct btrfs_free_cluster *cluster,
1930 u64 offset, u64 bytes, u64 empty_size)
1931{
1932 struct btrfs_free_space *entry = NULL;
1933 struct rb_node *node;
1934 struct btrfs_free_space *next;
96303081 1935 struct btrfs_free_space *last = NULL;
fa9c0d79
CM
1936 u64 min_bytes;
1937 u64 window_start;
1938 u64 window_free;
1939 u64 max_extent = 0;
96303081 1940 bool found_bitmap = false;
fa9c0d79
CM
1941 int ret;
1942
1943 /* for metadata, allow allocates with more holes */
451d7585
CM
1944 if (btrfs_test_opt(root, SSD_SPREAD)) {
1945 min_bytes = bytes + empty_size;
1946 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
fa9c0d79
CM
1947 /*
1948 * we want to do larger allocations when we are
1949 * flushing out the delayed refs, it helps prevent
1950 * making more work as we go along.
1951 */
1952 if (trans->transaction->delayed_refs.flushing)
1953 min_bytes = max(bytes, (bytes + empty_size) >> 1);
1954 else
1955 min_bytes = max(bytes, (bytes + empty_size) >> 4);
1956 } else
1957 min_bytes = max(bytes, (bytes + empty_size) >> 2);
1958
1959 spin_lock(&block_group->tree_lock);
1960 spin_lock(&cluster->lock);
1961
1962 /* someone already found a cluster, hooray */
1963 if (cluster->block_group) {
1964 ret = 0;
1965 goto out;
1966 }
1967again:
96303081 1968 entry = tree_search_offset(block_group, offset, found_bitmap, 1);
fa9c0d79
CM
1969 if (!entry) {
1970 ret = -ENOSPC;
1971 goto out;
1972 }
96303081
JB
1973
1974 /*
1975 * If found_bitmap is true, we exhausted our search for extent entries,
1976 * and we just want to search all of the bitmaps that we can find, and
1977 * ignore any extent entries we find.
1978 */
1979 while (entry->bitmap || found_bitmap ||
1980 (!entry->bitmap && entry->bytes < min_bytes)) {
1981 struct rb_node *node = rb_next(&entry->offset_index);
1982
1983 if (entry->bitmap && entry->bytes > bytes + empty_size) {
1984 ret = btrfs_bitmap_cluster(block_group, entry, cluster,
1985 offset, bytes + empty_size,
1986 min_bytes);
1987 if (!ret)
1988 goto got_it;
1989 }
1990
1991 if (!node) {
1992 ret = -ENOSPC;
1993 goto out;
1994 }
1995 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1996 }
1997
1998 /*
1999 * We already searched all the extent entries from the passed in offset
2000 * to the end and didn't find enough space for the cluster, and we also
2001 * didn't find any bitmaps that met our criteria, just go ahead and exit
2002 */
2003 if (found_bitmap) {
2004 ret = -ENOSPC;
2005 goto out;
2006 }
2007
2008 cluster->points_to_bitmap = false;
fa9c0d79
CM
2009 window_start = entry->offset;
2010 window_free = entry->bytes;
2011 last = entry;
2012 max_extent = entry->bytes;
2013
96303081 2014 while (1) {
fa9c0d79
CM
2015 /* out window is just right, lets fill it */
2016 if (window_free >= bytes + empty_size)
2017 break;
2018
2019 node = rb_next(&last->offset_index);
2020 if (!node) {
96303081
JB
2021 if (found_bitmap)
2022 goto again;
fa9c0d79
CM
2023 ret = -ENOSPC;
2024 goto out;
2025 }
2026 next = rb_entry(node, struct btrfs_free_space, offset_index);
2027
96303081
JB
2028 /*
2029 * we found a bitmap, so if this search doesn't result in a
2030 * cluster, we know to go and search again for the bitmaps and
2031 * start looking for space there
2032 */
2033 if (next->bitmap) {
2034 if (!found_bitmap)
2035 offset = next->offset;
2036 found_bitmap = true;
2037 last = next;
2038 continue;
2039 }
2040
fa9c0d79
CM
2041 /*
2042 * we haven't filled the empty size and the window is
2043 * very large. reset and try again
2044 */
c6044801
CM
2045 if (next->offset - (last->offset + last->bytes) > 128 * 1024 ||
2046 next->offset - window_start > (bytes + empty_size) * 2) {
fa9c0d79
CM
2047 entry = next;
2048 window_start = entry->offset;
2049 window_free = entry->bytes;
2050 last = entry;
01dea1ef 2051 max_extent = entry->bytes;
fa9c0d79
CM
2052 } else {
2053 last = next;
2054 window_free += next->bytes;
2055 if (entry->bytes > max_extent)
2056 max_extent = entry->bytes;
2057 }
2058 }
2059
2060 cluster->window_start = entry->offset;
2061
2062 /*
2063 * now we've found our entries, pull them out of the free space
2064 * cache and put them into the cluster rbtree
2065 *
2066 * The cluster includes an rbtree, but only uses the offset index
2067 * of each free space cache entry.
2068 */
96303081 2069 while (1) {
fa9c0d79 2070 node = rb_next(&entry->offset_index);
96303081
JB
2071 if (entry->bitmap && node) {
2072 entry = rb_entry(node, struct btrfs_free_space,
2073 offset_index);
2074 continue;
2075 } else if (entry->bitmap && !node) {
2076 break;
2077 }
2078
2079 rb_erase(&entry->offset_index, &block_group->free_space_offset);
fa9c0d79 2080 ret = tree_insert_offset(&cluster->root, entry->offset,
96303081 2081 &entry->offset_index, 0);
fa9c0d79
CM
2082 BUG_ON(ret);
2083
2084 if (!node || entry == last)
2085 break;
2086
2087 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2088 }
96303081 2089
fa9c0d79 2090 cluster->max_size = max_extent;
96303081
JB
2091got_it:
2092 ret = 0;
fa9c0d79
CM
2093 atomic_inc(&block_group->count);
2094 list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
2095 cluster->block_group = block_group;
2096out:
2097 spin_unlock(&cluster->lock);
2098 spin_unlock(&block_group->tree_lock);
2099
2100 return ret;
2101}
2102
2103/*
2104 * simple code to zero out a cluster
2105 */
2106void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2107{
2108 spin_lock_init(&cluster->lock);
2109 spin_lock_init(&cluster->refill_lock);
6bef4d31 2110 cluster->root = RB_ROOT;
fa9c0d79 2111 cluster->max_size = 0;
96303081 2112 cluster->points_to_bitmap = false;
fa9c0d79
CM
2113 INIT_LIST_HEAD(&cluster->block_group_list);
2114 cluster->block_group = NULL;
2115}
2116