]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/aic7xxx_old.c
[PATCH] Unlinline a bunch of other functions
[net-next-2.6.git] / drivers / scsi / aic7xxx_old.c
CommitLineData
1da177e4
LT
1/*+M*************************************************************************
2 * Adaptec AIC7xxx device driver for Linux.
3 *
4 * Copyright (c) 1994 John Aycock
5 * The University of Calgary Department of Computer Science.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; see the file COPYING. If not, write to
19 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
22 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
23 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
24 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
25 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
26 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
27 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
28 * ANSI SCSI-2 specification (draft 10c), ...
29 *
30 * --------------------------------------------------------------------------
31 *
32 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
33 *
34 * Substantially modified to include support for wide and twin bus
35 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
36 * SCB paging, and other rework of the code.
37 *
38 * Parts of this driver were also based on the FreeBSD driver by
39 * Justin T. Gibbs. His copyright follows:
40 *
41 * --------------------------------------------------------------------------
42 * Copyright (c) 1994-1997 Justin Gibbs.
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions, and the following disclaimer,
50 * without modification, immediately at the beginning of the file.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The name of the author may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * Where this Software is combined with software released under the terms of
58 * the GNU General Public License ("GPL") and the terms of the GPL would require the
59 * combined work to also be released under the terms of the GPL, the terms
60 * and conditions of this License will apply in addition to those of the
61 * GPL with the exception of any terms or conditions of this License that
62 * conflict with, or are expressly prohibited by, the GPL.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
68 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 *
76 * $Id: aic7xxx.c,v 1.119 1997/06/27 19:39:18 gibbs Exp $
77 *---------------------------------------------------------------------------
78 *
79 * Thanks also go to (in alphabetical order) the following:
80 *
81 * Rory Bolt - Sequencer bug fixes
82 * Jay Estabrook - Initial DEC Alpha support
83 * Doug Ledford - Much needed abort/reset bug fixes
84 * Kai Makisara - DMAing of SCBs
85 *
86 * A Boot time option was also added for not resetting the scsi bus.
87 *
88 * Form: aic7xxx=extended
89 * aic7xxx=no_reset
90 * aic7xxx=ultra
91 * aic7xxx=irq_trigger:[0,1] # 0 edge, 1 level
92 * aic7xxx=verbose
93 *
94 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
95 *
96 * $Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp $
97 *-M*************************************************************************/
98
99/*+M**************************************************************************
100 *
101 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
102 *
103 * Copyright (c) 1997-1999 Doug Ledford
104 *
105 * These changes are released under the same licensing terms as the FreeBSD
106 * driver written by Justin Gibbs. Please see his Copyright notice above
107 * for the exact terms and conditions covering my changes as well as the
108 * warranty statement.
109 *
110 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
111 * but are not limited to:
112 *
113 * 1: Import of the latest FreeBSD sequencer code for this driver
114 * 2: Modification of kernel code to accommodate different sequencer semantics
115 * 3: Extensive changes throughout kernel portion of driver to improve
116 * abort/reset processing and error hanndling
117 * 4: Other work contributed by various people on the Internet
118 * 5: Changes to printk information and verbosity selection code
119 * 6: General reliability related changes, especially in IRQ management
120 * 7: Modifications to the default probe/attach order for supported cards
121 * 8: SMP friendliness has been improved
122 *
123 * Overall, this driver represents a significant departure from the official
124 * aic7xxx driver released by Dan Eischen in two ways. First, in the code
125 * itself. A diff between the two version of the driver is now a several
126 * thousand line diff. Second, in approach to solving the same problem. The
127 * problem is importing the FreeBSD aic7xxx driver code to linux can be a
128 * difficult and time consuming process, that also can be error prone. Dan
129 * Eischen's official driver uses the approach that the linux and FreeBSD
130 * drivers should be as identical as possible. To that end, his next version
131 * of this driver will be using a mid-layer code library that he is developing
132 * to moderate communications between the linux mid-level SCSI code and the
133 * low level FreeBSD driver. He intends to be able to essentially drop the
134 * FreeBSD driver into the linux kernel with only a few minor tweaks to some
135 * include files and the like and get things working, making for fast easy
136 * imports of the FreeBSD code into linux.
137 *
138 * I disagree with Dan's approach. Not that I don't think his way of doing
139 * things would be nice, easy to maintain, and create a more uniform driver
140 * between FreeBSD and Linux. I have no objection to those issues. My
141 * disagreement is on the needed functionality. There simply are certain
142 * things that are done differently in FreeBSD than linux that will cause
143 * problems for this driver regardless of any middle ware Dan implements.
144 * The biggest example of this at the moment is interrupt semantics. Linux
145 * doesn't provide the same protection techniques as FreeBSD does, nor can
146 * they be easily implemented in any middle ware code since they would truly
147 * belong in the kernel proper and would effect all drivers. For the time
148 * being, I see issues such as these as major stumbling blocks to the
149 * reliability of code based upon such middle ware. Therefore, I choose to
150 * use a different approach to importing the FreeBSD code that doesn't
151 * involve any middle ware type code. My approach is to import the sequencer
152 * code from FreeBSD wholesale. Then, to only make changes in the kernel
153 * portion of the driver as they are needed for the new sequencer semantics.
154 * In this way, the portion of the driver that speaks to the rest of the
155 * linux kernel is fairly static and can be changed/modified to solve
156 * any problems one might encounter without concern for the FreeBSD driver.
157 *
158 * Note: If time and experience should prove me wrong that the middle ware
159 * code Dan writes is reliable in its operation, then I'll retract my above
160 * statements. But, for those that don't know, I'm from Missouri (in the US)
161 * and our state motto is "The Show-Me State". Well, before I will put
162 * faith into it, you'll have to show me that it works :)
163 *
164 *_M*************************************************************************/
165
166/*
167 * The next three defines are user configurable. These should be the only
168 * defines a user might need to get in here and change. There are other
169 * defines buried deeper in the code, but those really shouldn't need touched
170 * under normal conditions.
171 */
172
173/*
174 * AIC7XXX_STRICT_PCI_SETUP
175 * Should we assume the PCI config options on our controllers are set with
176 * sane and proper values, or should we be anal about our PCI config
177 * registers and force them to what we want? The main advantage to
178 * defining this option is on non-Intel hardware where the BIOS may not
179 * have been run to set things up, or if you have one of the BIOSless
180 * Adaptec controllers, such as a 2910, that don't get set up by the
181 * BIOS. However, keep in mind that we really do set the most important
182 * items in the driver regardless of this setting, this only controls some
183 * of the more esoteric PCI options on these cards. In that sense, I
184 * would default to leaving this off. However, if people wish to try
185 * things both ways, that would also help me to know if there are some
186 * machines where it works one way but not another.
187 *
188 * -- July 7, 17:09
189 * OK...I need this on my machine for testing, so the default is to
190 * leave it defined.
191 *
192 * -- July 7, 18:49
193 * I needed it for testing, but it didn't make any difference, so back
194 * off she goes.
195 *
196 * -- July 16, 23:04
197 * I turned it back on to try and compensate for the 2.1.x PCI code
198 * which no longer relies solely on the BIOS and now tries to set
199 * things itself.
200 */
201
202#define AIC7XXX_STRICT_PCI_SETUP
203
204/*
205 * AIC7XXX_VERBOSE_DEBUGGING
206 * This option enables a lot of extra printk();s in the code, surrounded
207 * by if (aic7xxx_verbose ...) statements. Executing all of those if
208 * statements and the extra checks can get to where it actually does have
209 * an impact on CPU usage and such, as well as code size. Disabling this
210 * define will keep some of those from becoming part of the code.
211 *
212 * NOTE: Currently, this option has no real effect, I will be adding the
213 * various #ifdef's in the code later when I've decided a section is
214 * complete and no longer needs debugging. OK...a lot of things are now
215 * surrounded by this define, so turning this off does have an impact.
216 */
217
218/*
219 * #define AIC7XXX_VERBOSE_DEBUGGING
220 */
221
222#include <linux/module.h>
223#include <stdarg.h>
224#include <asm/io.h>
225#include <asm/irq.h>
226#include <asm/byteorder.h>
227#include <linux/string.h>
228#include <linux/errno.h>
229#include <linux/kernel.h>
230#include <linux/ioport.h>
231#include <linux/delay.h>
232#include <linux/sched.h>
233#include <linux/pci.h>
234#include <linux/proc_fs.h>
235#include <linux/blkdev.h>
236#include <linux/init.h>
237#include <linux/spinlock.h>
238#include <linux/smp.h>
239#include <linux/interrupt.h>
240#include "scsi.h"
241#include <scsi/scsi_host.h>
242#include "aic7xxx_old/aic7xxx.h"
243
244#include "aic7xxx_old/sequencer.h"
245#include "aic7xxx_old/scsi_message.h"
246#include "aic7xxx_old/aic7xxx_reg.h"
247#include <scsi/scsicam.h>
248
249#include <linux/stat.h>
250#include <linux/slab.h> /* for kmalloc() */
251
252#include <linux/config.h> /* for CONFIG_PCI */
253
254#define AIC7XXX_C_VERSION "5.2.6"
255
256#define ALL_TARGETS -1
257#define ALL_CHANNELS -1
258#define ALL_LUNS -1
259#define MAX_TARGETS 16
260#define MAX_LUNS 8
261#ifndef TRUE
262# define TRUE 1
263#endif
264#ifndef FALSE
265# define FALSE 0
266#endif
267
268#if defined(__powerpc__) || defined(__i386__) || defined(__x86_64__)
269# define MMAPIO
270#endif
271
272/*
273 * You can try raising me for better performance or lowering me if you have
274 * flaky devices that go off the scsi bus when hit with too many tagged
275 * commands (like some IBM SCSI-3 LVD drives).
276 */
277#define AIC7XXX_CMDS_PER_DEVICE 32
278
279typedef struct
280{
281 unsigned char tag_commands[16]; /* Allow for wide/twin adapters. */
282} adapter_tag_info_t;
283
284/*
285 * Make a define that will tell the driver not to the default tag depth
286 * everywhere.
287 */
288#define DEFAULT_TAG_COMMANDS {0, 0, 0, 0, 0, 0, 0, 0,\
289 0, 0, 0, 0, 0, 0, 0, 0}
290
291/*
292 * Modify this as you see fit for your system. By setting tag_commands
293 * to 0, the driver will use it's own algorithm for determining the
294 * number of commands to use (see above). When 255, the driver will
295 * not enable tagged queueing for that particular device. When positive
296 * (> 0) and (< 255) the values in the array are used for the queue_depth.
297 * Note that the maximum value for an entry is 254, but you're insane if
298 * you try to use that many commands on one device.
299 *
300 * In this example, the first line will disable tagged queueing for all
301 * the devices on the first probed aic7xxx adapter.
302 *
303 * The second line enables tagged queueing with 4 commands/LUN for IDs
304 * (1, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
305 * driver to use its own algorithm for ID 1.
306 *
307 * The third line is the same as the first line.
308 *
309 * The fourth line disables tagged queueing for devices 0 and 3. It
310 * enables tagged queueing for the other IDs, with 16 commands/LUN
311 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
312 * IDs 2, 5-7, and 9-15.
313 */
314
315/*
316 * NOTE: The below structure is for reference only, the actual structure
317 * to modify in order to change things is found after this fake one.
318 *
319adapter_tag_info_t aic7xxx_tag_info[] =
320{
321 {DEFAULT_TAG_COMMANDS},
322 {{4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 255, 4, 4, 4}},
323 {DEFAULT_TAG_COMMANDS},
324 {{255, 16, 4, 255, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
325};
326*/
327
328static adapter_tag_info_t aic7xxx_tag_info[] =
329{
330 {DEFAULT_TAG_COMMANDS},
331 {DEFAULT_TAG_COMMANDS},
332 {DEFAULT_TAG_COMMANDS},
333 {DEFAULT_TAG_COMMANDS},
334 {DEFAULT_TAG_COMMANDS},
335 {DEFAULT_TAG_COMMANDS},
336 {DEFAULT_TAG_COMMANDS},
337 {DEFAULT_TAG_COMMANDS},
338 {DEFAULT_TAG_COMMANDS},
339 {DEFAULT_TAG_COMMANDS},
340 {DEFAULT_TAG_COMMANDS},
341 {DEFAULT_TAG_COMMANDS},
342 {DEFAULT_TAG_COMMANDS},
343 {DEFAULT_TAG_COMMANDS},
344 {DEFAULT_TAG_COMMANDS},
345 {DEFAULT_TAG_COMMANDS}
346};
347
348
349/*
350 * Define an array of board names that can be indexed by aha_type.
351 * Don't forget to change this when changing the types!
352 */
353static const char *board_names[] = {
354 "AIC-7xxx Unknown", /* AIC_NONE */
355 "Adaptec AIC-7810 Hardware RAID Controller", /* AIC_7810 */
356 "Adaptec AIC-7770 SCSI host adapter", /* AIC_7770 */
357 "Adaptec AHA-274X SCSI host adapter", /* AIC_7771 */
358 "Adaptec AHA-284X SCSI host adapter", /* AIC_284x */
359 "Adaptec AIC-7850 SCSI host adapter", /* AIC_7850 */
360 "Adaptec AIC-7855 SCSI host adapter", /* AIC_7855 */
361 "Adaptec AIC-7860 Ultra SCSI host adapter", /* AIC_7860 */
362 "Adaptec AHA-2940A Ultra SCSI host adapter", /* AIC_7861 */
363 "Adaptec AIC-7870 SCSI host adapter", /* AIC_7870 */
364 "Adaptec AHA-294X SCSI host adapter", /* AIC_7871 */
365 "Adaptec AHA-394X SCSI host adapter", /* AIC_7872 */
366 "Adaptec AHA-398X SCSI host adapter", /* AIC_7873 */
367 "Adaptec AHA-2944 SCSI host adapter", /* AIC_7874 */
368 "Adaptec AIC-7880 Ultra SCSI host adapter", /* AIC_7880 */
369 "Adaptec AHA-294X Ultra SCSI host adapter", /* AIC_7881 */
370 "Adaptec AHA-394X Ultra SCSI host adapter", /* AIC_7882 */
371 "Adaptec AHA-398X Ultra SCSI host adapter", /* AIC_7883 */
372 "Adaptec AHA-2944 Ultra SCSI host adapter", /* AIC_7884 */
373 "Adaptec AHA-2940UW Pro Ultra SCSI host adapter", /* AIC_7887 */
374 "Adaptec AIC-7895 Ultra SCSI host adapter", /* AIC_7895 */
375 "Adaptec AIC-7890/1 Ultra2 SCSI host adapter", /* AIC_7890 */
376 "Adaptec AHA-293X Ultra2 SCSI host adapter", /* AIC_7890 */
377 "Adaptec AHA-294X Ultra2 SCSI host adapter", /* AIC_7890 */
378 "Adaptec AIC-7896/7 Ultra2 SCSI host adapter", /* AIC_7896 */
379 "Adaptec AHA-394X Ultra2 SCSI host adapter", /* AIC_7897 */
380 "Adaptec AHA-395X Ultra2 SCSI host adapter", /* AIC_7897 */
381 "Adaptec PCMCIA SCSI controller", /* card bus stuff */
382 "Adaptec AIC-7892 Ultra 160/m SCSI host adapter", /* AIC_7892 */
383 "Adaptec AIC-7899 Ultra 160/m SCSI host adapter", /* AIC_7899 */
384};
385
386/*
387 * There should be a specific return value for this in scsi.h, but
388 * it seems that most drivers ignore it.
389 */
390#define DID_UNDERFLOW DID_ERROR
391
392/*
393 * What we want to do is have the higher level scsi driver requeue
394 * the command to us. There is no specific driver status for this
395 * condition, but the higher level scsi driver will requeue the
396 * command on a DID_BUS_BUSY error.
397 *
398 * Upon further inspection and testing, it seems that DID_BUS_BUSY
399 * will *always* retry the command. We can get into an infinite loop
400 * if this happens when we really want some sort of counter that
401 * will automatically abort/reset the command after so many retries.
402 * Using DID_ERROR will do just that. (Made by a suggestion by
403 * Doug Ledford 8/1/96)
404 */
405#define DID_RETRY_COMMAND DID_ERROR
406
407#define HSCSIID 0x07
408#define SCSI_RESET 0x040
409
410/*
411 * EISA/VL-bus stuff
412 */
413#define MINSLOT 1
414#define MAXSLOT 15
415#define SLOTBASE(x) ((x) << 12)
416#define BASE_TO_SLOT(x) ((x) >> 12)
417
418/*
419 * Standard EISA Host ID regs (Offset from slot base)
420 */
421#define AHC_HID0 0x80 /* 0,1: msb of ID2, 2-7: ID1 */
422#define AHC_HID1 0x81 /* 0-4: ID3, 5-7: LSB ID2 */
423#define AHC_HID2 0x82 /* product */
424#define AHC_HID3 0x83 /* firmware revision */
425
426/*
427 * AIC-7770 I/O range to reserve for a card
428 */
429#define MINREG 0xC00
430#define MAXREG 0xCFF
431
432#define INTDEF 0x5C /* Interrupt Definition Register */
433
434/*
435 * AIC-78X0 PCI registers
436 */
437#define CLASS_PROGIF_REVID 0x08
438#define DEVREVID 0x000000FFul
439#define PROGINFC 0x0000FF00ul
440#define SUBCLASS 0x00FF0000ul
441#define BASECLASS 0xFF000000ul
442
443#define CSIZE_LATTIME 0x0C
444#define CACHESIZE 0x0000003Ful /* only 5 bits */
445#define LATTIME 0x0000FF00ul
446
447#define DEVCONFIG 0x40
448#define SCBSIZE32 0x00010000ul /* aic789X only */
449#define MPORTMODE 0x00000400ul /* aic7870 only */
450#define RAMPSM 0x00000200ul /* aic7870 only */
451#define RAMPSM_ULTRA2 0x00000004
452#define VOLSENSE 0x00000100ul
453#define SCBRAMSEL 0x00000080ul
454#define SCBRAMSEL_ULTRA2 0x00000008
455#define MRDCEN 0x00000040ul
456#define EXTSCBTIME 0x00000020ul /* aic7870 only */
457#define EXTSCBPEN 0x00000010ul /* aic7870 only */
458#define BERREN 0x00000008ul
459#define DACEN 0x00000004ul
460#define STPWLEVEL 0x00000002ul
461#define DIFACTNEGEN 0x00000001ul /* aic7870 only */
462
463#define SCAMCTL 0x1a /* Ultra2 only */
464#define CCSCBBADDR 0xf0 /* aic7895/6/7 */
465
466/*
467 * Define the different types of SEEPROMs on aic7xxx adapters
468 * and make it also represent the address size used in accessing
469 * its registers. The 93C46 chips have 1024 bits organized into
470 * 64 16-bit words, while the 93C56 chips have 2048 bits organized
471 * into 128 16-bit words. The C46 chips use 6 bits to address
472 * each word, while the C56 and C66 (4096 bits) use 8 bits to
473 * address each word.
474 */
475typedef enum {C46 = 6, C56_66 = 8} seeprom_chip_type;
476
477/*
478 *
479 * Define the format of the SEEPROM registers (16 bits).
480 *
481 */
482struct seeprom_config {
483
484/*
485 * SCSI ID Configuration Flags
486 */
487#define CFXFER 0x0007 /* synchronous transfer rate */
488#define CFSYNCH 0x0008 /* enable synchronous transfer */
489#define CFDISC 0x0010 /* enable disconnection */
490#define CFWIDEB 0x0020 /* wide bus device (wide card) */
491#define CFSYNCHISULTRA 0x0040 /* CFSYNC is an ultra offset */
492#define CFNEWULTRAFORMAT 0x0080 /* Use the Ultra2 SEEPROM format */
493#define CFSTART 0x0100 /* send start unit SCSI command */
494#define CFINCBIOS 0x0200 /* include in BIOS scan */
495#define CFRNFOUND 0x0400 /* report even if not found */
496#define CFMULTILUN 0x0800 /* probe mult luns in BIOS scan */
497#define CFWBCACHEYES 0x4000 /* Enable W-Behind Cache on drive */
498#define CFWBCACHENC 0xc000 /* Don't change W-Behind Cache */
499/* UNUSED 0x3000 */
500 unsigned short device_flags[16]; /* words 0-15 */
501
502/*
503 * BIOS Control Bits
504 */
505#define CFSUPREM 0x0001 /* support all removable drives */
506#define CFSUPREMB 0x0002 /* support removable drives for boot only */
507#define CFBIOSEN 0x0004 /* BIOS enabled */
508/* UNUSED 0x0008 */
509#define CFSM2DRV 0x0010 /* support more than two drives */
510#define CF284XEXTEND 0x0020 /* extended translation (284x cards) */
511/* UNUSED 0x0040 */
512#define CFEXTEND 0x0080 /* extended translation enabled */
513/* UNUSED 0xFF00 */
514 unsigned short bios_control; /* word 16 */
515
516/*
517 * Host Adapter Control Bits
518 */
519#define CFAUTOTERM 0x0001 /* Perform Auto termination */
520#define CFULTRAEN 0x0002 /* Ultra SCSI speed enable (Ultra cards) */
521#define CF284XSELTO 0x0003 /* Selection timeout (284x cards) */
522#define CF284XFIFO 0x000C /* FIFO Threshold (284x cards) */
523#define CFSTERM 0x0004 /* SCSI low byte termination */
524#define CFWSTERM 0x0008 /* SCSI high byte termination (wide card) */
525#define CFSPARITY 0x0010 /* SCSI parity */
526#define CF284XSTERM 0x0020 /* SCSI low byte termination (284x cards) */
527#define CFRESETB 0x0040 /* reset SCSI bus at boot */
528#define CFBPRIMARY 0x0100 /* Channel B primary on 7895 chipsets */
529#define CFSEAUTOTERM 0x0400 /* aic7890 Perform SE Auto Term */
530#define CFLVDSTERM 0x0800 /* aic7890 LVD Termination */
531/* UNUSED 0xF280 */
532 unsigned short adapter_control; /* word 17 */
533
534/*
535 * Bus Release, Host Adapter ID
536 */
537#define CFSCSIID 0x000F /* host adapter SCSI ID */
538/* UNUSED 0x00F0 */
539#define CFBRTIME 0xFF00 /* bus release time */
540 unsigned short brtime_id; /* word 18 */
541
542/*
543 * Maximum targets
544 */
545#define CFMAXTARG 0x00FF /* maximum targets */
546/* UNUSED 0xFF00 */
547 unsigned short max_targets; /* word 19 */
548
549 unsigned short res_1[11]; /* words 20-30 */
550 unsigned short checksum; /* word 31 */
551};
552
553#define SELBUS_MASK 0x0a
554#define SELNARROW 0x00
555#define SELBUSB 0x08
556#define SINGLE_BUS 0x00
557
558#define SCB_TARGET(scb) \
559 (((scb)->hscb->target_channel_lun & TID) >> 4)
560#define SCB_LUN(scb) \
561 ((scb)->hscb->target_channel_lun & LID)
562#define SCB_IS_SCSIBUS_B(scb) \
563 (((scb)->hscb->target_channel_lun & SELBUSB) != 0)
564
565/*
566 * If an error occurs during a data transfer phase, run the command
567 * to completion - it's easier that way - making a note of the error
568 * condition in this location. This then will modify a DID_OK status
569 * into an appropriate error for the higher-level SCSI code.
570 */
571#define aic7xxx_error(cmd) ((cmd)->SCp.Status)
572
573/*
574 * Keep track of the targets returned status.
575 */
576#define aic7xxx_status(cmd) ((cmd)->SCp.sent_command)
577
578/*
579 * The position of the SCSI commands scb within the scb array.
580 */
581#define aic7xxx_position(cmd) ((cmd)->SCp.have_data_in)
582
583/*
584 * The stored DMA mapping for single-buffer data transfers.
585 */
586#define aic7xxx_mapping(cmd) ((cmd)->SCp.phase)
587
588/*
589 * Get out private data area from a scsi cmd pointer
590 */
591#define AIC_DEV(cmd) ((struct aic_dev_data *)(cmd)->device->hostdata)
592
593/*
594 * So we can keep track of our host structs
595 */
596static struct aic7xxx_host *first_aic7xxx = NULL;
597
598/*
599 * As of Linux 2.1, the mid-level SCSI code uses virtual addresses
600 * in the scatter-gather lists. We need to convert the virtual
601 * addresses to physical addresses.
602 */
603struct hw_scatterlist {
604 unsigned int address;
605 unsigned int length;
606};
607
608/*
609 * Maximum number of SG segments these cards can support.
610 */
611#define AIC7XXX_MAX_SG 128
612
613/*
614 * The maximum number of SCBs we could have for ANY type
615 * of card. DON'T FORGET TO CHANGE THE SCB MASK IN THE
616 * SEQUENCER CODE IF THIS IS MODIFIED!
617 */
618#define AIC7XXX_MAXSCB 255
619
620
621struct aic7xxx_hwscb {
622/* ------------ Begin hardware supported fields ---------------- */
623/* 0*/ unsigned char control;
624/* 1*/ unsigned char target_channel_lun; /* 4/1/3 bits */
625/* 2*/ unsigned char target_status;
626/* 3*/ unsigned char SG_segment_count;
627/* 4*/ unsigned int SG_list_pointer;
628/* 8*/ unsigned char residual_SG_segment_count;
629/* 9*/ unsigned char residual_data_count[3];
630/*12*/ unsigned int data_pointer;
631/*16*/ unsigned int data_count;
632/*20*/ unsigned int SCSI_cmd_pointer;
633/*24*/ unsigned char SCSI_cmd_length;
634/*25*/ unsigned char tag; /* Index into our kernel SCB array.
635 * Also used as the tag for tagged I/O
636 */
637#define SCB_PIO_TRANSFER_SIZE 26 /* amount we need to upload/download
638 * via PIO to initialize a transaction.
639 */
640/*26*/ unsigned char next; /* Used to thread SCBs awaiting selection
641 * or disconnected down in the sequencer.
642 */
643/*27*/ unsigned char prev;
644/*28*/ unsigned int pad; /*
645 * Unused by the kernel, but we require
646 * the padding so that the array of
647 * hardware SCBs is aligned on 32 byte
648 * boundaries so the sequencer can index
649 */
650};
651
652typedef enum {
653 SCB_FREE = 0x0000,
654 SCB_DTR_SCB = 0x0001,
655 SCB_WAITINGQ = 0x0002,
656 SCB_ACTIVE = 0x0004,
657 SCB_SENSE = 0x0008,
658 SCB_ABORT = 0x0010,
659 SCB_DEVICE_RESET = 0x0020,
660 SCB_RESET = 0x0040,
661 SCB_RECOVERY_SCB = 0x0080,
662 SCB_MSGOUT_PPR = 0x0100,
663 SCB_MSGOUT_SENT = 0x0200,
664 SCB_MSGOUT_SDTR = 0x0400,
665 SCB_MSGOUT_WDTR = 0x0800,
666 SCB_MSGOUT_BITS = SCB_MSGOUT_PPR |
667 SCB_MSGOUT_SENT |
668 SCB_MSGOUT_SDTR |
669 SCB_MSGOUT_WDTR,
670 SCB_QUEUED_ABORT = 0x1000,
671 SCB_QUEUED_FOR_DONE = 0x2000,
672 SCB_WAS_BUSY = 0x4000,
673 SCB_QUEUE_FULL = 0x8000
674} scb_flag_type;
675
676typedef enum {
677 AHC_FNONE = 0x00000000,
678 AHC_PAGESCBS = 0x00000001,
679 AHC_CHANNEL_B_PRIMARY = 0x00000002,
680 AHC_USEDEFAULTS = 0x00000004,
681 AHC_INDIRECT_PAGING = 0x00000008,
682 AHC_CHNLB = 0x00000020,
683 AHC_CHNLC = 0x00000040,
684 AHC_EXTEND_TRANS_A = 0x00000100,
685 AHC_EXTEND_TRANS_B = 0x00000200,
686 AHC_TERM_ENB_A = 0x00000400,
687 AHC_TERM_ENB_SE_LOW = 0x00000400,
688 AHC_TERM_ENB_B = 0x00000800,
689 AHC_TERM_ENB_SE_HIGH = 0x00000800,
690 AHC_HANDLING_REQINITS = 0x00001000,
691 AHC_TARGETMODE = 0x00002000,
692 AHC_NEWEEPROM_FMT = 0x00004000,
693 /*
694 * Here ends the FreeBSD defined flags and here begins the linux defined
695 * flags. NOTE: I did not preserve the old flag name during this change
696 * specifically to force me to evaluate what flags were being used properly
697 * and what flags weren't. This way, I could clean up the flag usage on
698 * a use by use basis. Doug Ledford
699 */
700 AHC_MOTHERBOARD = 0x00020000,
701 AHC_NO_STPWEN = 0x00040000,
702 AHC_RESET_DELAY = 0x00080000,
703 AHC_A_SCANNED = 0x00100000,
704 AHC_B_SCANNED = 0x00200000,
705 AHC_MULTI_CHANNEL = 0x00400000,
706 AHC_BIOS_ENABLED = 0x00800000,
707 AHC_SEEPROM_FOUND = 0x01000000,
708 AHC_TERM_ENB_LVD = 0x02000000,
709 AHC_ABORT_PENDING = 0x04000000,
710 AHC_RESET_PENDING = 0x08000000,
711#define AHC_IN_ISR_BIT 28
712 AHC_IN_ISR = 0x10000000,
713 AHC_IN_ABORT = 0x20000000,
714 AHC_IN_RESET = 0x40000000,
715 AHC_EXTERNAL_SRAM = 0x80000000
716} ahc_flag_type;
717
718typedef enum {
719 AHC_NONE = 0x0000,
720 AHC_CHIPID_MASK = 0x00ff,
721 AHC_AIC7770 = 0x0001,
722 AHC_AIC7850 = 0x0002,
723 AHC_AIC7860 = 0x0003,
724 AHC_AIC7870 = 0x0004,
725 AHC_AIC7880 = 0x0005,
726 AHC_AIC7890 = 0x0006,
727 AHC_AIC7895 = 0x0007,
728 AHC_AIC7896 = 0x0008,
729 AHC_AIC7892 = 0x0009,
730 AHC_AIC7899 = 0x000a,
731 AHC_VL = 0x0100,
732 AHC_EISA = 0x0200,
733 AHC_PCI = 0x0400,
734} ahc_chip;
735
736typedef enum {
737 AHC_FENONE = 0x0000,
738 AHC_ULTRA = 0x0001,
739 AHC_ULTRA2 = 0x0002,
740 AHC_WIDE = 0x0004,
741 AHC_TWIN = 0x0008,
742 AHC_MORE_SRAM = 0x0010,
743 AHC_CMD_CHAN = 0x0020,
744 AHC_QUEUE_REGS = 0x0040,
745 AHC_SG_PRELOAD = 0x0080,
746 AHC_SPIOCAP = 0x0100,
747 AHC_ULTRA3 = 0x0200,
748 AHC_NEW_AUTOTERM = 0x0400,
749 AHC_AIC7770_FE = AHC_FENONE,
750 AHC_AIC7850_FE = AHC_SPIOCAP,
751 AHC_AIC7860_FE = AHC_ULTRA|AHC_SPIOCAP,
752 AHC_AIC7870_FE = AHC_FENONE,
753 AHC_AIC7880_FE = AHC_ULTRA,
754 AHC_AIC7890_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA2|
755 AHC_QUEUE_REGS|AHC_SG_PRELOAD|AHC_NEW_AUTOTERM,
756 AHC_AIC7895_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA,
757 AHC_AIC7896_FE = AHC_AIC7890_FE,
758 AHC_AIC7892_FE = AHC_AIC7890_FE|AHC_ULTRA3,
759 AHC_AIC7899_FE = AHC_AIC7890_FE|AHC_ULTRA3,
760} ahc_feature;
761
762#define SCB_DMA_ADDR(scb, addr) ((unsigned long)(addr) + (scb)->scb_dma->dma_offset)
763
764struct aic7xxx_scb_dma {
765 unsigned long dma_offset; /* Correction you have to add
766 * to virtual address to get
767 * dma handle in this region */
768 dma_addr_t dma_address; /* DMA handle of the start,
769 * for unmap */
770 unsigned int dma_len; /* DMA length */
771};
772
773typedef enum {
774 AHC_BUG_NONE = 0x0000,
775 AHC_BUG_TMODE_WIDEODD = 0x0001,
776 AHC_BUG_AUTOFLUSH = 0x0002,
777 AHC_BUG_CACHETHEN = 0x0004,
778 AHC_BUG_CACHETHEN_DIS = 0x0008,
779 AHC_BUG_PCI_2_1_RETRY = 0x0010,
780 AHC_BUG_PCI_MWI = 0x0020,
781 AHC_BUG_SCBCHAN_UPLOAD = 0x0040,
782} ahc_bugs;
783
784struct aic7xxx_scb {
785 struct aic7xxx_hwscb *hscb; /* corresponding hardware scb */
786 Scsi_Cmnd *cmd; /* Scsi_Cmnd for this scb */
787 struct aic7xxx_scb *q_next; /* next scb in queue */
788 volatile scb_flag_type flags; /* current state of scb */
789 struct hw_scatterlist *sg_list; /* SG list in adapter format */
790 unsigned char tag_action;
791 unsigned char sg_count;
792 unsigned char *sense_cmd; /*
793 * Allocate 6 characters for
794 * sense command.
795 */
796 unsigned char *cmnd;
797 unsigned int sg_length; /* We init this during buildscb so we
798 * don't have to calculate anything
799 * during underflow/overflow/stat code
800 */
801 void *kmalloc_ptr;
802 struct aic7xxx_scb_dma *scb_dma;
803};
804
805/*
806 * Define a linked list of SCBs.
807 */
808typedef struct {
809 struct aic7xxx_scb *head;
810 struct aic7xxx_scb *tail;
811} scb_queue_type;
812
813static struct {
814 unsigned char errno;
815 const char *errmesg;
816} hard_error[] = {
817 { ILLHADDR, "Illegal Host Access" },
818 { ILLSADDR, "Illegal Sequencer Address referenced" },
819 { ILLOPCODE, "Illegal Opcode in sequencer program" },
820 { SQPARERR, "Sequencer Ram Parity Error" },
821 { DPARERR, "Data-Path Ram Parity Error" },
822 { MPARERR, "Scratch Ram/SCB Array Ram Parity Error" },
823 { PCIERRSTAT,"PCI Error detected" },
824 { CIOPARERR, "CIOBUS Parity Error" }
825};
826
827static unsigned char
828generic_sense[] = { REQUEST_SENSE, 0, 0, 0, 255, 0 };
829
830typedef struct {
831 scb_queue_type free_scbs; /*
832 * SCBs assigned to free slot on
833 * card (no paging required)
834 */
835 struct aic7xxx_scb *scb_array[AIC7XXX_MAXSCB];
836 struct aic7xxx_hwscb *hscbs;
837 unsigned char numscbs; /* current number of scbs */
838 unsigned char maxhscbs; /* hardware scbs */
839 unsigned char maxscbs; /* max scbs including pageable scbs */
840 dma_addr_t hscbs_dma; /* DMA handle to hscbs */
841 unsigned int hscbs_dma_len; /* length of the above DMA area */
842 void *hscb_kmalloc_ptr;
843} scb_data_type;
844
845struct target_cmd {
846 unsigned char mesg_bytes[4];
847 unsigned char command[28];
848};
849
850#define AHC_TRANS_CUR 0x0001
851#define AHC_TRANS_ACTIVE 0x0002
852#define AHC_TRANS_GOAL 0x0004
853#define AHC_TRANS_USER 0x0008
854#define AHC_TRANS_QUITE 0x0010
855typedef struct {
856 unsigned char width;
857 unsigned char period;
858 unsigned char offset;
859 unsigned char options;
860} transinfo_type;
861
862struct aic_dev_data {
863 volatile scb_queue_type delayed_scbs;
864 volatile unsigned short temp_q_depth;
865 unsigned short max_q_depth;
866 volatile unsigned char active_cmds;
867 /*
868 * Statistics Kept:
869 *
870 * Total Xfers (count for each command that has a data xfer),
871 * broken down by reads && writes.
872 *
873 * Further sorted into a few bins for keeping tabs on how many commands
874 * we get of various sizes.
875 *
876 */
877 long w_total; /* total writes */
878 long r_total; /* total reads */
879 long barrier_total; /* total num of REQ_BARRIER commands */
880 long ordered_total; /* How many REQ_BARRIER commands we
881 used ordered tags to satisfy */
882 long w_bins[6]; /* binned write */
883 long r_bins[6]; /* binned reads */
884 transinfo_type cur;
885 transinfo_type goal;
886#define BUS_DEVICE_RESET_PENDING 0x01
887#define DEVICE_RESET_DELAY 0x02
888#define DEVICE_PRINT_DTR 0x04
889#define DEVICE_WAS_BUSY 0x08
890#define DEVICE_DTR_SCANNED 0x10
891#define DEVICE_SCSI_3 0x20
892 volatile unsigned char flags;
893 unsigned needppr:1;
894 unsigned needppr_copy:1;
895 unsigned needsdtr:1;
896 unsigned needsdtr_copy:1;
897 unsigned needwdtr:1;
898 unsigned needwdtr_copy:1;
899 unsigned dtr_pending:1;
900 struct scsi_device *SDptr;
901 struct list_head list;
902};
903
904/*
905 * Define a structure used for each host adapter. Note, in order to avoid
906 * problems with architectures I can't test on (because I don't have one,
907 * such as the Alpha based systems) which happen to give faults for
908 * non-aligned memory accesses, care was taken to align this structure
909 * in a way that gauranteed all accesses larger than 8 bits were aligned
910 * on the appropriate boundary. It's also organized to try and be more
911 * cache line efficient. Be careful when changing this lest you might hurt
912 * overall performance and bring down the wrath of the masses.
913 */
914struct aic7xxx_host {
915 /*
916 * This is the first 64 bytes in the host struct
917 */
918
919 /*
920 * We are grouping things here....first, items that get either read or
921 * written with nearly every interrupt
922 */
923 volatile long flags;
924 ahc_feature features; /* chip features */
925 unsigned long base; /* card base address */
926 volatile unsigned char __iomem *maddr; /* memory mapped address */
927 unsigned long isr_count; /* Interrupt count */
928 unsigned long spurious_int;
929 scb_data_type *scb_data;
930 struct aic7xxx_cmd_queue {
931 Scsi_Cmnd *head;
932 Scsi_Cmnd *tail;
933 } completeq;
934
935 /*
936 * Things read/written on nearly every entry into aic7xxx_queue()
937 */
938 volatile scb_queue_type waiting_scbs;
939 unsigned char unpause; /* unpause value for HCNTRL */
940 unsigned char pause; /* pause value for HCNTRL */
941 volatile unsigned char qoutfifonext;
942 volatile unsigned char activescbs; /* active scbs */
943 volatile unsigned char max_activescbs;
944 volatile unsigned char qinfifonext;
945 volatile unsigned char *untagged_scbs;
946 volatile unsigned char *qoutfifo;
947 volatile unsigned char *qinfifo;
948
949 unsigned char dev_last_queue_full[MAX_TARGETS];
950 unsigned char dev_last_queue_full_count[MAX_TARGETS];
951 unsigned short ultraenb; /* Gets downloaded to card as a
952 bitmap */
953 unsigned short discenable; /* Gets downloaded to card as a
954 bitmap */
955 transinfo_type user[MAX_TARGETS];
956
957 unsigned char msg_buf[13]; /* The message for the target */
958 unsigned char msg_type;
959#define MSG_TYPE_NONE 0x00
960#define MSG_TYPE_INITIATOR_MSGOUT 0x01
961#define MSG_TYPE_INITIATOR_MSGIN 0x02
962 unsigned char msg_len; /* Length of message */
963 unsigned char msg_index; /* Index into msg_buf array */
964
965
966 /*
967 * We put the less frequently used host structure items after the more
968 * frequently used items to try and ease the burden on the cache subsystem.
969 * These entries are not *commonly* accessed, whereas the preceding entries
970 * are accessed very often.
971 */
972
973 unsigned int irq; /* IRQ for this adapter */
974 int instance; /* aic7xxx instance number */
975 int scsi_id; /* host adapter SCSI ID */
976 int scsi_id_b; /* channel B for twin adapters */
977 unsigned int bios_address;
978 int board_name_index;
979 unsigned short bios_control; /* bios control - SEEPROM */
980 unsigned short adapter_control; /* adapter control - SEEPROM */
981 struct pci_dev *pdev;
982 unsigned char pci_bus;
983 unsigned char pci_device_fn;
984 struct seeprom_config sc;
985 unsigned short sc_type;
986 unsigned short sc_size;
987 struct aic7xxx_host *next; /* allow for multiple IRQs */
988 struct Scsi_Host *host; /* pointer to scsi host */
989 struct list_head aic_devs; /* all aic_dev structs on host */
990 int host_no; /* SCSI host number */
991 unsigned long mbase; /* I/O memory address */
992 ahc_chip chip; /* chip type */
993 ahc_bugs bugs;
994 dma_addr_t fifo_dma; /* DMA handle for fifo arrays */
995
996};
997
998/*
999 * Valid SCSIRATE values. (p. 3-17)
1000 * Provides a mapping of transfer periods in ns/4 to the proper value to
1001 * stick in the SCSIRATE reg to use that transfer rate.
1002 */
1003#define AHC_SYNCRATE_ULTRA3 0
1004#define AHC_SYNCRATE_ULTRA2 1
1005#define AHC_SYNCRATE_ULTRA 3
1006#define AHC_SYNCRATE_FAST 6
1007#define AHC_SYNCRATE_CRC 0x40
1008#define AHC_SYNCRATE_SE 0x10
1009static struct aic7xxx_syncrate {
1010 /* Rates in Ultra mode have bit 8 of sxfr set */
1011#define ULTRA_SXFR 0x100
1012 int sxfr_ultra2;
1013 int sxfr;
1014 unsigned char period;
1015 const char *rate[2];
1016} aic7xxx_syncrates[] = {
1017 { 0x42, 0x000, 9, {"80.0", "160.0"} },
1018 { 0x13, 0x000, 10, {"40.0", "80.0"} },
1019 { 0x14, 0x000, 11, {"33.0", "66.6"} },
1020 { 0x15, 0x100, 12, {"20.0", "40.0"} },
1021 { 0x16, 0x110, 15, {"16.0", "32.0"} },
1022 { 0x17, 0x120, 18, {"13.4", "26.8"} },
1023 { 0x18, 0x000, 25, {"10.0", "20.0"} },
1024 { 0x19, 0x010, 31, {"8.0", "16.0"} },
1025 { 0x1a, 0x020, 37, {"6.67", "13.3"} },
1026 { 0x1b, 0x030, 43, {"5.7", "11.4"} },
1027 { 0x10, 0x040, 50, {"5.0", "10.0"} },
1028 { 0x00, 0x050, 56, {"4.4", "8.8" } },
1029 { 0x00, 0x060, 62, {"4.0", "8.0" } },
1030 { 0x00, 0x070, 68, {"3.6", "7.2" } },
1031 { 0x00, 0x000, 0, {NULL, NULL} },
1032};
1033
1034#define CTL_OF_SCB(scb) (((scb->hscb)->target_channel_lun >> 3) & 0x1), \
1035 (((scb->hscb)->target_channel_lun >> 4) & 0xf), \
1036 ((scb->hscb)->target_channel_lun & 0x07)
1037
1038#define CTL_OF_CMD(cmd) ((cmd->device->channel) & 0x01), \
1039 ((cmd->device->id) & 0x0f), \
1040 ((cmd->device->lun) & 0x07)
1041
1042#define TARGET_INDEX(cmd) ((cmd)->device->id | ((cmd)->device->channel << 3))
1043
1044/*
1045 * A nice little define to make doing our printks a little easier
1046 */
1047
1048#define WARN_LEAD KERN_WARNING "(scsi%d:%d:%d:%d) "
1049#define INFO_LEAD KERN_INFO "(scsi%d:%d:%d:%d) "
1050
1051/*
1052 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
1053 * cards in the system. This should be fixed. Exceptions to this
1054 * rule are noted in the comments.
1055 */
1056
1057/*
1058 * Use this as the default queue depth when setting tagged queueing on.
1059 */
1060static unsigned int aic7xxx_default_queue_depth = AIC7XXX_CMDS_PER_DEVICE;
1061
1062/*
1063 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
1064 * has no effect on any later resets that might occur due to things like
1065 * SCSI bus timeouts.
1066 */
1067static unsigned int aic7xxx_no_reset = 0;
1068/*
1069 * Certain PCI motherboards will scan PCI devices from highest to lowest,
1070 * others scan from lowest to highest, and they tend to do all kinds of
1071 * strange things when they come into contact with PCI bridge chips. The
1072 * net result of all this is that the PCI card that is actually used to boot
1073 * the machine is very hard to detect. Most motherboards go from lowest
1074 * PCI slot number to highest, and the first SCSI controller found is the
1075 * one you boot from. The only exceptions to this are when a controller
1076 * has its BIOS disabled. So, we by default sort all of our SCSI controllers
1077 * from lowest PCI slot number to highest PCI slot number. We also force
1078 * all controllers with their BIOS disabled to the end of the list. This
1079 * works on *almost* all computers. Where it doesn't work, we have this
1080 * option. Setting this option to non-0 will reverse the order of the sort
1081 * to highest first, then lowest, but will still leave cards with their BIOS
1082 * disabled at the very end. That should fix everyone up unless there are
1083 * really strange cirumstances.
1084 */
1085static int aic7xxx_reverse_scan = 0;
1086/*
1087 * Should we force EXTENDED translation on a controller.
1088 * 0 == Use whatever is in the SEEPROM or default to off
1089 * 1 == Use whatever is in the SEEPROM or default to on
1090 */
1091static unsigned int aic7xxx_extended = 0;
1092/*
1093 * The IRQ trigger method used on EISA controllers. Does not effect PCI cards.
1094 * -1 = Use detected settings.
1095 * 0 = Force Edge triggered mode.
1096 * 1 = Force Level triggered mode.
1097 */
1098static int aic7xxx_irq_trigger = -1;
1099/*
1100 * This variable is used to override the termination settings on a controller.
1101 * This should not be used under normal conditions. However, in the case
1102 * that a controller does not have a readable SEEPROM (so that we can't
1103 * read the SEEPROM settings directly) and that a controller has a buggered
1104 * version of the cable detection logic, this can be used to force the
1105 * correct termination. It is preferable to use the manual termination
1106 * settings in the BIOS if possible, but some motherboard controllers store
1107 * those settings in a format we can't read. In other cases, auto term
1108 * should also work, but the chipset was put together with no auto term
1109 * logic (common on motherboard controllers). In those cases, we have
1110 * 32 bits here to work with. That's good for 8 controllers/channels. The
1111 * bits are organized as 4 bits per channel, with scsi0 getting the lowest
1112 * 4 bits in the int. A 1 in a bit position indicates the termination setting
1113 * that corresponds to that bit should be enabled, a 0 is disabled.
1114 * It looks something like this:
1115 *
1116 * 0x0f = 1111-Single Ended Low Byte Termination on/off
1117 * ||\-Single Ended High Byte Termination on/off
1118 * |\-LVD Low Byte Termination on/off
1119 * \-LVD High Byte Termination on/off
1120 *
1121 * For non-Ultra2 controllers, the upper 2 bits are not important. So, to
1122 * enable both high byte and low byte termination on scsi0, I would need to
1123 * make sure that the override_term variable was set to 0x03 (bits 0011).
1124 * To make sure that all termination is enabled on an Ultra2 controller at
1125 * scsi2 and only high byte termination on scsi1 and high and low byte
1126 * termination on scsi0, I would set override_term=0xf23 (bits 1111 0010 0011)
1127 *
1128 * For the most part, users should never have to use this, that's why I
1129 * left it fairly cryptic instead of easy to understand. If you need it,
1130 * most likely someone will be telling you what your's needs to be set to.
1131 */
1132static int aic7xxx_override_term = -1;
1133/*
1134 * Certain motherboard chipset controllers tend to screw
1135 * up the polarity of the term enable output pin. Use this variable
1136 * to force the correct polarity for your system. This is a bitfield variable
1137 * similar to the previous one, but this one has one bit per channel instead
1138 * of four.
1139 * 0 = Force the setting to active low.
1140 * 1 = Force setting to active high.
1141 * Most Adaptec cards are active high, several motherboards are active low.
1142 * To force a 2940 card at SCSI 0 to active high and a motherboard 7895
1143 * controller at scsi1 and scsi2 to active low, and a 2910 card at scsi3
1144 * to active high, you would need to set stpwlev=0x9 (bits 1001).
1145 *
1146 * People shouldn't need to use this, but if you are experiencing lots of
1147 * SCSI timeout problems, this may help. There is one sure way to test what
1148 * this option needs to be. Using a boot floppy to boot the system, configure
1149 * your system to enable all SCSI termination (in the Adaptec SCSI BIOS) and
1150 * if needed then also pass a value to override_term to make sure that the
1151 * driver is enabling SCSI termination, then set this variable to either 0
1152 * or 1. When the driver boots, make sure there are *NO* SCSI cables
1153 * connected to your controller. If it finds and inits the controller
1154 * without problem, then the setting you passed to stpwlev was correct. If
1155 * the driver goes into a reset loop and hangs the system, then you need the
1156 * other setting for this variable. If neither setting lets the machine
1157 * boot then you have definite termination problems that may not be fixable.
1158 */
1159static int aic7xxx_stpwlev = -1;
1160/*
1161 * Set this to non-0 in order to force the driver to panic the kernel
1162 * and print out debugging info on a SCSI abort or reset cycle.
1163 */
1164static int aic7xxx_panic_on_abort = 0;
1165/*
1166 * PCI bus parity checking of the Adaptec controllers. This is somewhat
1167 * dubious at best. To my knowledge, this option has never actually
1168 * solved a PCI parity problem, but on certain machines with broken PCI
1169 * chipset configurations, it can generate tons of false error messages.
1170 * It's included in the driver for completeness.
1171 * 0 = Shut off PCI parity check
1172 * -1 = Normal polarity pci parity checking
1173 * 1 = reverse polarity pci parity checking
1174 *
1175 * NOTE: you can't actually pass -1 on the lilo prompt. So, to set this
1176 * variable to -1 you would actually want to simply pass the variable
1177 * name without a number. That will invert the 0 which will result in
1178 * -1.
1179 */
1180static int aic7xxx_pci_parity = 0;
1181/*
1182 * Set this to any non-0 value to cause us to dump the contents of all
1183 * the card's registers in a hex dump format tailored to each model of
1184 * controller.
1185 *
1186 * NOTE: THE CONTROLLER IS LEFT IN AN UNUSEABLE STATE BY THIS OPTION.
1187 * YOU CANNOT BOOT UP WITH THIS OPTION, IT IS FOR DEBUGGING PURPOSES
1188 * ONLY
1189 */
1190static int aic7xxx_dump_card = 0;
1191/*
1192 * Set this to a non-0 value to make us dump out the 32 bit instruction
1193 * registers on the card after completing the sequencer download. This
1194 * allows the actual sequencer download to be verified. It is possible
1195 * to use this option and still boot up and run your system. This is
1196 * only intended for debugging purposes.
1197 */
1198static int aic7xxx_dump_sequencer = 0;
1199/*
1200 * Certain newer motherboards have put new PCI based devices into the
1201 * IO spaces that used to typically be occupied by VLB or EISA cards.
1202 * This overlap can cause these newer motherboards to lock up when scanned
1203 * for older EISA and VLB devices. Setting this option to non-0 will
1204 * cause the driver to skip scanning for any VLB or EISA controllers and
1205 * only support the PCI controllers. NOTE: this means that if the kernel
1206 * os compiled with PCI support disabled, then setting this to non-0
1207 * would result in never finding any devices :)
1208 */
1209static int aic7xxx_no_probe = 0;
1210/*
1211 * On some machines, enabling the external SCB RAM isn't reliable yet. I
1212 * haven't had time to make test patches for things like changing the
1213 * timing mode on that external RAM either. Some of those changes may
1214 * fix the problem. Until then though, we default to external SCB RAM
1215 * off and give a command line option to enable it.
1216 */
1217static int aic7xxx_scbram = 0;
1218/*
1219 * So that we can set how long each device is given as a selection timeout.
1220 * The table of values goes like this:
1221 * 0 - 256ms
1222 * 1 - 128ms
1223 * 2 - 64ms
1224 * 3 - 32ms
1225 * We default to 64ms because it's fast. Some old SCSI-I devices need a
1226 * longer time. The final value has to be left shifted by 3, hence 0x10
1227 * is the final value.
1228 */
1229static int aic7xxx_seltime = 0x10;
1230/*
1231 * So that insmod can find the variable and make it point to something
1232 */
1233#ifdef MODULE
1234static char * aic7xxx = NULL;
1235module_param(aic7xxx, charp, 0);
1236#endif
1237
1238#define VERBOSE_NORMAL 0x0000
1239#define VERBOSE_NEGOTIATION 0x0001
1240#define VERBOSE_SEQINT 0x0002
1241#define VERBOSE_SCSIINT 0x0004
1242#define VERBOSE_PROBE 0x0008
1243#define VERBOSE_PROBE2 0x0010
1244#define VERBOSE_NEGOTIATION2 0x0020
1245#define VERBOSE_MINOR_ERROR 0x0040
1246#define VERBOSE_TRACING 0x0080
1247#define VERBOSE_ABORT 0x0f00
1248#define VERBOSE_ABORT_MID 0x0100
1249#define VERBOSE_ABORT_FIND 0x0200
1250#define VERBOSE_ABORT_PROCESS 0x0400
1251#define VERBOSE_ABORT_RETURN 0x0800
1252#define VERBOSE_RESET 0xf000
1253#define VERBOSE_RESET_MID 0x1000
1254#define VERBOSE_RESET_FIND 0x2000
1255#define VERBOSE_RESET_PROCESS 0x4000
1256#define VERBOSE_RESET_RETURN 0x8000
1257static int aic7xxx_verbose = VERBOSE_NORMAL | VERBOSE_NEGOTIATION |
1258 VERBOSE_PROBE; /* verbose messages */
1259
1260
1261/****************************************************************************
1262 *
1263 * We're going to start putting in function declarations so that order of
1264 * functions is no longer important. As needed, they are added here.
1265 *
1266 ***************************************************************************/
1267
1268static int aic7xxx_release(struct Scsi_Host *host);
1269static void aic7xxx_set_syncrate(struct aic7xxx_host *p,
1270 struct aic7xxx_syncrate *syncrate, int target, int channel,
1271 unsigned int period, unsigned int offset, unsigned char options,
1272 unsigned int type, struct aic_dev_data *aic_dev);
1273static void aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel,
1274 int lun, unsigned int width, unsigned int type,
1275 struct aic_dev_data *aic_dev);
1276static void aic7xxx_panic_abort(struct aic7xxx_host *p, Scsi_Cmnd *cmd);
1277static void aic7xxx_print_card(struct aic7xxx_host *p);
1278static void aic7xxx_print_scratch_ram(struct aic7xxx_host *p);
1279static void aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded);
1280#ifdef AIC7XXX_VERBOSE_DEBUGGING
1281static void aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer);
1282#endif
1283
1284/****************************************************************************
1285 *
1286 * These functions are now used. They happen to be wrapped in useless
1287 * inb/outb port read/writes around the real reads and writes because it
1288 * seems that certain very fast CPUs have a problem dealing with us when
1289 * going at full speed.
1290 *
1291 ***************************************************************************/
1292
858119e1 1293static unsigned char
1da177e4
LT
1294aic_inb(struct aic7xxx_host *p, long port)
1295{
1296#ifdef MMAPIO
1297 unsigned char x;
1298 if(p->maddr)
1299 {
1300 x = readb(p->maddr + port);
1301 }
1302 else
1303 {
1304 x = inb(p->base + port);
1305 }
1306 return(x);
1307#else
1308 return(inb(p->base + port));
1309#endif
1310}
1311
858119e1 1312static void
1da177e4
LT
1313aic_outb(struct aic7xxx_host *p, unsigned char val, long port)
1314{
1315#ifdef MMAPIO
1316 if(p->maddr)
1317 {
1318 writeb(val, p->maddr + port);
1319 mb(); /* locked operation in order to force CPU ordering */
1320 readb(p->maddr + HCNTRL); /* dummy read to flush the PCI write */
1321 }
1322 else
1323 {
1324 outb(val, p->base + port);
1325 mb(); /* locked operation in order to force CPU ordering */
1326 }
1327#else
1328 outb(val, p->base + port);
1329 mb(); /* locked operation in order to force CPU ordering */
1330#endif
1331}
1332
1333/*+F*************************************************************************
1334 * Function:
1335 * aic7xxx_setup
1336 *
1337 * Description:
1338 * Handle Linux boot parameters. This routine allows for assigning a value
1339 * to a parameter with a ':' between the parameter and the value.
1340 * ie. aic7xxx=unpause:0x0A,extended
1341 *-F*************************************************************************/
1342static int
1343aic7xxx_setup(char *s)
1344{
1345 int i, n;
1346 char *p;
1347 char *end;
1348
1349 static struct {
1350 const char *name;
1351 unsigned int *flag;
1352 } options[] = {
1353 { "extended", &aic7xxx_extended },
1354 { "no_reset", &aic7xxx_no_reset },
1355 { "irq_trigger", &aic7xxx_irq_trigger },
1356 { "verbose", &aic7xxx_verbose },
1357 { "reverse_scan",&aic7xxx_reverse_scan },
1358 { "override_term", &aic7xxx_override_term },
1359 { "stpwlev", &aic7xxx_stpwlev },
1360 { "no_probe", &aic7xxx_no_probe },
1361 { "panic_on_abort", &aic7xxx_panic_on_abort },
1362 { "pci_parity", &aic7xxx_pci_parity },
1363 { "dump_card", &aic7xxx_dump_card },
1364 { "dump_sequencer", &aic7xxx_dump_sequencer },
1365 { "default_queue_depth", &aic7xxx_default_queue_depth },
1366 { "scbram", &aic7xxx_scbram },
1367 { "seltime", &aic7xxx_seltime },
1368 { "tag_info", NULL }
1369 };
1370
1371 end = strchr(s, '\0');
1372
1373 while ((p = strsep(&s, ",.")) != NULL)
1374 {
1375 for (i = 0; i < ARRAY_SIZE(options); i++)
1376 {
1377 n = strlen(options[i].name);
1378 if (!strncmp(options[i].name, p, n))
1379 {
1380 if (!strncmp(p, "tag_info", n))
1381 {
1382 if (p[n] == ':')
1383 {
1384 char *base;
1385 char *tok, *tok_end, *tok_end2;
1386 char tok_list[] = { '.', ',', '{', '}', '\0' };
1387 int i, instance = -1, device = -1;
1388 unsigned char done = FALSE;
1389
1390 base = p;
1391 tok = base + n + 1; /* Forward us just past the ':' */
1392 tok_end = strchr(tok, '\0');
1393 if (tok_end < end)
1394 *tok_end = ',';
1395 while(!done)
1396 {
1397 switch(*tok)
1398 {
1399 case '{':
1400 if (instance == -1)
1401 instance = 0;
1402 else if (device == -1)
1403 device = 0;
1404 tok++;
1405 break;
1406 case '}':
1407 if (device != -1)
1408 device = -1;
1409 else if (instance != -1)
1410 instance = -1;
1411 tok++;
1412 break;
1413 case ',':
1414 case '.':
1415 if (instance == -1)
1416 done = TRUE;
1417 else if (device >= 0)
1418 device++;
1419 else if (instance >= 0)
1420 instance++;
1421 if ( (device >= MAX_TARGETS) ||
1422 (instance >= ARRAY_SIZE(aic7xxx_tag_info)) )
1423 done = TRUE;
1424 tok++;
1425 if (!done)
1426 {
1427 base = tok;
1428 }
1429 break;
1430 case '\0':
1431 done = TRUE;
1432 break;
1433 default:
1434 done = TRUE;
1435 tok_end = strchr(tok, '\0');
1436 for(i=0; tok_list[i]; i++)
1437 {
1438 tok_end2 = strchr(tok, tok_list[i]);
1439 if ( (tok_end2) && (tok_end2 < tok_end) )
1440 {
1441 tok_end = tok_end2;
1442 done = FALSE;
1443 }
1444 }
1445 if ( (instance >= 0) && (device >= 0) &&
1446 (instance < ARRAY_SIZE(aic7xxx_tag_info)) &&
1447 (device < MAX_TARGETS) )
1448 aic7xxx_tag_info[instance].tag_commands[device] =
1449 simple_strtoul(tok, NULL, 0) & 0xff;
1450 tok = tok_end;
1451 break;
1452 }
1453 }
1454 while((p != base) && (p != NULL))
1455 p = strsep(&s, ",.");
1456 }
1457 }
1458 else if (p[n] == ':')
1459 {
1460 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1461 if(!strncmp(p, "seltime", n))
1462 {
1463 *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1464 }
1465 }
1466 else if (!strncmp(p, "verbose", n))
1467 {
1468 *(options[i].flag) = 0xff29;
1469 }
1470 else
1471 {
1472 *(options[i].flag) = ~(*(options[i].flag));
1473 if(!strncmp(p, "seltime", n))
1474 {
1475 *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1476 }
1477 }
1478 }
1479 }
1480 }
1481 return 1;
1482}
1483
1484__setup("aic7xxx=", aic7xxx_setup);
1485
1486/*+F*************************************************************************
1487 * Function:
1488 * pause_sequencer
1489 *
1490 * Description:
1491 * Pause the sequencer and wait for it to actually stop - this
1492 * is important since the sequencer can disable pausing for critical
1493 * sections.
1494 *-F*************************************************************************/
1495static void
1496pause_sequencer(struct aic7xxx_host *p)
1497{
1498 aic_outb(p, p->pause, HCNTRL);
1499 while ((aic_inb(p, HCNTRL) & PAUSE) == 0)
1500 {
1501 ;
1502 }
1503 if(p->features & AHC_ULTRA2)
1504 {
1505 aic_inb(p, CCSCBCTL);
1506 }
1507}
1508
1509/*+F*************************************************************************
1510 * Function:
1511 * unpause_sequencer
1512 *
1513 * Description:
1514 * Unpause the sequencer. Unremarkable, yet done often enough to
1515 * warrant an easy way to do it.
1516 *-F*************************************************************************/
1517static void
1518unpause_sequencer(struct aic7xxx_host *p, int unpause_always)
1519{
1520 if (unpause_always ||
1521 ( !(aic_inb(p, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) &&
1522 !(p->flags & AHC_HANDLING_REQINITS) ) )
1523 {
1524 aic_outb(p, p->unpause, HCNTRL);
1525 }
1526}
1527
1528/*+F*************************************************************************
1529 * Function:
1530 * restart_sequencer
1531 *
1532 * Description:
1533 * Restart the sequencer program from address zero. This assumes
1534 * that the sequencer is already paused.
1535 *-F*************************************************************************/
1536static void
1537restart_sequencer(struct aic7xxx_host *p)
1538{
1539 aic_outb(p, 0, SEQADDR0);
1540 aic_outb(p, 0, SEQADDR1);
1541 aic_outb(p, FASTMODE, SEQCTL);
1542}
1543
1544/*
1545 * We include the aic7xxx_seq.c file here so that the other defines have
1546 * already been made, and so that it comes before the code that actually
1547 * downloads the instructions (since we don't typically use function
1548 * prototype, our code has to be ordered that way, it's a left-over from
1549 * the original driver days.....I should fix it some time DL).
1550 */
1551#include "aic7xxx_old/aic7xxx_seq.c"
1552
1553/*+F*************************************************************************
1554 * Function:
1555 * aic7xxx_check_patch
1556 *
1557 * Description:
1558 * See if the next patch to download should be downloaded.
1559 *-F*************************************************************************/
1560static int
1561aic7xxx_check_patch(struct aic7xxx_host *p,
1562 struct sequencer_patch **start_patch, int start_instr, int *skip_addr)
1563{
1564 struct sequencer_patch *cur_patch;
1565 struct sequencer_patch *last_patch;
1566 int num_patches;
1567
1568 num_patches = sizeof(sequencer_patches)/sizeof(struct sequencer_patch);
1569 last_patch = &sequencer_patches[num_patches];
1570 cur_patch = *start_patch;
1571
1572 while ((cur_patch < last_patch) && (start_instr == cur_patch->begin))
1573 {
1574 if (cur_patch->patch_func(p) == 0)
1575 {
1576 /*
1577 * Start rejecting code.
1578 */
1579 *skip_addr = start_instr + cur_patch->skip_instr;
1580 cur_patch += cur_patch->skip_patch;
1581 }
1582 else
1583 {
1584 /*
1585 * Found an OK patch. Advance the patch pointer to the next patch
1586 * and wait for our instruction pointer to get here.
1587 */
1588 cur_patch++;
1589 }
1590 }
1591
1592 *start_patch = cur_patch;
1593 if (start_instr < *skip_addr)
1594 /*
1595 * Still skipping
1596 */
1597 return (0);
1598 return(1);
1599}
1600
1601
1602/*+F*************************************************************************
1603 * Function:
1604 * aic7xxx_download_instr
1605 *
1606 * Description:
1607 * Find the next patch to download.
1608 *-F*************************************************************************/
1609static void
1610aic7xxx_download_instr(struct aic7xxx_host *p, int instrptr,
1611 unsigned char *dconsts)
1612{
1613 union ins_formats instr;
1614 struct ins_format1 *fmt1_ins;
1615 struct ins_format3 *fmt3_ins;
1616 unsigned char opcode;
1617
1618 instr = *(union ins_formats*) &seqprog[instrptr * 4];
1619
1620 instr.integer = le32_to_cpu(instr.integer);
1621
1622 fmt1_ins = &instr.format1;
1623 fmt3_ins = NULL;
1624
1625 /* Pull the opcode */
1626 opcode = instr.format1.opcode;
1627 switch (opcode)
1628 {
1629 case AIC_OP_JMP:
1630 case AIC_OP_JC:
1631 case AIC_OP_JNC:
1632 case AIC_OP_CALL:
1633 case AIC_OP_JNE:
1634 case AIC_OP_JNZ:
1635 case AIC_OP_JE:
1636 case AIC_OP_JZ:
1637 {
1638 struct sequencer_patch *cur_patch;
1639 int address_offset;
1640 unsigned int address;
1641 int skip_addr;
1642 int i;
1643
1644 fmt3_ins = &instr.format3;
1645 address_offset = 0;
1646 address = fmt3_ins->address;
1647 cur_patch = sequencer_patches;
1648 skip_addr = 0;
1649
1650 for (i = 0; i < address;)
1651 {
1652 aic7xxx_check_patch(p, &cur_patch, i, &skip_addr);
1653 if (skip_addr > i)
1654 {
1655 int end_addr;
1656
1657 end_addr = min_t(int, address, skip_addr);
1658 address_offset += end_addr - i;
1659 i = skip_addr;
1660 }
1661 else
1662 {
1663 i++;
1664 }
1665 }
1666 address -= address_offset;
1667 fmt3_ins->address = address;
1668 /* Fall Through to the next code section */
1669 }
1670 case AIC_OP_OR:
1671 case AIC_OP_AND:
1672 case AIC_OP_XOR:
1673 case AIC_OP_ADD:
1674 case AIC_OP_ADC:
1675 case AIC_OP_BMOV:
1676 if (fmt1_ins->parity != 0)
1677 {
1678 fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
1679 }
1680 fmt1_ins->parity = 0;
1681 /* Fall Through to the next code section */
1682 case AIC_OP_ROL:
1683 if ((p->features & AHC_ULTRA2) != 0)
1684 {
1685 int i, count;
1686
1687 /* Calculate odd parity for the instruction */
1688 for ( i=0, count=0; i < 31; i++)
1689 {
1690 unsigned int mask;
1691
1692 mask = 0x01 << i;
1693 if ((instr.integer & mask) != 0)
1694 count++;
1695 }
1696 if (!(count & 0x01))
1697 instr.format1.parity = 1;
1698 }
1699 else
1700 {
1701 if (fmt3_ins != NULL)
1702 {
1703 instr.integer = fmt3_ins->immediate |
1704 (fmt3_ins->source << 8) |
1705 (fmt3_ins->address << 16) |
1706 (fmt3_ins->opcode << 25);
1707 }
1708 else
1709 {
1710 instr.integer = fmt1_ins->immediate |
1711 (fmt1_ins->source << 8) |
1712 (fmt1_ins->destination << 16) |
1713 (fmt1_ins->ret << 24) |
1714 (fmt1_ins->opcode << 25);
1715 }
1716 }
1717 aic_outb(p, (instr.integer & 0xff), SEQRAM);
1718 aic_outb(p, ((instr.integer >> 8) & 0xff), SEQRAM);
1719 aic_outb(p, ((instr.integer >> 16) & 0xff), SEQRAM);
1720 aic_outb(p, ((instr.integer >> 24) & 0xff), SEQRAM);
1721 udelay(10);
1722 break;
1723
1724 default:
1725 panic("aic7xxx: Unknown opcode encountered in sequencer program.");
1726 break;
1727 }
1728}
1729
1730
1731/*+F*************************************************************************
1732 * Function:
1733 * aic7xxx_loadseq
1734 *
1735 * Description:
1736 * Load the sequencer code into the controller memory.
1737 *-F*************************************************************************/
1738static void
1739aic7xxx_loadseq(struct aic7xxx_host *p)
1740{
1741 struct sequencer_patch *cur_patch;
1742 int i;
1743 int downloaded;
1744 int skip_addr;
1745 unsigned char download_consts[4] = {0, 0, 0, 0};
1746
1747 if (aic7xxx_verbose & VERBOSE_PROBE)
1748 {
1749 printk(KERN_INFO "(scsi%d) Downloading sequencer code...", p->host_no);
1750 }
1751#if 0
1752 download_consts[TMODE_NUMCMDS] = p->num_targetcmds;
1753#endif
1754 download_consts[TMODE_NUMCMDS] = 0;
1755 cur_patch = &sequencer_patches[0];
1756 downloaded = 0;
1757 skip_addr = 0;
1758
1759 aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1760 aic_outb(p, 0, SEQADDR0);
1761 aic_outb(p, 0, SEQADDR1);
1762
1763 for (i = 0; i < sizeof(seqprog) / 4; i++)
1764 {
1765 if (aic7xxx_check_patch(p, &cur_patch, i, &skip_addr) == 0)
1766 {
1767 /* Skip this instruction for this configuration. */
1768 continue;
1769 }
1770 aic7xxx_download_instr(p, i, &download_consts[0]);
1771 downloaded++;
1772 }
1773
1774 aic_outb(p, 0, SEQADDR0);
1775 aic_outb(p, 0, SEQADDR1);
1776 aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1777 unpause_sequencer(p, TRUE);
1778 mdelay(1);
1779 pause_sequencer(p);
1780 aic_outb(p, FASTMODE, SEQCTL);
1781 if (aic7xxx_verbose & VERBOSE_PROBE)
1782 {
1783 printk(" %d instructions downloaded\n", downloaded);
1784 }
1785 if (aic7xxx_dump_sequencer)
1786 aic7xxx_print_sequencer(p, downloaded);
1787}
1788
1789/*+F*************************************************************************
1790 * Function:
1791 * aic7xxx_print_sequencer
1792 *
1793 * Description:
1794 * Print the contents of the sequencer memory to the screen.
1795 *-F*************************************************************************/
1796static void
1797aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded)
1798{
1799 int i, k, temp;
1800
1801 aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1802 aic_outb(p, 0, SEQADDR0);
1803 aic_outb(p, 0, SEQADDR1);
1804
1805 k = 0;
1806 for (i=0; i < downloaded; i++)
1807 {
1808 if ( k == 0 )
1809 printk("%03x: ", i);
1810 temp = aic_inb(p, SEQRAM);
1811 temp |= (aic_inb(p, SEQRAM) << 8);
1812 temp |= (aic_inb(p, SEQRAM) << 16);
1813 temp |= (aic_inb(p, SEQRAM) << 24);
1814 printk("%08x", temp);
1815 if ( ++k == 8 )
1816 {
1817 printk("\n");
1818 k = 0;
1819 }
1820 else
1821 printk(" ");
1822 }
1823 aic_outb(p, 0, SEQADDR0);
1824 aic_outb(p, 0, SEQADDR1);
1825 aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1826 unpause_sequencer(p, TRUE);
1827 mdelay(1);
1828 pause_sequencer(p);
1829 aic_outb(p, FASTMODE, SEQCTL);
1830 printk("\n");
1831}
1832
1833/*+F*************************************************************************
1834 * Function:
1835 * aic7xxx_info
1836 *
1837 * Description:
1838 * Return a string describing the driver.
1839 *-F*************************************************************************/
1840static const char *
1841aic7xxx_info(struct Scsi_Host *dooh)
1842{
1843 static char buffer[256];
1844 char *bp;
1845 struct aic7xxx_host *p;
1846
1847 bp = &buffer[0];
1848 p = (struct aic7xxx_host *)dooh->hostdata;
1849 memset(bp, 0, sizeof(buffer));
1850 strcpy(bp, "Adaptec AHA274x/284x/294x (EISA/VLB/PCI-Fast SCSI) ");
1851 strcat(bp, AIC7XXX_C_VERSION);
1852 strcat(bp, "/");
1853 strcat(bp, AIC7XXX_H_VERSION);
1854 strcat(bp, "\n");
1855 strcat(bp, " <");
1856 strcat(bp, board_names[p->board_name_index]);
1857 strcat(bp, ">");
1858
1859 return(bp);
1860}
1861
1862/*+F*************************************************************************
1863 * Function:
1864 * aic7xxx_find_syncrate
1865 *
1866 * Description:
1867 * Look up the valid period to SCSIRATE conversion in our table
1868 *-F*************************************************************************/
1869static struct aic7xxx_syncrate *
1870aic7xxx_find_syncrate(struct aic7xxx_host *p, unsigned int *period,
1871 unsigned int maxsync, unsigned char *options)
1872{
1873 struct aic7xxx_syncrate *syncrate;
1874 int done = FALSE;
1875
1876 switch(*options)
1877 {
1878 case MSG_EXT_PPR_OPTION_DT_CRC:
1879 case MSG_EXT_PPR_OPTION_DT_UNITS:
1880 if(!(p->features & AHC_ULTRA3))
1881 {
1882 *options = 0;
1883 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1884 }
1885 break;
1886 case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
1887 case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
1888 if(!(p->features & AHC_ULTRA3))
1889 {
1890 *options = 0;
1891 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1892 }
1893 else
1894 {
1895 /*
1896 * we don't support the Quick Arbitration variants of dual edge
1897 * clocking. As it turns out, we want to send back the
1898 * same basic option, but without the QA attribute.
1899 * We know that we are responding because we would never set
1900 * these options ourself, we would only respond to them.
1901 */
1902 switch(*options)
1903 {
1904 case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
1905 *options = MSG_EXT_PPR_OPTION_DT_CRC;
1906 break;
1907 case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
1908 *options = MSG_EXT_PPR_OPTION_DT_UNITS;
1909 break;
1910 }
1911 }
1912 break;
1913 default:
1914 *options = 0;
1915 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1916 break;
1917 }
1918 syncrate = &aic7xxx_syncrates[maxsync];
1919 while ( (syncrate->rate[0] != NULL) &&
1920 (!(p->features & AHC_ULTRA2) || syncrate->sxfr_ultra2) )
1921 {
1922 if (*period <= syncrate->period)
1923 {
1924 switch(*options)
1925 {
1926 case MSG_EXT_PPR_OPTION_DT_CRC:
1927 case MSG_EXT_PPR_OPTION_DT_UNITS:
1928 if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1929 {
1930 done = TRUE;
1931 /*
1932 * oops, we went too low for the CRC/DualEdge signalling, so
1933 * clear the options byte
1934 */
1935 *options = 0;
1936 /*
1937 * We'll be sending a reply to this packet to set the options
1938 * properly, so unilaterally set the period as well.
1939 */
1940 *period = syncrate->period;
1941 }
1942 else
1943 {
1944 done = TRUE;
1945 if(syncrate == &aic7xxx_syncrates[maxsync])
1946 {
1947 *period = syncrate->period;
1948 }
1949 }
1950 break;
1951 default:
1952 if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1953 {
1954 done = TRUE;
1955 if(syncrate == &aic7xxx_syncrates[maxsync])
1956 {
1957 *period = syncrate->period;
1958 }
1959 }
1960 break;
1961 }
1962 if(done)
1963 {
1964 break;
1965 }
1966 }
1967 syncrate++;
1968 }
1969 if ( (*period == 0) || (syncrate->rate[0] == NULL) ||
1970 ((p->features & AHC_ULTRA2) && (syncrate->sxfr_ultra2 == 0)) )
1971 {
1972 /*
1973 * Use async transfers for this target
1974 */
1975 *options = 0;
1976 *period = 255;
1977 syncrate = NULL;
1978 }
1979 return (syncrate);
1980}
1981
1982
1983/*+F*************************************************************************
1984 * Function:
1985 * aic7xxx_find_period
1986 *
1987 * Description:
1988 * Look up the valid SCSIRATE to period conversion in our table
1989 *-F*************************************************************************/
1990static unsigned int
1991aic7xxx_find_period(struct aic7xxx_host *p, unsigned int scsirate,
1992 unsigned int maxsync)
1993{
1994 struct aic7xxx_syncrate *syncrate;
1995
1996 if (p->features & AHC_ULTRA2)
1997 {
1998 scsirate &= SXFR_ULTRA2;
1999 }
2000 else
2001 {
2002 scsirate &= SXFR;
2003 }
2004
2005 syncrate = &aic7xxx_syncrates[maxsync];
2006 while (syncrate->rate[0] != NULL)
2007 {
2008 if (p->features & AHC_ULTRA2)
2009 {
2010 if (syncrate->sxfr_ultra2 == 0)
2011 break;
2012 else if (scsirate == syncrate->sxfr_ultra2)
2013 return (syncrate->period);
2014 else if (scsirate == (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC))
2015 return (syncrate->period);
2016 }
2017 else if (scsirate == (syncrate->sxfr & ~ULTRA_SXFR))
2018 {
2019 return (syncrate->period);
2020 }
2021 syncrate++;
2022 }
2023 return (0); /* async */
2024}
2025
2026/*+F*************************************************************************
2027 * Function:
2028 * aic7xxx_validate_offset
2029 *
2030 * Description:
2031 * Set a valid offset value for a particular card in use and transfer
2032 * settings in use.
2033 *-F*************************************************************************/
2034static void
2035aic7xxx_validate_offset(struct aic7xxx_host *p,
2036 struct aic7xxx_syncrate *syncrate, unsigned int *offset, int wide)
2037{
2038 unsigned int maxoffset;
2039
2040 /* Limit offset to what the card (and device) can do */
2041 if (syncrate == NULL)
2042 {
2043 maxoffset = 0;
2044 }
2045 else if (p->features & AHC_ULTRA2)
2046 {
2047 maxoffset = MAX_OFFSET_ULTRA2;
2048 }
2049 else
2050 {
2051 if (wide)
2052 maxoffset = MAX_OFFSET_16BIT;
2053 else
2054 maxoffset = MAX_OFFSET_8BIT;
2055 }
2056 *offset = min(*offset, maxoffset);
2057}
2058
2059/*+F*************************************************************************
2060 * Function:
2061 * aic7xxx_set_syncrate
2062 *
2063 * Description:
2064 * Set the actual syncrate down in the card and in our host structs
2065 *-F*************************************************************************/
2066static void
2067aic7xxx_set_syncrate(struct aic7xxx_host *p, struct aic7xxx_syncrate *syncrate,
2068 int target, int channel, unsigned int period, unsigned int offset,
2069 unsigned char options, unsigned int type, struct aic_dev_data *aic_dev)
2070{
2071 unsigned char tindex;
2072 unsigned short target_mask;
2073 unsigned char lun, old_options;
2074 unsigned int old_period, old_offset;
2075
2076 tindex = target | (channel << 3);
2077 target_mask = 0x01 << tindex;
2078 lun = aic_inb(p, SCB_TCL) & 0x07;
2079
2080 if (syncrate == NULL)
2081 {
2082 period = 0;
2083 offset = 0;
2084 }
2085
2086 old_period = aic_dev->cur.period;
2087 old_offset = aic_dev->cur.offset;
2088 old_options = aic_dev->cur.options;
2089
2090
2091 if (type & AHC_TRANS_CUR)
2092 {
2093 unsigned int scsirate;
2094
2095 scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2096 if (p->features & AHC_ULTRA2)
2097 {
2098 scsirate &= ~SXFR_ULTRA2;
2099 if (syncrate != NULL)
2100 {
2101 switch(options)
2102 {
2103 case MSG_EXT_PPR_OPTION_DT_UNITS:
2104 /*
2105 * mask off the CRC bit in the xfer settings
2106 */
2107 scsirate |= (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC);
2108 break;
2109 default:
2110 scsirate |= syncrate->sxfr_ultra2;
2111 break;
2112 }
2113 }
2114 if (type & AHC_TRANS_ACTIVE)
2115 {
2116 aic_outb(p, offset, SCSIOFFSET);
2117 }
2118 aic_outb(p, offset, TARG_OFFSET + tindex);
2119 }
2120 else /* Not an Ultra2 controller */
2121 {
2122 scsirate &= ~(SXFR|SOFS);
2123 p->ultraenb &= ~target_mask;
2124 if (syncrate != NULL)
2125 {
2126 if (syncrate->sxfr & ULTRA_SXFR)
2127 {
2128 p->ultraenb |= target_mask;
2129 }
2130 scsirate |= (syncrate->sxfr & SXFR);
2131 scsirate |= (offset & SOFS);
2132 }
2133 if (type & AHC_TRANS_ACTIVE)
2134 {
2135 unsigned char sxfrctl0;
2136
2137 sxfrctl0 = aic_inb(p, SXFRCTL0);
2138 sxfrctl0 &= ~FAST20;
2139 if (p->ultraenb & target_mask)
2140 sxfrctl0 |= FAST20;
2141 aic_outb(p, sxfrctl0, SXFRCTL0);
2142 }
2143 aic_outb(p, p->ultraenb & 0xff, ULTRA_ENB);
2144 aic_outb(p, (p->ultraenb >> 8) & 0xff, ULTRA_ENB + 1 );
2145 }
2146 if (type & AHC_TRANS_ACTIVE)
2147 {
2148 aic_outb(p, scsirate, SCSIRATE);
2149 }
2150 aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2151 aic_dev->cur.period = period;
2152 aic_dev->cur.offset = offset;
2153 aic_dev->cur.options = options;
2154 if ( !(type & AHC_TRANS_QUITE) &&
2155 (aic7xxx_verbose & VERBOSE_NEGOTIATION) &&
2156 (aic_dev->flags & DEVICE_PRINT_DTR) )
2157 {
2158 if (offset)
2159 {
2160 int rate_mod = (scsirate & WIDEXFER) ? 1 : 0;
2161
2162 printk(INFO_LEAD "Synchronous at %s Mbyte/sec, "
2163 "offset %d.\n", p->host_no, channel, target, lun,
2164 syncrate->rate[rate_mod], offset);
2165 }
2166 else
2167 {
2168 printk(INFO_LEAD "Using asynchronous transfers.\n",
2169 p->host_no, channel, target, lun);
2170 }
2171 aic_dev->flags &= ~DEVICE_PRINT_DTR;
2172 }
2173 }
2174
2175 if (type & AHC_TRANS_GOAL)
2176 {
2177 aic_dev->goal.period = period;
2178 aic_dev->goal.offset = offset;
2179 aic_dev->goal.options = options;
2180 }
2181
2182 if (type & AHC_TRANS_USER)
2183 {
2184 p->user[tindex].period = period;
2185 p->user[tindex].offset = offset;
2186 p->user[tindex].options = options;
2187 }
2188}
2189
2190/*+F*************************************************************************
2191 * Function:
2192 * aic7xxx_set_width
2193 *
2194 * Description:
2195 * Set the actual width down in the card and in our host structs
2196 *-F*************************************************************************/
2197static void
2198aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel, int lun,
2199 unsigned int width, unsigned int type, struct aic_dev_data *aic_dev)
2200{
2201 unsigned char tindex;
2202 unsigned short target_mask;
2203 unsigned int old_width;
2204
2205 tindex = target | (channel << 3);
2206 target_mask = 1 << tindex;
2207
2208 old_width = aic_dev->cur.width;
2209
2210 if (type & AHC_TRANS_CUR)
2211 {
2212 unsigned char scsirate;
2213
2214 scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2215
2216 scsirate &= ~WIDEXFER;
2217 if (width == MSG_EXT_WDTR_BUS_16_BIT)
2218 scsirate |= WIDEXFER;
2219
2220 aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2221
2222 if (type & AHC_TRANS_ACTIVE)
2223 aic_outb(p, scsirate, SCSIRATE);
2224
2225 aic_dev->cur.width = width;
2226
2227 if ( !(type & AHC_TRANS_QUITE) &&
2228 (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2229 (aic_dev->flags & DEVICE_PRINT_DTR) )
2230 {
2231 printk(INFO_LEAD "Using %s transfers\n", p->host_no, channel, target,
2232 lun, (scsirate & WIDEXFER) ? "Wide(16bit)" : "Narrow(8bit)" );
2233 }
2234 }
2235
2236 if (type & AHC_TRANS_GOAL)
2237 aic_dev->goal.width = width;
2238 if (type & AHC_TRANS_USER)
2239 p->user[tindex].width = width;
2240
2241 if (aic_dev->goal.offset)
2242 {
2243 if (p->features & AHC_ULTRA2)
2244 {
2245 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
2246 }
2247 else if (width == MSG_EXT_WDTR_BUS_16_BIT)
2248 {
2249 aic_dev->goal.offset = MAX_OFFSET_16BIT;
2250 }
2251 else
2252 {
2253 aic_dev->goal.offset = MAX_OFFSET_8BIT;
2254 }
2255 }
2256}
2257
2258/*+F*************************************************************************
2259 * Function:
2260 * scbq_init
2261 *
2262 * Description:
2263 * SCB queue initialization.
2264 *
2265 *-F*************************************************************************/
2266static void
2267scbq_init(volatile scb_queue_type *queue)
2268{
2269 queue->head = NULL;
2270 queue->tail = NULL;
2271}
2272
2273/*+F*************************************************************************
2274 * Function:
2275 * scbq_insert_head
2276 *
2277 * Description:
2278 * Add an SCB to the head of the list.
2279 *
2280 *-F*************************************************************************/
2281static inline void
2282scbq_insert_head(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2283{
2284 scb->q_next = queue->head;
2285 queue->head = scb;
2286 if (queue->tail == NULL) /* If list was empty, update tail. */
2287 queue->tail = queue->head;
2288}
2289
2290/*+F*************************************************************************
2291 * Function:
2292 * scbq_remove_head
2293 *
2294 * Description:
2295 * Remove an SCB from the head of the list.
2296 *
2297 *-F*************************************************************************/
2298static inline struct aic7xxx_scb *
2299scbq_remove_head(volatile scb_queue_type *queue)
2300{
2301 struct aic7xxx_scb * scbp;
2302
2303 scbp = queue->head;
2304 if (queue->head != NULL)
2305 queue->head = queue->head->q_next;
2306 if (queue->head == NULL) /* If list is now empty, update tail. */
2307 queue->tail = NULL;
2308 return(scbp);
2309}
2310
2311/*+F*************************************************************************
2312 * Function:
2313 * scbq_remove
2314 *
2315 * Description:
2316 * Removes an SCB from the list.
2317 *
2318 *-F*************************************************************************/
2319static inline void
2320scbq_remove(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2321{
2322 if (queue->head == scb)
2323 {
2324 /* At beginning of queue, remove from head. */
2325 scbq_remove_head(queue);
2326 }
2327 else
2328 {
2329 struct aic7xxx_scb *curscb = queue->head;
2330
2331 /*
2332 * Search until the next scb is the one we're looking for, or
2333 * we run out of queue.
2334 */
2335 while ((curscb != NULL) && (curscb->q_next != scb))
2336 {
2337 curscb = curscb->q_next;
2338 }
2339 if (curscb != NULL)
2340 {
2341 /* Found it. */
2342 curscb->q_next = scb->q_next;
2343 if (scb->q_next == NULL)
2344 {
2345 /* Update the tail when removing the tail. */
2346 queue->tail = curscb;
2347 }
2348 }
2349 }
2350}
2351
2352/*+F*************************************************************************
2353 * Function:
2354 * scbq_insert_tail
2355 *
2356 * Description:
2357 * Add an SCB at the tail of the list.
2358 *
2359 *-F*************************************************************************/
2360static inline void
2361scbq_insert_tail(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2362{
2363 scb->q_next = NULL;
2364 if (queue->tail != NULL) /* Add the scb at the end of the list. */
2365 queue->tail->q_next = scb;
2366 queue->tail = scb; /* Update the tail. */
2367 if (queue->head == NULL) /* If list was empty, update head. */
2368 queue->head = queue->tail;
2369}
2370
2371/*+F*************************************************************************
2372 * Function:
2373 * aic7xxx_match_scb
2374 *
2375 * Description:
2376 * Checks to see if an scb matches the target/channel as specified.
2377 * If target is ALL_TARGETS (-1), then we're looking for any device
2378 * on the specified channel; this happens when a channel is going
2379 * to be reset and all devices on that channel must be aborted.
2380 *-F*************************************************************************/
2381static int
2382aic7xxx_match_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2383 int target, int channel, int lun, unsigned char tag)
2384{
2385 int targ = (scb->hscb->target_channel_lun >> 4) & 0x0F;
2386 int chan = (scb->hscb->target_channel_lun >> 3) & 0x01;
2387 int slun = scb->hscb->target_channel_lun & 0x07;
2388 int match;
2389
2390 match = ((chan == channel) || (channel == ALL_CHANNELS));
2391 if (match != 0)
2392 match = ((targ == target) || (target == ALL_TARGETS));
2393 if (match != 0)
2394 match = ((lun == slun) || (lun == ALL_LUNS));
2395 if (match != 0)
2396 match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
2397
2398 return (match);
2399}
2400
2401/*+F*************************************************************************
2402 * Function:
2403 * aic7xxx_add_curscb_to_free_list
2404 *
2405 * Description:
2406 * Adds the current scb (in SCBPTR) to the list of free SCBs.
2407 *-F*************************************************************************/
2408static void
2409aic7xxx_add_curscb_to_free_list(struct aic7xxx_host *p)
2410{
2411 /*
2412 * Invalidate the tag so that aic7xxx_find_scb doesn't think
2413 * it's active
2414 */
2415 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
2416 aic_outb(p, 0, SCB_CONTROL);
2417
2418 aic_outb(p, aic_inb(p, FREE_SCBH), SCB_NEXT);
2419 aic_outb(p, aic_inb(p, SCBPTR), FREE_SCBH);
2420}
2421
2422/*+F*************************************************************************
2423 * Function:
2424 * aic7xxx_rem_scb_from_disc_list
2425 *
2426 * Description:
2427 * Removes the current SCB from the disconnected list and adds it
2428 * to the free list.
2429 *-F*************************************************************************/
2430static unsigned char
2431aic7xxx_rem_scb_from_disc_list(struct aic7xxx_host *p, unsigned char scbptr,
2432 unsigned char prev)
2433{
2434 unsigned char next;
2435
2436 aic_outb(p, scbptr, SCBPTR);
2437 next = aic_inb(p, SCB_NEXT);
2438 aic7xxx_add_curscb_to_free_list(p);
2439
2440 if (prev != SCB_LIST_NULL)
2441 {
2442 aic_outb(p, prev, SCBPTR);
2443 aic_outb(p, next, SCB_NEXT);
2444 }
2445 else
2446 {
2447 aic_outb(p, next, DISCONNECTED_SCBH);
2448 }
2449
2450 return next;
2451}
2452
2453/*+F*************************************************************************
2454 * Function:
2455 * aic7xxx_busy_target
2456 *
2457 * Description:
2458 * Set the specified target busy.
2459 *-F*************************************************************************/
2460static inline void
2461aic7xxx_busy_target(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2462{
2463 p->untagged_scbs[scb->hscb->target_channel_lun] = scb->hscb->tag;
2464}
2465
2466/*+F*************************************************************************
2467 * Function:
2468 * aic7xxx_index_busy_target
2469 *
2470 * Description:
2471 * Returns the index of the busy target, and optionally sets the
2472 * target inactive.
2473 *-F*************************************************************************/
2474static inline unsigned char
2475aic7xxx_index_busy_target(struct aic7xxx_host *p, unsigned char tcl,
2476 int unbusy)
2477{
2478 unsigned char busy_scbid;
2479
2480 busy_scbid = p->untagged_scbs[tcl];
2481 if (unbusy)
2482 {
2483 p->untagged_scbs[tcl] = SCB_LIST_NULL;
2484 }
2485 return (busy_scbid);
2486}
2487
2488/*+F*************************************************************************
2489 * Function:
2490 * aic7xxx_find_scb
2491 *
2492 * Description:
2493 * Look through the SCB array of the card and attempt to find the
2494 * hardware SCB that corresponds to the passed in SCB. Return
2495 * SCB_LIST_NULL if unsuccessful. This routine assumes that the
2496 * card is already paused.
2497 *-F*************************************************************************/
2498static unsigned char
2499aic7xxx_find_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2500{
2501 unsigned char saved_scbptr;
2502 unsigned char curindex;
2503
2504 saved_scbptr = aic_inb(p, SCBPTR);
2505 curindex = 0;
2506 for (curindex = 0; curindex < p->scb_data->maxhscbs; curindex++)
2507 {
2508 aic_outb(p, curindex, SCBPTR);
2509 if (aic_inb(p, SCB_TAG) == scb->hscb->tag)
2510 {
2511 break;
2512 }
2513 }
2514 aic_outb(p, saved_scbptr, SCBPTR);
2515 if (curindex >= p->scb_data->maxhscbs)
2516 {
2517 curindex = SCB_LIST_NULL;
2518 }
2519
2520 return (curindex);
2521}
2522
2523/*+F*************************************************************************
2524 * Function:
2525 * aic7xxx_allocate_scb
2526 *
2527 * Description:
2528 * Get an SCB from the free list or by allocating a new one.
2529 *-F*************************************************************************/
2530static int
2531aic7xxx_allocate_scb(struct aic7xxx_host *p)
2532{
2533 struct aic7xxx_scb *scbp = NULL;
2534 int scb_size = (sizeof (struct hw_scatterlist) * AIC7XXX_MAX_SG) + 12 + 6;
2535 int i;
2536 int step = PAGE_SIZE / 1024;
2537 unsigned long scb_count = 0;
2538 struct hw_scatterlist *hsgp;
2539 struct aic7xxx_scb *scb_ap;
2540 struct aic7xxx_scb_dma *scb_dma;
2541 unsigned char *bufs;
2542
2543 if (p->scb_data->numscbs < p->scb_data->maxscbs)
2544 {
2545 /*
2546 * Calculate the optimal number of SCBs to allocate.
2547 *
2548 * NOTE: This formula works because the sizeof(sg_array) is always
2549 * 1024. Therefore, scb_size * i would always be > PAGE_SIZE *
2550 * (i/step). The (i-1) allows the left hand side of the equation
2551 * to grow into the right hand side to a point of near perfect
2552 * efficiency since scb_size * (i -1) is growing slightly faster
2553 * than the right hand side. If the number of SG array elements
2554 * is changed, this function may not be near so efficient any more.
2555 *
2556 * Since the DMA'able buffers are now allocated in a separate
2557 * chunk this algorithm has been modified to match. The '12'
2558 * and '6' factors in scb_size are for the DMA'able command byte
2559 * and sensebuffers respectively. -DaveM
2560 */
2561 for ( i=step;; i *= 2 )
2562 {
2563 if ( (scb_size * (i-1)) >= ( (PAGE_SIZE * (i/step)) - 64 ) )
2564 {
2565 i /= 2;
2566 break;
2567 }
2568 }
2569 scb_count = min( (i-1), p->scb_data->maxscbs - p->scb_data->numscbs);
2570 scb_ap = (struct aic7xxx_scb *)kmalloc(sizeof (struct aic7xxx_scb) * scb_count
2571 + sizeof(struct aic7xxx_scb_dma), GFP_ATOMIC);
2572 if (scb_ap == NULL)
2573 return(0);
2574 scb_dma = (struct aic7xxx_scb_dma *)&scb_ap[scb_count];
2575 hsgp = (struct hw_scatterlist *)
2576 pci_alloc_consistent(p->pdev, scb_size * scb_count,
2577 &scb_dma->dma_address);
2578 if (hsgp == NULL)
2579 {
2580 kfree(scb_ap);
2581 return(0);
2582 }
2583 bufs = (unsigned char *)&hsgp[scb_count * AIC7XXX_MAX_SG];
2584#ifdef AIC7XXX_VERBOSE_DEBUGGING
2585 if (aic7xxx_verbose > 0xffff)
2586 {
2587 if (p->scb_data->numscbs == 0)
2588 printk(INFO_LEAD "Allocating initial %ld SCB structures.\n",
2589 p->host_no, -1, -1, -1, scb_count);
2590 else
2591 printk(INFO_LEAD "Allocating %ld additional SCB structures.\n",
2592 p->host_no, -1, -1, -1, scb_count);
2593 }
2594#endif
2595 memset(scb_ap, 0, sizeof (struct aic7xxx_scb) * scb_count);
2596 scb_dma->dma_offset = (unsigned long)scb_dma->dma_address
2597 - (unsigned long)hsgp;
2598 scb_dma->dma_len = scb_size * scb_count;
2599 for (i=0; i < scb_count; i++)
2600 {
2601 scbp = &scb_ap[i];
2602 scbp->hscb = &p->scb_data->hscbs[p->scb_data->numscbs];
2603 scbp->sg_list = &hsgp[i * AIC7XXX_MAX_SG];
2604 scbp->sense_cmd = bufs;
2605 scbp->cmnd = bufs + 6;
2606 bufs += 12 + 6;
2607 scbp->scb_dma = scb_dma;
2608 memset(scbp->hscb, 0, sizeof(struct aic7xxx_hwscb));
2609 scbp->hscb->tag = p->scb_data->numscbs;
2610 /*
2611 * Place in the scb array; never is removed
2612 */
2613 p->scb_data->scb_array[p->scb_data->numscbs++] = scbp;
2614 scbq_insert_tail(&p->scb_data->free_scbs, scbp);
2615 }
2616 scbp->kmalloc_ptr = scb_ap;
2617 }
2618 return(scb_count);
2619}
2620
2621/*+F*************************************************************************
2622 * Function:
2623 * aic7xxx_queue_cmd_complete
2624 *
2625 * Description:
2626 * Due to race conditions present in the SCSI subsystem, it is easier
2627 * to queue completed commands, then call scsi_done() on them when
2628 * we're finished. This function queues the completed commands.
2629 *-F*************************************************************************/
2630static void
2631aic7xxx_queue_cmd_complete(struct aic7xxx_host *p, Scsi_Cmnd *cmd)
2632{
2633 aic7xxx_position(cmd) = SCB_LIST_NULL;
2634 cmd->host_scribble = (char *)p->completeq.head;
2635 p->completeq.head = cmd;
2636}
2637
2638/*+F*************************************************************************
2639 * Function:
2640 * aic7xxx_done_cmds_complete
2641 *
2642 * Description:
2643 * Process the completed command queue.
2644 *-F*************************************************************************/
2645static void
2646aic7xxx_done_cmds_complete(struct aic7xxx_host *p)
2647{
2648 Scsi_Cmnd *cmd;
2649
2650 while (p->completeq.head != NULL)
2651 {
2652 cmd = p->completeq.head;
2653 p->completeq.head = (Scsi_Cmnd *)cmd->host_scribble;
2654 cmd->host_scribble = NULL;
2655 cmd->scsi_done(cmd);
2656 }
2657}
2658
2659/*+F*************************************************************************
2660 * Function:
2661 * aic7xxx_free_scb
2662 *
2663 * Description:
2664 * Free the scb and insert into the free scb list.
2665 *-F*************************************************************************/
2666static void
2667aic7xxx_free_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2668{
2669
2670 scb->flags = SCB_FREE;
2671 scb->cmd = NULL;
2672 scb->sg_count = 0;
2673 scb->sg_length = 0;
2674 scb->tag_action = 0;
2675 scb->hscb->control = 0;
2676 scb->hscb->target_status = 0;
2677 scb->hscb->target_channel_lun = SCB_LIST_NULL;
2678
2679 scbq_insert_head(&p->scb_data->free_scbs, scb);
2680}
2681
2682/*+F*************************************************************************
2683 * Function:
2684 * aic7xxx_done
2685 *
2686 * Description:
2687 * Calls the higher level scsi done function and frees the scb.
2688 *-F*************************************************************************/
2689static void
2690aic7xxx_done(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2691{
2692 Scsi_Cmnd *cmd = scb->cmd;
2693 struct aic_dev_data *aic_dev = cmd->device->hostdata;
2694 int tindex = TARGET_INDEX(cmd);
2695 struct aic7xxx_scb *scbp;
2696 unsigned char queue_depth;
2697
2698 if (cmd->use_sg > 1)
2699 {
2700 struct scatterlist *sg;
2701
2702 sg = (struct scatterlist *)cmd->request_buffer;
be7db055 2703 pci_unmap_sg(p->pdev, sg, cmd->use_sg, cmd->sc_data_direction);
1da177e4
LT
2704 }
2705 else if (cmd->request_bufflen)
2706 pci_unmap_single(p->pdev, aic7xxx_mapping(cmd),
2707 cmd->request_bufflen,
be7db055 2708 cmd->sc_data_direction);
1da177e4
LT
2709 if (scb->flags & SCB_SENSE)
2710 {
2711 pci_unmap_single(p->pdev,
2712 le32_to_cpu(scb->sg_list[0].address),
2713 sizeof(cmd->sense_buffer),
2714 PCI_DMA_FROMDEVICE);
2715 }
2716 if (scb->flags & SCB_RECOVERY_SCB)
2717 {
2718 p->flags &= ~AHC_ABORT_PENDING;
2719 }
2720 if (scb->flags & (SCB_RESET|SCB_ABORT))
2721 {
2722 cmd->result |= (DID_RESET << 16);
2723 }
2724
2725 if ((scb->flags & SCB_MSGOUT_BITS) != 0)
2726 {
2727 unsigned short mask;
2728 int message_error = FALSE;
2729
2730 mask = 0x01 << tindex;
2731
2732 /*
2733 * Check to see if we get an invalid message or a message error
2734 * after failing to negotiate a wide or sync transfer message.
2735 */
2736 if ((scb->flags & SCB_SENSE) &&
2737 ((scb->cmd->sense_buffer[12] == 0x43) || /* INVALID_MESSAGE */
2738 (scb->cmd->sense_buffer[12] == 0x49))) /* MESSAGE_ERROR */
2739 {
2740 message_error = TRUE;
2741 }
2742
2743 if (scb->flags & SCB_MSGOUT_WDTR)
2744 {
2745 if (message_error)
2746 {
2747 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2748 (aic_dev->flags & DEVICE_PRINT_DTR) )
2749 {
2750 printk(INFO_LEAD "Device failed to complete Wide Negotiation "
2751 "processing and\n", p->host_no, CTL_OF_SCB(scb));
2752 printk(INFO_LEAD "returned a sense error code for invalid message, "
2753 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2754 printk(INFO_LEAD "Wide negotiation to this device.\n", p->host_no,
2755 CTL_OF_SCB(scb));
2756 }
2757 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
2758 }
2759 }
2760 if (scb->flags & SCB_MSGOUT_SDTR)
2761 {
2762 if (message_error)
2763 {
2764 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2765 (aic_dev->flags & DEVICE_PRINT_DTR) )
2766 {
2767 printk(INFO_LEAD "Device failed to complete Sync Negotiation "
2768 "processing and\n", p->host_no, CTL_OF_SCB(scb));
2769 printk(INFO_LEAD "returned a sense error code for invalid message, "
2770 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2771 printk(INFO_LEAD "Sync negotiation to this device.\n", p->host_no,
2772 CTL_OF_SCB(scb));
2773 aic_dev->flags &= ~DEVICE_PRINT_DTR;
2774 }
2775 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
2776 }
2777 }
2778 if (scb->flags & SCB_MSGOUT_PPR)
2779 {
2780 if(message_error)
2781 {
2782 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2783 (aic_dev->flags & DEVICE_PRINT_DTR) )
2784 {
2785 printk(INFO_LEAD "Device failed to complete Parallel Protocol "
2786 "Request processing and\n", p->host_no, CTL_OF_SCB(scb));
2787 printk(INFO_LEAD "returned a sense error code for invalid message, "
2788 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2789 printk(INFO_LEAD "Parallel Protocol Request negotiation to this "
2790 "device.\n", p->host_no, CTL_OF_SCB(scb));
2791 }
2792 /*
2793 * Disable PPR negotiation and revert back to WDTR and SDTR setup
2794 */
2795 aic_dev->needppr = aic_dev->needppr_copy = 0;
2796 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
2797 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
2798 }
2799 }
2800 }
2801
2802 queue_depth = aic_dev->temp_q_depth;
2803 if (queue_depth >= aic_dev->active_cmds)
2804 {
2805 scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2806 if (scbp)
2807 {
2808 if (queue_depth == 1)
2809 {
2810 /*
2811 * Give extra preference to untagged devices, such as CD-R devices
2812 * This makes it more likely that a drive *won't* stuff up while
2813 * waiting on data at a critical time, such as CD-R writing and
2814 * audio CD ripping operations. Should also benefit tape drives.
2815 */
2816 scbq_insert_head(&p->waiting_scbs, scbp);
2817 }
2818 else
2819 {
2820 scbq_insert_tail(&p->waiting_scbs, scbp);
2821 }
2822#ifdef AIC7XXX_VERBOSE_DEBUGGING
2823 if (aic7xxx_verbose > 0xffff)
2824 printk(INFO_LEAD "Moving SCB from delayed to waiting queue.\n",
2825 p->host_no, CTL_OF_SCB(scbp));
2826#endif
2827 if (queue_depth > aic_dev->active_cmds)
2828 {
2829 scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2830 if (scbp)
2831 scbq_insert_tail(&p->waiting_scbs, scbp);
2832 }
2833 }
2834 }
2835 if (!(scb->tag_action))
2836 {
2837 aic7xxx_index_busy_target(p, scb->hscb->target_channel_lun,
2838 /* unbusy */ TRUE);
2839 if (cmd->device->simple_tags)
2840 {
2841 aic_dev->temp_q_depth = aic_dev->max_q_depth;
2842 }
2843 }
2844 if(scb->flags & SCB_DTR_SCB)
2845 {
2846 aic_dev->dtr_pending = 0;
2847 }
2848 aic_dev->active_cmds--;
2849 p->activescbs--;
2850
2851 if ((scb->sg_length >= 512) && (((cmd->result >> 16) & 0xf) == DID_OK))
2852 {
2853 long *ptr;
2854 int x, i;
2855
2856
2857 if (rq_data_dir(cmd->request) == WRITE)
2858 {
2859 aic_dev->w_total++;
2860 ptr = aic_dev->w_bins;
2861 }
2862 else
2863 {
2864 aic_dev->r_total++;
2865 ptr = aic_dev->r_bins;
2866 }
2867 if(cmd->device->simple_tags && cmd->request->flags & REQ_HARDBARRIER)
2868 {
2869 aic_dev->barrier_total++;
2870 if(scb->tag_action == MSG_ORDERED_Q_TAG)
2871 aic_dev->ordered_total++;
2872 }
2873 x = scb->sg_length;
2874 x >>= 10;
2875 for(i=0; i<6; i++)
2876 {
2877 x >>= 2;
2878 if(!x) {
2879 ptr[i]++;
2880 break;
2881 }
2882 }
2883 if(i == 6 && x)
2884 ptr[5]++;
2885 }
2886 aic7xxx_free_scb(p, scb);
2887 aic7xxx_queue_cmd_complete(p, cmd);
2888
2889}
2890
2891/*+F*************************************************************************
2892 * Function:
2893 * aic7xxx_run_done_queue
2894 *
2895 * Description:
2896 * Calls the aic7xxx_done() for the Scsi_Cmnd of each scb in the
2897 * aborted list, and adds each scb to the free list. If complete
2898 * is TRUE, we also process the commands complete list.
2899 *-F*************************************************************************/
2900static void
2901aic7xxx_run_done_queue(struct aic7xxx_host *p, /*complete*/ int complete)
2902{
2903 struct aic7xxx_scb *scb;
2904 int i, found = 0;
2905
2906 for (i = 0; i < p->scb_data->numscbs; i++)
2907 {
2908 scb = p->scb_data->scb_array[i];
2909 if (scb->flags & SCB_QUEUED_FOR_DONE)
2910 {
2911 if (scb->flags & SCB_QUEUE_FULL)
2912 {
2913 scb->cmd->result = QUEUE_FULL << 1;
2914 }
2915 else
2916 {
2917 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
2918 printk(INFO_LEAD "Aborting scb %d\n",
2919 p->host_no, CTL_OF_SCB(scb), scb->hscb->tag);
2920 /*
2921 * Clear any residual information since the normal aic7xxx_done() path
2922 * doesn't touch the residuals.
2923 */
2924 scb->hscb->residual_SG_segment_count = 0;
2925 scb->hscb->residual_data_count[0] = 0;
2926 scb->hscb->residual_data_count[1] = 0;
2927 scb->hscb->residual_data_count[2] = 0;
2928 }
2929 found++;
2930 aic7xxx_done(p, scb);
2931 }
2932 }
2933 if (aic7xxx_verbose & (VERBOSE_ABORT_RETURN | VERBOSE_RESET_RETURN))
2934 {
2935 printk(INFO_LEAD "%d commands found and queued for "
2936 "completion.\n", p->host_no, -1, -1, -1, found);
2937 }
2938 if (complete)
2939 {
2940 aic7xxx_done_cmds_complete(p);
2941 }
2942}
2943
2944/*+F*************************************************************************
2945 * Function:
2946 * aic7xxx_abort_waiting_scb
2947 *
2948 * Description:
2949 * Manipulate the waiting for selection list and return the
2950 * scb that follows the one that we remove.
2951 *-F*************************************************************************/
2952static unsigned char
2953aic7xxx_abort_waiting_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2954 unsigned char scbpos, unsigned char prev)
2955{
2956 unsigned char curscb, next;
2957
2958 /*
2959 * Select the SCB we want to abort and pull the next pointer out of it.
2960 */
2961 curscb = aic_inb(p, SCBPTR);
2962 aic_outb(p, scbpos, SCBPTR);
2963 next = aic_inb(p, SCB_NEXT);
2964
2965 aic7xxx_add_curscb_to_free_list(p);
2966
2967 /*
2968 * Update the waiting list
2969 */
2970 if (prev == SCB_LIST_NULL)
2971 {
2972 /*
2973 * First in the list
2974 */
2975 aic_outb(p, next, WAITING_SCBH);
2976 }
2977 else
2978 {
2979 /*
2980 * Select the scb that pointed to us and update its next pointer.
2981 */
2982 aic_outb(p, prev, SCBPTR);
2983 aic_outb(p, next, SCB_NEXT);
2984 }
2985 /*
2986 * Point us back at the original scb position and inform the SCSI
2987 * system that the command has been aborted.
2988 */
2989 aic_outb(p, curscb, SCBPTR);
2990 return (next);
2991}
2992
2993/*+F*************************************************************************
2994 * Function:
2995 * aic7xxx_search_qinfifo
2996 *
2997 * Description:
2998 * Search the queue-in FIFO for matching SCBs and conditionally
2999 * requeue. Returns the number of matching SCBs.
3000 *-F*************************************************************************/
3001static int
3002aic7xxx_search_qinfifo(struct aic7xxx_host *p, int target, int channel,
3003 int lun, unsigned char tag, int flags, int requeue,
3004 volatile scb_queue_type *queue)
3005{
3006 int found;
3007 unsigned char qinpos, qintail;
3008 struct aic7xxx_scb *scbp;
3009
3010 found = 0;
3011 qinpos = aic_inb(p, QINPOS);
3012 qintail = p->qinfifonext;
3013
3014 p->qinfifonext = qinpos;
3015
3016 while (qinpos != qintail)
3017 {
3018 scbp = p->scb_data->scb_array[p->qinfifo[qinpos++]];
3019 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3020 {
3021 /*
3022 * We found an scb that needs to be removed.
3023 */
3024 if (requeue && (queue != NULL))
3025 {
3026 if (scbp->flags & SCB_WAITINGQ)
3027 {
3028 scbq_remove(queue, scbp);
3029 scbq_remove(&p->waiting_scbs, scbp);
3030 scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3031 AIC_DEV(scbp->cmd)->active_cmds++;
3032 p->activescbs++;
3033 }
3034 scbq_insert_tail(queue, scbp);
3035 AIC_DEV(scbp->cmd)->active_cmds--;
3036 p->activescbs--;
3037 scbp->flags |= SCB_WAITINGQ;
3038 if ( !(scbp->tag_action & TAG_ENB) )
3039 {
3040 aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3041 TRUE);
3042 }
3043 }
3044 else if (requeue)
3045 {
3046 p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3047 }
3048 else
3049 {
3050 /*
3051 * Preserve any SCB_RECOVERY_SCB flags on this scb then set the
3052 * flags we were called with, presumeably so aic7xxx_run_done_queue
3053 * can find this scb
3054 */
3055 scbp->flags = flags | (scbp->flags & SCB_RECOVERY_SCB);
3056 if (aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3057 FALSE) == scbp->hscb->tag)
3058 {
3059 aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3060 TRUE);
3061 }
3062 }
3063 found++;
3064 }
3065 else
3066 {
3067 p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3068 }
3069 }
3070 /*
3071 * Now that we've done the work, clear out any left over commands in the
3072 * qinfifo and update the KERNEL_QINPOS down on the card.
3073 *
3074 * NOTE: This routine expect the sequencer to already be paused when
3075 * it is run....make sure it's that way!
3076 */
3077 qinpos = p->qinfifonext;
3078 while(qinpos != qintail)
3079 {
3080 p->qinfifo[qinpos++] = SCB_LIST_NULL;
3081 }
3082 if (p->features & AHC_QUEUE_REGS)
3083 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3084 else
3085 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3086
3087 return (found);
3088}
3089
3090/*+F*************************************************************************
3091 * Function:
3092 * aic7xxx_scb_on_qoutfifo
3093 *
3094 * Description:
3095 * Is the scb that was passed to us currently on the qoutfifo?
3096 *-F*************************************************************************/
3097static int
3098aic7xxx_scb_on_qoutfifo(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3099{
3100 int i=0;
3101
3102 while(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] != SCB_LIST_NULL)
3103 {
3104 if(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] == scb->hscb->tag)
3105 return TRUE;
3106 else
3107 i++;
3108 }
3109 return FALSE;
3110}
3111
3112
3113/*+F*************************************************************************
3114 * Function:
3115 * aic7xxx_reset_device
3116 *
3117 * Description:
3118 * The device at the given target/channel has been reset. Abort
3119 * all active and queued scbs for that target/channel. This function
3120 * need not worry about linked next pointers because if was a MSG_ABORT_TAG
3121 * then we had a tagged command (no linked next), if it was MSG_ABORT or
3122 * MSG_BUS_DEV_RESET then the device won't know about any commands any more
3123 * and no busy commands will exist, and if it was a bus reset, then nothing
3124 * knows about any linked next commands any more. In all cases, we don't
3125 * need to worry about the linked next or busy scb, we just need to clear
3126 * them.
3127 *-F*************************************************************************/
3128static void
3129aic7xxx_reset_device(struct aic7xxx_host *p, int target, int channel,
3130 int lun, unsigned char tag)
3131{
3132 struct aic7xxx_scb *scbp, *prev_scbp;
3133 struct scsi_device *sd;
3134 unsigned char active_scb, tcl, scb_tag;
3135 int i = 0, init_lists = FALSE;
3136 struct aic_dev_data *aic_dev;
3137
3138 /*
3139 * Restore this when we're done
3140 */
3141 active_scb = aic_inb(p, SCBPTR);
3142 scb_tag = aic_inb(p, SCB_TAG);
3143
3144 if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
3145 {
3146 printk(INFO_LEAD "Reset device, hardware_scb %d,\n",
3147 p->host_no, channel, target, lun, active_scb);
3148 printk(INFO_LEAD "Current scb %d, SEQADDR 0x%x, LASTPHASE "
3149 "0x%x\n",
3150 p->host_no, channel, target, lun, scb_tag,
3151 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
3152 aic_inb(p, LASTPHASE));
3153 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
3154 p->host_no, channel, target, lun,
3155 (p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
3156 aic_inb(p, SG_COUNT), aic_inb(p, SCSISIGI));
3157 printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
3158 p->host_no, channel, target, lun, aic_inb(p, SSTAT0),
3159 aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
3160 }
3161
3162 /*
3163 * Deal with the busy target and linked next issues.
3164 */
3165 list_for_each_entry(aic_dev, &p->aic_devs, list)
3166 {
3167 if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
3168 printk(INFO_LEAD "processing aic_dev %p\n", p->host_no, channel, target,
3169 lun, aic_dev);
3170 sd = aic_dev->SDptr;
3171
3172 if((target != ALL_TARGETS && target != sd->id) ||
3173 (channel != ALL_CHANNELS && channel != sd->channel))
3174 continue;
3175 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3176 printk(INFO_LEAD "Cleaning up status information "
3177 "and delayed_scbs.\n", p->host_no, sd->channel, sd->id, sd->lun);
3178 aic_dev->flags &= ~BUS_DEVICE_RESET_PENDING;
3179 if ( tag == SCB_LIST_NULL )
3180 {
3181 aic_dev->dtr_pending = 0;
3182 aic_dev->needppr = aic_dev->needppr_copy;
3183 aic_dev->needsdtr = aic_dev->needsdtr_copy;
3184 aic_dev->needwdtr = aic_dev->needwdtr_copy;
3185 aic_dev->flags = DEVICE_PRINT_DTR;
3186 aic_dev->temp_q_depth = aic_dev->max_q_depth;
3187 }
3188 tcl = (sd->id << 4) | (sd->channel << 3) | sd->lun;
3189 if ( (aic7xxx_index_busy_target(p, tcl, FALSE) == tag) ||
3190 (tag == SCB_LIST_NULL) )
3191 aic7xxx_index_busy_target(p, tcl, /* unbusy */ TRUE);
3192 prev_scbp = NULL;
3193 scbp = aic_dev->delayed_scbs.head;
3194 while (scbp != NULL)
3195 {
3196 prev_scbp = scbp;
3197 scbp = scbp->q_next;
3198 if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3199 {
3200 scbq_remove(&aic_dev->delayed_scbs, prev_scbp);
3201 if (prev_scbp->flags & SCB_WAITINGQ)
3202 {
3203 aic_dev->active_cmds++;
3204 p->activescbs++;
3205 }
3206 prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3207 prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3208 }
3209 }
3210 }
3211
3212 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3213 printk(INFO_LEAD "Cleaning QINFIFO.\n", p->host_no, channel, target, lun );
3214 aic7xxx_search_qinfifo(p, target, channel, lun, tag,
3215 SCB_RESET | SCB_QUEUED_FOR_DONE, /* requeue */ FALSE, NULL);
3216
3217/*
3218 * Search the waiting_scbs queue for matches, this catches any SCB_QUEUED
3219 * ABORT/RESET commands.
3220 */
3221 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3222 printk(INFO_LEAD "Cleaning waiting_scbs.\n", p->host_no, channel,
3223 target, lun );
3224 {
3225 struct aic7xxx_scb *scbp, *prev_scbp;
3226
3227 prev_scbp = NULL;
3228 scbp = p->waiting_scbs.head;
3229 while (scbp != NULL)
3230 {
3231 prev_scbp = scbp;
3232 scbp = scbp->q_next;
3233 if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3234 {
3235 scbq_remove(&p->waiting_scbs, prev_scbp);
3236 if (prev_scbp->flags & SCB_WAITINGQ)
3237 {
3238 AIC_DEV(prev_scbp->cmd)->active_cmds++;
3239 p->activescbs++;
3240 }
3241 prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3242 prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3243 }
3244 }
3245 }
3246
3247
3248 /*
3249 * Search waiting for selection list.
3250 */
3251 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3252 printk(INFO_LEAD "Cleaning waiting for selection "
3253 "list.\n", p->host_no, channel, target, lun);
3254 {
3255 unsigned char next, prev, scb_index;
3256
3257 next = aic_inb(p, WAITING_SCBH); /* Start at head of list. */
3258 prev = SCB_LIST_NULL;
3259 while (next != SCB_LIST_NULL)
3260 {
3261 aic_outb(p, next, SCBPTR);
3262 scb_index = aic_inb(p, SCB_TAG);
3263 if (scb_index >= p->scb_data->numscbs)
3264 {
3265 /*
3266 * No aic7xxx_verbose check here.....we want to see this since it
3267 * means either the kernel driver or the sequencer screwed things up
3268 */
3269 printk(WARN_LEAD "Waiting List inconsistency; SCB index=%d, "
3270 "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3271 p->scb_data->numscbs);
3272 next = aic_inb(p, SCB_NEXT);
3273 aic7xxx_add_curscb_to_free_list(p);
3274 }
3275 else
3276 {
3277 scbp = p->scb_data->scb_array[scb_index];
3278 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3279 {
3280 next = aic7xxx_abort_waiting_scb(p, scbp, next, prev);
3281 if (scbp->flags & SCB_WAITINGQ)
3282 {
3283 AIC_DEV(scbp->cmd)->active_cmds++;
3284 p->activescbs++;
3285 }
3286 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3287 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3288 if (prev == SCB_LIST_NULL)
3289 {
3290 /*
3291 * This is either the first scb on the waiting list, or we
3292 * have already yanked the first and haven't left any behind.
3293 * Either way, we need to turn off the selection hardware if
3294 * it isn't already off.
3295 */
3296 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
3297 aic_outb(p, CLRSELTIMEO, CLRSINT1);
3298 }
3299 }
3300 else
3301 {
3302 prev = next;
3303 next = aic_inb(p, SCB_NEXT);
3304 }
3305 }
3306 }
3307 }
3308
3309 /*
3310 * Go through disconnected list and remove any entries we have queued
3311 * for completion, zeroing their control byte too.
3312 */
3313 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3314 printk(INFO_LEAD "Cleaning disconnected scbs "
3315 "list.\n", p->host_no, channel, target, lun);
3316 if (p->flags & AHC_PAGESCBS)
3317 {
3318 unsigned char next, prev, scb_index;
3319
3320 next = aic_inb(p, DISCONNECTED_SCBH);
3321 prev = SCB_LIST_NULL;
3322 while (next != SCB_LIST_NULL)
3323 {
3324 aic_outb(p, next, SCBPTR);
3325 scb_index = aic_inb(p, SCB_TAG);
3326 if (scb_index > p->scb_data->numscbs)
3327 {
3328 printk(WARN_LEAD "Disconnected List inconsistency; SCB index=%d, "
3329 "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3330 p->scb_data->numscbs);
3331 next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3332 }
3333 else
3334 {
3335 scbp = p->scb_data->scb_array[scb_index];
3336 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3337 {
3338 next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3339 if (scbp->flags & SCB_WAITINGQ)
3340 {
3341 AIC_DEV(scbp->cmd)->active_cmds++;
3342 p->activescbs++;
3343 }
3344 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3345 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3346 scbp->hscb->control = 0;
3347 }
3348 else
3349 {
3350 prev = next;
3351 next = aic_inb(p, SCB_NEXT);
3352 }
3353 }
3354 }
3355 }
3356
3357 /*
3358 * Walk the free list making sure no entries on the free list have
3359 * a valid SCB_TAG value or SCB_CONTROL byte.
3360 */
3361 if (p->flags & AHC_PAGESCBS)
3362 {
3363 unsigned char next;
3364
3365 next = aic_inb(p, FREE_SCBH);
3366 while (next != SCB_LIST_NULL)
3367 {
3368 aic_outb(p, next, SCBPTR);
3369 if (aic_inb(p, SCB_TAG) < p->scb_data->numscbs)
3370 {
3371 printk(WARN_LEAD "Free list inconsistency!.\n", p->host_no, channel,
3372 target, lun);
3373 init_lists = TRUE;
3374 next = SCB_LIST_NULL;
3375 }
3376 else
3377 {
3378 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3379 aic_outb(p, 0, SCB_CONTROL);
3380 next = aic_inb(p, SCB_NEXT);
3381 }
3382 }
3383 }
3384
3385 /*
3386 * Go through the hardware SCB array looking for commands that
3387 * were active but not on any list.
3388 */
3389 if (init_lists)
3390 {
3391 aic_outb(p, SCB_LIST_NULL, FREE_SCBH);
3392 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
3393 aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
3394 }
3395 for (i = p->scb_data->maxhscbs - 1; i >= 0; i--)
3396 {
3397 unsigned char scbid;
3398
3399 aic_outb(p, i, SCBPTR);
3400 if (init_lists)
3401 {
3402 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3403 aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
3404 aic_outb(p, 0, SCB_CONTROL);
3405 aic7xxx_add_curscb_to_free_list(p);
3406 }
3407 else
3408 {
3409 scbid = aic_inb(p, SCB_TAG);
3410 if (scbid < p->scb_data->numscbs)
3411 {
3412 scbp = p->scb_data->scb_array[scbid];
3413 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3414 {
3415 aic_outb(p, 0, SCB_CONTROL);
3416 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3417 aic7xxx_add_curscb_to_free_list(p);
3418 }
3419 }
3420 }
3421 }
3422
3423 /*
3424 * Go through the entire SCB array now and look for commands for
3425 * for this target that are stillactive. These are other (most likely
3426 * tagged) commands that were disconnected when the reset occurred.
3427 * Any commands we find here we know this about, it wasn't on any queue,
3428 * it wasn't in the qinfifo, it wasn't in the disconnected or waiting
3429 * lists, so it really must have been a paged out SCB. In that case,
3430 * we shouldn't need to bother with updating any counters, just mark
3431 * the correct flags and go on.
3432 */
3433 for (i = 0; i < p->scb_data->numscbs; i++)
3434 {
3435 scbp = p->scb_data->scb_array[i];
3436 if ((scbp->flags & SCB_ACTIVE) &&
3437 aic7xxx_match_scb(p, scbp, target, channel, lun, tag) &&
3438 !aic7xxx_scb_on_qoutfifo(p, scbp))
3439 {
3440 if (scbp->flags & SCB_WAITINGQ)
3441 {
3442 scbq_remove(&p->waiting_scbs, scbp);
3443 scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3444 AIC_DEV(scbp->cmd)->active_cmds++;
3445 p->activescbs++;
3446 }
3447 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3448 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3449 }
3450 }
3451
3452 aic_outb(p, active_scb, SCBPTR);
3453}
3454
3455
3456/*+F*************************************************************************
3457 * Function:
3458 * aic7xxx_clear_intstat
3459 *
3460 * Description:
3461 * Clears the interrupt status.
3462 *-F*************************************************************************/
3463static void
3464aic7xxx_clear_intstat(struct aic7xxx_host *p)
3465{
3466 /* Clear any interrupt conditions this may have caused. */
3467 aic_outb(p, CLRSELDO | CLRSELDI | CLRSELINGO, CLRSINT0);
3468 aic_outb(p, CLRSELTIMEO | CLRATNO | CLRSCSIRSTI | CLRBUSFREE | CLRSCSIPERR |
3469 CLRPHASECHG | CLRREQINIT, CLRSINT1);
3470 aic_outb(p, CLRSCSIINT | CLRSEQINT | CLRBRKADRINT | CLRPARERR, CLRINT);
3471}
3472
3473/*+F*************************************************************************
3474 * Function:
3475 * aic7xxx_reset_current_bus
3476 *
3477 * Description:
3478 * Reset the current SCSI bus.
3479 *-F*************************************************************************/
3480static void
3481aic7xxx_reset_current_bus(struct aic7xxx_host *p)
3482{
3483
3484 /* Disable reset interrupts. */
3485 aic_outb(p, aic_inb(p, SIMODE1) & ~ENSCSIRST, SIMODE1);
3486
3487 /* Turn off the bus' current operations, after all, we shouldn't have any
3488 * valid commands left to cause a RSELI and SELO once we've tossed the
3489 * bus away with this reset, so we might as well shut down the sequencer
3490 * until the bus is restarted as oppossed to saving the current settings
3491 * and restoring them (which makes no sense to me). */
3492
3493 /* Turn on the bus reset. */
3494 aic_outb(p, aic_inb(p, SCSISEQ) | SCSIRSTO, SCSISEQ);
3495 while ( (aic_inb(p, SCSISEQ) & SCSIRSTO) == 0)
3496 mdelay(5);
3497
3498 /*
3499 * Some of the new Ultra2 chipsets need a longer delay after a chip
3500 * reset than just the init setup creates, so we have to delay here
3501 * before we go into a reset in order to make the chips happy.
3502 */
3503 if (p->features & AHC_ULTRA2)
3504 mdelay(250);
3505 else
3506 mdelay(50);
3507
3508 /* Turn off the bus reset. */
3509 aic_outb(p, 0, SCSISEQ);
3510 mdelay(10);
3511
3512 aic7xxx_clear_intstat(p);
3513 /* Re-enable reset interrupts. */
3514 aic_outb(p, aic_inb(p, SIMODE1) | ENSCSIRST, SIMODE1);
3515
3516}
3517
3518/*+F*************************************************************************
3519 * Function:
3520 * aic7xxx_reset_channel
3521 *
3522 * Description:
3523 * Reset the channel.
3524 *-F*************************************************************************/
3525static void
3526aic7xxx_reset_channel(struct aic7xxx_host *p, int channel, int initiate_reset)
3527{
3528 unsigned long offset_min, offset_max;
3529 unsigned char sblkctl;
3530 int cur_channel;
3531
3532 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3533 printk(INFO_LEAD "Reset channel called, %s initiate reset.\n",
3534 p->host_no, channel, -1, -1, (initiate_reset==TRUE) ? "will" : "won't" );
3535
3536
3537 if (channel == 1)
3538 {
3539 offset_min = 8;
3540 offset_max = 16;
3541 }
3542 else
3543 {
3544 if (p->features & AHC_TWIN)
3545 {
3546 /* Channel A */
3547 offset_min = 0;
3548 offset_max = 8;
3549 }
3550 else
3551 {
3552 offset_min = 0;
3553 if (p->features & AHC_WIDE)
3554 {
3555 offset_max = 16;
3556 }
3557 else
3558 {
3559 offset_max = 8;
3560 }
3561 }
3562 }
3563
3564 while (offset_min < offset_max)
3565 {
3566 /*
3567 * Revert to async/narrow transfers until we renegotiate.
3568 */
3569 aic_outb(p, 0, TARG_SCSIRATE + offset_min);
3570 if (p->features & AHC_ULTRA2)
3571 {
3572 aic_outb(p, 0, TARG_OFFSET + offset_min);
3573 }
3574 offset_min++;
3575 }
3576
3577 /*
3578 * Reset the bus and unpause/restart the controller
3579 */
3580 sblkctl = aic_inb(p, SBLKCTL);
3581 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3582 cur_channel = (sblkctl & SELBUSB) >> 3;
3583 else
3584 cur_channel = 0;
3585 if ( (cur_channel != channel) && (p->features & AHC_TWIN) )
3586 {
3587 /*
3588 * Case 1: Command for another bus is active
3589 */
3590 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3591 printk(INFO_LEAD "Stealthily resetting idle channel.\n", p->host_no,
3592 channel, -1, -1);
3593 /*
3594 * Stealthily reset the other bus without upsetting the current bus.
3595 */
3596 aic_outb(p, sblkctl ^ SELBUSB, SBLKCTL);
3597 aic_outb(p, aic_inb(p, SIMODE1) & ~ENBUSFREE, SIMODE1);
3598 if (initiate_reset)
3599 {
3600 aic7xxx_reset_current_bus(p);
3601 }
3602 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3603 aic7xxx_clear_intstat(p);
3604 aic_outb(p, sblkctl, SBLKCTL);
3605 }
3606 else
3607 {
3608 /*
3609 * Case 2: A command from this bus is active or we're idle.
3610 */
3611 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3612 printk(INFO_LEAD "Resetting currently active channel.\n", p->host_no,
3613 channel, -1, -1);
3614 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
3615 SIMODE1);
3616 p->flags &= ~AHC_HANDLING_REQINITS;
3617 p->msg_type = MSG_TYPE_NONE;
3618 p->msg_len = 0;
3619 if (initiate_reset)
3620 {
3621 aic7xxx_reset_current_bus(p);
3622 }
3623 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3624 aic7xxx_clear_intstat(p);
3625 }
3626 if (aic7xxx_verbose & VERBOSE_RESET_RETURN)
3627 printk(INFO_LEAD "Channel reset\n", p->host_no, channel, -1, -1);
3628 /*
3629 * Clean up all the state information for the pending transactions
3630 * on this bus.
3631 */
3632 aic7xxx_reset_device(p, ALL_TARGETS, channel, ALL_LUNS, SCB_LIST_NULL);
3633
3634 if ( !(p->features & AHC_TWIN) )
3635 {
3636 restart_sequencer(p);
3637 }
3638
3639 return;
3640}
3641
3642/*+F*************************************************************************
3643 * Function:
3644 * aic7xxx_run_waiting_queues
3645 *
3646 * Description:
3647 * Scan the awaiting_scbs queue downloading and starting as many
3648 * scbs as we can.
3649 *-F*************************************************************************/
3650static void
3651aic7xxx_run_waiting_queues(struct aic7xxx_host *p)
3652{
3653 struct aic7xxx_scb *scb;
3654 struct aic_dev_data *aic_dev;
3655 int sent;
3656
3657
3658 if (p->waiting_scbs.head == NULL)
3659 return;
3660
3661 sent = 0;
3662
3663 /*
3664 * First handle SCBs that are waiting but have been assigned a slot.
3665 */
3666 while ((scb = scbq_remove_head(&p->waiting_scbs)) != NULL)
3667 {
3668 aic_dev = scb->cmd->device->hostdata;
3669 if ( !scb->tag_action )
3670 {
3671 aic_dev->temp_q_depth = 1;
3672 }
3673 if ( aic_dev->active_cmds >= aic_dev->temp_q_depth)
3674 {
3675 scbq_insert_tail(&aic_dev->delayed_scbs, scb);
3676 }
3677 else
3678 {
3679 scb->flags &= ~SCB_WAITINGQ;
3680 aic_dev->active_cmds++;
3681 p->activescbs++;
3682 if ( !(scb->tag_action) )
3683 {
3684 aic7xxx_busy_target(p, scb);
3685 }
3686 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
3687 sent++;
3688 }
3689 }
3690 if (sent)
3691 {
3692 if (p->features & AHC_QUEUE_REGS)
3693 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3694 else
3695 {
3696 pause_sequencer(p);
3697 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3698 unpause_sequencer(p, FALSE);
3699 }
3700 if (p->activescbs > p->max_activescbs)
3701 p->max_activescbs = p->activescbs;
3702 }
3703}
3704
3705#ifdef CONFIG_PCI
3706
3707#define DPE 0x80
3708#define SSE 0x40
3709#define RMA 0x20
3710#define RTA 0x10
3711#define STA 0x08
3712#define DPR 0x01
3713
3714/*+F*************************************************************************
3715 * Function:
3716 * aic7xxx_pci_intr
3717 *
3718 * Description:
3719 * Check the scsi card for PCI errors and clear the interrupt
3720 *
3721 * NOTE: If you don't have this function and a 2940 card encounters
3722 * a PCI error condition, the machine will end up locked as the
3723 * interrupt handler gets slammed with non-stop PCI error interrupts
3724 *-F*************************************************************************/
3725static void
3726aic7xxx_pci_intr(struct aic7xxx_host *p)
3727{
3728 unsigned char status1;
3729
3730 pci_read_config_byte(p->pdev, PCI_STATUS + 1, &status1);
3731
3732 if ( (status1 & DPE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3733 printk(WARN_LEAD "Data Parity Error during PCI address or PCI write"
3734 "phase.\n", p->host_no, -1, -1, -1);
3735 if ( (status1 & SSE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3736 printk(WARN_LEAD "Signal System Error Detected\n", p->host_no,
3737 -1, -1, -1);
3738 if ( (status1 & RMA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3739 printk(WARN_LEAD "Received a PCI Master Abort\n", p->host_no,
3740 -1, -1, -1);
3741 if ( (status1 & RTA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3742 printk(WARN_LEAD "Received a PCI Target Abort\n", p->host_no,
3743 -1, -1, -1);
3744 if ( (status1 & STA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3745 printk(WARN_LEAD "Signaled a PCI Target Abort\n", p->host_no,
3746 -1, -1, -1);
3747 if ( (status1 & DPR) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3748 printk(WARN_LEAD "Data Parity Error has been reported via PCI pin "
3749 "PERR#\n", p->host_no, -1, -1, -1);
3750
3751 pci_write_config_byte(p->pdev, PCI_STATUS + 1, status1);
3752 if (status1 & (DPR|RMA|RTA))
3753 aic_outb(p, CLRPARERR, CLRINT);
3754
3755 if ( (aic7xxx_panic_on_abort) && (p->spurious_int > 500) )
3756 aic7xxx_panic_abort(p, NULL);
3757
3758}
3759#endif /* CONFIG_PCI */
3760
3761/*+F*************************************************************************
3762 * Function:
3763 * aic7xxx_construct_ppr
3764 *
3765 * Description:
3766 * Build up a Parallel Protocol Request message for use with SCSI-3
3767 * devices.
3768 *-F*************************************************************************/
3769static void
3770aic7xxx_construct_ppr(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3771{
3772 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3773 p->msg_buf[p->msg_index++] = MSG_EXT_PPR_LEN;
3774 p->msg_buf[p->msg_index++] = MSG_EXT_PPR;
3775 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.period;
3776 p->msg_buf[p->msg_index++] = 0;
3777 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.offset;
3778 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.width;
3779 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.options;
3780 p->msg_len += 8;
3781}
3782
3783/*+F*************************************************************************
3784 * Function:
3785 * aic7xxx_construct_sdtr
3786 *
3787 * Description:
3788 * Constucts a synchronous data transfer message in the message
3789 * buffer on the sequencer.
3790 *-F*************************************************************************/
3791static void
3792aic7xxx_construct_sdtr(struct aic7xxx_host *p, unsigned char period,
3793 unsigned char offset)
3794{
3795 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3796 p->msg_buf[p->msg_index++] = MSG_EXT_SDTR_LEN;
3797 p->msg_buf[p->msg_index++] = MSG_EXT_SDTR;
3798 p->msg_buf[p->msg_index++] = period;
3799 p->msg_buf[p->msg_index++] = offset;
3800 p->msg_len += 5;
3801}
3802
3803/*+F*************************************************************************
3804 * Function:
3805 * aic7xxx_construct_wdtr
3806 *
3807 * Description:
3808 * Constucts a wide data transfer message in the message buffer
3809 * on the sequencer.
3810 *-F*************************************************************************/
3811static void
3812aic7xxx_construct_wdtr(struct aic7xxx_host *p, unsigned char bus_width)
3813{
3814 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3815 p->msg_buf[p->msg_index++] = MSG_EXT_WDTR_LEN;
3816 p->msg_buf[p->msg_index++] = MSG_EXT_WDTR;
3817 p->msg_buf[p->msg_index++] = bus_width;
3818 p->msg_len += 4;
3819}
3820
3821/*+F*************************************************************************
3822 * Function:
3823 * aic7xxx_calc_residual
3824 *
3825 * Description:
3826 * Calculate the residual data not yet transferred.
3827 *-F*************************************************************************/
3828static void
3829aic7xxx_calculate_residual (struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3830{
3831 struct aic7xxx_hwscb *hscb;
3832 Scsi_Cmnd *cmd;
3833 int actual, i;
3834
3835 cmd = scb->cmd;
3836 hscb = scb->hscb;
3837
3838 /*
3839 * Don't destroy valid residual information with
3840 * residual coming from a check sense operation.
3841 */
3842 if (((scb->hscb->control & DISCONNECTED) == 0) &&
3843 (scb->flags & SCB_SENSE) == 0)
3844 {
3845 /*
3846 * We had an underflow. At this time, there's only
3847 * one other driver that bothers to check for this,
3848 * and cmd->underflow seems to be set rather half-
3849 * heartedly in the higher-level SCSI code.
3850 */
3851 actual = scb->sg_length;
3852 for (i=1; i < hscb->residual_SG_segment_count; i++)
3853 {
3854 actual -= scb->sg_list[scb->sg_count - i].length;
3855 }
3856 actual -= (hscb->residual_data_count[2] << 16) |
3857 (hscb->residual_data_count[1] << 8) |
3858 hscb->residual_data_count[0];
3859
3860 if (actual < cmd->underflow)
3861 {
3862 if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3863 {
3864 printk(INFO_LEAD "Underflow - Wanted %u, %s %u, residual SG "
3865 "count %d.\n", p->host_no, CTL_OF_SCB(scb), cmd->underflow,
3866 (rq_data_dir(cmd->request) == WRITE) ? "wrote" : "read", actual,
3867 hscb->residual_SG_segment_count);
3868 printk(INFO_LEAD "status 0x%x.\n", p->host_no, CTL_OF_SCB(scb),
3869 hscb->target_status);
3870 }
3871 /*
3872 * In 2.4, only send back the residual information, don't flag this
3873 * as an error. Before 2.4 we had to flag this as an error because
3874 * the mid layer didn't check residual data counts to see if the
3875 * command needs retried.
3876 */
3877 cmd->resid = scb->sg_length - actual;
3878 aic7xxx_status(cmd) = hscb->target_status;
3879 }
3880 }
3881
3882 /*
3883 * Clean out the residual information in the SCB for the
3884 * next consumer.
3885 */
3886 hscb->residual_data_count[2] = 0;
3887 hscb->residual_data_count[1] = 0;
3888 hscb->residual_data_count[0] = 0;
3889 hscb->residual_SG_segment_count = 0;
3890}
3891
3892/*+F*************************************************************************
3893 * Function:
3894 * aic7xxx_handle_device_reset
3895 *
3896 * Description:
3897 * Interrupt handler for sequencer interrupts (SEQINT).
3898 *-F*************************************************************************/
3899static void
3900aic7xxx_handle_device_reset(struct aic7xxx_host *p, int target, int channel)
3901{
3902 unsigned char tindex = target;
3903
3904 tindex |= ((channel & 0x01) << 3);
3905
3906 /*
3907 * Go back to async/narrow transfers and renegotiate.
3908 */
3909 aic_outb(p, 0, TARG_SCSIRATE + tindex);
3910 if (p->features & AHC_ULTRA2)
3911 aic_outb(p, 0, TARG_OFFSET + tindex);
3912 aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
3913 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3914 printk(INFO_LEAD "Bus Device Reset delivered.\n", p->host_no, channel,
3915 target, -1);
3916 aic7xxx_run_done_queue(p, /*complete*/ TRUE);
3917}
3918
3919/*+F*************************************************************************
3920 * Function:
3921 * aic7xxx_handle_seqint
3922 *
3923 * Description:
3924 * Interrupt handler for sequencer interrupts (SEQINT).
3925 *-F*************************************************************************/
3926static void
3927aic7xxx_handle_seqint(struct aic7xxx_host *p, unsigned char intstat)
3928{
3929 struct aic7xxx_scb *scb;
3930 struct aic_dev_data *aic_dev;
3931 unsigned short target_mask;
3932 unsigned char target, lun, tindex;
3933 unsigned char queue_flag = FALSE;
3934 char channel;
3935 int result;
3936
3937 target = ((aic_inb(p, SAVED_TCL) >> 4) & 0x0f);
3938 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3939 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
3940 else
3941 channel = 0;
3942 tindex = target + (channel << 3);
3943 lun = aic_inb(p, SAVED_TCL) & 0x07;
3944 target_mask = (0x01 << tindex);
3945
3946 /*
3947 * Go ahead and clear the SEQINT now, that avoids any interrupt race
3948 * conditions later on in case we enable some other interrupt.
3949 */
3950 aic_outb(p, CLRSEQINT, CLRINT);
3951 switch (intstat & SEQINT_MASK)
3952 {
3953 case NO_MATCH:
3954 {
3955 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
3956 SCSISEQ);
3957 printk(WARN_LEAD "No active SCB for reconnecting target - Issuing "
3958 "BUS DEVICE RESET.\n", p->host_no, channel, target, lun);
3959 printk(WARN_LEAD " SAVED_TCL=0x%x, ARG_1=0x%x, SEQADDR=0x%x\n",
3960 p->host_no, channel, target, lun,
3961 aic_inb(p, SAVED_TCL), aic_inb(p, ARG_1),
3962 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
3963 if (aic7xxx_panic_on_abort)
3964 aic7xxx_panic_abort(p, NULL);
3965 }
3966 break;
3967
3968 case SEND_REJECT:
3969 {
3970 if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3971 printk(INFO_LEAD "Rejecting unknown message (0x%x) received from "
3972 "target, SEQ_FLAGS=0x%x\n", p->host_no, channel, target, lun,
3973 aic_inb(p, ACCUM), aic_inb(p, SEQ_FLAGS));
3974 }
3975 break;
3976
3977 case NO_IDENT:
3978 {
3979 /*
3980 * The reconnecting target either did not send an identify
3981 * message, or did, but we didn't find an SCB to match and
3982 * before it could respond to our ATN/abort, it hit a dataphase.
3983 * The only safe thing to do is to blow it away with a bus
3984 * reset.
3985 */
3986 if (aic7xxx_verbose & (VERBOSE_SEQINT | VERBOSE_RESET_MID))
3987 printk(INFO_LEAD "Target did not send an IDENTIFY message; "
3988 "LASTPHASE 0x%x, SAVED_TCL 0x%x\n", p->host_no, channel, target,
3989 lun, aic_inb(p, LASTPHASE), aic_inb(p, SAVED_TCL));
3990
3991 aic7xxx_reset_channel(p, channel, /*initiate reset*/ TRUE);
3992 aic7xxx_run_done_queue(p, TRUE);
3993
3994 }
3995 break;
3996
3997 case BAD_PHASE:
3998 if (aic_inb(p, LASTPHASE) == P_BUSFREE)
3999 {
4000 if (aic7xxx_verbose & VERBOSE_SEQINT)
4001 printk(INFO_LEAD "Missed busfree.\n", p->host_no, channel,
4002 target, lun);
4003 restart_sequencer(p);
4004 }
4005 else
4006 {
4007 if (aic7xxx_verbose & VERBOSE_SEQINT)
4008 printk(INFO_LEAD "Unknown scsi bus phase, continuing\n", p->host_no,
4009 channel, target, lun);
4010 }
4011 break;
4012
4013 case EXTENDED_MSG:
4014 {
4015 p->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4016 p->msg_len = 0;
4017 p->msg_index = 0;
4018
4019#ifdef AIC7XXX_VERBOSE_DEBUGGING
4020 if (aic7xxx_verbose > 0xffff)
4021 printk(INFO_LEAD "Enabling REQINITs for MSG_IN\n", p->host_no,
4022 channel, target, lun);
4023#endif
4024
4025 /*
4026 * To actually receive the message, simply turn on
4027 * REQINIT interrupts and let our interrupt handler
4028 * do the rest (REQINIT should already be true).
4029 */
4030 p->flags |= AHC_HANDLING_REQINITS;
4031 aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4032
4033 /*
4034 * We don't want the sequencer unpaused yet so we return early
4035 */
4036 return;
4037 }
4038
4039 case REJECT_MSG:
4040 {
4041 /*
4042 * What we care about here is if we had an outstanding SDTR
4043 * or WDTR message for this target. If we did, this is a
4044 * signal that the target is refusing negotiation.
4045 */
4046 unsigned char scb_index;
4047 unsigned char last_msg;
4048
4049 scb_index = aic_inb(p, SCB_TAG);
4050 scb = p->scb_data->scb_array[scb_index];
4051 aic_dev = AIC_DEV(scb->cmd);
4052 last_msg = aic_inb(p, LAST_MSG);
4053
4054 if ( (last_msg == MSG_IDENTIFYFLAG) &&
4055 (scb->tag_action) &&
4056 !(scb->flags & SCB_MSGOUT_BITS) )
4057 {
4058 if (scb->tag_action == MSG_ORDERED_Q_TAG)
4059 {
4060 /*
4061 * OK...the device seems able to accept tagged commands, but
4062 * not ordered tag commands, only simple tag commands. So, we
4063 * disable ordered tag commands and go on with life just like
4064 * normal.
4065 */
4066 scsi_adjust_queue_depth(scb->cmd->device, MSG_SIMPLE_TAG,
4067 scb->cmd->device->queue_depth);
4068 scb->tag_action = MSG_SIMPLE_Q_TAG;
4069 scb->hscb->control &= ~SCB_TAG_TYPE;
4070 scb->hscb->control |= MSG_SIMPLE_Q_TAG;
4071 aic_outb(p, scb->hscb->control, SCB_CONTROL);
4072 /*
4073 * OK..we set the tag type to simple tag command, now we re-assert
4074 * ATNO and hope this will take us into the identify phase again
4075 * so we can resend the tag type and info to the device.
4076 */
4077 aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4078 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4079 }
4080 else if (scb->tag_action == MSG_SIMPLE_Q_TAG)
4081 {
4082 unsigned char i;
4083 struct aic7xxx_scb *scbp;
4084 int old_verbose;
4085 /*
4086 * Hmmmm....the device is flaking out on tagged commands.
4087 */
4088 scsi_adjust_queue_depth(scb->cmd->device, 0 /* untagged */,
4089 p->host->cmd_per_lun);
4090 aic_dev->max_q_depth = aic_dev->temp_q_depth = 1;
4091 /*
4092 * We set this command up as a bus device reset. However, we have
4093 * to clear the tag type as it's causing us problems. We shouldnt
4094 * have to worry about any other commands being active, since if
4095 * the device is refusing tagged commands, this should be the
4096 * first tagged command sent to the device, however, we do have
4097 * to worry about any other tagged commands that may already be
4098 * in the qinfifo. The easiest way to do this, is to issue a BDR,
4099 * send all the commands back to the mid level code, then let them
4100 * come back and get rebuilt as untagged commands.
4101 */
4102 scb->tag_action = 0;
4103 scb->hscb->control &= ~(TAG_ENB | SCB_TAG_TYPE);
4104 aic_outb(p, scb->hscb->control, SCB_CONTROL);
4105
4106 old_verbose = aic7xxx_verbose;
4107 aic7xxx_verbose &= ~(VERBOSE_RESET|VERBOSE_ABORT);
4108 for (i=0; i < p->scb_data->numscbs; i++)
4109 {
4110 scbp = p->scb_data->scb_array[i];
4111 if ((scbp->flags & SCB_ACTIVE) && (scbp != scb))
4112 {
4113 if (aic7xxx_match_scb(p, scbp, target, channel, lun, i))
4114 {
4115 aic7xxx_reset_device(p, target, channel, lun, i);
4116 }
4117 }
4118 }
4119 aic7xxx_run_done_queue(p, TRUE);
4120 aic7xxx_verbose = old_verbose;
4121 /*
4122 * Wait until after the for loop to set the busy index since
4123 * aic7xxx_reset_device will clear the busy index during its
4124 * operation.
4125 */
4126 aic7xxx_busy_target(p, scb);
4127 printk(INFO_LEAD "Device is refusing tagged commands, using "
4128 "untagged I/O.\n", p->host_no, channel, target, lun);
4129 aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4130 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4131 }
4132 }
4133 else if (scb->flags & SCB_MSGOUT_PPR)
4134 {
4135 /*
4136 * As per the draft specs, any device capable of supporting any of
4137 * the option values other than 0 are not allowed to reject the
4138 * PPR message. Instead, they must negotiate out what they do
4139 * support instead of rejecting our offering or else they cause
4140 * a parity error during msg_out phase to signal that they don't
4141 * like our settings.
4142 */
4143 aic_dev->needppr = aic_dev->needppr_copy = 0;
4144 aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4145 (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE), aic_dev);
4146 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4147 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4148 aic_dev);
4149 aic_dev->goal.options = aic_dev->dtr_pending = 0;
4150 scb->flags &= ~SCB_MSGOUT_BITS;
4151 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4152 {
4153 printk(INFO_LEAD "Device is rejecting PPR messages, falling "
4154 "back.\n", p->host_no, channel, target, lun);
4155 }
4156 if ( aic_dev->goal.width )
4157 {
4158 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
4159 aic_dev->dtr_pending = 1;
4160 scb->flags |= SCB_MSGOUT_WDTR;
4161 }
4162 if ( aic_dev->goal.offset )
4163 {
4164 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
4165 if( !aic_dev->dtr_pending )
4166 {
4167 aic_dev->dtr_pending = 1;
4168 scb->flags |= SCB_MSGOUT_SDTR;
4169 }
4170 }
4171 if ( aic_dev->dtr_pending )
4172 {
4173 aic_outb(p, HOST_MSG, MSG_OUT);
4174 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4175 }
4176 }
4177 else if (scb->flags & SCB_MSGOUT_WDTR)
4178 {
4179 /*
4180 * note 8bit xfers and clear flag
4181 */
4182 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
4183 scb->flags &= ~SCB_MSGOUT_BITS;
4184 aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4185 (AHC_TRANS_ACTIVE|AHC_TRANS_GOAL|AHC_TRANS_CUR), aic_dev);
4186 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4187 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4188 aic_dev);
4189 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4190 {
4191 printk(INFO_LEAD "Device is rejecting WDTR messages, using "
4192 "narrow transfers.\n", p->host_no, channel, target, lun);
4193 }
4194 aic_dev->needsdtr = aic_dev->needsdtr_copy;
4195 }
4196 else if (scb->flags & SCB_MSGOUT_SDTR)
4197 {
4198 /*
4199 * note asynch xfers and clear flag
4200 */
4201 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
4202 scb->flags &= ~SCB_MSGOUT_BITS;
4203 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4204 (AHC_TRANS_CUR|AHC_TRANS_ACTIVE|AHC_TRANS_GOAL), aic_dev);
4205 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4206 {
4207 printk(INFO_LEAD "Device is rejecting SDTR messages, using "
4208 "async transfers.\n", p->host_no, channel, target, lun);
4209 }
4210 }
4211 else if (aic7xxx_verbose & VERBOSE_SEQINT)
4212 {
4213 /*
4214 * Otherwise, we ignore it.
4215 */
4216 printk(INFO_LEAD "Received MESSAGE_REJECT for unknown cause. "
4217 "Ignoring.\n", p->host_no, channel, target, lun);
4218 }
4219 }
4220 break;
4221
4222 case BAD_STATUS:
4223 {
4224 unsigned char scb_index;
4225 struct aic7xxx_hwscb *hscb;
4226 Scsi_Cmnd *cmd;
4227
4228 /* The sequencer will notify us when a command has an error that
4229 * would be of interest to the kernel. This allows us to leave
4230 * the sequencer running in the common case of command completes
4231 * without error. The sequencer will have DMA'd the SCB back
4232 * up to us, so we can reference the drivers SCB array.
4233 *
4234 * Set the default return value to 0 indicating not to send
4235 * sense. The sense code will change this if needed and this
4236 * reduces code duplication.
4237 */
4238 aic_outb(p, 0, RETURN_1);
4239 scb_index = aic_inb(p, SCB_TAG);
4240 if (scb_index > p->scb_data->numscbs)
4241 {
4242 printk(WARN_LEAD "Invalid SCB during SEQINT 0x%02x, SCB_TAG %d.\n",
4243 p->host_no, channel, target, lun, intstat, scb_index);
4244 break;
4245 }
4246 scb = p->scb_data->scb_array[scb_index];
4247 hscb = scb->hscb;
4248
4249 if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4250 {
4251 printk(WARN_LEAD "Invalid SCB during SEQINT 0x%x, scb %d, flags 0x%x,"
4252 " cmd 0x%lx.\n", p->host_no, channel, target, lun, intstat,
4253 scb_index, scb->flags, (unsigned long) scb->cmd);
4254 }
4255 else
4256 {
4257 cmd = scb->cmd;
4258 aic_dev = AIC_DEV(scb->cmd);
4259 hscb->target_status = aic_inb(p, SCB_TARGET_STATUS);
4260 aic7xxx_status(cmd) = hscb->target_status;
4261
4262 cmd->result = hscb->target_status;
4263
4264 switch (status_byte(hscb->target_status))
4265 {
4266 case GOOD:
4267 if (aic7xxx_verbose & VERBOSE_SEQINT)
4268 printk(INFO_LEAD "Interrupted for status of GOOD???\n",
4269 p->host_no, CTL_OF_SCB(scb));
4270 break;
4271
4272 case COMMAND_TERMINATED:
4273 case CHECK_CONDITION:
4274 if ( !(scb->flags & SCB_SENSE) )
4275 {
4276 /*
4277 * Send a sense command to the requesting target.
4278 * XXX - revisit this and get rid of the memcopys.
4279 */
4280 memcpy(scb->sense_cmd, &generic_sense[0],
4281 sizeof(generic_sense));
4282
4283 scb->sense_cmd[1] = (cmd->device->lun << 5);
4284 scb->sense_cmd[4] = sizeof(cmd->sense_buffer);
4285
4286 scb->sg_list[0].length =
4287 cpu_to_le32(sizeof(cmd->sense_buffer));
4288 scb->sg_list[0].address =
4289 cpu_to_le32(pci_map_single(p->pdev, cmd->sense_buffer,
4290 sizeof(cmd->sense_buffer),
4291 PCI_DMA_FROMDEVICE));
4292
4293 /*
4294 * XXX - We should allow disconnection, but can't as it
4295 * might allow overlapped tagged commands.
4296 */
4297 /* hscb->control &= DISCENB; */
4298 hscb->control = 0;
4299 hscb->target_status = 0;
4300 hscb->SG_list_pointer =
4301 cpu_to_le32(SCB_DMA_ADDR(scb, scb->sg_list));
4302 hscb->SCSI_cmd_pointer =
4303 cpu_to_le32(SCB_DMA_ADDR(scb, scb->sense_cmd));
4304 hscb->data_count = scb->sg_list[0].length;
4305 hscb->data_pointer = scb->sg_list[0].address;
4306 hscb->SCSI_cmd_length = COMMAND_SIZE(scb->sense_cmd[0]);
4307 hscb->residual_SG_segment_count = 0;
4308 hscb->residual_data_count[0] = 0;
4309 hscb->residual_data_count[1] = 0;
4310 hscb->residual_data_count[2] = 0;
4311
4312 scb->sg_count = hscb->SG_segment_count = 1;
4313 scb->sg_length = sizeof(cmd->sense_buffer);
4314 scb->tag_action = 0;
4315 scb->flags |= SCB_SENSE;
4316 /*
4317 * Ensure the target is busy since this will be an
4318 * an untagged request.
4319 */
4320#ifdef AIC7XXX_VERBOSE_DEBUGGING
4321 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4322 {
4323 if (scb->flags & SCB_MSGOUT_BITS)
4324 printk(INFO_LEAD "Requesting SENSE with %s\n", p->host_no,
4325 CTL_OF_SCB(scb), (scb->flags & SCB_MSGOUT_SDTR) ?
4326 "SDTR" : "WDTR");
4327 else
4328 printk(INFO_LEAD "Requesting SENSE, no MSG\n", p->host_no,
4329 CTL_OF_SCB(scb));
4330 }
4331#endif
4332 aic7xxx_busy_target(p, scb);
4333 aic_outb(p, SEND_SENSE, RETURN_1);
4334 aic7xxx_error(cmd) = DID_OK;
4335 break;
4336 } /* first time sense, no errors */
4337 printk(INFO_LEAD "CHECK_CONDITION on REQUEST_SENSE, returning "
4338 "an error.\n", p->host_no, CTL_OF_SCB(scb));
4339 aic7xxx_error(cmd) = DID_ERROR;
4340 scb->flags &= ~SCB_SENSE;
4341 break;
4342
4343 case QUEUE_FULL:
4344 queue_flag = TRUE; /* Mark that this is a QUEUE_FULL and */
4345 case BUSY: /* drop through to here */
4346 {
4347 struct aic7xxx_scb *next_scbp, *prev_scbp;
4348 unsigned char active_hscb, next_hscb, prev_hscb, scb_index;
4349 /*
4350 * We have to look three places for queued commands:
4351 * 1: p->waiting_scbs queue
4352 * 2: QINFIFO
4353 * 3: WAITING_SCBS list on card (for commands that are started
4354 * but haven't yet made it to the device)
4355 *
4356 * Of special note here is that commands on 2 or 3 above will
4357 * have already been marked as active, while commands on 1 will
4358 * not. The aic7xxx_done() function will want to unmark them
4359 * from active, so any commands we pull off of 1 need to
4360 * up the active count.
4361 */
4362 next_scbp = p->waiting_scbs.head;
4363 while ( next_scbp != NULL )
4364 {
4365 prev_scbp = next_scbp;
4366 next_scbp = next_scbp->q_next;
4367 if ( aic7xxx_match_scb(p, prev_scbp, target, channel, lun,
4368 SCB_LIST_NULL) )
4369 {
4370 scbq_remove(&p->waiting_scbs, prev_scbp);
4371 scb->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
4372 p->activescbs++;
4373 aic_dev->active_cmds++;
4374 }
4375 }
4376 aic7xxx_search_qinfifo(p, target, channel, lun,
4377 SCB_LIST_NULL, SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL,
4378 FALSE, NULL);
4379 next_scbp = NULL;
4380 active_hscb = aic_inb(p, SCBPTR);
4381 prev_hscb = next_hscb = scb_index = SCB_LIST_NULL;
4382 next_hscb = aic_inb(p, WAITING_SCBH);
4383 while (next_hscb != SCB_LIST_NULL)
4384 {
4385 aic_outb(p, next_hscb, SCBPTR);
4386 scb_index = aic_inb(p, SCB_TAG);
4387 if (scb_index < p->scb_data->numscbs)
4388 {
4389 next_scbp = p->scb_data->scb_array[scb_index];
4390 if (aic7xxx_match_scb(p, next_scbp, target, channel, lun,
4391 SCB_LIST_NULL) )
4392 {
4393 next_scbp->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
4394 next_hscb = aic_inb(p, SCB_NEXT);
4395 aic_outb(p, 0, SCB_CONTROL);
4396 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
4397 aic7xxx_add_curscb_to_free_list(p);
4398 if (prev_hscb == SCB_LIST_NULL)
4399 {
4400 /* We were first on the list,
4401 * so we kill the selection
4402 * hardware. Let the sequencer
4403 * re-init the hardware itself
4404 */
4405 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
4406 aic_outb(p, CLRSELTIMEO, CLRSINT1);
4407 aic_outb(p, next_hscb, WAITING_SCBH);
4408 }
4409 else
4410 {
4411 aic_outb(p, prev_hscb, SCBPTR);
4412 aic_outb(p, next_hscb, SCB_NEXT);
4413 }
4414 }
4415 else
4416 {
4417 prev_hscb = next_hscb;
4418 next_hscb = aic_inb(p, SCB_NEXT);
4419 }
4420 } /* scb_index >= p->scb_data->numscbs */
4421 }
4422 aic_outb(p, active_hscb, SCBPTR);
4423 aic7xxx_run_done_queue(p, FALSE);
4424
4425#ifdef AIC7XXX_VERBOSE_DEBUGGING
4426 if( (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ||
4427 (aic7xxx_verbose > 0xffff) )
4428 {
4429 if (queue_flag)
4430 printk(INFO_LEAD "Queue full received; queue depth %d, "
4431 "active %d\n", p->host_no, CTL_OF_SCB(scb),
4432 aic_dev->max_q_depth, aic_dev->active_cmds);
4433 else
4434 printk(INFO_LEAD "Target busy\n", p->host_no, CTL_OF_SCB(scb));
4435 }
4436#endif
4437 if (queue_flag)
4438 {
4439 int diff;
4440 result = scsi_track_queue_full(cmd->device,
4441 aic_dev->active_cmds);
4442 if ( result < 0 )
4443 {
4444 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4445 printk(INFO_LEAD "Tagged Command Queueing disabled.\n",
4446 p->host_no, CTL_OF_SCB(scb));
4447 diff = aic_dev->max_q_depth - p->host->cmd_per_lun;
4448 aic_dev->temp_q_depth = 1;
4449 aic_dev->max_q_depth = 1;
4450 }
4451 else if ( result > 0 )
4452 {
4453 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4454 printk(INFO_LEAD "Queue depth reduced to %d\n", p->host_no,
4455 CTL_OF_SCB(scb), result);
4456 diff = aic_dev->max_q_depth - result;
4457 aic_dev->max_q_depth = result;
4458 /* temp_q_depth could have been dropped to 1 for an untagged
4459 * command that might be coming up */
4460 if(aic_dev->temp_q_depth > result)
4461 aic_dev->temp_q_depth = result;
4462 }
4463 /* We should free up the no unused SCB entries. But, that's
4464 * a difficult thing to do because we use a direct indexed
4465 * array, so we can't just take any entries and free them,
4466 * we *have* to free the ones at the end of the array, and
4467 * they very well could be in use right now, which means
4468 * in order to do this right, we have to add a delayed
4469 * freeing mechanism tied into the scb_free() code area.
4470 * We'll add that later.
4471 */
4472 }
4473 break;
4474 }
4475
4476 default:
4477 if (aic7xxx_verbose & VERBOSE_SEQINT)
4478 printk(INFO_LEAD "Unexpected target status 0x%x.\n", p->host_no,
4479 CTL_OF_SCB(scb), scb->hscb->target_status);
4480 if (!aic7xxx_error(cmd))
4481 {
4482 aic7xxx_error(cmd) = DID_RETRY_COMMAND;
4483 }
4484 break;
4485 } /* end switch */
4486 } /* end else of */
4487 }
4488 break;
4489
4490 case AWAITING_MSG:
4491 {
4492 unsigned char scb_index, msg_out;
4493
4494 scb_index = aic_inb(p, SCB_TAG);
4495 msg_out = aic_inb(p, MSG_OUT);
4496 scb = p->scb_data->scb_array[scb_index];
4497 aic_dev = AIC_DEV(scb->cmd);
4498 p->msg_index = p->msg_len = 0;
4499 /*
4500 * This SCB had a MK_MESSAGE set in its control byte informing
4501 * the sequencer that we wanted to send a special message to
4502 * this target.
4503 */
4504
4505 if ( !(scb->flags & SCB_DEVICE_RESET) &&
4506 (msg_out == MSG_IDENTIFYFLAG) &&
4507 (scb->hscb->control & TAG_ENB) )
4508 {
4509 p->msg_buf[p->msg_index++] = scb->tag_action;
4510 p->msg_buf[p->msg_index++] = scb->hscb->tag;
4511 p->msg_len += 2;
4512 }
4513
4514 if (scb->flags & SCB_DEVICE_RESET)
4515 {
4516 p->msg_buf[p->msg_index++] = MSG_BUS_DEV_RESET;
4517 p->msg_len++;
4518 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
4519 printk(INFO_LEAD "Bus device reset mailed.\n",
4520 p->host_no, CTL_OF_SCB(scb));
4521 }
4522 else if (scb->flags & SCB_ABORT)
4523 {
4524 if (scb->tag_action)
4525 {
4526 p->msg_buf[p->msg_index++] = MSG_ABORT_TAG;
4527 }
4528 else
4529 {
4530 p->msg_buf[p->msg_index++] = MSG_ABORT;
4531 }
4532 p->msg_len++;
4533 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
4534 printk(INFO_LEAD "Abort message mailed.\n", p->host_no,
4535 CTL_OF_SCB(scb));
4536 }
4537 else if (scb->flags & SCB_MSGOUT_PPR)
4538 {
4539 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4540 {
4541 printk(INFO_LEAD "Sending PPR (%d/%d/%d/%d) message.\n",
4542 p->host_no, CTL_OF_SCB(scb),
4543 aic_dev->goal.period,
4544 aic_dev->goal.offset,
4545 aic_dev->goal.width,
4546 aic_dev->goal.options);
4547 }
4548 aic7xxx_construct_ppr(p, scb);
4549 }
4550 else if (scb->flags & SCB_MSGOUT_WDTR)
4551 {
4552 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4553 {
4554 printk(INFO_LEAD "Sending WDTR message.\n", p->host_no,
4555 CTL_OF_SCB(scb));
4556 }
4557 aic7xxx_construct_wdtr(p, aic_dev->goal.width);
4558 }
4559 else if (scb->flags & SCB_MSGOUT_SDTR)
4560 {
4561 unsigned int max_sync, period;
4562 unsigned char options = 0;
4563 /*
4564 * Now that the device is selected, use the bits in SBLKCTL and
4565 * SSTAT2 to determine the max sync rate for this device.
4566 */
4567 if (p->features & AHC_ULTRA2)
4568 {
4569 if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4570 !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4571 {
4572 max_sync = AHC_SYNCRATE_ULTRA2;
4573 }
4574 else
4575 {
4576 max_sync = AHC_SYNCRATE_ULTRA;
4577 }
4578 }
4579 else if (p->features & AHC_ULTRA)
4580 {
4581 max_sync = AHC_SYNCRATE_ULTRA;
4582 }
4583 else
4584 {
4585 max_sync = AHC_SYNCRATE_FAST;
4586 }
4587 period = aic_dev->goal.period;
4588 aic7xxx_find_syncrate(p, &period, max_sync, &options);
4589 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4590 {
4591 printk(INFO_LEAD "Sending SDTR %d/%d message.\n", p->host_no,
4592 CTL_OF_SCB(scb), period,
4593 aic_dev->goal.offset);
4594 }
4595 aic7xxx_construct_sdtr(p, period, aic_dev->goal.offset);
4596 }
4597 else
4598 {
4599 panic("aic7xxx: AWAITING_MSG for an SCB that does "
4600 "not have a waiting message.\n");
4601 }
4602 /*
4603 * We've set everything up to send our message, now to actually do
4604 * so we need to enable reqinit interrupts and let the interrupt
4605 * handler do the rest. We don't want to unpause the sequencer yet
4606 * though so we'll return early. We also have to make sure that
4607 * we clear the SEQINT *BEFORE* we set the REQINIT handler active
4608 * or else it's possible on VLB cards to lose the first REQINIT
4609 * interrupt. Edge triggered EISA cards could also lose this
4610 * interrupt, although PCI and level triggered cards should not
4611 * have this problem since they continually interrupt the kernel
4612 * until we take care of the situation.
4613 */
4614 scb->flags |= SCB_MSGOUT_SENT;
4615 p->msg_index = 0;
4616 p->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4617 p->flags |= AHC_HANDLING_REQINITS;
4618 aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4619 return;
4620 }
4621 break;
4622
4623 case DATA_OVERRUN:
4624 {
4625 unsigned char scb_index = aic_inb(p, SCB_TAG);
4626 unsigned char lastphase = aic_inb(p, LASTPHASE);
4627 unsigned int i;
4628
4629 scb = (p->scb_data->scb_array[scb_index]);
4630 /*
4631 * XXX - What do we really want to do on an overrun? The
4632 * mid-level SCSI code should handle this, but for now,
4633 * we'll just indicate that the command should retried.
4634 * If we retrieved sense info on this target, then the
4635 * base SENSE info should have been saved prior to the
4636 * overrun error. In that case, we return DID_OK and let
4637 * the mid level code pick up on the sense info. Otherwise
4638 * we return DID_ERROR so the command will get retried.
4639 */
4640 if ( !(scb->flags & SCB_SENSE) )
4641 {
4642 printk(WARN_LEAD "Data overrun detected in %s phase, tag %d;\n",
4643 p->host_no, CTL_OF_SCB(scb),
4644 (lastphase == P_DATAIN) ? "Data-In" : "Data-Out", scb->hscb->tag);
4645 printk(KERN_WARNING " %s seen Data Phase. Length=%d, NumSGs=%d.\n",
4646 (aic_inb(p, SEQ_FLAGS) & DPHASE) ? "Have" : "Haven't",
4647 scb->sg_length, scb->sg_count);
4648 printk(KERN_WARNING " Raw SCSI Command: 0x");
4649 for (i = 0; i < scb->hscb->SCSI_cmd_length; i++)
4650 {
4651 printk("%02x ", scb->cmd->cmnd[i]);
4652 }
4653 printk("\n");
4654 if(aic7xxx_verbose > 0xffff)
4655 {
4656 for (i = 0; i < scb->sg_count; i++)
4657 {
4658 printk(KERN_WARNING " sg[%d] - Addr 0x%x : Length %d\n",
4659 i,
4660 le32_to_cpu(scb->sg_list[i].address),
4661 le32_to_cpu(scb->sg_list[i].length) );
4662 }
4663 }
4664 aic7xxx_error(scb->cmd) = DID_ERROR;
4665 }
4666 else
4667 printk(INFO_LEAD "Data Overrun during SEND_SENSE operation.\n",
4668 p->host_no, CTL_OF_SCB(scb));
4669 }
4670 break;
4671
4672 case WIDE_RESIDUE:
4673 {
4674 unsigned char resid_sgcnt, index;
4675 unsigned char scb_index = aic_inb(p, SCB_TAG);
4676 unsigned int cur_addr, resid_dcnt;
4677 unsigned int native_addr, native_length, sg_addr;
4678 int i;
4679
4680 if(scb_index > p->scb_data->numscbs)
4681 {
4682 printk(WARN_LEAD "invalid scb_index during WIDE_RESIDUE.\n",
4683 p->host_no, -1, -1, -1);
4684 /*
4685 * XXX: Add error handling here
4686 */
4687 break;
4688 }
4689 scb = p->scb_data->scb_array[scb_index];
4690 if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4691 {
4692 printk(WARN_LEAD "invalid scb during WIDE_RESIDUE flags:0x%x "
4693 "scb->cmd:0x%lx\n", p->host_no, CTL_OF_SCB(scb),
4694 scb->flags, (unsigned long)scb->cmd);
4695 break;
4696 }
4697 if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4698 printk(INFO_LEAD "Got WIDE_RESIDUE message, patching up data "
4699 "pointer.\n", p->host_no, CTL_OF_SCB(scb));
4700
4701 /*
4702 * We have a valid scb to use on this WIDE_RESIDUE message, so
4703 * we need to walk the sg list looking for this particular sg
4704 * segment, then see if we happen to be at the very beginning of
4705 * the segment. If we are, then we have to back things up to
4706 * the previous segment. If not, then we simply need to remove
4707 * one byte from this segments address and add one to the byte
4708 * count.
4709 */
4710 cur_addr = aic_inb(p, SHADDR) | (aic_inb(p, SHADDR + 1) << 8) |
4711 (aic_inb(p, SHADDR + 2) << 16) | (aic_inb(p, SHADDR + 3) << 24);
4712 sg_addr = aic_inb(p, SG_COUNT + 1) | (aic_inb(p, SG_COUNT + 2) << 8) |
4713 (aic_inb(p, SG_COUNT + 3) << 16) | (aic_inb(p, SG_COUNT + 4) << 24);
4714 resid_sgcnt = aic_inb(p, SCB_RESID_SGCNT);
4715 resid_dcnt = aic_inb(p, SCB_RESID_DCNT) |
4716 (aic_inb(p, SCB_RESID_DCNT + 1) << 8) |
4717 (aic_inb(p, SCB_RESID_DCNT + 2) << 16);
4718 index = scb->sg_count - ((resid_sgcnt) ? resid_sgcnt : 1);
4719 native_addr = le32_to_cpu(scb->sg_list[index].address);
4720 native_length = le32_to_cpu(scb->sg_list[index].length);
4721 /*
4722 * If resid_dcnt == native_length, then we just loaded this SG
4723 * segment and we need to back it up one...
4724 */
4725 if(resid_dcnt == native_length)
4726 {
4727 if(index == 0)
4728 {
4729 /*
4730 * Oops, this isn't right, we can't back up to before the
4731 * beginning. This must be a bogus message, ignore it.
4732 */
4733 break;
4734 }
4735 resid_dcnt = 1;
4736 resid_sgcnt += 1;
4737 native_addr = le32_to_cpu(scb->sg_list[index - 1].address);
4738 native_length = le32_to_cpu(scb->sg_list[index - 1].length);
4739 cur_addr = native_addr + (native_length - 1);
4740 sg_addr -= sizeof(struct hw_scatterlist);
4741 }
4742 else
4743 {
4744 /*
4745 * resid_dcnt != native_length, so we are in the middle of a SG
4746 * element. Back it up one byte and leave the rest alone.
4747 */
4748 resid_dcnt += 1;
4749 cur_addr -= 1;
4750 }
4751
4752 /*
4753 * Output the new addresses and counts to the right places on the
4754 * card.
4755 */
4756 aic_outb(p, resid_sgcnt, SG_COUNT);
4757 aic_outb(p, resid_sgcnt, SCB_RESID_SGCNT);
4758 aic_outb(p, sg_addr & 0xff, SG_COUNT + 1);
4759 aic_outb(p, (sg_addr >> 8) & 0xff, SG_COUNT + 2);
4760 aic_outb(p, (sg_addr >> 16) & 0xff, SG_COUNT + 3);
4761 aic_outb(p, (sg_addr >> 24) & 0xff, SG_COUNT + 4);
4762 aic_outb(p, resid_dcnt & 0xff, SCB_RESID_DCNT);
4763 aic_outb(p, (resid_dcnt >> 8) & 0xff, SCB_RESID_DCNT + 1);
4764 aic_outb(p, (resid_dcnt >> 16) & 0xff, SCB_RESID_DCNT + 2);
4765
4766 /*
4767 * The sequencer actually wants to find the new address
4768 * in the SHADDR register set. On the Ultra2 and later controllers
4769 * this register set is readonly. In order to get the right number
4770 * into the register, you actually have to enter it in HADDR and then
4771 * use the PRELOADEN bit of DFCNTRL to drop it through from the
4772 * HADDR register to the SHADDR register. On non-Ultra2 controllers,
4773 * we simply write it direct.
4774 */
4775 if(p->features & AHC_ULTRA2)
4776 {
4777 /*
4778 * We might as well be accurate and drop both the resid_dcnt and
4779 * cur_addr into HCNT and HADDR and have both of them drop
4780 * through to the shadow layer together.
4781 */
4782 aic_outb(p, resid_dcnt & 0xff, HCNT);
4783 aic_outb(p, (resid_dcnt >> 8) & 0xff, HCNT + 1);
4784 aic_outb(p, (resid_dcnt >> 16) & 0xff, HCNT + 2);
4785 aic_outb(p, cur_addr & 0xff, HADDR);
4786 aic_outb(p, (cur_addr >> 8) & 0xff, HADDR + 1);
4787 aic_outb(p, (cur_addr >> 16) & 0xff, HADDR + 2);
4788 aic_outb(p, (cur_addr >> 24) & 0xff, HADDR + 3);
4789 aic_outb(p, aic_inb(p, DMAPARAMS) | PRELOADEN, DFCNTRL);
4790 udelay(1);
4791 aic_outb(p, aic_inb(p, DMAPARAMS) & ~(SCSIEN|HDMAEN), DFCNTRL);
4792 i=0;
4793 while(((aic_inb(p, DFCNTRL) & (SCSIEN|HDMAEN)) != 0) && (i++ < 1000))
4794 {
4795 udelay(1);
4796 }
4797 }
4798 else
4799 {
4800 aic_outb(p, cur_addr & 0xff, SHADDR);
4801 aic_outb(p, (cur_addr >> 8) & 0xff, SHADDR + 1);
4802 aic_outb(p, (cur_addr >> 16) & 0xff, SHADDR + 2);
4803 aic_outb(p, (cur_addr >> 24) & 0xff, SHADDR + 3);
4804 }
4805 }
4806 break;
4807
4808 case SEQ_SG_FIXUP:
4809 {
4810 unsigned char scb_index, tmp;
4811 int sg_addr, sg_length;
4812
4813 scb_index = aic_inb(p, SCB_TAG);
4814
4815 if(scb_index > p->scb_data->numscbs)
4816 {
4817 printk(WARN_LEAD "invalid scb_index during SEQ_SG_FIXUP.\n",
4818 p->host_no, -1, -1, -1);
4819 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4820 "0x%x\n", p->host_no, -1, -1, -1,
4821 aic_inb(p, SCSISIGI),
4822 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4823 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4824 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4825 p->host_no, -1, -1, -1, aic_inb(p, SG_CACHEPTR),
4826 aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4827 aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4828 /*
4829 * XXX: Add error handling here
4830 */
4831 break;
4832 }
4833 scb = p->scb_data->scb_array[scb_index];
4834 if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4835 {
4836 printk(WARN_LEAD "invalid scb during SEQ_SG_FIXUP flags:0x%x "
4837 "scb->cmd:0x%p\n", p->host_no, CTL_OF_SCB(scb),
4838 scb->flags, scb->cmd);
4839 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4840 "0x%x\n", p->host_no, CTL_OF_SCB(scb),
4841 aic_inb(p, SCSISIGI),
4842 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4843 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4844 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4845 p->host_no, CTL_OF_SCB(scb), aic_inb(p, SG_CACHEPTR),
4846 aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4847 aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4848 break;
4849 }
4850 if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4851 printk(INFO_LEAD "Fixing up SG address for sequencer.\n", p->host_no,
4852 CTL_OF_SCB(scb));
4853 /*
4854 * Advance the SG pointer to the next element in the list
4855 */
4856 tmp = aic_inb(p, SG_NEXT);
4857 tmp += SG_SIZEOF;
4858 aic_outb(p, tmp, SG_NEXT);
4859 if( tmp < SG_SIZEOF )
4860 aic_outb(p, aic_inb(p, SG_NEXT + 1) + 1, SG_NEXT + 1);
4861 tmp = aic_inb(p, SG_COUNT) - 1;
4862 aic_outb(p, tmp, SG_COUNT);
4863 sg_addr = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].address);
4864 sg_length = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].length);
4865 /*
4866 * Now stuff the element we just advanced past down onto the
4867 * card so it can be stored in the residual area.
4868 */
4869 aic_outb(p, sg_addr & 0xff, HADDR);
4870 aic_outb(p, (sg_addr >> 8) & 0xff, HADDR + 1);
4871 aic_outb(p, (sg_addr >> 16) & 0xff, HADDR + 2);
4872 aic_outb(p, (sg_addr >> 24) & 0xff, HADDR + 3);
4873 aic_outb(p, sg_length & 0xff, HCNT);
4874 aic_outb(p, (sg_length >> 8) & 0xff, HCNT + 1);
4875 aic_outb(p, (sg_length >> 16) & 0xff, HCNT + 2);
4876 aic_outb(p, (tmp << 2) | ((tmp == 1) ? LAST_SEG : 0), SG_CACHEPTR);
4877 aic_outb(p, aic_inb(p, DMAPARAMS), DFCNTRL);
4878 while(aic_inb(p, SSTAT0) & SDONE) udelay(1);
4879 while(aic_inb(p, DFCNTRL) & (HDMAEN|SCSIEN)) aic_outb(p, 0, DFCNTRL);
4880 }
4881 break;
4882
4883#ifdef AIC7XXX_NOT_YET
4884 case TRACEPOINT2:
4885 {
4886 printk(INFO_LEAD "Tracepoint #2 reached.\n", p->host_no,
4887 channel, target, lun);
4888 }
4889 break;
4890
4891 /* XXX Fill these in later */
4892 case MSG_BUFFER_BUSY:
4893 printk("aic7xxx: Message buffer busy.\n");
4894 break;
4895 case MSGIN_PHASEMIS:
4896 printk("aic7xxx: Message-in phasemis.\n");
4897 break;
4898#endif
4899
4900 default: /* unknown */
4901 printk(WARN_LEAD "Unknown SEQINT, INTSTAT 0x%x, SCSISIGI 0x%x.\n",
4902 p->host_no, channel, target, lun, intstat,
4903 aic_inb(p, SCSISIGI));
4904 break;
4905 }
4906
4907 /*
4908 * Clear the sequencer interrupt and unpause the sequencer.
4909 */
4910 unpause_sequencer(p, /* unpause always */ TRUE);
4911}
4912
4913/*+F*************************************************************************
4914 * Function:
4915 * aic7xxx_parse_msg
4916 *
4917 * Description:
4918 * Parses incoming messages into actions on behalf of
4919 * aic7xxx_handle_reqinit
4920 *_F*************************************************************************/
4921static int
4922aic7xxx_parse_msg(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
4923{
4924 int reject, reply, done;
4925 unsigned char target_scsirate, tindex;
4926 unsigned short target_mask;
4927 unsigned char target, channel, lun;
4928 unsigned char bus_width, new_bus_width;
4929 unsigned char trans_options, new_trans_options;
4930 unsigned int period, new_period, offset, new_offset, maxsync;
4931 struct aic7xxx_syncrate *syncrate;
4932 struct aic_dev_data *aic_dev;
4933
4934 target = scb->cmd->device->id;
4935 channel = scb->cmd->device->channel;
4936 lun = scb->cmd->device->lun;
4937 reply = reject = done = FALSE;
4938 tindex = TARGET_INDEX(scb->cmd);
4939 aic_dev = AIC_DEV(scb->cmd);
4940 target_scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
4941 target_mask = (0x01 << tindex);
4942
4943 /*
4944 * Parse as much of the message as is available,
4945 * rejecting it if we don't support it. When
4946 * the entire message is available and has been
4947 * handled, return TRUE indicating that we have
4948 * parsed an entire message.
4949 */
4950
4951 if (p->msg_buf[0] != MSG_EXTENDED)
4952 {
4953 reject = TRUE;
4954 }
4955
4956 /*
4957 * Even if we are an Ultra3 card, don't allow Ultra3 sync rates when
4958 * using the SDTR messages. We need the PPR messages to enable the
4959 * higher speeds that include things like Dual Edge clocking.
4960 */
4961 if (p->features & AHC_ULTRA2)
4962 {
4963 if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4964 !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4965 {
4966 if (p->features & AHC_ULTRA3)
4967 maxsync = AHC_SYNCRATE_ULTRA3;
4968 else
4969 maxsync = AHC_SYNCRATE_ULTRA2;
4970 }
4971 else
4972 {
4973 maxsync = AHC_SYNCRATE_ULTRA;
4974 }
4975 }
4976 else if (p->features & AHC_ULTRA)
4977 {
4978 maxsync = AHC_SYNCRATE_ULTRA;
4979 }
4980 else
4981 {
4982 maxsync = AHC_SYNCRATE_FAST;
4983 }
4984
4985 /*
4986 * Just accept the length byte outright and perform
4987 * more checking once we know the message type.
4988 */
4989
4990 if ( !reject && (p->msg_len > 2) )
4991 {
4992 switch(p->msg_buf[2])
4993 {
4994 case MSG_EXT_SDTR:
4995 {
4996
4997 if (p->msg_buf[1] != MSG_EXT_SDTR_LEN)
4998 {
4999 reject = TRUE;
5000 break;
5001 }
5002
5003 if (p->msg_len < (MSG_EXT_SDTR_LEN + 2))
5004 {
5005 break;
5006 }
5007
5008 period = new_period = p->msg_buf[3];
5009 offset = new_offset = p->msg_buf[4];
5010 trans_options = new_trans_options = 0;
5011 bus_width = new_bus_width = target_scsirate & WIDEXFER;
5012
5013 /*
5014 * If our current max syncrate is in the Ultra3 range, bump it back
5015 * down to Ultra2 since we can't negotiate DT transfers using SDTR
5016 */
5017 if(maxsync == AHC_SYNCRATE_ULTRA3)
5018 maxsync = AHC_SYNCRATE_ULTRA2;
5019
5020 /*
5021 * We might have a device that is starting negotiation with us
5022 * before we can start up negotiation with it....be prepared to
5023 * have a device ask for a higher speed then we want to give it
5024 * in that case
5025 */
5026 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR)) !=
5027 (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR) )
5028 {
5029 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5030 {
5031 /*
5032 * We shouldn't get here unless this is a narrow drive, wide
5033 * devices should trigger this same section of code in the WDTR
5034 * handler first instead.
5035 */
5036 aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5037 aic_dev->goal.options = 0;
5038 if(p->user[tindex].offset)
5039 {
5040 aic_dev->needsdtr_copy = 1;
5041 aic_dev->goal.period = max_t(unsigned char, 10,p->user[tindex].period);
5042 if(p->features & AHC_ULTRA2)
5043 {
5044 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5045 }
5046 else
5047 {
5048 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5049 }
5050 }
5051 else
5052 {
5053 aic_dev->needsdtr_copy = 0;
5054 aic_dev->goal.period = 255;
5055 aic_dev->goal.offset = 0;
5056 }
5057 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5058 }
5059 else if (aic_dev->needsdtr_copy == 0)
5060 {
5061 /*
5062 * This is a preemptive message from the target, we've already
5063 * scanned this target and set our options for it, and we
5064 * don't need a SDTR with this target (for whatever reason),
5065 * so reject this incoming SDTR
5066 */
5067 reject = TRUE;
5068 break;
5069 }
5070
5071 /* The device is sending this message first and we have to reply */
5072 reply = TRUE;
5073
5074 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5075 {
5076 printk(INFO_LEAD "Received pre-emptive SDTR message from "
5077 "target.\n", p->host_no, CTL_OF_SCB(scb));
5078 }
5079 /*
5080 * Validate the values the device passed to us against our SEEPROM
5081 * settings. We don't have to do this if we aren't replying since
5082 * the device isn't allowed to send values greater than the ones
5083 * we first sent to it.
5084 */
5085 new_period = max_t(unsigned int, period, aic_dev->goal.period);
5086 new_offset = min_t(unsigned int, offset, aic_dev->goal.offset);
5087 }
5088
5089 /*
5090 * Use our new_period, new_offset, bus_width, and card options
5091 * to determine the actual syncrate settings
5092 */
5093 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5094 &trans_options);
5095 aic7xxx_validate_offset(p, syncrate, &new_offset, bus_width);
5096
5097 /*
5098 * Did we drop to async? If so, send a reply regardless of whether
5099 * or not we initiated this negotiation.
5100 */
5101 if ((new_offset == 0) && (new_offset != offset))
5102 {
5103 aic_dev->needsdtr_copy = 0;
5104 reply = TRUE;
5105 }
5106
5107 /*
5108 * Did we start this, if not, or if we went too low and had to
5109 * go async, then send an SDTR back to the target
5110 */
5111 if(reply)
5112 {
5113 /* when sending a reply, make sure that the goal settings are
5114 * updated along with current and active since the code that
5115 * will actually build the message for the sequencer uses the
5116 * goal settings as its guidelines.
5117 */
5118 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5119 new_offset, trans_options,
5120 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5121 aic_dev);
5122 scb->flags &= ~SCB_MSGOUT_BITS;
5123 scb->flags |= SCB_MSGOUT_SDTR;
5124 aic_outb(p, HOST_MSG, MSG_OUT);
5125 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5126 }
5127 else
5128 {
5129 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5130 new_offset, trans_options,
5131 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5132 aic_dev->needsdtr = 0;
5133 }
5134 done = TRUE;
5135 break;
5136 }
5137 case MSG_EXT_WDTR:
5138 {
5139
5140 if (p->msg_buf[1] != MSG_EXT_WDTR_LEN)
5141 {
5142 reject = TRUE;
5143 break;
5144 }
5145
5146 if (p->msg_len < (MSG_EXT_WDTR_LEN + 2))
5147 {
5148 break;
5149 }
5150
5151 bus_width = new_bus_width = p->msg_buf[3];
5152
5153 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR)) ==
5154 (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR) )
5155 {
5156 switch(bus_width)
5157 {
5158 default:
5159 {
5160 reject = TRUE;
5161 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5162 ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5163 (aic7xxx_verbose > 0xffff)) )
5164 {
5165 printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5166 p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5167 }
5168 } /* We fall through on purpose */
5169 case MSG_EXT_WDTR_BUS_8_BIT:
5170 {
5171 aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5172 aic_dev->needwdtr_copy &= ~target_mask;
5173 break;
5174 }
5175 case MSG_EXT_WDTR_BUS_16_BIT:
5176 {
5177 break;
5178 }
5179 }
5180 aic_dev->needwdtr = 0;
5181 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5182 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5183 }
5184 else
5185 {
5186 if ( !(aic_dev->flags & DEVICE_DTR_SCANNED) )
5187 {
5188 /*
5189 * Well, we now know the WDTR and SYNC caps of this device since
5190 * it contacted us first, mark it as such and copy the user stuff
5191 * over to the goal stuff.
5192 */
5193 if( (p->features & AHC_WIDE) && p->user[tindex].width )
5194 {
5195 aic_dev->goal.width = MSG_EXT_WDTR_BUS_16_BIT;
5196 aic_dev->needwdtr_copy = 1;
5197 }
5198
5199 /*
5200 * Devices that support DT transfers don't start WDTR requests
5201 */
5202 aic_dev->goal.options = 0;
5203
5204 if(p->user[tindex].offset)
5205 {
5206 aic_dev->needsdtr_copy = 1;
5207 aic_dev->goal.period = max_t(unsigned char, 10, p->user[tindex].period);
5208 if(p->features & AHC_ULTRA2)
5209 {
5210 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5211 }
5212 else if( aic_dev->goal.width )
5213 {
5214 aic_dev->goal.offset = MAX_OFFSET_16BIT;
5215 }
5216 else
5217 {
5218 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5219 }
5220 } else {
5221 aic_dev->needsdtr_copy = 0;
5222 aic_dev->goal.period = 255;
5223 aic_dev->goal.offset = 0;
5224 }
5225
5226 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5227 }
5228 else if (aic_dev->needwdtr_copy == 0)
5229 {
5230 /*
5231 * This is a preemptive message from the target, we've already
5232 * scanned this target and set our options for it, and we
5233 * don't need a WDTR with this target (for whatever reason),
5234 * so reject this incoming WDTR
5235 */
5236 reject = TRUE;
5237 break;
5238 }
5239
5240 /* The device is sending this message first and we have to reply */
5241 reply = TRUE;
5242
5243 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5244 {
5245 printk(INFO_LEAD "Received pre-emptive WDTR message from "
5246 "target.\n", p->host_no, CTL_OF_SCB(scb));
5247 }
5248 switch(bus_width)
5249 {
5250 case MSG_EXT_WDTR_BUS_16_BIT:
5251 {
5252 if ( (p->features & AHC_WIDE) &&
5253 (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) )
5254 {
5255 new_bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5256 break;
5257 }
5258 } /* Fall through if we aren't a wide card */
5259 default:
5260 case MSG_EXT_WDTR_BUS_8_BIT:
5261 {
5262 aic_dev->needwdtr_copy = 0;
5263 new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5264 break;
5265 }
5266 }
5267 scb->flags &= ~SCB_MSGOUT_BITS;
5268 scb->flags |= SCB_MSGOUT_WDTR;
5269 aic_dev->needwdtr = 0;
5270 if(aic_dev->dtr_pending == 0)
5271 {
5272 /* there is no other command with SCB_DTR_SCB already set that will
5273 * trigger the release of the dtr_pending bit. Both set the bit
5274 * and set scb->flags |= SCB_DTR_SCB
5275 */
5276 aic_dev->dtr_pending = 1;
5277 scb->flags |= SCB_DTR_SCB;
5278 }
5279 aic_outb(p, HOST_MSG, MSG_OUT);
5280 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5281 /* when sending a reply, make sure that the goal settings are
5282 * updated along with current and active since the code that
5283 * will actually build the message for the sequencer uses the
5284 * goal settings as its guidelines.
5285 */
5286 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5287 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5288 aic_dev);
5289 }
5290
5291 /*
5292 * By virtue of the SCSI spec, a WDTR message negates any existing
5293 * SDTR negotiations. So, even if needsdtr isn't marked for this
5294 * device, we still have to do a new SDTR message if the device
5295 * supports SDTR at all. Therefore, we check needsdtr_copy instead
5296 * of needstr.
5297 */
5298 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
5299 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
5300 aic_dev);
5301 aic_dev->needsdtr = aic_dev->needsdtr_copy;
5302 done = TRUE;
5303 break;
5304 }
5305 case MSG_EXT_PPR:
5306 {
5307
5308 if (p->msg_buf[1] != MSG_EXT_PPR_LEN)
5309 {
5310 reject = TRUE;
5311 break;
5312 }
5313
5314 if (p->msg_len < (MSG_EXT_PPR_LEN + 2))
5315 {
5316 break;
5317 }
5318
5319 period = new_period = p->msg_buf[3];
5320 offset = new_offset = p->msg_buf[5];
5321 bus_width = new_bus_width = p->msg_buf[6];
5322 trans_options = new_trans_options = p->msg_buf[7] & 0xf;
5323
5324 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5325 {
5326 printk(INFO_LEAD "Parsing PPR message (%d/%d/%d/%d)\n",
5327 p->host_no, CTL_OF_SCB(scb), period, offset, bus_width,
5328 trans_options);
5329 }
5330
5331 /*
5332 * We might have a device that is starting negotiation with us
5333 * before we can start up negotiation with it....be prepared to
5334 * have a device ask for a higher speed then we want to give it
5335 * in that case
5336 */
5337 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR)) !=
5338 (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR) )
5339 {
5340 /* Have we scanned the device yet? */
5341 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5342 {
5343 /* The device is electing to use PPR messages, so we will too until
5344 * we know better */
5345 aic_dev->needppr = aic_dev->needppr_copy = 1;
5346 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
5347 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
5348
5349 /* We know the device is SCSI-3 compliant due to PPR */
5350 aic_dev->flags |= DEVICE_SCSI_3;
5351
5352 /*
5353 * Not only is the device starting this up, but it also hasn't
5354 * been scanned yet, so this would likely be our TUR or our
5355 * INQUIRY command at scan time, so we need to use the
5356 * settings from the SEEPROM if they existed. Of course, even
5357 * if we didn't find a SEEPROM, we stuffed default values into
5358 * the user settings anyway, so use those in all cases.
5359 */
5360 aic_dev->goal.width = p->user[tindex].width;
5361 if(p->user[tindex].offset)
5362 {
5363 aic_dev->goal.period = p->user[tindex].period;
5364 aic_dev->goal.options = p->user[tindex].options;
5365 if(p->features & AHC_ULTRA2)
5366 {
5367 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5368 }
5369 else if( aic_dev->goal.width &&
5370 (bus_width == MSG_EXT_WDTR_BUS_16_BIT) &&
5371 p->features & AHC_WIDE )
5372 {
5373 aic_dev->goal.offset = MAX_OFFSET_16BIT;
5374 }
5375 else
5376 {
5377 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5378 }
5379 }
5380 else
5381 {
5382 aic_dev->goal.period = 255;
5383 aic_dev->goal.offset = 0;
5384 aic_dev->goal.options = 0;
5385 }
5386 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5387 }
5388 else if (aic_dev->needppr_copy == 0)
5389 {
5390 /*
5391 * This is a preemptive message from the target, we've already
5392 * scanned this target and set our options for it, and we
5393 * don't need a PPR with this target (for whatever reason),
5394 * so reject this incoming PPR
5395 */
5396 reject = TRUE;
5397 break;
5398 }
5399
5400 /* The device is sending this message first and we have to reply */
5401 reply = TRUE;
5402
5403 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5404 {
5405 printk(INFO_LEAD "Received pre-emptive PPR message from "
5406 "target.\n", p->host_no, CTL_OF_SCB(scb));
5407 }
5408
5409 }
5410
5411 switch(bus_width)
5412 {
5413 case MSG_EXT_WDTR_BUS_16_BIT:
5414 {
5415 if ( (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) &&
5416 p->features & AHC_WIDE)
5417 {
5418 break;
5419 }
5420 }
5421 default:
5422 {
5423 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5424 ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5425 (aic7xxx_verbose > 0xffff)) )
5426 {
5427 reply = TRUE;
5428 printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5429 p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5430 }
5431 } /* We fall through on purpose */
5432 case MSG_EXT_WDTR_BUS_8_BIT:
5433 {
5434 /*
5435 * According to the spec, if we aren't wide, we also can't be
5436 * Dual Edge so clear the options byte
5437 */
5438 new_trans_options = 0;
5439 new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5440 break;
5441 }
5442 }
5443
5444 if(reply)
5445 {
5446 /* when sending a reply, make sure that the goal settings are
5447 * updated along with current and active since the code that
5448 * will actually build the message for the sequencer uses the
5449 * goal settings as its guidelines.
5450 */
5451 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5452 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5453 aic_dev);
5454 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5455 &new_trans_options);
5456 aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5457 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5458 new_offset, new_trans_options,
5459 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5460 aic_dev);
5461 }
5462 else
5463 {
5464 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5465 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5466 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5467 &new_trans_options);
5468 aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5469 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5470 new_offset, new_trans_options,
5471 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5472 }
5473
5474 /*
5475 * As it turns out, if we don't *have* to have PPR messages, then
5476 * configure ourselves not to use them since that makes some
5477 * external drive chassis work (those chassis can't parse PPR
5478 * messages and they mangle the SCSI bus until you send a WDTR
5479 * and SDTR that they can understand).
5480 */
5481 if(new_trans_options == 0)
5482 {
5483 aic_dev->needppr = aic_dev->needppr_copy = 0;
5484 if(new_offset)
5485 {
5486 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
5487 }
5488 if (new_bus_width)
5489 {
5490 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
5491 }
5492 }
5493
5494 if((new_offset == 0) && (offset != 0))
5495 {
5496 /*
5497 * Oops, the syncrate went to low for this card and we fell off
5498 * to async (should never happen with a device that uses PPR
5499 * messages, but have to be complete)
5500 */
5501 reply = TRUE;
5502 }
5503
5504 if(reply)
5505 {
5506 scb->flags &= ~SCB_MSGOUT_BITS;
5507 scb->flags |= SCB_MSGOUT_PPR;
5508 aic_outb(p, HOST_MSG, MSG_OUT);
5509 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5510 }
5511 else
5512 {
5513 aic_dev->needppr = 0;
5514 }
5515 done = TRUE;
5516 break;
5517 }
5518 default:
5519 {
5520 reject = TRUE;
5521 break;
5522 }
5523 } /* end of switch(p->msg_type) */
5524 } /* end of if (!reject && (p->msg_len > 2)) */
5525
5526 if (!reply && reject)
5527 {
5528 aic_outb(p, MSG_MESSAGE_REJECT, MSG_OUT);
5529 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5530 done = TRUE;
5531 }
5532 return(done);
5533}
5534
5535
5536/*+F*************************************************************************
5537 * Function:
5538 * aic7xxx_handle_reqinit
5539 *
5540 * Description:
5541 * Interrupt handler for REQINIT interrupts (used to transfer messages to
5542 * and from devices).
5543 *_F*************************************************************************/
5544static void
5545aic7xxx_handle_reqinit(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
5546{
5547 unsigned char lastbyte;
5548 unsigned char phasemis;
5549 int done = FALSE;
5550
5551 switch(p->msg_type)
5552 {
5553 case MSG_TYPE_INITIATOR_MSGOUT:
5554 {
5555 if (p->msg_len == 0)
5556 panic("aic7xxx: REQINIT with no active message!\n");
5557
5558 lastbyte = (p->msg_index == (p->msg_len - 1));
5559 phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK) != P_MESGOUT;
5560
5561 if (lastbyte || phasemis)
5562 {
5563 /* Time to end the message */
5564 p->msg_len = 0;
5565 p->msg_type = MSG_TYPE_NONE;
5566 /*
5567 * NOTE-TO-MYSELF: If you clear the REQINIT after you
5568 * disable REQINITs, then cases of REJECT_MSG stop working
5569 * and hang the bus
5570 */
5571 aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5572 aic_outb(p, CLRSCSIINT, CLRINT);
5573 p->flags &= ~AHC_HANDLING_REQINITS;
5574
5575 if (phasemis == 0)
5576 {
5577 aic_outb(p, p->msg_buf[p->msg_index], SINDEX);
5578 aic_outb(p, 0, RETURN_1);
5579#ifdef AIC7XXX_VERBOSE_DEBUGGING
5580 if (aic7xxx_verbose > 0xffff)
5581 printk(INFO_LEAD "Completed sending of REQINIT message.\n",
5582 p->host_no, CTL_OF_SCB(scb));
5583#endif
5584 }
5585 else
5586 {
5587 aic_outb(p, MSGOUT_PHASEMIS, RETURN_1);
5588#ifdef AIC7XXX_VERBOSE_DEBUGGING
5589 if (aic7xxx_verbose > 0xffff)
5590 printk(INFO_LEAD "PHASEMIS while sending REQINIT message.\n",
5591 p->host_no, CTL_OF_SCB(scb));
5592#endif
5593 }
5594 unpause_sequencer(p, TRUE);
5595 }
5596 else
5597 {
5598 /*
5599 * Present the byte on the bus (clearing REQINIT) but don't
5600 * unpause the sequencer.
5601 */
5602 aic_outb(p, CLRREQINIT, CLRSINT1);
5603 aic_outb(p, CLRSCSIINT, CLRINT);
5604 aic_outb(p, p->msg_buf[p->msg_index++], SCSIDATL);
5605 }
5606 break;
5607 }
5608 case MSG_TYPE_INITIATOR_MSGIN:
5609 {
5610 phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK ) != P_MESGIN;
5611
5612 if (phasemis == 0)
5613 {
5614 p->msg_len++;
5615 /* Pull the byte in without acking it */
5616 p->msg_buf[p->msg_index] = aic_inb(p, SCSIBUSL);
5617 done = aic7xxx_parse_msg(p, scb);
5618 /* Ack the byte */
5619 aic_outb(p, CLRREQINIT, CLRSINT1);
5620 aic_outb(p, CLRSCSIINT, CLRINT);
5621 aic_inb(p, SCSIDATL);
5622 p->msg_index++;
5623 }
5624 if (phasemis || done)
5625 {
5626#ifdef AIC7XXX_VERBOSE_DEBUGGING
5627 if (aic7xxx_verbose > 0xffff)
5628 {
5629 if (phasemis)
5630 printk(INFO_LEAD "PHASEMIS while receiving REQINIT message.\n",
5631 p->host_no, CTL_OF_SCB(scb));
5632 else
5633 printk(INFO_LEAD "Completed receipt of REQINIT message.\n",
5634 p->host_no, CTL_OF_SCB(scb));
5635 }
5636#endif
5637 /* Time to end our message session */
5638 p->msg_len = 0;
5639 p->msg_type = MSG_TYPE_NONE;
5640 aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5641 aic_outb(p, CLRSCSIINT, CLRINT);
5642 p->flags &= ~AHC_HANDLING_REQINITS;
5643 unpause_sequencer(p, TRUE);
5644 }
5645 break;
5646 }
5647 default:
5648 {
5649 panic("aic7xxx: Unknown REQINIT message type.\n");
5650 break;
5651 }
5652 } /* End of switch(p->msg_type) */
5653}
5654
5655/*+F*************************************************************************
5656 * Function:
5657 * aic7xxx_handle_scsiint
5658 *
5659 * Description:
5660 * Interrupt handler for SCSI interrupts (SCSIINT).
5661 *-F*************************************************************************/
5662static void
5663aic7xxx_handle_scsiint(struct aic7xxx_host *p, unsigned char intstat)
5664{
5665 unsigned char scb_index;
5666 unsigned char status;
5667 struct aic7xxx_scb *scb;
5668 struct aic_dev_data *aic_dev;
5669
5670 scb_index = aic_inb(p, SCB_TAG);
5671 status = aic_inb(p, SSTAT1);
5672
5673 if (scb_index < p->scb_data->numscbs)
5674 {
5675 scb = p->scb_data->scb_array[scb_index];
5676 if ((scb->flags & SCB_ACTIVE) == 0)
5677 {
5678 scb = NULL;
5679 }
5680 }
5681 else
5682 {
5683 scb = NULL;
5684 }
5685
5686
5687 if ((status & SCSIRSTI) != 0)
5688 {
5689 int channel;
5690
5691 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5692 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5693 else
5694 channel = 0;
5695
5696 if (aic7xxx_verbose & VERBOSE_RESET)
5697 printk(WARN_LEAD "Someone else reset the channel!!\n",
5698 p->host_no, channel, -1, -1);
5699 if (aic7xxx_panic_on_abort)
5700 aic7xxx_panic_abort(p, NULL);
5701 /*
5702 * Go through and abort all commands for the channel, but do not
5703 * reset the channel again.
5704 */
5705 aic7xxx_reset_channel(p, channel, /* Initiate Reset */ FALSE);
5706 aic7xxx_run_done_queue(p, TRUE);
5707 scb = NULL;
5708 }
5709 else if ( ((status & BUSFREE) != 0) && ((status & SELTO) == 0) )
5710 {
5711 /*
5712 * First look at what phase we were last in. If it's message-out,
5713 * chances are pretty good that the bus free was in response to
5714 * one of our abort requests.
5715 */
5716 unsigned char lastphase = aic_inb(p, LASTPHASE);
5717 unsigned char saved_tcl = aic_inb(p, SAVED_TCL);
5718 unsigned char target = (saved_tcl >> 4) & 0x0F;
5719 int channel;
5720 int printerror = TRUE;
5721
5722 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5723 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5724 else
5725 channel = 0;
5726
5727 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
5728 SCSISEQ);
5729 if (lastphase == P_MESGOUT)
5730 {
5731 unsigned char message;
5732
5733 message = aic_inb(p, SINDEX);
5734
5735 if ((message == MSG_ABORT) || (message == MSG_ABORT_TAG))
5736 {
5737 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
5738 printk(INFO_LEAD "SCB %d abort delivered.\n", p->host_no,
5739 CTL_OF_SCB(scb), scb->hscb->tag);
5740 aic7xxx_reset_device(p, target, channel, ALL_LUNS,
5741 (message == MSG_ABORT) ? SCB_LIST_NULL : scb->hscb->tag );
5742 aic7xxx_run_done_queue(p, TRUE);
5743 scb = NULL;
5744 printerror = 0;
5745 }
5746 else if (message == MSG_BUS_DEV_RESET)
5747 {
5748 aic7xxx_handle_device_reset(p, target, channel);
5749 scb = NULL;
5750 printerror = 0;
5751 }
5752 }
5753 if ( (scb != NULL) && (scb->flags & SCB_DTR_SCB) )
5754 {
5755 /*
5756 * Hmmm...error during a negotiation command. Either we have a
5757 * borken bus, or the device doesn't like our negotiation message.
5758 * Since we check the INQUIRY data of a device before sending it
5759 * negotiation messages, assume the bus is borken for whatever
5760 * reason. Complete the command.
5761 */
5762 printerror = 0;
5763 aic7xxx_reset_device(p, target, channel, ALL_LUNS, scb->hscb->tag);
5764 aic7xxx_run_done_queue(p, TRUE);
5765 scb = NULL;
5766 }
5767 if (printerror != 0)
5768 {
5769 if (scb != NULL)
5770 {
5771 unsigned char tag;
5772
5773 if ((scb->hscb->control & TAG_ENB) != 0)
5774 {
5775 tag = scb->hscb->tag;
5776 }
5777 else
5778 {
5779 tag = SCB_LIST_NULL;
5780 }
5781 aic7xxx_reset_device(p, target, channel, ALL_LUNS, tag);
5782 aic7xxx_run_done_queue(p, TRUE);
5783 }
5784 else
5785 {
5786 aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
5787 aic7xxx_run_done_queue(p, TRUE);
5788 }
5789 printk(INFO_LEAD "Unexpected busfree, LASTPHASE = 0x%x, "
5790 "SEQADDR = 0x%x\n", p->host_no, channel, target, -1, lastphase,
5791 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5792 scb = NULL;
5793 }
5794 aic_outb(p, MSG_NOOP, MSG_OUT);
5795 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
5796 SIMODE1);
5797 p->flags &= ~AHC_HANDLING_REQINITS;
5798 aic_outb(p, CLRBUSFREE, CLRSINT1);
5799 aic_outb(p, CLRSCSIINT, CLRINT);
5800 restart_sequencer(p);
5801 unpause_sequencer(p, TRUE);
5802 }
5803 else if ((status & SELTO) != 0)
5804 {
5805 unsigned char scbptr;
5806 unsigned char nextscb;
5807 Scsi_Cmnd *cmd;
5808
5809 scbptr = aic_inb(p, WAITING_SCBH);
5810 if (scbptr > p->scb_data->maxhscbs)
5811 {
5812 /*
5813 * I'm still trying to track down exactly how this happens, but until
5814 * I find it, this code will make sure we aren't passing bogus values
5815 * into the SCBPTR register, even if that register will just wrap
5816 * things around, we still don't like having out of range variables.
5817 *
5818 * NOTE: Don't check the aic7xxx_verbose variable, I want this message
5819 * to always be displayed.
5820 */
5821 printk(INFO_LEAD "Invalid WAITING_SCBH value %d, improvising.\n",
5822 p->host_no, -1, -1, -1, scbptr);
5823 if (p->scb_data->maxhscbs > 4)
5824 scbptr &= (p->scb_data->maxhscbs - 1);
5825 else
5826 scbptr &= 0x03;
5827 }
5828 aic_outb(p, scbptr, SCBPTR);
5829 scb_index = aic_inb(p, SCB_TAG);
5830
5831 scb = NULL;
5832 if (scb_index < p->scb_data->numscbs)
5833 {
5834 scb = p->scb_data->scb_array[scb_index];
5835 if ((scb->flags & SCB_ACTIVE) == 0)
5836 {
5837 scb = NULL;
5838 }
5839 }
5840 if (scb == NULL)
5841 {
5842 printk(WARN_LEAD "Referenced SCB %d not valid during SELTO.\n",
5843 p->host_no, -1, -1, -1, scb_index);
5844 printk(KERN_WARNING " SCSISEQ = 0x%x SEQADDR = 0x%x SSTAT0 = 0x%x "
5845 "SSTAT1 = 0x%x\n", aic_inb(p, SCSISEQ),
5846 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
5847 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
5848 if (aic7xxx_panic_on_abort)
5849 aic7xxx_panic_abort(p, NULL);
5850 }
5851 else
5852 {
5853 cmd = scb->cmd;
5854 cmd->result = (DID_TIME_OUT << 16);
5855
5856 /*
5857 * Clear out this hardware SCB
5858 */
5859 aic_outb(p, 0, SCB_CONTROL);
5860
5861 /*
5862 * Clear out a few values in the card that are in an undetermined
5863 * state.
5864 */
5865 aic_outb(p, MSG_NOOP, MSG_OUT);
5866
5867 /*
5868 * Shift the waiting for selection queue forward
5869 */
5870 nextscb = aic_inb(p, SCB_NEXT);
5871 aic_outb(p, nextscb, WAITING_SCBH);
5872
5873 /*
5874 * Put this SCB back on the free list.
5875 */
5876 aic7xxx_add_curscb_to_free_list(p);
5877#ifdef AIC7XXX_VERBOSE_DEBUGGING
5878 if (aic7xxx_verbose > 0xffff)
5879 printk(INFO_LEAD "Selection Timeout.\n", p->host_no, CTL_OF_SCB(scb));
5880#endif
5881 if (scb->flags & SCB_QUEUED_ABORT)
5882 {
5883 /*
5884 * We know that this particular SCB had to be the queued abort since
5885 * the disconnected SCB would have gotten a reconnect instead.
5886 * What we need to do then is to let the command timeout again so
5887 * we get a reset since this abort just failed.
5888 */
5889 cmd->result = 0;
5890 scb = NULL;
5891 }
5892 }
5893 /*
5894 * Keep the sequencer from trying to restart any selections
5895 */
5896 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
5897 /*
5898 * Make sure the data bits on the bus are released
5899 * Don't do this on 7770 chipsets, it makes them give us
5900 * a BRKADDRINT and kills the card.
5901 */
5902 if( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
5903 aic_outb(p, 0, SCSIBUSL);
5904
5905 /*
5906 * Delay for the selection timeout delay period then stop the selection
5907 */
5908 udelay(301);
5909 aic_outb(p, CLRSELINGO, CLRSINT0);
5910 /*
5911 * Clear out all the interrupt status bits
5912 */
5913 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
5914 p->flags &= ~AHC_HANDLING_REQINITS;
5915 aic_outb(p, CLRSELTIMEO | CLRBUSFREE, CLRSINT1);
5916 aic_outb(p, CLRSCSIINT, CLRINT);
5917 /*
5918 * Restarting the sequencer will stop the selection and make sure devices
5919 * are allowed to reselect in.
5920 */
5921 restart_sequencer(p);
5922 unpause_sequencer(p, TRUE);
5923 }
5924 else if (scb == NULL)
5925 {
5926 printk(WARN_LEAD "aic7xxx_isr - referenced scb not valid "
5927 "during scsiint 0x%x scb(%d)\n"
5928 " SIMODE0 0x%x, SIMODE1 0x%x, SSTAT0 0x%x, SEQADDR 0x%x\n",
5929 p->host_no, -1, -1, -1, status, scb_index, aic_inb(p, SIMODE0),
5930 aic_inb(p, SIMODE1), aic_inb(p, SSTAT0),
5931 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5932 /*
5933 * Turn off the interrupt and set status to zero, so that it
5934 * falls through the rest of the SCSIINT code.
5935 */
5936 aic_outb(p, status, CLRSINT1);
5937 aic_outb(p, CLRSCSIINT, CLRINT);
5938 unpause_sequencer(p, /* unpause always */ TRUE);
5939 scb = NULL;
5940 }
5941 else if (status & SCSIPERR)
5942 {
5943 /*
5944 * Determine the bus phase and queue an appropriate message.
5945 */
5946 char *phase;
5947 Scsi_Cmnd *cmd;
5948 unsigned char mesg_out = MSG_NOOP;
5949 unsigned char lastphase = aic_inb(p, LASTPHASE);
5950 unsigned char sstat2 = aic_inb(p, SSTAT2);
5951
5952 cmd = scb->cmd;
5953 switch (lastphase)
5954 {
5955 case P_DATAOUT:
5956 phase = "Data-Out";
5957 break;
5958 case P_DATAIN:
5959 phase = "Data-In";
5960 mesg_out = MSG_INITIATOR_DET_ERR;
5961 break;
5962 case P_COMMAND:
5963 phase = "Command";
5964 break;
5965 case P_MESGOUT:
5966 phase = "Message-Out";
5967 break;
5968 case P_STATUS:
5969 phase = "Status";
5970 mesg_out = MSG_INITIATOR_DET_ERR;
5971 break;
5972 case P_MESGIN:
5973 phase = "Message-In";
5974 mesg_out = MSG_PARITY_ERROR;
5975 break;
5976 default:
5977 phase = "unknown";
5978 break;
5979 }
5980
5981 /*
5982 * A parity error has occurred during a data
5983 * transfer phase. Flag it and continue.
5984 */
5985 if( (p->features & AHC_ULTRA3) &&
5986 (aic_inb(p, SCSIRATE) & AHC_SYNCRATE_CRC) &&
5987 (lastphase == P_DATAIN) )
5988 {
5989 printk(WARN_LEAD "CRC error during %s phase.\n",
5990 p->host_no, CTL_OF_SCB(scb), phase);
5991 if(sstat2 & CRCVALERR)
5992 {
5993 printk(WARN_LEAD " CRC error in intermediate CRC packet.\n",
5994 p->host_no, CTL_OF_SCB(scb));
5995 }
5996 if(sstat2 & CRCENDERR)
5997 {
5998 printk(WARN_LEAD " CRC error in ending CRC packet.\n",
5999 p->host_no, CTL_OF_SCB(scb));
6000 }
6001 if(sstat2 & CRCREQERR)
6002 {
6003 printk(WARN_LEAD " Target incorrectly requested a CRC packet.\n",
6004 p->host_no, CTL_OF_SCB(scb));
6005 }
6006 if(sstat2 & DUAL_EDGE_ERROR)
6007 {
6008 printk(WARN_LEAD " Dual Edge transmission error.\n",
6009 p->host_no, CTL_OF_SCB(scb));
6010 }
6011 }
6012 else if( (lastphase == P_MESGOUT) &&
6013 (scb->flags & SCB_MSGOUT_PPR) )
6014 {
6015 /*
6016 * As per the draft specs, any device capable of supporting any of
6017 * the option values other than 0 are not allowed to reject the
6018 * PPR message. Instead, they must negotiate out what they do
6019 * support instead of rejecting our offering or else they cause
6020 * a parity error during msg_out phase to signal that they don't
6021 * like our settings.
6022 */
6023 aic_dev = AIC_DEV(scb->cmd);
6024 aic_dev->needppr = aic_dev->needppr_copy = 0;
6025 aic7xxx_set_width(p, scb->cmd->device->id, scb->cmd->device->channel, scb->cmd->device->lun,
6026 MSG_EXT_WDTR_BUS_8_BIT,
6027 (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE),
6028 aic_dev);
6029 aic7xxx_set_syncrate(p, NULL, scb->cmd->device->id, scb->cmd->device->channel, 0, 0,
6030 0, AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
6031 aic_dev);
6032 aic_dev->goal.options = 0;
6033 scb->flags &= ~SCB_MSGOUT_BITS;
6034 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6035 {
6036 printk(INFO_LEAD "parity error during PPR message, reverting "
6037 "to WDTR/SDTR\n", p->host_no, CTL_OF_SCB(scb));
6038 }
6039 if ( aic_dev->goal.width )
6040 {
6041 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6042 }
6043 if ( aic_dev->goal.offset )
6044 {
6045 if( aic_dev->goal.period <= 9 )
6046 {
6047 aic_dev->goal.period = 10;
6048 }
6049 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6050 }
6051 scb = NULL;
6052 }
6053
6054 /*
6055 * We've set the hardware to assert ATN if we get a parity
6056 * error on "in" phases, so all we need to do is stuff the
6057 * message buffer with the appropriate message. "In" phases
6058 * have set mesg_out to something other than MSG_NOP.
6059 */
6060 if (mesg_out != MSG_NOOP)
6061 {
6062 aic_outb(p, mesg_out, MSG_OUT);
6063 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
6064 scb = NULL;
6065 }
6066 aic_outb(p, CLRSCSIPERR, CLRSINT1);
6067 aic_outb(p, CLRSCSIINT, CLRINT);
6068 unpause_sequencer(p, /* unpause_always */ TRUE);
6069 }
6070 else if ( (status & REQINIT) &&
6071 (p->flags & AHC_HANDLING_REQINITS) )
6072 {
6073#ifdef AIC7XXX_VERBOSE_DEBUGGING
6074 if (aic7xxx_verbose > 0xffff)
6075 printk(INFO_LEAD "Handling REQINIT, SSTAT1=0x%x.\n", p->host_no,
6076 CTL_OF_SCB(scb), aic_inb(p, SSTAT1));
6077#endif
6078 aic7xxx_handle_reqinit(p, scb);
6079 return;
6080 }
6081 else
6082 {
6083 /*
6084 * We don't know what's going on. Turn off the
6085 * interrupt source and try to continue.
6086 */
6087 if (aic7xxx_verbose & VERBOSE_SCSIINT)
6088 printk(INFO_LEAD "Unknown SCSIINT status, SSTAT1(0x%x).\n",
6089 p->host_no, -1, -1, -1, status);
6090 aic_outb(p, status, CLRSINT1);
6091 aic_outb(p, CLRSCSIINT, CLRINT);
6092 unpause_sequencer(p, /* unpause always */ TRUE);
6093 scb = NULL;
6094 }
6095 if (scb != NULL)
6096 {
6097 aic7xxx_done(p, scb);
6098 }
6099}
6100
6101#ifdef AIC7XXX_VERBOSE_DEBUGGING
6102static void
6103aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer)
6104{
6105 unsigned char saved_scbptr, free_scbh, dis_scbh, wait_scbh, temp;
6106 int i, bogus, lost;
6107 static unsigned char scb_status[AIC7XXX_MAXSCB];
6108
6109#define SCB_NO_LIST 0
6110#define SCB_FREE_LIST 1
6111#define SCB_WAITING_LIST 2
6112#define SCB_DISCONNECTED_LIST 4
6113#define SCB_CURRENTLY_ACTIVE 8
6114
6115 /*
6116 * Note, these checks will fail on a regular basis once the machine moves
6117 * beyond the bus scan phase. The problem is race conditions concerning
6118 * the scbs and where they are linked in. When you have 30 or so commands
6119 * outstanding on the bus, and run this twice with every interrupt, the
6120 * chances get pretty good that you'll catch the sequencer with an SCB
6121 * only partially linked in. Therefore, once we pass the scan phase
6122 * of the bus, we really should disable this function.
6123 */
6124 bogus = FALSE;
6125 memset(&scb_status[0], 0, sizeof(scb_status));
6126 pause_sequencer(p);
6127 saved_scbptr = aic_inb(p, SCBPTR);
6128 if (saved_scbptr >= p->scb_data->maxhscbs)
6129 {
6130 printk("Bogus SCBPTR %d\n", saved_scbptr);
6131 bogus = TRUE;
6132 }
6133 scb_status[saved_scbptr] = SCB_CURRENTLY_ACTIVE;
6134 free_scbh = aic_inb(p, FREE_SCBH);
6135 if ( (free_scbh != SCB_LIST_NULL) &&
6136 (free_scbh >= p->scb_data->maxhscbs) )
6137 {
6138 printk("Bogus FREE_SCBH %d\n", free_scbh);
6139 bogus = TRUE;
6140 }
6141 else
6142 {
6143 temp = free_scbh;
6144 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6145 {
6146 if(scb_status[temp] & 0x07)
6147 {
6148 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6149 scb_status[temp] | SCB_FREE_LIST);
6150 bogus = TRUE;
6151 }
6152 scb_status[temp] |= SCB_FREE_LIST;
6153 aic_outb(p, temp, SCBPTR);
6154 temp = aic_inb(p, SCB_NEXT);
6155 }
6156 }
6157
6158 dis_scbh = aic_inb(p, DISCONNECTED_SCBH);
6159 if ( (dis_scbh != SCB_LIST_NULL) &&
6160 (dis_scbh >= p->scb_data->maxhscbs) )
6161 {
6162 printk("Bogus DISCONNECTED_SCBH %d\n", dis_scbh);
6163 bogus = TRUE;
6164 }
6165 else
6166 {
6167 temp = dis_scbh;
6168 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6169 {
6170 if(scb_status[temp] & 0x07)
6171 {
6172 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6173 scb_status[temp] | SCB_DISCONNECTED_LIST);
6174 bogus = TRUE;
6175 }
6176 scb_status[temp] |= SCB_DISCONNECTED_LIST;
6177 aic_outb(p, temp, SCBPTR);
6178 temp = aic_inb(p, SCB_NEXT);
6179 }
6180 }
6181
6182 wait_scbh = aic_inb(p, WAITING_SCBH);
6183 if ( (wait_scbh != SCB_LIST_NULL) &&
6184 (wait_scbh >= p->scb_data->maxhscbs) )
6185 {
6186 printk("Bogus WAITING_SCBH %d\n", wait_scbh);
6187 bogus = TRUE;
6188 }
6189 else
6190 {
6191 temp = wait_scbh;
6192 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6193 {
6194 if(scb_status[temp] & 0x07)
6195 {
6196 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6197 scb_status[temp] | SCB_WAITING_LIST);
6198 bogus = TRUE;
6199 }
6200 scb_status[temp] |= SCB_WAITING_LIST;
6201 aic_outb(p, temp, SCBPTR);
6202 temp = aic_inb(p, SCB_NEXT);
6203 }
6204 }
6205
6206 lost=0;
6207 for(i=0; i < p->scb_data->maxhscbs; i++)
6208 {
6209 aic_outb(p, i, SCBPTR);
6210 temp = aic_inb(p, SCB_NEXT);
6211 if ( ((temp != SCB_LIST_NULL) &&
6212 (temp >= p->scb_data->maxhscbs)) )
6213 {
6214 printk("HSCB %d bad, SCB_NEXT invalid(%d).\n", i, temp);
6215 bogus = TRUE;
6216 }
6217 if ( temp == i )
6218 {
6219 printk("HSCB %d bad, SCB_NEXT points to self.\n", i);
6220 bogus = TRUE;
6221 }
6222 if (scb_status[i] == 0)
6223 lost++;
6224 if (lost > 1)
6225 {
6226 printk("Too many lost scbs.\n");
6227 bogus=TRUE;
6228 }
6229 }
6230 aic_outb(p, saved_scbptr, SCBPTR);
6231 unpause_sequencer(p, FALSE);
6232 if (bogus)
6233 {
6234 printk("Bogus parameters found in card SCB array structures.\n");
6235 printk("%s\n", buffer);
6236 aic7xxx_panic_abort(p, NULL);
6237 }
6238 return;
6239}
6240#endif
6241
6242
6243/*+F*************************************************************************
6244 * Function:
6245 * aic7xxx_handle_command_completion_intr
6246 *
6247 * Description:
6248 * SCSI command completion interrupt handler.
6249 *-F*************************************************************************/
6250static void
6251aic7xxx_handle_command_completion_intr(struct aic7xxx_host *p)
6252{
6253 struct aic7xxx_scb *scb = NULL;
6254 struct aic_dev_data *aic_dev;
6255 Scsi_Cmnd *cmd;
6256 unsigned char scb_index, tindex;
6257
6258#ifdef AIC7XXX_VERBOSE_DEBUGGING
6259 if( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) )
6260 printk(INFO_LEAD "Command Complete Int.\n", p->host_no, -1, -1, -1);
6261#endif
6262
6263 /*
6264 * Read the INTSTAT location after clearing the CMDINT bit. This forces
6265 * any posted PCI writes to flush to memory. Gerard Roudier suggested
6266 * this fix to the possible race of clearing the CMDINT bit but not
6267 * having all command bytes flushed onto the qoutfifo.
6268 */
6269 aic_outb(p, CLRCMDINT, CLRINT);
6270 aic_inb(p, INTSTAT);
6271 /*
6272 * The sequencer will continue running when it
6273 * issues this interrupt. There may be >1 commands
6274 * finished, so loop until we've processed them all.
6275 */
6276
6277 while (p->qoutfifo[p->qoutfifonext] != SCB_LIST_NULL)
6278 {
6279 scb_index = p->qoutfifo[p->qoutfifonext];
6280 p->qoutfifo[p->qoutfifonext++] = SCB_LIST_NULL;
6281 if ( scb_index >= p->scb_data->numscbs )
6282 {
6283 printk(WARN_LEAD "CMDCMPLT with invalid SCB index %d\n", p->host_no,
6284 -1, -1, -1, scb_index);
6285 continue;
6286 }
6287 scb = p->scb_data->scb_array[scb_index];
6288 if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
6289 {
6290 printk(WARN_LEAD "CMDCMPLT without command for SCB %d, SCB flags "
6291 "0x%x, cmd 0x%lx\n", p->host_no, -1, -1, -1, scb_index, scb->flags,
6292 (unsigned long) scb->cmd);
6293 continue;
6294 }
6295 tindex = TARGET_INDEX(scb->cmd);
6296 aic_dev = AIC_DEV(scb->cmd);
6297 if (scb->flags & SCB_QUEUED_ABORT)
6298 {
6299 pause_sequencer(p);
6300 if ( ((aic_inb(p, LASTPHASE) & PHASE_MASK) != P_BUSFREE) &&
6301 (aic_inb(p, SCB_TAG) == scb->hscb->tag) )
6302 {
6303 unpause_sequencer(p, FALSE);
6304 continue;
6305 }
6306 aic7xxx_reset_device(p, scb->cmd->device->id, scb->cmd->device->channel,
6307 scb->cmd->device->lun, scb->hscb->tag);
6308 scb->flags &= ~(SCB_QUEUED_FOR_DONE | SCB_RESET | SCB_ABORT |
6309 SCB_QUEUED_ABORT);
6310 unpause_sequencer(p, FALSE);
6311 }
6312 else if (scb->flags & SCB_ABORT)
6313 {
6314 /*
6315 * We started to abort this, but it completed on us, let it
6316 * through as successful
6317 */
6318 scb->flags &= ~(SCB_ABORT|SCB_RESET);
6319 }
6320 else if (scb->flags & SCB_SENSE)
6321 {
6322 char *buffer = &scb->cmd->sense_buffer[0];
6323
6324 if (buffer[12] == 0x47 || buffer[12] == 0x54)
6325 {
6326 /*
6327 * Signal that we need to re-negotiate things.
6328 */
6329 aic_dev->needppr = aic_dev->needppr_copy;
6330 aic_dev->needsdtr = aic_dev->needsdtr_copy;
6331 aic_dev->needwdtr = aic_dev->needwdtr_copy;
6332 }
6333 }
6334 cmd = scb->cmd;
6335 if (scb->hscb->residual_SG_segment_count != 0)
6336 {
6337 aic7xxx_calculate_residual(p, scb);
6338 }
6339 cmd->result |= (aic7xxx_error(cmd) << 16);
6340 aic7xxx_done(p, scb);
6341 }
6342}
6343
6344/*+F*************************************************************************
6345 * Function:
6346 * aic7xxx_isr
6347 *
6348 * Description:
6349 * SCSI controller interrupt handler.
6350 *-F*************************************************************************/
6351static void
6352aic7xxx_isr(int irq, void *dev_id, struct pt_regs *regs)
6353{
6354 struct aic7xxx_host *p;
6355 unsigned char intstat;
6356
6357 p = (struct aic7xxx_host *)dev_id;
6358
6359 /*
6360 * Just a few sanity checks. Make sure that we have an int pending.
6361 * Also, if PCI, then we are going to check for a PCI bus error status
6362 * should we get too many spurious interrupts.
6363 */
6364 if (!((intstat = aic_inb(p, INTSTAT)) & INT_PEND))
6365 {
6366#ifdef CONFIG_PCI
6367 if ( (p->chip & AHC_PCI) && (p->spurious_int > 500) &&
6368 !(p->flags & AHC_HANDLING_REQINITS) )
6369 {
6370 if ( aic_inb(p, ERROR) & PCIERRSTAT )
6371 {
6372 aic7xxx_pci_intr(p);
6373 }
6374 p->spurious_int = 0;
6375 }
6376 else if ( !(p->flags & AHC_HANDLING_REQINITS) )
6377 {
6378 p->spurious_int++;
6379 }
6380#endif
6381 return;
6382 }
6383
6384 p->spurious_int = 0;
6385
6386 /*
6387 * Keep track of interrupts for /proc/scsi
6388 */
6389 p->isr_count++;
6390
6391#ifdef AIC7XXX_VERBOSE_DEBUGGING
6392 if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6393 (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6394 aic7xxx_check_scbs(p, "Bogus settings at start of interrupt.");
6395#endif
6396
6397 /*
6398 * Handle all the interrupt sources - especially for SCSI
6399 * interrupts, we won't get a second chance at them.
6400 */
6401 if (intstat & CMDCMPLT)
6402 {
6403 aic7xxx_handle_command_completion_intr(p);
6404 }
6405
6406 if (intstat & BRKADRINT)
6407 {
6408 int i;
6409 unsigned char errno = aic_inb(p, ERROR);
6410
6411 printk(KERN_ERR "(scsi%d) BRKADRINT error(0x%x):\n", p->host_no, errno);
6412 for (i = 0; i < ARRAY_SIZE(hard_error); i++)
6413 {
6414 if (errno & hard_error[i].errno)
6415 {
6416 printk(KERN_ERR " %s\n", hard_error[i].errmesg);
6417 }
6418 }
6419 printk(KERN_ERR "(scsi%d) SEQADDR=0x%x\n", p->host_no,
6420 (((aic_inb(p, SEQADDR1) << 8) & 0x100) | aic_inb(p, SEQADDR0)));
6421 if (aic7xxx_panic_on_abort)
6422 aic7xxx_panic_abort(p, NULL);
6423#ifdef CONFIG_PCI
6424 if (errno & PCIERRSTAT)
6425 aic7xxx_pci_intr(p);
6426#endif
6427 if (errno & (SQPARERR | ILLOPCODE | ILLSADDR))
6428 {
6429 panic("aic7xxx: unrecoverable BRKADRINT.\n");
6430 }
6431 if (errno & ILLHADDR)
6432 {
6433 printk(KERN_ERR "(scsi%d) BUG! Driver accessed chip without first "
6434 "pausing controller!\n", p->host_no);
6435 }
6436#ifdef AIC7XXX_VERBOSE_DEBUGGING
6437 if (errno & DPARERR)
6438 {
6439 if (aic_inb(p, DMAPARAMS) & DIRECTION)
6440 printk("(scsi%d) while DMAing SCB from host to card.\n", p->host_no);
6441 else
6442 printk("(scsi%d) while DMAing SCB from card to host.\n", p->host_no);
6443 }
6444#endif
6445 aic_outb(p, CLRPARERR | CLRBRKADRINT, CLRINT);
6446 unpause_sequencer(p, FALSE);
6447 }
6448
6449 if (intstat & SEQINT)
6450 {
6451 /*
6452 * Read the CCSCBCTL register to work around a bug in the Ultra2 cards
6453 */
6454 if(p->features & AHC_ULTRA2)
6455 {
6456 aic_inb(p, CCSCBCTL);
6457 }
6458 aic7xxx_handle_seqint(p, intstat);
6459 }
6460
6461 if (intstat & SCSIINT)
6462 {
6463 aic7xxx_handle_scsiint(p, intstat);
6464 }
6465
6466#ifdef AIC7XXX_VERBOSE_DEBUGGING
6467 if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6468 (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6469 aic7xxx_check_scbs(p, "Bogus settings at end of interrupt.");
6470#endif
6471
6472}
6473
6474/*+F*************************************************************************
6475 * Function:
6476 * do_aic7xxx_isr
6477 *
6478 * Description:
6479 * This is a gross hack to solve a problem in linux kernels 2.1.85 and
6480 * above. Please, children, do not try this at home, and if you ever see
6481 * anything like it, please inform the Gross Hack Police immediately
6482 *-F*************************************************************************/
6483static irqreturn_t
6484do_aic7xxx_isr(int irq, void *dev_id, struct pt_regs *regs)
6485{
6486 unsigned long cpu_flags;
6487 struct aic7xxx_host *p;
6488
6489 p = (struct aic7xxx_host *)dev_id;
6490 if(!p)
6491 return IRQ_NONE;
6492 spin_lock_irqsave(p->host->host_lock, cpu_flags);
6493 p->flags |= AHC_IN_ISR;
6494 do
6495 {
6496 aic7xxx_isr(irq, dev_id, regs);
6497 } while ( (aic_inb(p, INTSTAT) & INT_PEND) );
6498 aic7xxx_done_cmds_complete(p);
6499 aic7xxx_run_waiting_queues(p);
6500 p->flags &= ~AHC_IN_ISR;
6501 spin_unlock_irqrestore(p->host->host_lock, cpu_flags);
6502
6503 return IRQ_HANDLED;
6504}
6505
6506/*+F*************************************************************************
6507 * Function:
6508 * aic7xxx_init_transinfo
6509 *
6510 * Description:
6511 * Set up the initial aic_dev values from the BIOS settings and from
6512 * INQUIRY results
6513 *-F*************************************************************************/
6514static void
6515aic7xxx_init_transinfo(struct aic7xxx_host *p, struct aic_dev_data *aic_dev)
6516{
f64a181d 6517 struct scsi_device *sdpnt = aic_dev->SDptr;
1da177e4
LT
6518 unsigned char tindex;
6519
6520 tindex = sdpnt->id | (sdpnt->channel << 3);
6521 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
6522 {
6523 aic_dev->flags |= DEVICE_DTR_SCANNED;
6524
6525 if ( sdpnt->wdtr && (p->features & AHC_WIDE) )
6526 {
6527 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6528 aic_dev->goal.width = p->user[tindex].width;
6529 }
6530 else
6531 {
6532 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6533 pause_sequencer(p);
6534 aic7xxx_set_width(p, sdpnt->id, sdpnt->channel, sdpnt->lun,
6535 MSG_EXT_WDTR_BUS_8_BIT, (AHC_TRANS_ACTIVE |
6536 AHC_TRANS_GOAL |
6537 AHC_TRANS_CUR), aic_dev );
6538 unpause_sequencer(p, FALSE);
6539 }
6540 if ( sdpnt->sdtr && p->user[tindex].offset )
6541 {
6542 aic_dev->goal.period = p->user[tindex].period;
6543 aic_dev->goal.options = p->user[tindex].options;
6544 if (p->features & AHC_ULTRA2)
6545 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
6546 else if (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT)
6547 aic_dev->goal.offset = MAX_OFFSET_16BIT;
6548 else
6549 aic_dev->goal.offset = MAX_OFFSET_8BIT;
6550 if ( sdpnt->ppr && p->user[tindex].period <= 9 &&
6551 p->user[tindex].options )
6552 {
6553 aic_dev->needppr = aic_dev->needppr_copy = 1;
6554 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6555 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6556 aic_dev->flags |= DEVICE_SCSI_3;
6557 }
6558 else
6559 {
6560 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6561 aic_dev->goal.period = max_t(unsigned char, 10, aic_dev->goal.period);
6562 aic_dev->goal.options = 0;
6563 }
6564 }
6565 else
6566 {
6567 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6568 aic_dev->goal.period = 255;
6569 aic_dev->goal.offset = 0;
6570 aic_dev->goal.options = 0;
6571 }
6572 aic_dev->flags |= DEVICE_PRINT_DTR;
6573 }
6574}
6575
6576/*+F*************************************************************************
6577 * Function:
6578 * aic7xxx_slave_alloc
6579 *
6580 * Description:
6581 * Set up the initial aic_dev struct pointers
6582 *-F*************************************************************************/
6583static int
f64a181d 6584aic7xxx_slave_alloc(struct scsi_device *SDptr)
1da177e4
LT
6585{
6586 struct aic7xxx_host *p = (struct aic7xxx_host *)SDptr->host->hostdata;
6587 struct aic_dev_data *aic_dev;
6588
6589 aic_dev = kmalloc(sizeof(struct aic_dev_data), GFP_ATOMIC | GFP_KERNEL);
6590 if(!aic_dev)
6591 return 1;
6592 /*
6593 * Check to see if channel was scanned.
6594 */
6595
6596 if (!(p->flags & AHC_A_SCANNED) && (SDptr->channel == 0))
6597 {
6598 if (aic7xxx_verbose & VERBOSE_PROBE2)
6599 printk(INFO_LEAD "Scanning channel for devices.\n",
6600 p->host_no, 0, -1, -1);
6601 p->flags |= AHC_A_SCANNED;
6602 }
6603 else
6604 {
6605 if (!(p->flags & AHC_B_SCANNED) && (SDptr->channel == 1))
6606 {
6607 if (aic7xxx_verbose & VERBOSE_PROBE2)
6608 printk(INFO_LEAD "Scanning channel for devices.\n",
6609 p->host_no, 1, -1, -1);
6610 p->flags |= AHC_B_SCANNED;
6611 }
6612 }
6613
6614 memset(aic_dev, 0, sizeof(struct aic_dev_data));
6615 SDptr->hostdata = aic_dev;
6616 aic_dev->SDptr = SDptr;
6617 aic_dev->max_q_depth = 1;
6618 aic_dev->temp_q_depth = 1;
6619 scbq_init(&aic_dev->delayed_scbs);
6620 INIT_LIST_HEAD(&aic_dev->list);
6621 list_add_tail(&aic_dev->list, &p->aic_devs);
6622 return 0;
6623}
6624
6625/*+F*************************************************************************
6626 * Function:
6627 * aic7xxx_device_queue_depth
6628 *
6629 * Description:
6630 * Determines the queue depth for a given device. There are two ways
6631 * a queue depth can be obtained for a tagged queueing device. One
6632 * way is the default queue depth which is determined by whether
6633 * aic7xxx_default_queue_depth. The other is by the aic7xxx_tag_info
6634 * array.
6635 *
6636 * If tagged queueing isn't supported on the device, then we set the
6637 * depth to p->host->hostt->cmd_per_lun for internal driver queueing.
6638 * as the default queue depth. Otherwise, we use either 4 or 8 as the
6639 * default queue depth (dependent on the number of hardware SCBs).
6640 * The other way we determine queue depth is through the use of the
6641 * aic7xxx_tag_info array which is enabled by defining
6642 * AIC7XXX_TAGGED_QUEUEING_BY_DEVICE. This array can be initialized
6643 * with queue depths for individual devices. It also allows tagged
6644 * queueing to be [en|dis]abled for a specific adapter.
6645 *-F*************************************************************************/
6646static void
f64a181d 6647aic7xxx_device_queue_depth(struct aic7xxx_host *p, struct scsi_device *device)
1da177e4
LT
6648{
6649 int tag_enabled = FALSE;
6650 struct aic_dev_data *aic_dev = device->hostdata;
6651 unsigned char tindex;
6652
6653 tindex = device->id | (device->channel << 3);
6654
6655 if (device->simple_tags)
6656 return; // We've already enabled this device
6657
6658 if (device->tagged_supported)
6659 {
6660 tag_enabled = TRUE;
6661
6662 if (!(p->discenable & (1 << tindex)))
6663 {
6664 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6665 printk(INFO_LEAD "Disconnection disabled, unable to "
6666 "enable tagged queueing.\n",
6667 p->host_no, device->channel, device->id, device->lun);
6668 tag_enabled = FALSE;
6669 }
6670 else
6671 {
6672 if (p->instance >= ARRAY_SIZE(aic7xxx_tag_info))
6673 {
6674 static int print_warning = TRUE;
6675 if(print_warning)
6676 {
6677 printk(KERN_INFO "aic7xxx: WARNING, insufficient tag_info instances for"
6678 " installed controllers.\n");
6679 printk(KERN_INFO "aic7xxx: Please update the aic7xxx_tag_info array in"
6680 " the aic7xxx.c source file.\n");
6681 print_warning = FALSE;
6682 }
6683 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6684 aic7xxx_default_queue_depth;
6685 }
6686 else
6687 {
6688
6689 if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 255)
6690 {
6691 tag_enabled = FALSE;
6692 }
6693 else if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 0)
6694 {
6695 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6696 aic7xxx_default_queue_depth;
6697 }
6698 else
6699 {
6700 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6701 aic7xxx_tag_info[p->instance].tag_commands[tindex];
6702 }
6703 }
6704 }
6705 }
6706 if (tag_enabled)
6707 {
6708 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6709 {
6710 printk(INFO_LEAD "Tagged queuing enabled, queue depth %d.\n",
6711 p->host_no, device->channel, device->id,
6712 device->lun, aic_dev->max_q_depth);
6713 }
6714 scsi_adjust_queue_depth(device, MSG_ORDERED_TAG, aic_dev->max_q_depth);
6715 }
6716 else
6717 {
6718 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6719 {
6720 printk(INFO_LEAD "Tagged queuing disabled, queue depth %d.\n",
6721 p->host_no, device->channel, device->id,
6722 device->lun, device->host->cmd_per_lun);
6723 }
6724 scsi_adjust_queue_depth(device, 0, device->host->cmd_per_lun);
6725 }
6726 return;
6727}
6728
6729/*+F*************************************************************************
6730 * Function:
6731 * aic7xxx_slave_destroy
6732 *
6733 * Description:
6734 * prepare for this device to go away
6735 *-F*************************************************************************/
6736static void
f64a181d 6737aic7xxx_slave_destroy(struct scsi_device *SDptr)
1da177e4
LT
6738{
6739 struct aic_dev_data *aic_dev = SDptr->hostdata;
6740
6741 list_del(&aic_dev->list);
6742 SDptr->hostdata = NULL;
6743 kfree(aic_dev);
6744 return;
6745}
6746
6747/*+F*************************************************************************
6748 * Function:
6749 * aic7xxx_slave_configure
6750 *
6751 * Description:
6752 * Configure the device we are attaching to the controller. This is
6753 * where we get to do things like scan the INQUIRY data, set queue
6754 * depths, allocate command structs, etc.
6755 *-F*************************************************************************/
6756static int
f64a181d 6757aic7xxx_slave_configure(struct scsi_device *SDptr)
1da177e4
LT
6758{
6759 struct aic7xxx_host *p = (struct aic7xxx_host *) SDptr->host->hostdata;
6760 struct aic_dev_data *aic_dev;
6761 int scbnum;
6762
6763 aic_dev = (struct aic_dev_data *)SDptr->hostdata;
6764
6765 aic7xxx_init_transinfo(p, aic_dev);
6766 aic7xxx_device_queue_depth(p, SDptr);
6767 if(list_empty(&aic_dev->list))
6768 list_add_tail(&aic_dev->list, &p->aic_devs);
6769
6770 scbnum = 0;
6771 list_for_each_entry(aic_dev, &p->aic_devs, list) {
6772 scbnum += aic_dev->max_q_depth;
6773 }
6774 while (scbnum > p->scb_data->numscbs)
6775 {
6776 /*
6777 * Pre-allocate the needed SCBs to get around the possibility of having
6778 * to allocate some when memory is more or less exhausted and we need
6779 * the SCB in order to perform a swap operation (possible deadlock)
6780 */
6781 if ( aic7xxx_allocate_scb(p) == 0 )
6782 break;
6783 }
6784
6785
6786 return(0);
6787}
6788
6789/*+F*************************************************************************
6790 * Function:
6791 * aic7xxx_probe
6792 *
6793 * Description:
6794 * Probing for EISA boards: it looks like the first two bytes
6795 * are a manufacturer code - three characters, five bits each:
6796 *
6797 * BYTE 0 BYTE 1 BYTE 2 BYTE 3
6798 * ?1111122 22233333 PPPPPPPP RRRRRRRR
6799 *
6800 * The characters are baselined off ASCII '@', so add that value
6801 * to each to get the real ASCII code for it. The next two bytes
6802 * appear to be a product and revision number, probably vendor-
6803 * specific. This is what is being searched for at each port,
6804 * and what should probably correspond to the ID= field in the
6805 * ECU's .cfg file for the card - if your card is not detected,
6806 * make sure your signature is listed in the array.
6807 *
6808 * The fourth byte's lowest bit seems to be an enabled/disabled
6809 * flag (rest of the bits are reserved?).
6810 *
6811 * NOTE: This function is only needed on Intel and Alpha platforms,
6812 * the other platforms we support don't have EISA/VLB busses. So,
6813 * we #ifdef this entire function to avoid compiler warnings about
6814 * an unused function.
6815 *-F*************************************************************************/
6816#if defined(__i386__) || defined(__alpha__)
6817static int
6818aic7xxx_probe(int slot, int base, ahc_flag_type *flags)
6819{
6820 int i;
6821 unsigned char buf[4];
6822
6823 static struct {
6824 int n;
6825 unsigned char signature[sizeof(buf)];
6826 ahc_chip type;
6827 int bios_disabled;
6828 } AIC7xxx[] = {
6829 { 4, { 0x04, 0x90, 0x77, 0x70 },
6830 AHC_AIC7770|AHC_EISA, FALSE }, /* mb 7770 */
6831 { 4, { 0x04, 0x90, 0x77, 0x71 },
6832 AHC_AIC7770|AHC_EISA, FALSE }, /* host adapter 274x */
6833 { 4, { 0x04, 0x90, 0x77, 0x56 },
6834 AHC_AIC7770|AHC_VL, FALSE }, /* 284x BIOS enabled */
6835 { 4, { 0x04, 0x90, 0x77, 0x57 },
6836 AHC_AIC7770|AHC_VL, TRUE } /* 284x BIOS disabled */
6837 };
6838
6839 /*
6840 * The VL-bus cards need to be primed by
6841 * writing before a signature check.
6842 */
6843 for (i = 0; i < sizeof(buf); i++)
6844 {
6845 outb(0x80 + i, base);
6846 buf[i] = inb(base + i);
6847 }
6848
6849 for (i = 0; i < ARRAY_SIZE(AIC7xxx); i++)
6850 {
6851 /*
6852 * Signature match on enabled card?
6853 */
6854 if (!memcmp(buf, AIC7xxx[i].signature, AIC7xxx[i].n))
6855 {
6856 if (inb(base + 4) & 1)
6857 {
6858 if (AIC7xxx[i].bios_disabled)
6859 {
6860 *flags |= AHC_USEDEFAULTS;
6861 }
6862 else
6863 {
6864 *flags |= AHC_BIOS_ENABLED;
6865 }
6866 return (i);
6867 }
6868
6869 printk("aic7xxx: <Adaptec 7770 SCSI Host Adapter> "
6870 "disabled at slot %d, ignored.\n", slot);
6871 }
6872 }
6873
6874 return (-1);
6875}
6876#endif /* (__i386__) || (__alpha__) */
6877
6878
6879/*+F*************************************************************************
6880 * Function:
6881 * read_2840_seeprom
6882 *
6883 * Description:
6884 * Reads the 2840 serial EEPROM and returns 1 if successful and 0 if
6885 * not successful.
6886 *
6887 * See read_seeprom (for the 2940) for the instruction set of the 93C46
6888 * chip.
6889 *
6890 * The 2840 interface to the 93C46 serial EEPROM is through the
6891 * STATUS_2840 and SEECTL_2840 registers. The CS_2840, CK_2840, and
6892 * DO_2840 bits of the SEECTL_2840 register are connected to the chip
6893 * select, clock, and data out lines respectively of the serial EEPROM.
6894 * The DI_2840 bit of the STATUS_2840 is connected to the data in line
6895 * of the serial EEPROM. The EEPROM_TF bit of STATUS_2840 register is
6896 * useful in that it gives us an 800 nsec timer. After a read from the
6897 * SEECTL_2840 register the timing flag is cleared and goes high 800 nsec
6898 * later.
6899 *-F*************************************************************************/
6900static int
6901read_284x_seeprom(struct aic7xxx_host *p, struct seeprom_config *sc)
6902{
6903 int i = 0, k = 0;
6904 unsigned char temp;
6905 unsigned short checksum = 0;
6906 unsigned short *seeprom = (unsigned short *) sc;
6907 struct seeprom_cmd {
6908 unsigned char len;
6909 unsigned char bits[3];
6910 };
6911 struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
6912
6913#define CLOCK_PULSE(p) \
6914 while ((aic_inb(p, STATUS_2840) & EEPROM_TF) == 0) \
6915 { \
6916 ; /* Do nothing */ \
6917 } \
6918 (void) aic_inb(p, SEECTL_2840);
6919
6920 /*
6921 * Read the first 32 registers of the seeprom. For the 2840,
6922 * the 93C46 SEEPROM is a 1024-bit device with 64 16-bit registers
6923 * but only the first 32 are used by Adaptec BIOS. The loop
6924 * will range from 0 to 31.
6925 */
6926 for (k = 0; k < (sizeof(*sc) / 2); k++)
6927 {
6928 /*
6929 * Send chip select for one clock cycle.
6930 */
6931 aic_outb(p, CK_2840 | CS_2840, SEECTL_2840);
6932 CLOCK_PULSE(p);
6933
6934 /*
6935 * Now we're ready to send the read command followed by the
6936 * address of the 16-bit register we want to read.
6937 */
6938 for (i = 0; i < seeprom_read.len; i++)
6939 {
6940 temp = CS_2840 | seeprom_read.bits[i];
6941 aic_outb(p, temp, SEECTL_2840);
6942 CLOCK_PULSE(p);
6943 temp = temp ^ CK_2840;
6944 aic_outb(p, temp, SEECTL_2840);
6945 CLOCK_PULSE(p);
6946 }
6947 /*
6948 * Send the 6 bit address (MSB first, LSB last).
6949 */
6950 for (i = 5; i >= 0; i--)
6951 {
6952 temp = k;
6953 temp = (temp >> i) & 1; /* Mask out all but lower bit. */
6954 temp = CS_2840 | temp;
6955 aic_outb(p, temp, SEECTL_2840);
6956 CLOCK_PULSE(p);
6957 temp = temp ^ CK_2840;
6958 aic_outb(p, temp, SEECTL_2840);
6959 CLOCK_PULSE(p);
6960 }
6961
6962 /*
6963 * Now read the 16 bit register. An initial 0 precedes the
6964 * register contents which begins with bit 15 (MSB) and ends
6965 * with bit 0 (LSB). The initial 0 will be shifted off the
6966 * top of our word as we let the loop run from 0 to 16.
6967 */
6968 for (i = 0; i <= 16; i++)
6969 {
6970 temp = CS_2840;
6971 aic_outb(p, temp, SEECTL_2840);
6972 CLOCK_PULSE(p);
6973 temp = temp ^ CK_2840;
6974 seeprom[k] = (seeprom[k] << 1) | (aic_inb(p, STATUS_2840) & DI_2840);
6975 aic_outb(p, temp, SEECTL_2840);
6976 CLOCK_PULSE(p);
6977 }
6978 /*
6979 * The serial EEPROM has a checksum in the last word. Keep a
6980 * running checksum for all words read except for the last
6981 * word. We'll verify the checksum after all words have been
6982 * read.
6983 */
6984 if (k < (sizeof(*sc) / 2) - 1)
6985 {
6986 checksum = checksum + seeprom[k];
6987 }
6988
6989 /*
6990 * Reset the chip select for the next command cycle.
6991 */
6992 aic_outb(p, 0, SEECTL_2840);
6993 CLOCK_PULSE(p);
6994 aic_outb(p, CK_2840, SEECTL_2840);
6995 CLOCK_PULSE(p);
6996 aic_outb(p, 0, SEECTL_2840);
6997 CLOCK_PULSE(p);
6998 }
6999
7000#if 0
7001 printk("Computed checksum 0x%x, checksum read 0x%x\n", checksum, sc->checksum);
7002 printk("Serial EEPROM:");
7003 for (k = 0; k < (sizeof(*sc) / 2); k++)
7004 {
7005 if (((k % 8) == 0) && (k != 0))
7006 {
7007 printk("\n ");
7008 }
7009 printk(" 0x%x", seeprom[k]);
7010 }
7011 printk("\n");
7012#endif
7013
7014 if (checksum != sc->checksum)
7015 {
7016 printk("aic7xxx: SEEPROM checksum error, ignoring SEEPROM settings.\n");
7017 return (0);
7018 }
7019
7020 return (1);
7021#undef CLOCK_PULSE
7022}
7023
7024#define CLOCK_PULSE(p) \
7025 do { \
7026 int limit = 0; \
7027 do { \
7028 mb(); \
7029 pause_sequencer(p); /* This is just to generate some PCI */ \
7030 /* traffic so the PCI read is flushed */ \
7031 /* it shouldn't be needed, but some */ \
7032 /* chipsets do indeed appear to need */ \
7033 /* something to force PCI reads to get */ \
7034 /* flushed */ \
7035 udelay(1); /* Do nothing */ \
7036 } while (((aic_inb(p, SEECTL) & SEERDY) == 0) && (++limit < 1000)); \
7037 } while(0)
7038
7039/*+F*************************************************************************
7040 * Function:
7041 * acquire_seeprom
7042 *
7043 * Description:
7044 * Acquires access to the memory port on PCI controllers.
7045 *-F*************************************************************************/
7046static int
7047acquire_seeprom(struct aic7xxx_host *p)
7048{
7049
7050 /*
7051 * Request access of the memory port. When access is
7052 * granted, SEERDY will go high. We use a 1 second
7053 * timeout which should be near 1 second more than
7054 * is needed. Reason: after the 7870 chip reset, there
7055 * should be no contention.
7056 */
7057 aic_outb(p, SEEMS, SEECTL);
7058 CLOCK_PULSE(p);
7059 if ((aic_inb(p, SEECTL) & SEERDY) == 0)
7060 {
7061 aic_outb(p, 0, SEECTL);
7062 return (0);
7063 }
7064 return (1);
7065}
7066
7067/*+F*************************************************************************
7068 * Function:
7069 * release_seeprom
7070 *
7071 * Description:
7072 * Releases access to the memory port on PCI controllers.
7073 *-F*************************************************************************/
7074static void
7075release_seeprom(struct aic7xxx_host *p)
7076{
7077 /*
7078 * Make sure the SEEPROM is ready before we release it.
7079 */
7080 CLOCK_PULSE(p);
7081 aic_outb(p, 0, SEECTL);
7082}
7083
7084/*+F*************************************************************************
7085 * Function:
7086 * read_seeprom
7087 *
7088 * Description:
7089 * Reads the serial EEPROM and returns 1 if successful and 0 if
7090 * not successful.
7091 *
7092 * The instruction set of the 93C46/56/66 chips is as follows:
7093 *
7094 * Start OP
7095 * Function Bit Code Address Data Description
7096 * -------------------------------------------------------------------
7097 * READ 1 10 A5 - A0 Reads data stored in memory,
7098 * starting at specified address
7099 * EWEN 1 00 11XXXX Write enable must precede
7100 * all programming modes
7101 * ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0
7102 * WRITE 1 01 A5 - A0 D15 - D0 Writes register
7103 * ERAL 1 00 10XXXX Erase all registers
7104 * WRAL 1 00 01XXXX D15 - D0 Writes to all registers
7105 * EWDS 1 00 00XXXX Disables all programming
7106 * instructions
7107 * *Note: A value of X for address is a don't care condition.
7108 * *Note: The 93C56 and 93C66 have 8 address bits.
7109 *
7110 *
7111 * The 93C46 has a four wire interface: clock, chip select, data in, and
7112 * data out. In order to perform one of the above functions, you need
7113 * to enable the chip select for a clock period (typically a minimum of
7114 * 1 usec, with the clock high and low a minimum of 750 and 250 nsec
7115 * respectively. While the chip select remains high, you can clock in
7116 * the instructions (above) starting with the start bit, followed by the
7117 * OP code, Address, and Data (if needed). For the READ instruction, the
7118 * requested 16-bit register contents is read from the data out line but
7119 * is preceded by an initial zero (leading 0, followed by 16-bits, MSB
7120 * first). The clock cycling from low to high initiates the next data
7121 * bit to be sent from the chip.
7122 *
7123 * The 78xx interface to the 93C46 serial EEPROM is through the SEECTL
7124 * register. After successful arbitration for the memory port, the
7125 * SEECS bit of the SEECTL register is connected to the chip select.
7126 * The SEECK, SEEDO, and SEEDI are connected to the clock, data out,
7127 * and data in lines respectively. The SEERDY bit of SEECTL is useful
7128 * in that it gives us an 800 nsec timer. After a write to the SEECTL
7129 * register, the SEERDY goes high 800 nsec later. The one exception
7130 * to this is when we first request access to the memory port. The
7131 * SEERDY goes high to signify that access has been granted and, for
7132 * this case, has no implied timing.
7133 *-F*************************************************************************/
7134static int
7135read_seeprom(struct aic7xxx_host *p, int offset,
7136 unsigned short *scarray, unsigned int len, seeprom_chip_type chip)
7137{
7138 int i = 0, k;
7139 unsigned char temp;
7140 unsigned short checksum = 0;
7141 struct seeprom_cmd {
7142 unsigned char len;
7143 unsigned char bits[3];
7144 };
7145 struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
7146
7147 /*
7148 * Request access of the memory port.
7149 */
7150 if (acquire_seeprom(p) == 0)
7151 {
7152 return (0);
7153 }
7154
7155 /*
7156 * Read 'len' registers of the seeprom. For the 7870, the 93C46
7157 * SEEPROM is a 1024-bit device with 64 16-bit registers but only
7158 * the first 32 are used by Adaptec BIOS. Some adapters use the
7159 * 93C56 SEEPROM which is a 2048-bit device. The loop will range
7160 * from 0 to 'len' - 1.
7161 */
7162 for (k = 0; k < len; k++)
7163 {
7164 /*
7165 * Send chip select for one clock cycle.
7166 */
7167 aic_outb(p, SEEMS | SEECK | SEECS, SEECTL);
7168 CLOCK_PULSE(p);
7169
7170 /*
7171 * Now we're ready to send the read command followed by the
7172 * address of the 16-bit register we want to read.
7173 */
7174 for (i = 0; i < seeprom_read.len; i++)
7175 {
7176 temp = SEEMS | SEECS | (seeprom_read.bits[i] << 1);
7177 aic_outb(p, temp, SEECTL);
7178 CLOCK_PULSE(p);
7179 temp = temp ^ SEECK;
7180 aic_outb(p, temp, SEECTL);
7181 CLOCK_PULSE(p);
7182 }
7183 /*
7184 * Send the 6 or 8 bit address (MSB first, LSB last).
7185 */
7186 for (i = ((int) chip - 1); i >= 0; i--)
7187 {
7188 temp = k + offset;
7189 temp = (temp >> i) & 1; /* Mask out all but lower bit. */
7190 temp = SEEMS | SEECS | (temp << 1);
7191 aic_outb(p, temp, SEECTL);
7192 CLOCK_PULSE(p);
7193 temp = temp ^ SEECK;
7194 aic_outb(p, temp, SEECTL);
7195 CLOCK_PULSE(p);
7196 }
7197
7198 /*
7199 * Now read the 16 bit register. An initial 0 precedes the
7200 * register contents which begins with bit 15 (MSB) and ends
7201 * with bit 0 (LSB). The initial 0 will be shifted off the
7202 * top of our word as we let the loop run from 0 to 16.
7203 */
7204 for (i = 0; i <= 16; i++)
7205 {
7206 temp = SEEMS | SEECS;
7207 aic_outb(p, temp, SEECTL);
7208 CLOCK_PULSE(p);
7209 temp = temp ^ SEECK;
7210 scarray[k] = (scarray[k] << 1) | (aic_inb(p, SEECTL) & SEEDI);
7211 aic_outb(p, temp, SEECTL);
7212 CLOCK_PULSE(p);
7213 }
7214
7215 /*
7216 * The serial EEPROM should have a checksum in the last word.
7217 * Keep a running checksum for all words read except for the
7218 * last word. We'll verify the checksum after all words have
7219 * been read.
7220 */
7221 if (k < (len - 1))
7222 {
7223 checksum = checksum + scarray[k];
7224 }
7225
7226 /*
7227 * Reset the chip select for the next command cycle.
7228 */
7229 aic_outb(p, SEEMS, SEECTL);
7230 CLOCK_PULSE(p);
7231 aic_outb(p, SEEMS | SEECK, SEECTL);
7232 CLOCK_PULSE(p);
7233 aic_outb(p, SEEMS, SEECTL);
7234 CLOCK_PULSE(p);
7235 }
7236
7237 /*
7238 * Release access to the memory port and the serial EEPROM.
7239 */
7240 release_seeprom(p);
7241
7242#if 0
7243 printk("Computed checksum 0x%x, checksum read 0x%x\n",
7244 checksum, scarray[len - 1]);
7245 printk("Serial EEPROM:");
7246 for (k = 0; k < len; k++)
7247 {
7248 if (((k % 8) == 0) && (k != 0))
7249 {
7250 printk("\n ");
7251 }
7252 printk(" 0x%x", scarray[k]);
7253 }
7254 printk("\n");
7255#endif
7256 if ( (checksum != scarray[len - 1]) || (checksum == 0) )
7257 {
7258 return (0);
7259 }
7260
7261 return (1);
7262}
7263
7264/*+F*************************************************************************
7265 * Function:
7266 * read_brdctl
7267 *
7268 * Description:
7269 * Reads the BRDCTL register.
7270 *-F*************************************************************************/
7271static unsigned char
7272read_brdctl(struct aic7xxx_host *p)
7273{
7274 unsigned char brdctl, value;
7275
7276 /*
7277 * Make sure the SEEPROM is ready before we access it
7278 */
7279 CLOCK_PULSE(p);
7280 if (p->features & AHC_ULTRA2)
7281 {
7282 brdctl = BRDRW_ULTRA2;
7283 aic_outb(p, brdctl, BRDCTL);
7284 CLOCK_PULSE(p);
7285 value = aic_inb(p, BRDCTL);
7286 CLOCK_PULSE(p);
7287 return(value);
7288 }
7289 brdctl = BRDRW;
7290 if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7291 (p->flags & AHC_CHNLB) )
7292 {
7293 brdctl |= BRDCS;
7294 }
7295 aic_outb(p, brdctl, BRDCTL);
7296 CLOCK_PULSE(p);
7297 value = aic_inb(p, BRDCTL);
7298 CLOCK_PULSE(p);
7299 aic_outb(p, 0, BRDCTL);
7300 CLOCK_PULSE(p);
7301 return (value);
7302}
7303
7304/*+F*************************************************************************
7305 * Function:
7306 * write_brdctl
7307 *
7308 * Description:
7309 * Writes a value to the BRDCTL register.
7310 *-F*************************************************************************/
7311static void
7312write_brdctl(struct aic7xxx_host *p, unsigned char value)
7313{
7314 unsigned char brdctl;
7315
7316 /*
7317 * Make sure the SEEPROM is ready before we access it
7318 */
7319 CLOCK_PULSE(p);
7320 if (p->features & AHC_ULTRA2)
7321 {
7322 brdctl = value;
7323 aic_outb(p, brdctl, BRDCTL);
7324 CLOCK_PULSE(p);
7325 brdctl |= BRDSTB_ULTRA2;
7326 aic_outb(p, brdctl, BRDCTL);
7327 CLOCK_PULSE(p);
7328 brdctl &= ~BRDSTB_ULTRA2;
7329 aic_outb(p, brdctl, BRDCTL);
7330 CLOCK_PULSE(p);
7331 read_brdctl(p);
7332 CLOCK_PULSE(p);
7333 }
7334 else
7335 {
7336 brdctl = BRDSTB;
7337 if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7338 (p->flags & AHC_CHNLB) )
7339 {
7340 brdctl |= BRDCS;
7341 }
7342 brdctl = BRDSTB | BRDCS;
7343 aic_outb(p, brdctl, BRDCTL);
7344 CLOCK_PULSE(p);
7345 brdctl |= value;
7346 aic_outb(p, brdctl, BRDCTL);
7347 CLOCK_PULSE(p);
7348 brdctl &= ~BRDSTB;
7349 aic_outb(p, brdctl, BRDCTL);
7350 CLOCK_PULSE(p);
7351 brdctl &= ~BRDCS;
7352 aic_outb(p, brdctl, BRDCTL);
7353 CLOCK_PULSE(p);
7354 }
7355}
7356
7357/*+F*************************************************************************
7358 * Function:
7359 * aic785x_cable_detect
7360 *
7361 * Description:
7362 * Detect the cables that are present on aic785x class controller chips
7363 *-F*************************************************************************/
7364static void
7365aic785x_cable_detect(struct aic7xxx_host *p, int *int_50,
7366 int *ext_present, int *eeprom)
7367{
7368 unsigned char brdctl;
7369
7370 aic_outb(p, BRDRW | BRDCS, BRDCTL);
7371 CLOCK_PULSE(p);
7372 aic_outb(p, 0, BRDCTL);
7373 CLOCK_PULSE(p);
7374 brdctl = aic_inb(p, BRDCTL);
7375 CLOCK_PULSE(p);
7376 *int_50 = !(brdctl & BRDDAT5);
7377 *ext_present = !(brdctl & BRDDAT6);
7378 *eeprom = (aic_inb(p, SPIOCAP) & EEPROM);
7379}
7380
7381#undef CLOCK_PULSE
7382
7383/*+F*************************************************************************
7384 * Function:
7385 * aic2940_uwpro_cable_detect
7386 *
7387 * Description:
7388 * Detect the cables that are present on the 2940-UWPro cards
7389 *
7390 * NOTE: This function assumes the SEEPROM will have already been acquired
7391 * prior to invocation of this function.
7392 *-F*************************************************************************/
7393static void
7394aic2940_uwpro_wide_cable_detect(struct aic7xxx_host *p, int *int_68,
7395 int *ext_68, int *eeprom)
7396{
7397 unsigned char brdctl;
7398
7399 /*
7400 * First read the status of our cables. Set the rom bank to
7401 * 0 since the bank setting serves as a multiplexor for the
7402 * cable detection logic. BRDDAT5 controls the bank switch.
7403 */
7404 write_brdctl(p, 0);
7405
7406 /*
7407 * Now we read the state of the internal 68 connector. BRDDAT6
7408 * is don't care, BRDDAT7 is internal 68. The cable is
7409 * present if the bit is 0
7410 */
7411 brdctl = read_brdctl(p);
7412 *int_68 = !(brdctl & BRDDAT7);
7413
7414 /*
7415 * Set the bank bit in brdctl and then read the external cable state
7416 * and the EEPROM status
7417 */
7418 write_brdctl(p, BRDDAT5);
7419 brdctl = read_brdctl(p);
7420
7421 *ext_68 = !(brdctl & BRDDAT6);
7422 *eeprom = !(brdctl & BRDDAT7);
7423
7424 /*
7425 * We're done, the calling function will release the SEEPROM for us
7426 */
7427}
7428
7429/*+F*************************************************************************
7430 * Function:
7431 * aic787x_cable_detect
7432 *
7433 * Description:
7434 * Detect the cables that are present on aic787x class controller chips
7435 *
7436 * NOTE: This function assumes the SEEPROM will have already been acquired
7437 * prior to invocation of this function.
7438 *-F*************************************************************************/
7439static void
7440aic787x_cable_detect(struct aic7xxx_host *p, int *int_50, int *int_68,
7441 int *ext_present, int *eeprom)
7442{
7443 unsigned char brdctl;
7444
7445 /*
7446 * First read the status of our cables. Set the rom bank to
7447 * 0 since the bank setting serves as a multiplexor for the
7448 * cable detection logic. BRDDAT5 controls the bank switch.
7449 */
7450 write_brdctl(p, 0);
7451
7452 /*
7453 * Now we read the state of the two internal connectors. BRDDAT6
7454 * is internal 50, BRDDAT7 is internal 68. For each, the cable is
7455 * present if the bit is 0
7456 */
7457 brdctl = read_brdctl(p);
7458 *int_50 = !(brdctl & BRDDAT6);
7459 *int_68 = !(brdctl & BRDDAT7);
7460
7461 /*
7462 * Set the bank bit in brdctl and then read the external cable state
7463 * and the EEPROM status
7464 */
7465 write_brdctl(p, BRDDAT5);
7466 brdctl = read_brdctl(p);
7467
7468 *ext_present = !(brdctl & BRDDAT6);
7469 *eeprom = !(brdctl & BRDDAT7);
7470
7471 /*
7472 * We're done, the calling function will release the SEEPROM for us
7473 */
7474}
7475
7476/*+F*************************************************************************
7477 * Function:
7478 * aic787x_ultra2_term_detect
7479 *
7480 * Description:
7481 * Detect the termination settings present on ultra2 class controllers
7482 *
7483 * NOTE: This function assumes the SEEPROM will have already been acquired
7484 * prior to invocation of this function.
7485 *-F*************************************************************************/
7486static void
7487aic7xxx_ultra2_term_detect(struct aic7xxx_host *p, int *enableSE_low,
7488 int *enableSE_high, int *enableLVD_low,
7489 int *enableLVD_high, int *eprom_present)
7490{
7491 unsigned char brdctl;
7492
7493 brdctl = read_brdctl(p);
7494
7495 *eprom_present = (brdctl & BRDDAT7);
7496 *enableSE_high = (brdctl & BRDDAT6);
7497 *enableSE_low = (brdctl & BRDDAT5);
7498 *enableLVD_high = (brdctl & BRDDAT4);
7499 *enableLVD_low = (brdctl & BRDDAT3);
7500}
7501
7502/*+F*************************************************************************
7503 * Function:
7504 * configure_termination
7505 *
7506 * Description:
7507 * Configures the termination settings on PCI adapters that have
7508 * SEEPROMs available.
7509 *-F*************************************************************************/
7510static void
7511configure_termination(struct aic7xxx_host *p)
7512{
7513 int internal50_present = 0;
7514 int internal68_present = 0;
7515 int external_present = 0;
7516 int eprom_present = 0;
7517 int enableSE_low = 0;
7518 int enableSE_high = 0;
7519 int enableLVD_low = 0;
7520 int enableLVD_high = 0;
7521 unsigned char brddat = 0;
7522 unsigned char max_target = 0;
7523 unsigned char sxfrctl1 = aic_inb(p, SXFRCTL1);
7524
7525 if (acquire_seeprom(p))
7526 {
7527 if (p->features & (AHC_WIDE|AHC_TWIN))
7528 max_target = 16;
7529 else
7530 max_target = 8;
7531 aic_outb(p, SEEMS | SEECS, SEECTL);
7532 sxfrctl1 &= ~STPWEN;
7533 /*
7534 * The termination/cable detection logic is split into three distinct
7535 * groups. Ultra2 and later controllers, 2940UW-Pro controllers, and
7536 * older 7850, 7860, 7870, 7880, and 7895 controllers. Each has its
7537 * own unique way of detecting their cables and writing the results
7538 * back to the card.
7539 */
7540 if (p->features & AHC_ULTRA2)
7541 {
7542 /*
7543 * As long as user hasn't overridden term settings, always check the
7544 * cable detection logic
7545 */
7546 if (aic7xxx_override_term == -1)
7547 {
7548 aic7xxx_ultra2_term_detect(p, &enableSE_low, &enableSE_high,
7549 &enableLVD_low, &enableLVD_high,
7550 &eprom_present);
7551 }
7552
7553 /*
7554 * If the user is overriding settings, then they have been preserved
7555 * to here as fake adapter_control entries. Parse them and allow
7556 * them to override the detected settings (if we even did detection).
7557 */
7558 if (!(p->adapter_control & CFSEAUTOTERM))
7559 {
7560 enableSE_low = (p->adapter_control & CFSTERM);
7561 enableSE_high = (p->adapter_control & CFWSTERM);
7562 }
7563 if (!(p->adapter_control & CFAUTOTERM))
7564 {
7565 enableLVD_low = enableLVD_high = (p->adapter_control & CFLVDSTERM);
7566 }
7567
7568 /*
7569 * Now take those settings that we have and translate them into the
7570 * values that must be written into the registers.
7571 *
7572 * Flash Enable = BRDDAT7
7573 * Secondary High Term Enable = BRDDAT6
7574 * Secondary Low Term Enable = BRDDAT5
7575 * LVD/Primary High Term Enable = BRDDAT4
7576 * LVD/Primary Low Term Enable = STPWEN bit in SXFRCTL1
7577 */
7578 if (enableLVD_low != 0)
7579 {
7580 sxfrctl1 |= STPWEN;
7581 p->flags |= AHC_TERM_ENB_LVD;
7582 if (aic7xxx_verbose & VERBOSE_PROBE2)
7583 printk(KERN_INFO "(scsi%d) LVD/Primary Low byte termination "
7584 "Enabled\n", p->host_no);
7585 }
7586
7587 if (enableLVD_high != 0)
7588 {
7589 brddat |= BRDDAT4;
7590 if (aic7xxx_verbose & VERBOSE_PROBE2)
7591 printk(KERN_INFO "(scsi%d) LVD/Primary High byte termination "
7592 "Enabled\n", p->host_no);
7593 }
7594
7595 if (enableSE_low != 0)
7596 {
7597 brddat |= BRDDAT5;
7598 if (aic7xxx_verbose & VERBOSE_PROBE2)
7599 printk(KERN_INFO "(scsi%d) Secondary Low byte termination "
7600 "Enabled\n", p->host_no);
7601 }
7602
7603 if (enableSE_high != 0)
7604 {
7605 brddat |= BRDDAT6;
7606 if (aic7xxx_verbose & VERBOSE_PROBE2)
7607 printk(KERN_INFO "(scsi%d) Secondary High byte termination "
7608 "Enabled\n", p->host_no);
7609 }
7610 }
7611 else if (p->features & AHC_NEW_AUTOTERM)
7612 {
7613 /*
7614 * The 50 pin connector termination is controlled by STPWEN in the
7615 * SXFRCTL1 register. Since the Adaptec docs typically say the
7616 * controller is not allowed to be in the middle of a cable and
7617 * this is the only connection on that stub of the bus, there is
7618 * no need to even check for narrow termination, it's simply
7619 * always on.
7620 */
7621 sxfrctl1 |= STPWEN;
7622 if (aic7xxx_verbose & VERBOSE_PROBE2)
7623 printk(KERN_INFO "(scsi%d) Narrow channel termination Enabled\n",
7624 p->host_no);
7625
7626 if (p->adapter_control & CFAUTOTERM)
7627 {
7628 aic2940_uwpro_wide_cable_detect(p, &internal68_present,
7629 &external_present,
7630 &eprom_present);
7631 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7632 "Ext-68 %s)\n", p->host_no,
7633 "Don't Care",
7634 internal68_present ? "YES" : "NO",
7635 external_present ? "YES" : "NO");
7636 if (aic7xxx_verbose & VERBOSE_PROBE2)
7637 printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7638 eprom_present ? "is" : "is not");
7639 if (internal68_present && external_present)
7640 {
7641 brddat = 0;
7642 p->flags &= ~AHC_TERM_ENB_SE_HIGH;
7643 if (aic7xxx_verbose & VERBOSE_PROBE2)
7644 printk(KERN_INFO "(scsi%d) Wide channel termination Disabled\n",
7645 p->host_no);
7646 }
7647 else
7648 {
7649 brddat = BRDDAT6;
7650 p->flags |= AHC_TERM_ENB_SE_HIGH;
7651 if (aic7xxx_verbose & VERBOSE_PROBE2)
7652 printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7653 p->host_no);
7654 }
7655 }
7656 else
7657 {
7658 /*
7659 * The termination of the Wide channel is done more like normal
7660 * though, and the setting of this termination is done by writing
7661 * either a 0 or 1 to BRDDAT6 of the BRDDAT register
7662 */
7663 if (p->adapter_control & CFWSTERM)
7664 {
7665 brddat = BRDDAT6;
7666 p->flags |= AHC_TERM_ENB_SE_HIGH;
7667 if (aic7xxx_verbose & VERBOSE_PROBE2)
7668 printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7669 p->host_no);
7670 }
7671 else
7672 {
7673 brddat = 0;
7674 }
7675 }
7676 }
7677 else
7678 {
7679 if (p->adapter_control & CFAUTOTERM)
7680 {
7681 if (p->flags & AHC_MOTHERBOARD)
7682 {
7683 printk(KERN_INFO "(scsi%d) Warning - detected auto-termination\n",
7684 p->host_no);
7685 printk(KERN_INFO "(scsi%d) Please verify driver detected settings "
7686 "are correct.\n", p->host_no);
7687 printk(KERN_INFO "(scsi%d) If not, then please properly set the "
7688 "device termination\n", p->host_no);
7689 printk(KERN_INFO "(scsi%d) in the Adaptec SCSI BIOS by hitting "
7690 "CTRL-A when prompted\n", p->host_no);
7691 printk(KERN_INFO "(scsi%d) during machine bootup.\n", p->host_no);
7692 }
7693 /* Configure auto termination. */
7694
7695 if ( (p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870 )
7696 {
7697 aic787x_cable_detect(p, &internal50_present, &internal68_present,
7698 &external_present, &eprom_present);
7699 }
7700 else
7701 {
7702 aic785x_cable_detect(p, &internal50_present, &external_present,
7703 &eprom_present);
7704 }
7705
7706 if (max_target <= 8)
7707 internal68_present = 0;
7708
7709 if (max_target > 8)
7710 {
7711 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7712 "Ext-68 %s)\n", p->host_no,
7713 internal50_present ? "YES" : "NO",
7714 internal68_present ? "YES" : "NO",
7715 external_present ? "YES" : "NO");
7716 }
7717 else
7718 {
7719 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Ext-50 %s)\n",
7720 p->host_no,
7721 internal50_present ? "YES" : "NO",
7722 external_present ? "YES" : "NO");
7723 }
7724 if (aic7xxx_verbose & VERBOSE_PROBE2)
7725 printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7726 eprom_present ? "is" : "is not");
7727
7728 /*
7729 * Now set the termination based on what we found. BRDDAT6
7730 * controls wide termination enable.
7731 * Flash Enable = BRDDAT7
7732 * SE High Term Enable = BRDDAT6
7733 */
7734 if (internal50_present && internal68_present && external_present)
7735 {
7736 printk(KERN_INFO "(scsi%d) Illegal cable configuration!! Only two\n",
7737 p->host_no);
7738 printk(KERN_INFO "(scsi%d) connectors on the SCSI controller may be "
7739 "in use at a time!\n", p->host_no);
7740 /*
7741 * Force termination (low and high byte) on. This is safer than
7742 * leaving it completely off, especially since this message comes
7743 * most often from motherboard controllers that don't even have 3
7744 * connectors, but instead are failing the cable detection.
7745 */
7746 internal50_present = external_present = 0;
7747 enableSE_high = enableSE_low = 1;
7748 }
7749
7750 if ((max_target > 8) &&
7751 ((external_present == 0) || (internal68_present == 0)) )
7752 {
7753 brddat |= BRDDAT6;
7754 p->flags |= AHC_TERM_ENB_SE_HIGH;
7755 if (aic7xxx_verbose & VERBOSE_PROBE2)
7756 printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7757 p->host_no);
7758 }
7759
7760 if ( ((internal50_present ? 1 : 0) +
7761 (internal68_present ? 1 : 0) +
7762 (external_present ? 1 : 0)) <= 1 )
7763 {
7764 sxfrctl1 |= STPWEN;
7765 p->flags |= AHC_TERM_ENB_SE_LOW;
7766 if (aic7xxx_verbose & VERBOSE_PROBE2)
7767 printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7768 p->host_no);
7769 }
7770 }
7771 else /* p->adapter_control & CFAUTOTERM */
7772 {
7773 if (p->adapter_control & CFSTERM)
7774 {
7775 sxfrctl1 |= STPWEN;
7776 if (aic7xxx_verbose & VERBOSE_PROBE2)
7777 printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7778 p->host_no);
7779 }
7780
7781 if (p->adapter_control & CFWSTERM)
7782 {
7783 brddat |= BRDDAT6;
7784 if (aic7xxx_verbose & VERBOSE_PROBE2)
7785 printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7786 p->host_no);
7787 }
7788 }
7789 }
7790
7791 aic_outb(p, sxfrctl1, SXFRCTL1);
7792 write_brdctl(p, brddat);
7793 release_seeprom(p);
7794 }
7795}
7796
7797/*+F*************************************************************************
7798 * Function:
7799 * detect_maxscb
7800 *
7801 * Description:
7802 * Detects the maximum number of SCBs for the controller and returns
7803 * the count and a mask in p (p->maxscbs, p->qcntmask).
7804 *-F*************************************************************************/
7805static void
7806detect_maxscb(struct aic7xxx_host *p)
7807{
7808 int i;
7809
7810 /*
7811 * It's possible that we've already done this for multichannel
7812 * adapters.
7813 */
7814 if (p->scb_data->maxhscbs == 0)
7815 {
7816 /*
7817 * We haven't initialized the SCB settings yet. Walk the SCBs to
7818 * determince how many there are.
7819 */
7820 aic_outb(p, 0, FREE_SCBH);
7821
7822 for (i = 0; i < AIC7XXX_MAXSCB; i++)
7823 {
7824 aic_outb(p, i, SCBPTR);
7825 aic_outb(p, i, SCB_CONTROL);
7826 if (aic_inb(p, SCB_CONTROL) != i)
7827 break;
7828 aic_outb(p, 0, SCBPTR);
7829 if (aic_inb(p, SCB_CONTROL) != 0)
7830 break;
7831
7832 aic_outb(p, i, SCBPTR);
7833 aic_outb(p, 0, SCB_CONTROL); /* Clear the control byte. */
7834 aic_outb(p, i + 1, SCB_NEXT); /* Set the next pointer. */
7835 aic_outb(p, SCB_LIST_NULL, SCB_TAG); /* Make the tag invalid. */
7836 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS); /* no busy untagged */
7837 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+1);/* targets active yet */
7838 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+2);
7839 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+3);
7840 }
7841
7842 /* Make sure the last SCB terminates the free list. */
7843 aic_outb(p, i - 1, SCBPTR);
7844 aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
7845
7846 /* Ensure we clear the first (0) SCBs control byte. */
7847 aic_outb(p, 0, SCBPTR);
7848 aic_outb(p, 0, SCB_CONTROL);
7849
7850 p->scb_data->maxhscbs = i;
7851 /*
7852 * Use direct indexing instead for speed
7853 */
7854 if ( i == AIC7XXX_MAXSCB )
7855 p->flags &= ~AHC_PAGESCBS;
7856 }
7857
7858}
7859
7860/*+F*************************************************************************
7861 * Function:
7862 * aic7xxx_register
7863 *
7864 * Description:
7865 * Register a Adaptec aic7xxx chip SCSI controller with the kernel.
7866 *-F*************************************************************************/
7867static int
d0be4a7d 7868aic7xxx_register(struct scsi_host_template *template, struct aic7xxx_host *p,
1da177e4
LT
7869 int reset_delay)
7870{
7871 int i, result;
7872 int max_targets;
7873 int found = 1;
7874 unsigned char term, scsi_conf;
7875 struct Scsi_Host *host;
7876
7877 host = p->host;
7878
7879 p->scb_data->maxscbs = AIC7XXX_MAXSCB;
7880 host->can_queue = AIC7XXX_MAXSCB;
7881 host->cmd_per_lun = 3;
7882 host->sg_tablesize = AIC7XXX_MAX_SG;
7883 host->this_id = p->scsi_id;
7884 host->io_port = p->base;
7885 host->n_io_port = 0xFF;
7886 host->base = p->mbase;
7887 host->irq = p->irq;
7888 if (p->features & AHC_WIDE)
7889 {
7890 host->max_id = 16;
7891 }
7892 if (p->features & AHC_TWIN)
7893 {
7894 host->max_channel = 1;
7895 }
7896
7897 p->host = host;
7898 p->host_no = host->host_no;
7899 host->unique_id = p->instance;
7900 p->isr_count = 0;
7901 p->next = NULL;
7902 p->completeq.head = NULL;
7903 p->completeq.tail = NULL;
7904 scbq_init(&p->scb_data->free_scbs);
7905 scbq_init(&p->waiting_scbs);
7906 INIT_LIST_HEAD(&p->aic_devs);
7907
7908 /*
7909 * We currently have no commands of any type
7910 */
7911 p->qinfifonext = 0;
7912 p->qoutfifonext = 0;
7913
7914 printk(KERN_INFO "(scsi%d) <%s> found at ", p->host_no,
7915 board_names[p->board_name_index]);
7916 switch(p->chip)
7917 {
7918 case (AHC_AIC7770|AHC_EISA):
7919 printk("EISA slot %d\n", p->pci_device_fn);
7920 break;
7921 case (AHC_AIC7770|AHC_VL):
7922 printk("VLB slot %d\n", p->pci_device_fn);
7923 break;
7924 default:
7925 printk("PCI %d/%d/%d\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
7926 PCI_FUNC(p->pci_device_fn));
7927 break;
7928 }
7929 if (p->features & AHC_TWIN)
7930 {
7931 printk(KERN_INFO "(scsi%d) Twin Channel, A SCSI ID %d, B SCSI ID %d, ",
7932 p->host_no, p->scsi_id, p->scsi_id_b);
7933 }
7934 else
7935 {
7936 char *channel;
7937
7938 channel = "";
7939
7940 if ((p->flags & AHC_MULTI_CHANNEL) != 0)
7941 {
7942 channel = " A";
7943
7944 if ( (p->flags & (AHC_CHNLB|AHC_CHNLC)) != 0 )
7945 {
7946 channel = (p->flags & AHC_CHNLB) ? " B" : " C";
7947 }
7948 }
7949 if (p->features & AHC_WIDE)
7950 {
7951 printk(KERN_INFO "(scsi%d) Wide ", p->host_no);
7952 }
7953 else
7954 {
7955 printk(KERN_INFO "(scsi%d) Narrow ", p->host_no);
7956 }
7957 printk("Channel%s, SCSI ID=%d, ", channel, p->scsi_id);
7958 }
7959 aic_outb(p, 0, SEQ_FLAGS);
7960
7961 detect_maxscb(p);
7962
7963 printk("%d/%d SCBs\n", p->scb_data->maxhscbs, p->scb_data->maxscbs);
7964 if (aic7xxx_verbose & VERBOSE_PROBE2)
7965 {
7966 printk(KERN_INFO "(scsi%d) BIOS %sabled, IO Port 0x%lx, IRQ %d\n",
7967 p->host_no, (p->flags & AHC_BIOS_ENABLED) ? "en" : "dis",
7968 p->base, p->irq);
7969 printk(KERN_INFO "(scsi%d) IO Memory at 0x%lx, MMAP Memory at %p\n",
7970 p->host_no, p->mbase, p->maddr);
7971 }
7972
7973#ifdef CONFIG_PCI
7974 /*
7975 * Now that we know our instance number, we can set the flags we need to
7976 * force termination if need be.
7977 */
7978 if (aic7xxx_stpwlev != -1)
7979 {
7980 /*
7981 * This option only applies to PCI controllers.
7982 */
7983 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
7984 {
7985 unsigned char devconfig;
7986
7987 pci_read_config_byte(p->pdev, DEVCONFIG, &devconfig);
7988 if ( (aic7xxx_stpwlev >> p->instance) & 0x01 )
7989 {
7990 devconfig |= STPWLEVEL;
7991 if (aic7xxx_verbose & VERBOSE_PROBE2)
7992 printk("(scsi%d) Force setting STPWLEVEL bit\n", p->host_no);
7993 }
7994 else
7995 {
7996 devconfig &= ~STPWLEVEL;
7997 if (aic7xxx_verbose & VERBOSE_PROBE2)
7998 printk("(scsi%d) Force clearing STPWLEVEL bit\n", p->host_no);
7999 }
8000 pci_write_config_byte(p->pdev, DEVCONFIG, devconfig);
8001 }
8002 }
8003#endif
8004
8005 /*
8006 * That took care of devconfig and stpwlev, now for the actual termination
8007 * settings.
8008 */
8009 if (aic7xxx_override_term != -1)
8010 {
8011 /*
8012 * Again, this only applies to PCI controllers. We don't have problems
8013 * with the termination on 274x controllers to the best of my knowledge.
8014 */
8015 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
8016 {
8017 unsigned char term_override;
8018
8019 term_override = ( (aic7xxx_override_term >> (p->instance * 4)) & 0x0f);
8020 p->adapter_control &=
8021 ~(CFSTERM|CFWSTERM|CFLVDSTERM|CFAUTOTERM|CFSEAUTOTERM);
8022 if ( (p->features & AHC_ULTRA2) && (term_override & 0x0c) )
8023 {
8024 p->adapter_control |= CFLVDSTERM;
8025 }
8026 if (term_override & 0x02)
8027 {
8028 p->adapter_control |= CFWSTERM;
8029 }
8030 if (term_override & 0x01)
8031 {
8032 p->adapter_control |= CFSTERM;
8033 }
8034 }
8035 }
8036
8037 if ( (p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1) )
8038 {
8039 if (p->features & AHC_SPIOCAP)
8040 {
8041 if ( aic_inb(p, SPIOCAP) & SSPIOCPS )
8042 /*
8043 * Update the settings in sxfrctl1 to match the termination
8044 * settings.
8045 */
8046 configure_termination(p);
8047 }
8048 else if ((p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870)
8049 {
8050 configure_termination(p);
8051 }
8052 }
8053
8054 /*
8055 * Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels
8056 */
8057 if (p->features & AHC_TWIN)
8058 {
8059 /* Select channel B */
8060 aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8061
8062 if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8063 term = (aic_inb(p, SXFRCTL1) & STPWEN);
8064 else
8065 term = ((p->flags & AHC_TERM_ENB_B) ? STPWEN : 0);
8066
8067 aic_outb(p, p->scsi_id_b, SCSIID);
8068 scsi_conf = aic_inb(p, SCSICONF + 1);
8069 aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8070 aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
8071 ENSTIMER | ACTNEGEN, SXFRCTL1);
8072 aic_outb(p, 0, SIMODE0);
8073 aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8074 aic_outb(p, 0, SCSIRATE);
8075
8076 /* Select channel A */
8077 aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8078 }
8079
8080 if (p->features & AHC_ULTRA2)
8081 {
8082 aic_outb(p, p->scsi_id, SCSIID_ULTRA2);
8083 }
8084 else
8085 {
8086 aic_outb(p, p->scsi_id, SCSIID);
8087 }
8088 if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8089 term = (aic_inb(p, SXFRCTL1) & STPWEN);
8090 else
8091 term = ((p->flags & (AHC_TERM_ENB_A|AHC_TERM_ENB_LVD)) ? STPWEN : 0);
8092 scsi_conf = aic_inb(p, SCSICONF);
8093 aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8094 aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
8095 ENSTIMER | ACTNEGEN, SXFRCTL1);
8096 aic_outb(p, 0, SIMODE0);
8097 /*
8098 * If we are a cardbus adapter then don't enable SCSI reset detection.
8099 * We shouldn't likely be sharing SCSI busses with someone else, and
8100 * if we don't have a cable currently plugged into the controller then
8101 * we won't have a power source for the SCSI termination, which means
8102 * we'll see infinite incoming bus resets.
8103 */
8104 if(p->flags & AHC_NO_STPWEN)
8105 aic_outb(p, ENSELTIMO | ENSCSIPERR, SIMODE1);
8106 else
8107 aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8108 aic_outb(p, 0, SCSIRATE);
8109 if ( p->features & AHC_ULTRA2)
8110 aic_outb(p, 0, SCSIOFFSET);
8111
8112 /*
8113 * Look at the information that board initialization or the board
8114 * BIOS has left us. In the lower four bits of each target's
8115 * scratch space any value other than 0 indicates that we should
8116 * initiate synchronous transfers. If it's zero, the user or the
8117 * BIOS has decided to disable synchronous negotiation to that
8118 * target so we don't activate the needsdtr flag.
8119 */
8120 if ((p->features & (AHC_TWIN|AHC_WIDE)) == 0)
8121 {
8122 max_targets = 8;
8123 }
8124 else
8125 {
8126 max_targets = 16;
8127 }
8128
8129 if (!(aic7xxx_no_reset))
8130 {
8131 /*
8132 * If we reset the bus, then clear the transfer settings, else leave
8133 * them be.
8134 */
8135 aic_outb(p, 0, ULTRA_ENB);
8136 aic_outb(p, 0, ULTRA_ENB + 1);
8137 p->ultraenb = 0;
8138 }
8139
8140 /*
8141 * Allocate enough hardware scbs to handle the maximum number of
8142 * concurrent transactions we can have. We have to make sure that
8143 * the allocated memory is contiguous memory. The Linux kmalloc
8144 * routine should only allocate contiguous memory, but note that
8145 * this could be a problem if kmalloc() is changed.
8146 */
8147 {
8148 size_t array_size;
8149 unsigned int hscb_physaddr;
8150
8151 array_size = p->scb_data->maxscbs * sizeof(struct aic7xxx_hwscb);
8152 if (p->scb_data->hscbs == NULL)
8153 {
8154 /* pci_alloc_consistent enforces the alignment already and
8155 * clears the area as well.
8156 */
8157 p->scb_data->hscbs = pci_alloc_consistent(p->pdev, array_size,
8158 &p->scb_data->hscbs_dma);
8159 /* We have to use pci_free_consistent, not kfree */
8160 p->scb_data->hscb_kmalloc_ptr = NULL;
8161 p->scb_data->hscbs_dma_len = array_size;
8162 }
8163 if (p->scb_data->hscbs == NULL)
8164 {
8165 printk("(scsi%d) Unable to allocate hardware SCB array; "
8166 "failing detection.\n", p->host_no);
8167 aic_outb(p, 0, SIMODE1);
8168 p->irq = 0;
8169 return(0);
8170 }
8171
8172 hscb_physaddr = p->scb_data->hscbs_dma;
8173 aic_outb(p, hscb_physaddr & 0xFF, HSCB_ADDR);
8174 aic_outb(p, (hscb_physaddr >> 8) & 0xFF, HSCB_ADDR + 1);
8175 aic_outb(p, (hscb_physaddr >> 16) & 0xFF, HSCB_ADDR + 2);
8176 aic_outb(p, (hscb_physaddr >> 24) & 0xFF, HSCB_ADDR + 3);
8177
8178 /* Set up the fifo areas at the same time */
8179 p->untagged_scbs = pci_alloc_consistent(p->pdev, 3*256, &p->fifo_dma);
8180 if (p->untagged_scbs == NULL)
8181 {
8182 printk("(scsi%d) Unable to allocate hardware FIFO arrays; "
8183 "failing detection.\n", p->host_no);
8184 p->irq = 0;
8185 return(0);
8186 }
8187
8188 p->qoutfifo = p->untagged_scbs + 256;
8189 p->qinfifo = p->qoutfifo + 256;
8190 for (i = 0; i < 256; i++)
8191 {
8192 p->untagged_scbs[i] = SCB_LIST_NULL;
8193 p->qinfifo[i] = SCB_LIST_NULL;
8194 p->qoutfifo[i] = SCB_LIST_NULL;
8195 }
8196
8197 hscb_physaddr = p->fifo_dma;
8198 aic_outb(p, hscb_physaddr & 0xFF, SCBID_ADDR);
8199 aic_outb(p, (hscb_physaddr >> 8) & 0xFF, SCBID_ADDR + 1);
8200 aic_outb(p, (hscb_physaddr >> 16) & 0xFF, SCBID_ADDR + 2);
8201 aic_outb(p, (hscb_physaddr >> 24) & 0xFF, SCBID_ADDR + 3);
8202 }
8203
8204 /* The Q-FIFOs we just set up are all empty */
8205 aic_outb(p, 0, QINPOS);
8206 aic_outb(p, 0, KERNEL_QINPOS);
8207 aic_outb(p, 0, QOUTPOS);
8208
8209 if(p->features & AHC_QUEUE_REGS)
8210 {
8211 aic_outb(p, SCB_QSIZE_256, QOFF_CTLSTA);
8212 aic_outb(p, 0, SDSCB_QOFF);
8213 aic_outb(p, 0, SNSCB_QOFF);
8214 aic_outb(p, 0, HNSCB_QOFF);
8215 }
8216
8217 /*
8218 * We don't have any waiting selections or disconnected SCBs.
8219 */
8220 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
8221 aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
8222
8223 /*
8224 * Message out buffer starts empty
8225 */
8226 aic_outb(p, MSG_NOOP, MSG_OUT);
8227 aic_outb(p, MSG_NOOP, LAST_MSG);
8228
8229 /*
8230 * Set all the other asundry items that haven't been set yet.
8231 * This includes just dumping init values to a lot of registers simply
8232 * to make sure they've been touched and are ready for use parity wise
8233 * speaking.
8234 */
8235 aic_outb(p, 0, TMODE_CMDADDR);
8236 aic_outb(p, 0, TMODE_CMDADDR + 1);
8237 aic_outb(p, 0, TMODE_CMDADDR + 2);
8238 aic_outb(p, 0, TMODE_CMDADDR + 3);
8239 aic_outb(p, 0, TMODE_CMDADDR_NEXT);
8240
8241 /*
8242 * Link us into the list of valid hosts
8243 */
8244 p->next = first_aic7xxx;
8245 first_aic7xxx = p;
8246
8247 /*
8248 * Allocate the first set of scbs for this controller. This is to stream-
8249 * line code elsewhere in the driver. If we have to check for the existence
8250 * of scbs in certain code sections, it slows things down. However, as
8251 * soon as we register the IRQ for this card, we could get an interrupt that
8252 * includes possibly the SCSI_RSTI interrupt. If we catch that interrupt
8253 * then we are likely to segfault if we don't have at least one chunk of
8254 * SCBs allocated or add checks all through the reset code to make sure
8255 * that the SCBs have been allocated which is an invalid running condition
8256 * and therefore I think it's preferable to simply pre-allocate the first
8257 * chunk of SCBs.
8258 */
8259 aic7xxx_allocate_scb(p);
8260
8261 /*
8262 * Load the sequencer program, then re-enable the board -
8263 * resetting the AIC-7770 disables it, leaving the lights
8264 * on with nobody home.
8265 */
8266 aic7xxx_loadseq(p);
8267
8268 /*
8269 * Make sure the AUTOFLUSHDIS bit is *not* set in the SBLKCTL register
8270 */
8271 aic_outb(p, aic_inb(p, SBLKCTL) & ~AUTOFLUSHDIS, SBLKCTL);
8272
8273 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
8274 {
8275 aic_outb(p, ENABLE, BCTL); /* Enable the boards BUS drivers. */
8276 }
8277
8278 if ( !(aic7xxx_no_reset) )
8279 {
8280 if (p->features & AHC_TWIN)
8281 {
8282 if (aic7xxx_verbose & VERBOSE_PROBE2)
8283 printk(KERN_INFO "(scsi%d) Resetting channel B\n", p->host_no);
8284 aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8285 aic7xxx_reset_current_bus(p);
8286 aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8287 }
8288 /* Reset SCSI bus A. */
8289 if (aic7xxx_verbose & VERBOSE_PROBE2)
8290 { /* In case we are a 3940, 3985, or 7895, print the right channel */
8291 char *channel = "";
8292 if (p->flags & AHC_MULTI_CHANNEL)
8293 {
8294 channel = " A";
8295 if (p->flags & (AHC_CHNLB|AHC_CHNLC))
8296 channel = (p->flags & AHC_CHNLB) ? " B" : " C";
8297 }
8298 printk(KERN_INFO "(scsi%d) Resetting channel%s\n", p->host_no, channel);
8299 }
8300
8301 aic7xxx_reset_current_bus(p);
8302
8303 }
8304 else
8305 {
8306 if (!reset_delay)
8307 {
8308 printk(KERN_INFO "(scsi%d) Not resetting SCSI bus. Note: Don't use "
8309 "the no_reset\n", p->host_no);
8310 printk(KERN_INFO "(scsi%d) option unless you have a verifiable need "
8311 "for it.\n", p->host_no);
8312 }
8313 }
8314
8315 /*
8316 * Register IRQ with the kernel. Only allow sharing IRQs with
8317 * PCI devices.
8318 */
8319 if (!(p->chip & AHC_PCI))
8320 {
8321 result = (request_irq(p->irq, do_aic7xxx_isr, 0, "aic7xxx", p));
8322 }
8323 else
8324 {
8325 result = (request_irq(p->irq, do_aic7xxx_isr, SA_SHIRQ,
8326 "aic7xxx", p));
8327 if (result < 0)
8328 {
8329 result = (request_irq(p->irq, do_aic7xxx_isr, SA_INTERRUPT | SA_SHIRQ,
8330 "aic7xxx", p));
8331 }
8332 }
8333 if (result < 0)
8334 {
8335 printk(KERN_WARNING "(scsi%d) Couldn't register IRQ %d, ignoring "
8336 "controller.\n", p->host_no, p->irq);
8337 aic_outb(p, 0, SIMODE1);
8338 p->irq = 0;
8339 return (0);
8340 }
8341
8342 if(aic_inb(p, INTSTAT) & INT_PEND)
8343 printk(INFO_LEAD "spurious interrupt during configuration, cleared.\n",
8344 p->host_no, -1, -1 , -1);
8345 aic7xxx_clear_intstat(p);
8346
8347 unpause_sequencer(p, /* unpause_always */ TRUE);
8348
8349 return (found);
8350}
8351
8352/*+F*************************************************************************
8353 * Function:
8354 * aic7xxx_chip_reset
8355 *
8356 * Description:
8357 * Perform a chip reset on the aic7xxx SCSI controller. The controller
8358 * is paused upon return.
8359 *-F*************************************************************************/
8360static int
8361aic7xxx_chip_reset(struct aic7xxx_host *p)
8362{
8363 unsigned char sblkctl;
8364 int wait;
8365
8366 /*
8367 * For some 274x boards, we must clear the CHIPRST bit and pause
8368 * the sequencer. For some reason, this makes the driver work.
8369 */
8370 aic_outb(p, PAUSE | CHIPRST, HCNTRL);
8371
8372 /*
8373 * In the future, we may call this function as a last resort for
8374 * error handling. Let's be nice and not do any unnecessary delays.
8375 */
8376 wait = 1000; /* 1 msec (1000 * 1 msec) */
8377 while (--wait && !(aic_inb(p, HCNTRL) & CHIPRSTACK))
8378 {
8379 udelay(1); /* 1 usec */
8380 }
8381
8382 pause_sequencer(p);
8383
8384 sblkctl = aic_inb(p, SBLKCTL) & (SELBUSB|SELWIDE);
8385 if (p->chip & AHC_PCI)
8386 sblkctl &= ~SELBUSB;
8387 switch( sblkctl )
8388 {
8389 case 0: /* normal narrow card */
8390 break;
8391 case 2: /* Wide card */
8392 p->features |= AHC_WIDE;
8393 break;
8394 case 8: /* Twin card */
8395 p->features |= AHC_TWIN;
8396 p->flags |= AHC_MULTI_CHANNEL;
8397 break;
8398 default: /* hmmm...we don't know what this is */
8399 printk(KERN_WARNING "aic7xxx: Unsupported adapter type %d, ignoring.\n",
8400 aic_inb(p, SBLKCTL) & 0x0a);
8401 return(-1);
8402 }
8403 return(0);
8404}
8405
8406/*+F*************************************************************************
8407 * Function:
8408 * aic7xxx_alloc
8409 *
8410 * Description:
8411 * Allocate and initialize a host structure. Returns NULL upon error
8412 * and a pointer to a aic7xxx_host struct upon success.
8413 *-F*************************************************************************/
8414static struct aic7xxx_host *
d0be4a7d 8415aic7xxx_alloc(struct scsi_host_template *sht, struct aic7xxx_host *temp)
1da177e4
LT
8416{
8417 struct aic7xxx_host *p = NULL;
8418 struct Scsi_Host *host;
8419
8420 /*
8421 * Allocate a storage area by registering us with the mid-level
8422 * SCSI layer.
8423 */
8424 host = scsi_register(sht, sizeof(struct aic7xxx_host));
8425
8426 if (host != NULL)
8427 {
8428 p = (struct aic7xxx_host *) host->hostdata;
8429 memset(p, 0, sizeof(struct aic7xxx_host));
8430 *p = *temp;
8431 p->host = host;
8432
8433 p->scb_data = kmalloc(sizeof(scb_data_type), GFP_ATOMIC);
8434 if (p->scb_data != NULL)
8435 {
8436 memset(p->scb_data, 0, sizeof(scb_data_type));
8437 scbq_init (&p->scb_data->free_scbs);
8438 }
8439 else
8440 {
8441 /*
8442 * For some reason we don't have enough memory. Free the
8443 * allocated memory for the aic7xxx_host struct, and return NULL.
8444 */
8445 release_region(p->base, MAXREG - MINREG);
8446 scsi_unregister(host);
8447 return(NULL);
8448 }
8449 p->host_no = host->host_no;
8450 }
1da177e4
LT
8451 return (p);
8452}
8453
8454/*+F*************************************************************************
8455 * Function:
8456 * aic7xxx_free
8457 *
8458 * Description:
8459 * Frees and releases all resources associated with an instance of
8460 * the driver (struct aic7xxx_host *).
8461 *-F*************************************************************************/
8462static void
8463aic7xxx_free(struct aic7xxx_host *p)
8464{
8465 int i;
8466
8467 /*
8468 * Free the allocated hardware SCB space.
8469 */
8470 if (p->scb_data != NULL)
8471 {
8472 struct aic7xxx_scb_dma *scb_dma = NULL;
8473 if (p->scb_data->hscbs != NULL)
8474 {
8475 pci_free_consistent(p->pdev, p->scb_data->hscbs_dma_len,
8476 p->scb_data->hscbs, p->scb_data->hscbs_dma);
8477 p->scb_data->hscbs = p->scb_data->hscb_kmalloc_ptr = NULL;
8478 }
8479 /*
8480 * Free the driver SCBs. These were allocated on an as-need
8481 * basis. We allocated these in groups depending on how many
8482 * we could fit into a given amount of RAM. The tail SCB for
8483 * these allocations has a pointer to the alloced area.
8484 */
8485 for (i = 0; i < p->scb_data->numscbs; i++)
8486 {
8487 if (p->scb_data->scb_array[i]->scb_dma != scb_dma)
8488 {
8489 scb_dma = p->scb_data->scb_array[i]->scb_dma;
8490 pci_free_consistent(p->pdev, scb_dma->dma_len,
8491 (void *)((unsigned long)scb_dma->dma_address
8492 - scb_dma->dma_offset),
8493 scb_dma->dma_address);
8494 }
c9475cb0 8495 kfree(p->scb_data->scb_array[i]->kmalloc_ptr);
1da177e4
LT
8496 p->scb_data->scb_array[i] = NULL;
8497 }
8498
8499 /*
8500 * Free the SCB data area.
8501 */
8502 kfree(p->scb_data);
8503 }
8504
8505 pci_free_consistent(p->pdev, 3*256, (void *)p->untagged_scbs, p->fifo_dma);
8506}
8507
8508/*+F*************************************************************************
8509 * Function:
8510 * aic7xxx_load_seeprom
8511 *
8512 * Description:
8513 * Load the seeprom and configure adapter and target settings.
8514 * Returns 1 if the load was successful and 0 otherwise.
8515 *-F*************************************************************************/
8516static void
8517aic7xxx_load_seeprom(struct aic7xxx_host *p, unsigned char *sxfrctl1)
8518{
8519 int have_seeprom = 0;
8520 int i, max_targets, mask;
8521 unsigned char scsirate, scsi_conf;
8522 unsigned short scarray[128];
8523 struct seeprom_config *sc = (struct seeprom_config *) scarray;
8524
8525 if (aic7xxx_verbose & VERBOSE_PROBE2)
8526 {
8527 printk(KERN_INFO "aic7xxx: Loading serial EEPROM...");
8528 }
8529 switch (p->chip)
8530 {
8531 case (AHC_AIC7770|AHC_EISA): /* None of these adapters have seeproms. */
8532 if (aic_inb(p, SCSICONF) & TERM_ENB)
8533 p->flags |= AHC_TERM_ENB_A;
8534 if ( (p->features & AHC_TWIN) && (aic_inb(p, SCSICONF + 1) & TERM_ENB) )
8535 p->flags |= AHC_TERM_ENB_B;
8536 break;
8537
8538 case (AHC_AIC7770|AHC_VL):
8539 have_seeprom = read_284x_seeprom(p, (struct seeprom_config *) scarray);
8540 break;
8541
8542 default:
8543 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8544 scarray, p->sc_size, p->sc_type);
8545 if (!have_seeprom)
8546 {
8547 if(p->sc_type == C46)
8548 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8549 scarray, p->sc_size, C56_66);
8550 else
8551 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8552 scarray, p->sc_size, C46);
8553 }
8554 if (!have_seeprom)
8555 {
8556 p->sc_size = 128;
8557 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8558 scarray, p->sc_size, p->sc_type);
8559 if (!have_seeprom)
8560 {
8561 if(p->sc_type == C46)
8562 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8563 scarray, p->sc_size, C56_66);
8564 else
8565 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8566 scarray, p->sc_size, C46);
8567 }
8568 }
8569 break;
8570 }
8571
8572 if (!have_seeprom)
8573 {
8574 if (aic7xxx_verbose & VERBOSE_PROBE2)
8575 {
8576 printk("\naic7xxx: No SEEPROM available.\n");
8577 }
8578 p->flags |= AHC_NEWEEPROM_FMT;
8579 if (aic_inb(p, SCSISEQ) == 0)
8580 {
8581 p->flags |= AHC_USEDEFAULTS;
8582 p->flags &= ~AHC_BIOS_ENABLED;
8583 p->scsi_id = p->scsi_id_b = 7;
8584 *sxfrctl1 |= STPWEN;
8585 if (aic7xxx_verbose & VERBOSE_PROBE2)
8586 {
8587 printk("aic7xxx: Using default values.\n");
8588 }
8589 }
8590 else if (aic7xxx_verbose & VERBOSE_PROBE2)
8591 {
8592 printk("aic7xxx: Using leftover BIOS values.\n");
8593 }
8594 if ( ((p->chip & ~AHC_CHIPID_MASK) == AHC_PCI) && (*sxfrctl1 & STPWEN) )
8595 {
8596 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8597 sc->adapter_control &= ~CFAUTOTERM;
8598 sc->adapter_control |= CFSTERM | CFWSTERM | CFLVDSTERM;
8599 }
8600 if (aic7xxx_extended)
8601 p->flags |= (AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
8602 else
8603 p->flags &= ~(AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
8604 }
8605 else
8606 {
8607 if (aic7xxx_verbose & VERBOSE_PROBE2)
8608 {
8609 printk("done\n");
8610 }
8611
8612 /*
8613 * Note things in our flags
8614 */
8615 p->flags |= AHC_SEEPROM_FOUND;
8616
8617 /*
8618 * Update the settings in sxfrctl1 to match the termination settings.
8619 */
8620 *sxfrctl1 = 0;
8621
8622 /*
8623 * Get our SCSI ID from the SEEPROM setting...
8624 */
8625 p->scsi_id = (sc->brtime_id & CFSCSIID);
8626
8627 /*
8628 * First process the settings that are different between the VLB
8629 * and PCI adapter seeproms.
8630 */
8631 if ((p->chip & AHC_CHIPID_MASK) == AHC_AIC7770)
8632 {
8633 /* VLB adapter seeproms */
8634 if (sc->bios_control & CF284XEXTEND)
8635 p->flags |= AHC_EXTEND_TRANS_A;
8636
8637 if (sc->adapter_control & CF284XSTERM)
8638 {
8639 *sxfrctl1 |= STPWEN;
8640 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8641 }
8642 }
8643 else
8644 {
8645 /* PCI adapter seeproms */
8646 if (sc->bios_control & CFEXTEND)
8647 p->flags |= AHC_EXTEND_TRANS_A;
8648 if (sc->bios_control & CFBIOSEN)
8649 p->flags |= AHC_BIOS_ENABLED;
8650 else
8651 p->flags &= ~AHC_BIOS_ENABLED;
8652
8653 if (sc->adapter_control & CFSTERM)
8654 {
8655 *sxfrctl1 |= STPWEN;
8656 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8657 }
8658 }
8659 memcpy(&p->sc, sc, sizeof(struct seeprom_config));
8660 }
8661
8662 p->discenable = 0;
8663
8664 /*
8665 * Limit to 16 targets just in case. The 2842 for one is known to
8666 * blow the max_targets setting, future cards might also.
8667 */
8668 max_targets = ((p->features & (AHC_TWIN | AHC_WIDE)) ? 16 : 8);
8669
8670 if (have_seeprom)
8671 {
8672 for (i = 0; i < max_targets; i++)
8673 {
8674 if( ((p->features & AHC_ULTRA) &&
8675 !(sc->adapter_control & CFULTRAEN) &&
8676 (sc->device_flags[i] & CFSYNCHISULTRA)) ||
8677 (sc->device_flags[i] & CFNEWULTRAFORMAT) )
8678 {
8679 p->flags |= AHC_NEWEEPROM_FMT;
8680 break;
8681 }
8682 }
8683 }
8684
8685 for (i = 0; i < max_targets; i++)
8686 {
8687 mask = (0x01 << i);
8688 if (!have_seeprom)
8689 {
8690 if (aic_inb(p, SCSISEQ) != 0)
8691 {
8692 /*
8693 * OK...the BIOS set things up and left behind the settings we need.
8694 * Just make our sc->device_flags[i] entry match what the card has
8695 * set for this device.
8696 */
8697 p->discenable =
8698 ~(aic_inb(p, DISC_DSB) | (aic_inb(p, DISC_DSB + 1) << 8) );
8699 p->ultraenb =
8700 (aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8) );
8701 sc->device_flags[i] = (p->discenable & mask) ? CFDISC : 0;
8702 if (aic_inb(p, TARG_SCSIRATE + i) & WIDEXFER)
8703 sc->device_flags[i] |= CFWIDEB;
8704 if (p->features & AHC_ULTRA2)
8705 {
8706 if (aic_inb(p, TARG_OFFSET + i))
8707 {
8708 sc->device_flags[i] |= CFSYNCH;
8709 sc->device_flags[i] |= (aic_inb(p, TARG_SCSIRATE + i) & 0x07);
8710 if ( (aic_inb(p, TARG_SCSIRATE + i) & 0x18) == 0x18 )
8711 sc->device_flags[i] |= CFSYNCHISULTRA;
8712 }
8713 }
8714 else
8715 {
8716 if (aic_inb(p, TARG_SCSIRATE + i) & ~WIDEXFER)
8717 {
8718 sc->device_flags[i] |= CFSYNCH;
8719 if (p->features & AHC_ULTRA)
8720 sc->device_flags[i] |= ((p->ultraenb & mask) ?
8721 CFSYNCHISULTRA : 0);
8722 }
8723 }
8724 }
8725 else
8726 {
8727 /*
8728 * Assume the BIOS has NOT been run on this card and nothing between
8729 * the card and the devices is configured yet.
8730 */
8731 sc->device_flags[i] = CFDISC;
8732 if (p->features & AHC_WIDE)
8733 sc->device_flags[i] |= CFWIDEB;
8734 if (p->features & AHC_ULTRA3)
8735 sc->device_flags[i] |= 2;
8736 else if (p->features & AHC_ULTRA2)
8737 sc->device_flags[i] |= 3;
8738 else if (p->features & AHC_ULTRA)
8739 sc->device_flags[i] |= CFSYNCHISULTRA;
8740 sc->device_flags[i] |= CFSYNCH;
8741 aic_outb(p, 0, TARG_SCSIRATE + i);
8742 if (p->features & AHC_ULTRA2)
8743 aic_outb(p, 0, TARG_OFFSET + i);
8744 }
8745 }
8746 if (sc->device_flags[i] & CFDISC)
8747 {
8748 p->discenable |= mask;
8749 }
8750 if (p->flags & AHC_NEWEEPROM_FMT)
8751 {
8752 if ( !(p->features & AHC_ULTRA2) )
8753 {
8754 /*
8755 * I know of two different Ultra BIOSes that do this differently.
8756 * One on the Gigabyte 6BXU mb that wants flags[i] & CFXFER to
8757 * be == to 0x03 and SYNCHISULTRA to be true to mean 40MByte/s
8758 * while on the IBM Netfinity 5000 they want the same thing
8759 * to be something else, while flags[i] & CFXFER == 0x03 and
8760 * SYNCHISULTRA false should be 40MByte/s. So, we set both to
8761 * 40MByte/s and the lower speeds be damned. People will have
8762 * to select around the conversely mapped lower speeds in order
8763 * to select lower speeds on these boards.
8764 */
8765 if ( (sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8766 ((sc->device_flags[i] & CFXFER) == 0x03) )
8767 {
8768 sc->device_flags[i] &= ~CFXFER;
8769 sc->device_flags[i] |= CFSYNCHISULTRA;
8770 }
8771 if (sc->device_flags[i] & CFSYNCHISULTRA)
8772 {
8773 p->ultraenb |= mask;
8774 }
8775 }
8776 else if ( !(sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8777 (p->features & AHC_ULTRA2) &&
8778 (sc->device_flags[i] & CFSYNCHISULTRA) )
8779 {
8780 p->ultraenb |= mask;
8781 }
8782 }
8783 else if (sc->adapter_control & CFULTRAEN)
8784 {
8785 p->ultraenb |= mask;
8786 }
8787 if ( (sc->device_flags[i] & CFSYNCH) == 0)
8788 {
8789 sc->device_flags[i] &= ~CFXFER;
8790 p->ultraenb &= ~mask;
8791 p->user[i].offset = 0;
8792 p->user[i].period = 0;
8793 p->user[i].options = 0;
8794 }
8795 else
8796 {
8797 if (p->features & AHC_ULTRA3)
8798 {
8799 p->user[i].offset = MAX_OFFSET_ULTRA2;
8800 if( (sc->device_flags[i] & CFXFER) < 0x03 )
8801 {
8802 scsirate = (sc->device_flags[i] & CFXFER);
8803 p->user[i].options = MSG_EXT_PPR_OPTION_DT_CRC;
8804 }
8805 else
8806 {
8807 scsirate = (sc->device_flags[i] & CFXFER) |
8808 ((p->ultraenb & mask) ? 0x18 : 0x10);
8809 p->user[i].options = 0;
8810 }
8811 p->user[i].period = aic7xxx_find_period(p, scsirate,
8812 AHC_SYNCRATE_ULTRA3);
8813 }
8814 else if (p->features & AHC_ULTRA2)
8815 {
8816 p->user[i].offset = MAX_OFFSET_ULTRA2;
8817 scsirate = (sc->device_flags[i] & CFXFER) |
8818 ((p->ultraenb & mask) ? 0x18 : 0x10);
8819 p->user[i].options = 0;
8820 p->user[i].period = aic7xxx_find_period(p, scsirate,
8821 AHC_SYNCRATE_ULTRA2);
8822 }
8823 else
8824 {
8825 scsirate = (sc->device_flags[i] & CFXFER) << 4;
8826 p->user[i].options = 0;
8827 p->user[i].offset = MAX_OFFSET_8BIT;
8828 if (p->features & AHC_ULTRA)
8829 {
8830 short ultraenb;
8831 ultraenb = aic_inb(p, ULTRA_ENB) |
8832 (aic_inb(p, ULTRA_ENB + 1) << 8);
8833 p->user[i].period = aic7xxx_find_period(p, scsirate,
8834 (p->ultraenb & mask) ?
8835 AHC_SYNCRATE_ULTRA :
8836 AHC_SYNCRATE_FAST);
8837 }
8838 else
8839 p->user[i].period = aic7xxx_find_period(p, scsirate,
8840 AHC_SYNCRATE_FAST);
8841 }
8842 }
8843 if ( (sc->device_flags[i] & CFWIDEB) && (p->features & AHC_WIDE) )
8844 {
8845 p->user[i].width = MSG_EXT_WDTR_BUS_16_BIT;
8846 }
8847 else
8848 {
8849 p->user[i].width = MSG_EXT_WDTR_BUS_8_BIT;
8850 }
8851 }
8852 aic_outb(p, ~(p->discenable & 0xFF), DISC_DSB);
8853 aic_outb(p, ~((p->discenable >> 8) & 0xFF), DISC_DSB + 1);
8854
8855 /*
8856 * We set the p->ultraenb from the SEEPROM to begin with, but now we make
8857 * it match what is already down in the card. If we are doing a reset
8858 * on the card then this will get put back to a default state anyway.
8859 * This allows us to not have to pre-emptively negotiate when using the
8860 * no_reset option.
8861 */
8862 if (p->features & AHC_ULTRA)
8863 p->ultraenb = aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8);
8864
8865
8866 scsi_conf = (p->scsi_id & HSCSIID);
8867
8868 if(have_seeprom)
8869 {
8870 p->adapter_control = sc->adapter_control;
8871 p->bios_control = sc->bios_control;
8872
8873 switch (p->chip & AHC_CHIPID_MASK)
8874 {
8875 case AHC_AIC7895:
8876 case AHC_AIC7896:
8877 case AHC_AIC7899:
8878 if (p->adapter_control & CFBPRIMARY)
8879 p->flags |= AHC_CHANNEL_B_PRIMARY;
8880 default:
8881 break;
8882 }
8883
8884 if (sc->adapter_control & CFSPARITY)
8885 scsi_conf |= ENSPCHK;
8886 }
8887 else
8888 {
8889 scsi_conf |= ENSPCHK | RESET_SCSI;
8890 }
8891
8892 /*
8893 * Only set the SCSICONF and SCSICONF + 1 registers if we are a PCI card.
8894 * The 2842 and 2742 cards already have these registers set and we don't
8895 * want to muck with them since we don't set all the bits they do.
8896 */
8897 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
8898 {
8899 /* Set the host ID */
8900 aic_outb(p, scsi_conf, SCSICONF);
8901 /* In case we are a wide card */
8902 aic_outb(p, p->scsi_id, SCSICONF + 1);
8903 }
8904}
8905
8906/*+F*************************************************************************
8907 * Function:
8908 * aic7xxx_configure_bugs
8909 *
8910 * Description:
8911 * Take the card passed in and set the appropriate bug flags based upon
8912 * the card model. Also make any changes needed to device registers or
8913 * PCI registers while we are here.
8914 *-F*************************************************************************/
8915static void
8916aic7xxx_configure_bugs(struct aic7xxx_host *p)
8917{
8918 unsigned short tmp_word;
8919
8920 switch(p->chip & AHC_CHIPID_MASK)
8921 {
8922 case AHC_AIC7860:
8923 p->bugs |= AHC_BUG_PCI_2_1_RETRY;
8924 /* fall through */
8925 case AHC_AIC7850:
8926 case AHC_AIC7870:
8927 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8928 break;
8929 case AHC_AIC7880:
8930 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
8931 AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8932 break;
8933 case AHC_AIC7890:
8934 p->bugs |= AHC_BUG_AUTOFLUSH | AHC_BUG_CACHETHEN;
8935 break;
8936 case AHC_AIC7892:
8937 p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
8938 break;
8939 case AHC_AIC7895:
8940 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
8941 AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8942 break;
8943 case AHC_AIC7896:
8944 p->bugs |= AHC_BUG_CACHETHEN_DIS;
8945 break;
8946 case AHC_AIC7899:
8947 p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
8948 break;
8949 default:
8950 /* Nothing to do */
8951 break;
8952 }
8953
8954 /*
8955 * Now handle the bugs that require PCI register or card register tweaks
8956 */
8957 pci_read_config_word(p->pdev, PCI_COMMAND, &tmp_word);
8958 if(p->bugs & AHC_BUG_PCI_MWI)
8959 {
8960 tmp_word &= ~PCI_COMMAND_INVALIDATE;
8961 }
8962 else
8963 {
8964 tmp_word |= PCI_COMMAND_INVALIDATE;
8965 }
8966 pci_write_config_word(p->pdev, PCI_COMMAND, tmp_word);
8967
8968 if(p->bugs & AHC_BUG_CACHETHEN)
8969 {
8970 aic_outb(p, aic_inb(p, DSCOMMAND0) & ~CACHETHEN, DSCOMMAND0);
8971 }
8972 else if (p->bugs & AHC_BUG_CACHETHEN_DIS)
8973 {
8974 aic_outb(p, aic_inb(p, DSCOMMAND0) | CACHETHEN, DSCOMMAND0);
8975 }
8976
8977 return;
8978}
8979
8980
8981/*+F*************************************************************************
8982 * Function:
8983 * aic7xxx_detect
8984 *
8985 * Description:
8986 * Try to detect and register an Adaptec 7770 or 7870 SCSI controller.
8987 *
8988 * XXX - This should really be called aic7xxx_probe(). A sequence of
8989 * probe(), attach()/detach(), and init() makes more sense than
8990 * one do-it-all function. This may be useful when (and if) the
8991 * mid-level SCSI code is overhauled.
8992 *-F*************************************************************************/
8993static int
d0be4a7d 8994aic7xxx_detect(struct scsi_host_template *template)
1da177e4
LT
8995{
8996 struct aic7xxx_host *temp_p = NULL;
8997 struct aic7xxx_host *current_p = NULL;
8998 struct aic7xxx_host *list_p = NULL;
8999 int found = 0;
9000#if defined(__i386__) || defined(__alpha__)
9001 ahc_flag_type flags = 0;
9002 int type;
9003#endif
9004 unsigned char sxfrctl1;
9005#if defined(__i386__) || defined(__alpha__)
9006 unsigned char hcntrl, hostconf;
9007 unsigned int slot, base;
9008#endif
9009
9010#ifdef MODULE
9011 /*
9012 * If we are called as a module, the aic7xxx pointer may not be null
9013 * and it would point to our bootup string, just like on the lilo
9014 * command line. IF not NULL, then process this config string with
9015 * aic7xxx_setup
9016 */
9017 if(aic7xxx)
9018 aic7xxx_setup(aic7xxx);
9019#endif
9020
9021 template->proc_name = "aic7xxx";
9022 template->sg_tablesize = AIC7XXX_MAX_SG;
9023
9024
9025#ifdef CONFIG_PCI
9026 /*
9027 * PCI-bus probe.
9028 */
9029 {
9030 static struct
9031 {
9032 unsigned short vendor_id;
9033 unsigned short device_id;
9034 ahc_chip chip;
9035 ahc_flag_type flags;
9036 ahc_feature features;
9037 int board_name_index;
9038 unsigned short seeprom_size;
9039 unsigned short seeprom_type;
9040 } const aic_pdevs[] = {
9041 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7810, AHC_NONE,
9042 AHC_FNONE, AHC_FENONE, 1,
9043 32, C46 },
9044 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7850, AHC_AIC7850,
9045 AHC_PAGESCBS, AHC_AIC7850_FE, 5,
9046 32, C46 },
9047 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7855, AHC_AIC7850,
9048 AHC_PAGESCBS, AHC_AIC7850_FE, 6,
9049 32, C46 },
9050 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7821, AHC_AIC7860,
9051 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9052 AHC_AIC7860_FE, 7,
9053 32, C46 },
9054 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_3860, AHC_AIC7860,
9055 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9056 AHC_AIC7860_FE, 7,
9057 32, C46 },
9058 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
9059 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9060 AHC_AIC7860_FE, 7,
9061 32, C46 },
9062 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
9063 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9064 AHC_AIC7860_FE, 7,
9065 32, C46 },
9066 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7860, AHC_AIC7860,
9067 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9068 AHC_AIC7860_FE, 7,
9069 32, C46 },
9070 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7861, AHC_AIC7860,
9071 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9072 AHC_AIC7860_FE, 8,
9073 32, C46 },
9074 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7870, AHC_AIC7870,
9075 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9076 AHC_AIC7870_FE, 9,
9077 32, C46 },
9078 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7871, AHC_AIC7870,
9079 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 10,
9080 32, C46 },
9081 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7872, AHC_AIC7870,
9082 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9083 AHC_AIC7870_FE, 11,
9084 32, C56_66 },
9085 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7873, AHC_AIC7870,
9086 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9087 AHC_AIC7870_FE, 12,
9088 32, C56_66 },
9089 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7874, AHC_AIC7870,
9090 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 13,
9091 32, C46 },
9092 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7880, AHC_AIC7880,
9093 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9094 AHC_AIC7880_FE, 14,
9095 32, C46 },
9096 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7881, AHC_AIC7880,
9097 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 15,
9098 32, C46 },
9099 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7882, AHC_AIC7880,
9100 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9101 AHC_AIC7880_FE, 16,
9102 32, C56_66 },
9103 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7883, AHC_AIC7880,
9104 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9105 AHC_AIC7880_FE, 17,
9106 32, C56_66 },
9107 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7884, AHC_AIC7880,
9108 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9109 32, C46 },
9110 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7885, AHC_AIC7880,
9111 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9112 32, C46 },
9113 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7886, AHC_AIC7880,
9114 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9115 32, C46 },
9116 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7887, AHC_AIC7880,
9117 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE | AHC_NEW_AUTOTERM, 19,
9118 32, C46 },
9119 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7888, AHC_AIC7880,
9120 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9121 32, C46 },
9122 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7895, AHC_AIC7895,
9123 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9124 AHC_AIC7895_FE, 20,
9125 32, C56_66 },
9126 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890, AHC_AIC7890,
9127 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9128 AHC_AIC7890_FE, 21,
9129 32, C46 },
9130 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890B, AHC_AIC7890,
9131 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9132 AHC_AIC7890_FE, 21,
9133 32, C46 },
9134 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2930U2, AHC_AIC7890,
9135 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9136 AHC_AIC7890_FE, 22,
9137 32, C46 },
9138 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2940U2, AHC_AIC7890,
9139 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9140 AHC_AIC7890_FE, 23,
9141 32, C46 },
9142 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7896, AHC_AIC7896,
9143 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9144 AHC_AIC7896_FE, 24,
9145 32, C56_66 },
9146 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3940U2, AHC_AIC7896,
9147 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9148 AHC_AIC7896_FE, 25,
9149 32, C56_66 },
9150 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3950U2D, AHC_AIC7896,
9151 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9152 AHC_AIC7896_FE, 26,
9153 32, C56_66 },
9154 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_1480A, AHC_AIC7860,
9155 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_NO_STPWEN,
9156 AHC_AIC7860_FE, 27,
9157 32, C46 },
9158 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892A, AHC_AIC7892,
9159 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9160 AHC_AIC7892_FE, 28,
9161 32, C46 },
9162 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892B, AHC_AIC7892,
9163 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9164 AHC_AIC7892_FE, 28,
9165 32, C46 },
9166 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892D, AHC_AIC7892,
9167 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9168 AHC_AIC7892_FE, 28,
9169 32, C46 },
9170 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892P, AHC_AIC7892,
9171 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9172 AHC_AIC7892_FE, 28,
9173 32, C46 },
9174 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899A, AHC_AIC7899,
9175 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9176 AHC_AIC7899_FE, 29,
9177 32, C56_66 },
9178 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899B, AHC_AIC7899,
9179 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9180 AHC_AIC7899_FE, 29,
9181 32, C56_66 },
9182 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899D, AHC_AIC7899,
9183 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9184 AHC_AIC7899_FE, 29,
9185 32, C56_66 },
9186 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899P, AHC_AIC7899,
9187 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9188 AHC_AIC7899_FE, 29,
9189 32, C56_66 },
9190 };
9191
9192 unsigned short command;
9193 unsigned int devconfig, i, oldverbose;
9194 struct pci_dev *pdev = NULL;
9195
9196 for (i = 0; i < ARRAY_SIZE(aic_pdevs); i++)
9197 {
9198 pdev = NULL;
9199 while ((pdev = pci_find_device(aic_pdevs[i].vendor_id,
9200 aic_pdevs[i].device_id,
9201 pdev))) {
9202 if (pci_enable_device(pdev))
9203 continue;
9204 if ( i == 0 ) /* We found one, but it's the 7810 RAID cont. */
9205 {
9206 if (aic7xxx_verbose & (VERBOSE_PROBE|VERBOSE_PROBE2))
9207 {
9208 printk(KERN_INFO "aic7xxx: The 7810 RAID controller is not "
9209 "supported by\n");
9210 printk(KERN_INFO " this driver, we are ignoring it.\n");
9211 }
9212 }
9213 else if ( (temp_p = kmalloc(sizeof(struct aic7xxx_host),
9214 GFP_ATOMIC)) != NULL )
9215 {
9216 memset(temp_p, 0, sizeof(struct aic7xxx_host));
9217 temp_p->chip = aic_pdevs[i].chip | AHC_PCI;
9218 temp_p->flags = aic_pdevs[i].flags;
9219 temp_p->features = aic_pdevs[i].features;
9220 temp_p->board_name_index = aic_pdevs[i].board_name_index;
9221 temp_p->sc_size = aic_pdevs[i].seeprom_size;
9222 temp_p->sc_type = aic_pdevs[i].seeprom_type;
9223
9224 /*
9225 * Read sundry information from PCI BIOS.
9226 */
9227 temp_p->irq = pdev->irq;
9228 temp_p->pdev = pdev;
9229 temp_p->pci_bus = pdev->bus->number;
9230 temp_p->pci_device_fn = pdev->devfn;
9231 temp_p->base = pci_resource_start(pdev, 0);
9232 temp_p->mbase = pci_resource_start(pdev, 1);
9233 current_p = list_p;
9234 while(current_p && temp_p)
9235 {
9236 if ( ((current_p->pci_bus == temp_p->pci_bus) &&
9237 (current_p->pci_device_fn == temp_p->pci_device_fn)) ||
9238 (temp_p->base && (current_p->base == temp_p->base)) ||
9239 (temp_p->mbase && (current_p->mbase == temp_p->mbase)) )
9240 {
9241 /* duplicate PCI entry, skip it */
9242 kfree(temp_p);
9243 temp_p = NULL;
9244 continue;
9245 }
9246 current_p = current_p->next;
9247 }
9248 if(pci_request_regions(temp_p->pdev, "aic7xxx"))
9249 {
9250 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9251 board_names[aic_pdevs[i].board_name_index],
9252 temp_p->pci_bus,
9253 PCI_SLOT(temp_p->pci_device_fn),
9254 PCI_FUNC(temp_p->pci_device_fn));
9255 printk("aic7xxx: I/O ports already in use, ignoring.\n");
9256 kfree(temp_p);
9257 continue;
9258 }
9259
9260 if (aic7xxx_verbose & VERBOSE_PROBE2)
9261 printk("aic7xxx: <%s> at PCI %d/%d\n",
9262 board_names[aic_pdevs[i].board_name_index],
9263 PCI_SLOT(pdev->devfn),
9264 PCI_FUNC(pdev->devfn));
9265 pci_read_config_word(pdev, PCI_COMMAND, &command);
9266 if (aic7xxx_verbose & VERBOSE_PROBE2)
9267 {
9268 printk("aic7xxx: Initial PCI_COMMAND value was 0x%x\n",
9269 (int)command);
9270 }
9271#ifdef AIC7XXX_STRICT_PCI_SETUP
9272 command |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
9273 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
9274#else
9275 command |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
9276#endif
9277 command &= ~PCI_COMMAND_INVALIDATE;
9278 if (aic7xxx_pci_parity == 0)
9279 command &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
9280 pci_write_config_word(pdev, PCI_COMMAND, command);
9281#ifdef AIC7XXX_STRICT_PCI_SETUP
9282 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9283 if (aic7xxx_verbose & VERBOSE_PROBE2)
9284 {
9285 printk("aic7xxx: Initial DEVCONFIG value was 0x%x\n", devconfig);
9286 }
9287 devconfig |= 0x80000040;
9288 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9289#endif /* AIC7XXX_STRICT_PCI_SETUP */
9290
9291 temp_p->unpause = INTEN;
9292 temp_p->pause = temp_p->unpause | PAUSE;
9293 if ( ((temp_p->base == 0) &&
9294 (temp_p->mbase == 0)) ||
9295 (temp_p->irq == 0) )
9296 {
9297 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9298 board_names[aic_pdevs[i].board_name_index],
9299 temp_p->pci_bus,
9300 PCI_SLOT(temp_p->pci_device_fn),
9301 PCI_FUNC(temp_p->pci_device_fn));
9302 printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9303 goto skip_pci_controller;
9304 }
9305
9306#ifdef MMAPIO
9307 if ( !(temp_p->base) || !(temp_p->flags & AHC_MULTI_CHANNEL) ||
9308 ((temp_p->chip != (AHC_AIC7870 | AHC_PCI)) &&
9309 (temp_p->chip != (AHC_AIC7880 | AHC_PCI))) )
9310 {
9311 temp_p->maddr = ioremap_nocache(temp_p->mbase, 256);
9312 if(temp_p->maddr)
9313 {
9314 /*
9315 * We need to check the I/O with the MMAPed address. Some machines
9316 * simply fail to work with MMAPed I/O and certain controllers.
9317 */
9318 if(aic_inb(temp_p, HCNTRL) == 0xff)
9319 {
9320 /*
9321 * OK.....we failed our test....go back to programmed I/O
9322 */
9323 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9324 board_names[aic_pdevs[i].board_name_index],
9325 temp_p->pci_bus,
9326 PCI_SLOT(temp_p->pci_device_fn),
9327 PCI_FUNC(temp_p->pci_device_fn));
9328 printk(KERN_INFO "aic7xxx: MMAPed I/O failed, reverting to "
9329 "Programmed I/O.\n");
9330 iounmap(temp_p->maddr);
9331 temp_p->maddr = NULL;
9332 if(temp_p->base == 0)
9333 {
9334 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9335 board_names[aic_pdevs[i].board_name_index],
9336 temp_p->pci_bus,
9337 PCI_SLOT(temp_p->pci_device_fn),
9338 PCI_FUNC(temp_p->pci_device_fn));
9339 printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9340 goto skip_pci_controller;
9341 }
9342 }
9343 }
9344 }
9345#endif
9346
9347 /*
9348 * We HAVE to make sure the first pause_sequencer() and all other
9349 * subsequent I/O that isn't PCI config space I/O takes place
9350 * after the MMAPed I/O region is configured and tested. The
9351 * problem is the PowerPC architecture that doesn't support
9352 * programmed I/O at all, so we have to have the MMAP I/O set up
9353 * for this pause to even work on those machines.
9354 */
9355 pause_sequencer(temp_p);
9356
9357 /*
9358 * Clear out any pending PCI error status messages. Also set
9359 * verbose to 0 so that we don't emit strange PCI error messages
9360 * while cleaning out the current status bits.
9361 */
9362 oldverbose = aic7xxx_verbose;
9363 aic7xxx_verbose = 0;
9364 aic7xxx_pci_intr(temp_p);
9365 aic7xxx_verbose = oldverbose;
9366
9367 temp_p->bios_address = 0;
9368
9369 /*
9370 * Remember how the card was setup in case there is no seeprom.
9371 */
9372 if (temp_p->features & AHC_ULTRA2)
9373 temp_p->scsi_id = aic_inb(temp_p, SCSIID_ULTRA2) & OID;
9374 else
9375 temp_p->scsi_id = aic_inb(temp_p, SCSIID) & OID;
9376 /*
9377 * Get current termination setting
9378 */
9379 sxfrctl1 = aic_inb(temp_p, SXFRCTL1);
9380
9381 if (aic7xxx_chip_reset(temp_p) == -1)
9382 {
9383 goto skip_pci_controller;
9384 }
9385 /*
9386 * Very quickly put the term setting back into the register since
9387 * the chip reset may cause odd things to happen. This is to keep
9388 * LVD busses with lots of drives from draining the power out of
9389 * the diffsense line before we get around to running the
9390 * configure_termination() function. Also restore the STPWLEVEL
9391 * bit of DEVCONFIG
9392 */
9393 aic_outb(temp_p, sxfrctl1, SXFRCTL1);
9394 pci_write_config_dword(temp_p->pdev, DEVCONFIG, devconfig);
9395 sxfrctl1 &= STPWEN;
9396
9397 /*
9398 * We need to set the CHNL? assignments before loading the SEEPROM
9399 * The 3940 and 3985 cards (original stuff, not any of the later
9400 * stuff) are 7870 and 7880 class chips. The Ultra2 stuff falls
9401 * under 7896 and 7897. The 7895 is in a class by itself :)
9402 */
9403 switch (temp_p->chip & AHC_CHIPID_MASK)
9404 {
9405 case AHC_AIC7870: /* 3840 / 3985 */
9406 case AHC_AIC7880: /* 3840 UW / 3985 UW */
9407 if(temp_p->flags & AHC_MULTI_CHANNEL)
9408 {
9409 switch(PCI_SLOT(temp_p->pci_device_fn))
9410 {
9411 case 5:
9412 temp_p->flags |= AHC_CHNLB;
9413 break;
9414 case 8:
9415 temp_p->flags |= AHC_CHNLB;
9416 break;
9417 case 12:
9418 temp_p->flags |= AHC_CHNLC;
9419 break;
9420 default:
9421 break;
9422 }
9423 }
9424 break;
9425
9426 case AHC_AIC7895: /* 7895 */
9427 case AHC_AIC7896: /* 7896/7 */
9428 case AHC_AIC7899: /* 7899 */
9429 if (PCI_FUNC(pdev->devfn) != 0)
9430 {
9431 temp_p->flags |= AHC_CHNLB;
9432 }
9433 /*
9434 * The 7895 is the only chipset that sets the SCBSIZE32 param
9435 * in the DEVCONFIG register. The Ultra2 chipsets use
9436 * the DSCOMMAND0 register instead.
9437 */
9438 if ((temp_p->chip & AHC_CHIPID_MASK) == AHC_AIC7895)
9439 {
9440 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9441 devconfig |= SCBSIZE32;
9442 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9443 }
9444 break;
9445 default:
9446 break;
9447 }
9448
9449 /*
9450 * Loading of the SEEPROM needs to come after we've set the flags
9451 * to indicate possible CHNLB and CHNLC assigments. Otherwise,
9452 * on 394x and 398x cards we'll end up reading the wrong settings
9453 * for channels B and C
9454 */
9455 switch (temp_p->chip & AHC_CHIPID_MASK)
9456 {
9457 case AHC_AIC7892:
9458 case AHC_AIC7899:
9459 aic_outb(temp_p, 0, SCAMCTL);
9460 /*
9461 * Switch to the alt mode of the chip...
9462 */
9463 aic_outb(temp_p, aic_inb(temp_p, SFUNCT) | ALT_MODE, SFUNCT);
9464 /*
9465 * Set our options...the last two items set our CRC after x byte
9466 * count in target mode...
9467 */
9468 aic_outb(temp_p, AUTO_MSGOUT_DE | DIS_MSGIN_DUALEDGE, OPTIONMODE);
9469 aic_outb(temp_p, 0x00, 0x0b);
9470 aic_outb(temp_p, 0x10, 0x0a);
9471 /*
9472 * switch back to normal mode...
9473 */
9474 aic_outb(temp_p, aic_inb(temp_p, SFUNCT) & ~ALT_MODE, SFUNCT);
9475 aic_outb(temp_p, CRCVALCHKEN | CRCENDCHKEN | CRCREQCHKEN |
9476 TARGCRCENDEN | TARGCRCCNTEN,
9477 CRCCONTROL1);
9478 aic_outb(temp_p, ((aic_inb(temp_p, DSCOMMAND0) | USCBSIZE32 |
9479 MPARCKEN | CIOPARCKEN | CACHETHEN) &
9480 ~DPARCKEN), DSCOMMAND0);
9481 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9482 break;
9483 case AHC_AIC7890:
9484 case AHC_AIC7896:
9485 aic_outb(temp_p, 0, SCAMCTL);
9486 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9487 CACHETHEN | MPARCKEN | USCBSIZE32 |
9488 CIOPARCKEN) & ~DPARCKEN, DSCOMMAND0);
9489 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9490 break;
9491 case AHC_AIC7850:
9492 case AHC_AIC7860:
9493 /*
9494 * Set the DSCOMMAND0 register on these cards different from
9495 * on the 789x cards. Also, read the SEEPROM as well.
9496 */
9497 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9498 CACHETHEN | MPARCKEN) & ~DPARCKEN,
9499 DSCOMMAND0);
9500 /* FALLTHROUGH */
9501 default:
9502 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9503 break;
9504 case AHC_AIC7880:
9505 /*
9506 * Check the rev of the chipset before we change DSCOMMAND0
9507 */
9508 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9509 if ((devconfig & 0xff) >= 1)
9510 {
9511 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9512 CACHETHEN | MPARCKEN) & ~DPARCKEN,
9513 DSCOMMAND0);
9514 }
9515 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9516 break;
9517 }
9518
9519
9520 /*
9521 * and then we need another switch based on the type in order to
9522 * make sure the channel B primary flag is set properly on 7895
9523 * controllers....Arrrgggghhh!!! We also have to catch the fact
9524 * that when you disable the BIOS on the 7895 on the Intel DK440LX
9525 * motherboard, and possibly others, it only sets the BIOS disabled
9526 * bit on the A channel...I think I'm starting to lean towards
9527 * going postal....
9528 */
9529 switch(temp_p->chip & AHC_CHIPID_MASK)
9530 {
9531 case AHC_AIC7895:
9532 case AHC_AIC7896:
9533 case AHC_AIC7899:
9534 current_p = list_p;
9535 while(current_p != NULL)
9536 {
9537 if ( (current_p->pci_bus == temp_p->pci_bus) &&
9538 (PCI_SLOT(current_p->pci_device_fn) ==
9539 PCI_SLOT(temp_p->pci_device_fn)) )
9540 {
9541 if ( PCI_FUNC(current_p->pci_device_fn) == 0 )
9542 {
9543 temp_p->flags |=
9544 (current_p->flags & AHC_CHANNEL_B_PRIMARY);
9545 temp_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9546 temp_p->flags |=
9547 (current_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9548 }
9549 else
9550 {
9551 current_p->flags |=
9552 (temp_p->flags & AHC_CHANNEL_B_PRIMARY);
9553 current_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9554 current_p->flags |=
9555 (temp_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9556 }
9557 }
9558 current_p = current_p->next;
9559 }
9560 break;
9561 default:
9562 break;
9563 }
9564
9565 /*
9566 * We only support external SCB RAM on the 7895/6/7 chipsets.
9567 * We could support it on the 7890/1 easy enough, but I don't
9568 * know of any 7890/1 based cards that have it. I do know
9569 * of 7895/6/7 cards that have it and they work properly.
9570 */
9571 switch(temp_p->chip & AHC_CHIPID_MASK)
9572 {
9573 default:
9574 break;
9575 case AHC_AIC7895:
9576 case AHC_AIC7896:
9577 case AHC_AIC7899:
9578 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9579 if (temp_p->features & AHC_ULTRA2)
9580 {
9581 if ( (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2) &&
9582 (aic7xxx_scbram) )
9583 {
9584 aic_outb(temp_p,
9585 aic_inb(temp_p, DSCOMMAND0) & ~SCBRAMSEL_ULTRA2,
9586 DSCOMMAND0);
9587 temp_p->flags |= AHC_EXTERNAL_SRAM;
9588 devconfig |= EXTSCBPEN;
9589 }
9590 else if (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2)
9591 {
9592 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9593 board_names[aic_pdevs[i].board_name_index],
9594 temp_p->pci_bus,
9595 PCI_SLOT(temp_p->pci_device_fn),
9596 PCI_FUNC(temp_p->pci_device_fn));
9597 printk("aic7xxx: external SCB RAM detected, "
9598 "but not enabled\n");
9599 }
9600 }
9601 else
9602 {
9603 if ((devconfig & RAMPSM) && (aic7xxx_scbram))
9604 {
9605 devconfig &= ~SCBRAMSEL;
9606 devconfig |= EXTSCBPEN;
9607 temp_p->flags |= AHC_EXTERNAL_SRAM;
9608 }
9609 else if (devconfig & RAMPSM)
9610 {
9611 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9612 board_names[aic_pdevs[i].board_name_index],
9613 temp_p->pci_bus,
9614 PCI_SLOT(temp_p->pci_device_fn),
9615 PCI_FUNC(temp_p->pci_device_fn));
9616 printk("aic7xxx: external SCB RAM detected, "
9617 "but not enabled\n");
9618 }
9619 }
9620 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9621 if ( (temp_p->flags & AHC_EXTERNAL_SRAM) &&
9622 (temp_p->flags & AHC_CHNLB) )
9623 aic_outb(temp_p, 1, CCSCBBADDR);
9624 break;
9625 }
9626
9627 /*
9628 * Take the LED out of diagnostic mode
9629 */
9630 aic_outb(temp_p,
9631 (aic_inb(temp_p, SBLKCTL) & ~(DIAGLEDEN | DIAGLEDON)),
9632 SBLKCTL);
9633
9634 /*
9635 * We don't know where this is set in the SEEPROM or by the
9636 * BIOS, so we default to 100%. On Ultra2 controllers, use 75%
9637 * instead.
9638 */
9639 if (temp_p->features & AHC_ULTRA2)
9640 {
9641 aic_outb(temp_p, RD_DFTHRSH_MAX | WR_DFTHRSH_MAX, DFF_THRSH);
9642 }
9643 else
9644 {
9645 aic_outb(temp_p, DFTHRSH_100, DSPCISTATUS);
9646 }
9647
9648 /*
9649 * Call our function to fixup any bugs that exist on this chipset.
9650 * This may muck with PCI settings and other device settings, so
9651 * make sure it's after all the other PCI and device register
9652 * tweaks so it can back out bad settings on specific broken cards.
9653 */
9654 aic7xxx_configure_bugs(temp_p);
9655
9656 if ( list_p == NULL )
9657 {
9658 list_p = current_p = temp_p;
9659 }
9660 else
9661 {
9662 current_p = list_p;
9663 while(current_p->next != NULL)
9664 current_p = current_p->next;
9665 current_p->next = temp_p;
9666 }
9667 temp_p->next = NULL;
9668 found++;
9669 continue;
9670skip_pci_controller:
9671#ifdef CONFIG_PCI
9672 pci_release_regions(temp_p->pdev);
9673#endif
9674 kfree(temp_p);
9675 } /* Found an Adaptec PCI device. */
9676 else /* Well, we found one, but we couldn't get any memory */
9677 {
9678 printk("aic7xxx: Found <%s>\n",
9679 board_names[aic_pdevs[i].board_name_index]);
9680 printk(KERN_INFO "aic7xxx: Unable to allocate device memory, "
9681 "skipping.\n");
9682 }
9683 } /* while(pdev=....) */
9684 } /* for PCI_DEVICES */
9685 }
9686#endif /* CONFIG_PCI */
9687
9688#if defined(__i386__) || defined(__alpha__)
9689 /*
9690 * EISA/VL-bus card signature probe.
9691 */
9692 slot = MINSLOT;
9693 while ( (slot <= MAXSLOT) &&
9694 !(aic7xxx_no_probe) )
9695 {
9696 base = SLOTBASE(slot) + MINREG;
9697
9698 if (!request_region(base, MAXREG - MINREG, "aic7xxx"))
9699 {
9700 /*
9701 * Some other driver has staked a
9702 * claim to this i/o region already.
9703 */
9704 slot++;
9705 continue; /* back to the beginning of the for loop */
9706 }
9707 flags = 0;
9708 type = aic7xxx_probe(slot, base + AHC_HID0, &flags);
9709 if (type == -1)
9710 {
9711 release_region(base, MAXREG - MINREG);
9712 slot++;
9713 continue;
9714 }
9715 temp_p = kmalloc(sizeof(struct aic7xxx_host), GFP_ATOMIC);
9716 if (temp_p == NULL)
9717 {
9718 printk(KERN_WARNING "aic7xxx: Unable to allocate device space.\n");
9719 release_region(base, MAXREG - MINREG);
9720 slot++;
9721 continue; /* back to the beginning of the while loop */
9722 }
9723
9724 /*
9725 * Pause the card preserving the IRQ type. Allow the operator
9726 * to override the IRQ trigger.
9727 */
9728 if (aic7xxx_irq_trigger == 1)
9729 hcntrl = IRQMS; /* Level */
9730 else if (aic7xxx_irq_trigger == 0)
9731 hcntrl = 0; /* Edge */
9732 else
9733 hcntrl = inb(base + HCNTRL) & IRQMS; /* Default */
9734 memset(temp_p, 0, sizeof(struct aic7xxx_host));
9735 temp_p->unpause = hcntrl | INTEN;
9736 temp_p->pause = hcntrl | PAUSE | INTEN;
9737 temp_p->base = base;
9738 temp_p->mbase = 0;
9739 temp_p->maddr = NULL;
9740 temp_p->pci_bus = 0;
9741 temp_p->pci_device_fn = slot;
9742 aic_outb(temp_p, hcntrl | PAUSE, HCNTRL);
9743 while( (aic_inb(temp_p, HCNTRL) & PAUSE) == 0 ) ;
9744 if (aic7xxx_chip_reset(temp_p) == -1)
9745 temp_p->irq = 0;
9746 else
9747 temp_p->irq = aic_inb(temp_p, INTDEF) & 0x0F;
9748 temp_p->flags |= AHC_PAGESCBS;
9749
9750 switch (temp_p->irq)
9751 {
9752 case 9:
9753 case 10:
9754 case 11:
9755 case 12:
9756 case 14:
9757 case 15:
9758 break;
9759
9760 default:
9761 printk(KERN_WARNING "aic7xxx: Host adapter uses unsupported IRQ "
9762 "level %d, ignoring.\n", temp_p->irq);
9763 kfree(temp_p);
9764 release_region(base, MAXREG - MINREG);
9765 slot++;
9766 continue; /* back to the beginning of the while loop */
9767 }
9768
9769 /*
9770 * We are commited now, everything has been checked and this card
9771 * has been found, now we just set it up
9772 */
9773
9774 /*
9775 * Insert our new struct into the list at the end
9776 */
9777 if (list_p == NULL)
9778 {
9779 list_p = current_p = temp_p;
9780 }
9781 else
9782 {
9783 current_p = list_p;
9784 while (current_p->next != NULL)
9785 current_p = current_p->next;
9786 current_p->next = temp_p;
9787 }
9788
9789 switch (type)
9790 {
9791 case 0:
9792 temp_p->board_name_index = 2;
9793 if (aic7xxx_verbose & VERBOSE_PROBE2)
9794 printk("aic7xxx: <%s> at EISA %d\n",
9795 board_names[2], slot);
9796 /* FALLTHROUGH */
9797 case 1:
9798 {
9799 temp_p->chip = AHC_AIC7770 | AHC_EISA;
9800 temp_p->features |= AHC_AIC7770_FE;
9801 temp_p->bios_control = aic_inb(temp_p, HA_274_BIOSCTRL);
9802
9803 /*
9804 * Get the primary channel information. Right now we don't
9805 * do anything with this, but someday we will be able to inform
9806 * the mid-level SCSI code which channel is primary.
9807 */
9808 if (temp_p->board_name_index == 0)
9809 {
9810 temp_p->board_name_index = 3;
9811 if (aic7xxx_verbose & VERBOSE_PROBE2)
9812 printk("aic7xxx: <%s> at EISA %d\n",
9813 board_names[3], slot);
9814 }
9815 if (temp_p->bios_control & CHANNEL_B_PRIMARY)
9816 {
9817 temp_p->flags |= AHC_CHANNEL_B_PRIMARY;
9818 }
9819
9820 if ((temp_p->bios_control & BIOSMODE) == BIOSDISABLED)
9821 {
9822 temp_p->flags &= ~AHC_BIOS_ENABLED;
9823 }
9824 else
9825 {
9826 temp_p->flags &= ~AHC_USEDEFAULTS;
9827 temp_p->flags |= AHC_BIOS_ENABLED;
9828 if ( (temp_p->bios_control & 0x20) == 0 )
9829 {
9830 temp_p->bios_address = 0xcc000;
9831 temp_p->bios_address += (0x4000 * (temp_p->bios_control & 0x07));
9832 }
9833 else
9834 {
9835 temp_p->bios_address = 0xd0000;
9836 temp_p->bios_address += (0x8000 * (temp_p->bios_control & 0x06));
9837 }
9838 }
9839 temp_p->adapter_control = aic_inb(temp_p, SCSICONF) << 8;
9840 temp_p->adapter_control |= aic_inb(temp_p, SCSICONF + 1);
9841 if (temp_p->features & AHC_WIDE)
9842 {
9843 temp_p->scsi_id = temp_p->adapter_control & HWSCSIID;
9844 temp_p->scsi_id_b = temp_p->scsi_id;
9845 }
9846 else
9847 {
9848 temp_p->scsi_id = (temp_p->adapter_control >> 8) & HSCSIID;
9849 temp_p->scsi_id_b = temp_p->adapter_control & HSCSIID;
9850 }
9851 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9852 break;
9853 }
9854
9855 case 2:
9856 case 3:
9857 temp_p->chip = AHC_AIC7770 | AHC_VL;
9858 temp_p->features |= AHC_AIC7770_FE;
9859 if (type == 2)
9860 temp_p->flags |= AHC_BIOS_ENABLED;
9861 else
9862 temp_p->flags &= ~AHC_BIOS_ENABLED;
9863 if (aic_inb(temp_p, SCSICONF) & TERM_ENB)
9864 sxfrctl1 = STPWEN;
9865 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9866 temp_p->board_name_index = 4;
9867 if (aic7xxx_verbose & VERBOSE_PROBE2)
9868 printk("aic7xxx: <%s> at VLB %d\n",
9869 board_names[2], slot);
9870 switch( aic_inb(temp_p, STATUS_2840) & BIOS_SEL )
9871 {
9872 case 0x00:
9873 temp_p->bios_address = 0xe0000;
9874 break;
9875 case 0x20:
9876 temp_p->bios_address = 0xc8000;
9877 break;
9878 case 0x40:
9879 temp_p->bios_address = 0xd0000;
9880 break;
9881 case 0x60:
9882 temp_p->bios_address = 0xd8000;
9883 break;
9884 default:
9885 break; /* can't get here */
9886 }
9887 break;
9888
9889 default: /* Won't get here. */
9890 break;
9891 }
9892 if (aic7xxx_verbose & VERBOSE_PROBE2)
9893 {
9894 printk(KERN_INFO "aic7xxx: BIOS %sabled, IO Port 0x%lx, IRQ %d (%s)\n",
9895 (temp_p->flags & AHC_USEDEFAULTS) ? "dis" : "en", temp_p->base,
9896 temp_p->irq,
9897 (temp_p->pause & IRQMS) ? "level sensitive" : "edge triggered");
9898 printk(KERN_INFO "aic7xxx: Extended translation %sabled.\n",
9899 (temp_p->flags & AHC_EXTEND_TRANS_A) ? "en" : "dis");
9900 }
9901
9902 /*
9903 * All the 7770 based chipsets have this bug
9904 */
9905 temp_p->bugs |= AHC_BUG_TMODE_WIDEODD;
9906
9907 /*
9908 * Set the FIFO threshold and the bus off time.
9909 */
9910 hostconf = aic_inb(temp_p, HOSTCONF);
9911 aic_outb(temp_p, hostconf & DFTHRSH, BUSSPD);
9912 aic_outb(temp_p, (hostconf << 2) & BOFF, BUSTIME);
9913 slot++;
9914 found++;
9915 }
9916
9917#endif /* defined(__i386__) || defined(__alpha__) */
9918
9919 /*
9920 * Now, we re-order the probed devices by BIOS address and BUS class.
9921 * In general, we follow this algorithm to make the adapters show up
9922 * in the same order under linux that the computer finds them.
9923 * 1: All VLB/EISA cards with BIOS_ENABLED first, according to BIOS
9924 * address, going from lowest to highest.
9925 * 2: All PCI controllers with BIOS_ENABLED next, according to BIOS
9926 * address, going from lowest to highest.
9927 * 3: Remaining VLB/EISA controllers going in slot order.
9928 * 4: Remaining PCI controllers, going in PCI device order (reversable)
9929 */
9930
9931 {
9932 struct aic7xxx_host *sort_list[4] = { NULL, NULL, NULL, NULL };
9933 struct aic7xxx_host *vlb, *pci;
9934 struct aic7xxx_host *prev_p;
9935 struct aic7xxx_host *p;
9936 unsigned char left;
9937
9938 prev_p = vlb = pci = NULL;
9939
9940 temp_p = list_p;
9941 while (temp_p != NULL)
9942 {
9943 switch(temp_p->chip & ~AHC_CHIPID_MASK)
9944 {
9945 case AHC_EISA:
9946 case AHC_VL:
9947 {
9948 p = temp_p;
9949 if (p->flags & AHC_BIOS_ENABLED)
9950 vlb = sort_list[0];
9951 else
9952 vlb = sort_list[2];
9953
9954 if (vlb == NULL)
9955 {
9956 vlb = temp_p;
9957 temp_p = temp_p->next;
9958 vlb->next = NULL;
9959 }
9960 else
9961 {
9962 current_p = vlb;
9963 prev_p = NULL;
9964 while ( (current_p != NULL) &&
9965 (current_p->bios_address < temp_p->bios_address))
9966 {
9967 prev_p = current_p;
9968 current_p = current_p->next;
9969 }
9970 if (prev_p != NULL)
9971 {
9972 prev_p->next = temp_p;
9973 temp_p = temp_p->next;
9974 prev_p->next->next = current_p;
9975 }
9976 else
9977 {
9978 vlb = temp_p;
9979 temp_p = temp_p->next;
9980 vlb->next = current_p;
9981 }
9982 }
9983
9984 if (p->flags & AHC_BIOS_ENABLED)
9985 sort_list[0] = vlb;
9986 else
9987 sort_list[2] = vlb;
9988
9989 break;
9990 }
9991 default: /* All PCI controllers fall through to default */
9992 {
9993
9994 p = temp_p;
9995 if (p->flags & AHC_BIOS_ENABLED)
9996 pci = sort_list[1];
9997 else
9998 pci = sort_list[3];
9999
10000 if (pci == NULL)
10001 {
10002 pci = temp_p;
10003 temp_p = temp_p->next;
10004 pci->next = NULL;
10005 }
10006 else
10007 {
10008 current_p = pci;
10009 prev_p = NULL;
10010 if (!aic7xxx_reverse_scan)
10011 {
10012 while ( (current_p != NULL) &&
10013 ( (PCI_SLOT(current_p->pci_device_fn) |
10014 (current_p->pci_bus << 8)) <
10015 (PCI_SLOT(temp_p->pci_device_fn) |
10016 (temp_p->pci_bus << 8)) ) )
10017 {
10018 prev_p = current_p;
10019 current_p = current_p->next;
10020 }
10021 }
10022 else
10023 {
10024 while ( (current_p != NULL) &&
10025 ( (PCI_SLOT(current_p->pci_device_fn) |
10026 (current_p->pci_bus << 8)) >
10027 (PCI_SLOT(temp_p->pci_device_fn) |
10028 (temp_p->pci_bus << 8)) ) )
10029 {
10030 prev_p = current_p;
10031 current_p = current_p->next;
10032 }
10033 }
10034 /*
10035 * Are we dealing with a 7895/6/7/9 where we need to sort the
10036 * channels as well, if so, the bios_address values should
10037 * be the same
10038 */
10039 if ( (current_p) && (temp_p->flags & AHC_MULTI_CHANNEL) &&
10040 (temp_p->pci_bus == current_p->pci_bus) &&
10041 (PCI_SLOT(temp_p->pci_device_fn) ==
10042 PCI_SLOT(current_p->pci_device_fn)) )
10043 {
10044 if (temp_p->flags & AHC_CHNLB)
10045 {
10046 if ( !(temp_p->flags & AHC_CHANNEL_B_PRIMARY) )
10047 {
10048 prev_p = current_p;
10049 current_p = current_p->next;
10050 }
10051 }
10052 else
10053 {
10054 if (temp_p->flags & AHC_CHANNEL_B_PRIMARY)
10055 {
10056 prev_p = current_p;
10057 current_p = current_p->next;
10058 }
10059 }
10060 }
10061 if (prev_p != NULL)
10062 {
10063 prev_p->next = temp_p;
10064 temp_p = temp_p->next;
10065 prev_p->next->next = current_p;
10066 }
10067 else
10068 {
10069 pci = temp_p;
10070 temp_p = temp_p->next;
10071 pci->next = current_p;
10072 }
10073 }
10074
10075 if (p->flags & AHC_BIOS_ENABLED)
10076 sort_list[1] = pci;
10077 else
10078 sort_list[3] = pci;
10079
10080 break;
10081 }
10082 } /* End of switch(temp_p->type) */
10083 } /* End of while (temp_p != NULL) */
10084 /*
10085 * At this point, the cards have been broken into 4 sorted lists, now
10086 * we run through the lists in order and register each controller
10087 */
10088 {
10089 int i;
10090
10091 left = found;
10092 for (i=0; i<ARRAY_SIZE(sort_list); i++)
10093 {
10094 temp_p = sort_list[i];
10095 while(temp_p != NULL)
10096 {
10097 template->name = board_names[temp_p->board_name_index];
10098 p = aic7xxx_alloc(template, temp_p);
10099 if (p != NULL)
10100 {
10101 p->instance = found - left;
10102 if (aic7xxx_register(template, p, (--left)) == 0)
10103 {
10104 found--;
10105 aic7xxx_release(p->host);
10106 scsi_unregister(p->host);
10107 }
10108 else if (aic7xxx_dump_card)
10109 {
10110 pause_sequencer(p);
10111 aic7xxx_print_card(p);
10112 aic7xxx_print_scratch_ram(p);
10113 unpause_sequencer(p, TRUE);
10114 }
10115 }
10116 current_p = temp_p;
10117 temp_p = (struct aic7xxx_host *)temp_p->next;
10118 kfree(current_p);
10119 }
10120 }
10121 }
10122 }
10123 return (found);
10124}
10125
10126/*+F*************************************************************************
10127 * Function:
10128 * aic7xxx_buildscb
10129 *
10130 * Description:
10131 * Build a SCB.
10132 *-F*************************************************************************/
10133static void
10134aic7xxx_buildscb(struct aic7xxx_host *p, Scsi_Cmnd *cmd,
10135 struct aic7xxx_scb *scb)
10136{
10137 unsigned short mask;
10138 struct aic7xxx_hwscb *hscb;
10139 struct aic_dev_data *aic_dev = cmd->device->hostdata;
10140 struct scsi_device *sdptr = cmd->device;
10141 unsigned char tindex = TARGET_INDEX(cmd);
10142 struct request *req = cmd->request;
10143
10144 mask = (0x01 << tindex);
10145 hscb = scb->hscb;
10146
10147 /*
10148 * Setup the control byte if we need negotiation and have not
10149 * already requested it.
10150 */
10151 hscb->control = 0;
10152 scb->tag_action = 0;
10153
10154 if (p->discenable & mask)
10155 {
10156 hscb->control |= DISCENB;
10157 /* We always force TEST_UNIT_READY to untagged */
10158 if (cmd->cmnd[0] != TEST_UNIT_READY && sdptr->simple_tags)
10159 {
10160 if (req->flags & REQ_HARDBARRIER)
10161 {
10162 if(sdptr->ordered_tags)
10163 {
10164 hscb->control |= MSG_ORDERED_Q_TAG;
10165 scb->tag_action = MSG_ORDERED_Q_TAG;
10166 }
10167 }
10168 else
10169 {
10170 hscb->control |= MSG_SIMPLE_Q_TAG;
10171 scb->tag_action = MSG_SIMPLE_Q_TAG;
10172 }
10173 }
10174 }
10175 if ( !(aic_dev->dtr_pending) &&
10176 (aic_dev->needppr || aic_dev->needwdtr || aic_dev->needsdtr) &&
10177 (aic_dev->flags & DEVICE_DTR_SCANNED) )
10178 {
10179 aic_dev->dtr_pending = 1;
10180 scb->tag_action = 0;
10181 hscb->control &= DISCENB;
10182 hscb->control |= MK_MESSAGE;
10183 if(aic_dev->needppr)
10184 {
10185 scb->flags |= SCB_MSGOUT_PPR;
10186 }
10187 else if(aic_dev->needwdtr)
10188 {
10189 scb->flags |= SCB_MSGOUT_WDTR;
10190 }
10191 else if(aic_dev->needsdtr)
10192 {
10193 scb->flags |= SCB_MSGOUT_SDTR;
10194 }
10195 scb->flags |= SCB_DTR_SCB;
10196 }
10197 hscb->target_channel_lun = ((cmd->device->id << 4) & 0xF0) |
10198 ((cmd->device->channel & 0x01) << 3) | (cmd->device->lun & 0x07);
10199
10200 /*
10201 * The interpretation of request_buffer and request_bufflen
10202 * changes depending on whether or not use_sg is zero; a
10203 * non-zero use_sg indicates the number of elements in the
10204 * scatter-gather array.
10205 */
10206
10207 /*
10208 * XXX - this relies on the host data being stored in a
10209 * little-endian format.
10210 */
10211 hscb->SCSI_cmd_length = cmd->cmd_len;
10212 memcpy(scb->cmnd, cmd->cmnd, cmd->cmd_len);
10213 hscb->SCSI_cmd_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, scb->cmnd));
10214
10215 if (cmd->use_sg)
10216 {
10217 struct scatterlist *sg; /* Must be mid-level SCSI code scatterlist */
10218
10219 /*
10220 * We must build an SG list in adapter format, as the kernel's SG list
10221 * cannot be used directly because of data field size (__alpha__)
10222 * differences and the kernel SG list uses virtual addresses where
10223 * we need physical addresses.
10224 */
10225 int i, use_sg;
10226
10227 sg = (struct scatterlist *)cmd->request_buffer;
10228 scb->sg_length = 0;
be7db055 10229 use_sg = pci_map_sg(p->pdev, sg, cmd->use_sg, cmd->sc_data_direction);
1da177e4
LT
10230 /*
10231 * Copy the segments into the SG array. NOTE!!! - We used to
10232 * have the first entry both in the data_pointer area and the first
10233 * SG element. That has changed somewhat. We still have the first
10234 * entry in both places, but now we download the address of
10235 * scb->sg_list[1] instead of 0 to the sg pointer in the hscb.
10236 */
10237 for (i = 0; i < use_sg; i++)
10238 {
10239 unsigned int len = sg_dma_len(sg+i);
10240 scb->sg_list[i].address = cpu_to_le32(sg_dma_address(sg+i));
10241 scb->sg_list[i].length = cpu_to_le32(len);
10242 scb->sg_length += len;
10243 }
10244 /* Copy the first SG into the data pointer area. */
10245 hscb->data_pointer = scb->sg_list[0].address;
10246 hscb->data_count = scb->sg_list[0].length;
10247 scb->sg_count = i;
10248 hscb->SG_segment_count = i;
10249 hscb->SG_list_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, &scb->sg_list[1]));
10250 }
10251 else
10252 {
10253 if (cmd->request_bufflen)
10254 {
10255 unsigned int address = pci_map_single(p->pdev, cmd->request_buffer,
10256 cmd->request_bufflen,
be7db055 10257 cmd->sc_data_direction);
1da177e4
LT
10258 aic7xxx_mapping(cmd) = address;
10259 scb->sg_list[0].address = cpu_to_le32(address);
10260 scb->sg_list[0].length = cpu_to_le32(cmd->request_bufflen);
10261 scb->sg_count = 1;
10262 scb->sg_length = cmd->request_bufflen;
10263 hscb->SG_segment_count = 1;
10264 hscb->SG_list_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, &scb->sg_list[0]));
10265 hscb->data_count = scb->sg_list[0].length;
10266 hscb->data_pointer = scb->sg_list[0].address;
10267 }
10268 else
10269 {
10270 scb->sg_count = 0;
10271 scb->sg_length = 0;
10272 hscb->SG_segment_count = 0;
10273 hscb->SG_list_pointer = 0;
10274 hscb->data_count = 0;
10275 hscb->data_pointer = 0;
10276 }
10277 }
10278}
10279
10280/*+F*************************************************************************
10281 * Function:
10282 * aic7xxx_queue
10283 *
10284 * Description:
10285 * Queue a SCB to the controller.
10286 *-F*************************************************************************/
10287static int
10288aic7xxx_queue(Scsi_Cmnd *cmd, void (*fn)(Scsi_Cmnd *))
10289{
10290 struct aic7xxx_host *p;
10291 struct aic7xxx_scb *scb;
10292 struct aic_dev_data *aic_dev;
10293
10294 p = (struct aic7xxx_host *) cmd->device->host->hostdata;
10295
10296 aic_dev = cmd->device->hostdata;
10297#ifdef AIC7XXX_VERBOSE_DEBUGGING
10298 if (aic_dev->active_cmds > aic_dev->max_q_depth)
10299 {
10300 printk(WARN_LEAD "Commands queued exceeds queue "
10301 "depth, active=%d\n",
10302 p->host_no, CTL_OF_CMD(cmd),
10303 aic_dev->active_cmds);
10304 }
10305#endif
10306
10307 scb = scbq_remove_head(&p->scb_data->free_scbs);
10308 if (scb == NULL)
10309 {
10310 aic7xxx_allocate_scb(p);
10311 scb = scbq_remove_head(&p->scb_data->free_scbs);
10312 if(scb == NULL)
10313 {
10314 printk(WARN_LEAD "Couldn't get a free SCB.\n", p->host_no,
10315 CTL_OF_CMD(cmd));
10316 return 1;
10317 }
10318 }
10319 scb->cmd = cmd;
10320
10321 /*
10322 * Make sure the Scsi_Cmnd pointer is saved, the struct it points to
10323 * is set up properly, and the parity error flag is reset, then send
10324 * the SCB to the sequencer and watch the fun begin.
10325 */
10326 aic7xxx_position(cmd) = scb->hscb->tag;
10327 cmd->scsi_done = fn;
10328 cmd->result = DID_OK;
10329 memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
10330 aic7xxx_error(cmd) = DID_OK;
10331 aic7xxx_status(cmd) = 0;
10332 cmd->host_scribble = NULL;
10333
10334 /*
10335 * Construct the SCB beforehand, so the sequencer is
10336 * paused a minimal amount of time.
10337 */
10338 aic7xxx_buildscb(p, cmd, scb);
10339
10340 scb->flags |= SCB_ACTIVE | SCB_WAITINGQ;
10341
10342 scbq_insert_tail(&p->waiting_scbs, scb);
10343 aic7xxx_run_waiting_queues(p);
10344 return (0);
10345}
10346
10347/*+F*************************************************************************
10348 * Function:
10349 * aic7xxx_bus_device_reset
10350 *
10351 * Description:
10352 * Abort or reset the current SCSI command(s). If the scb has not
10353 * previously been aborted, then we attempt to send a BUS_DEVICE_RESET
10354 * message to the target. If the scb has previously been unsuccessfully
10355 * aborted, then we will reset the channel and have all devices renegotiate.
10356 * Returns an enumerated type that indicates the status of the operation.
10357 *-F*************************************************************************/
10358static int
94d0e7b8 10359__aic7xxx_bus_device_reset(Scsi_Cmnd *cmd)
1da177e4
LT
10360{
10361 struct aic7xxx_host *p;
10362 struct aic7xxx_scb *scb;
10363 struct aic7xxx_hwscb *hscb;
10364 int channel;
10365 unsigned char saved_scbptr, lastphase;
10366 unsigned char hscb_index;
10367 int disconnected;
10368 struct aic_dev_data *aic_dev;
10369
10370 if(cmd == NULL)
10371 {
10372 printk(KERN_ERR "aic7xxx_bus_device_reset: called with NULL cmd!\n");
10373 return FAILED;
10374 }
10375 p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10376 aic_dev = AIC_DEV(cmd);
10377 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10378 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10379 else
10380 return FAILED;
10381
10382 hscb = scb->hscb;
10383
10384 aic7xxx_isr(p->irq, (void *)p, NULL);
10385 aic7xxx_done_cmds_complete(p);
10386 /* If the command was already complete or just completed, then we didn't
10387 * do a reset, return FAILED */
10388 if(!(scb->flags & SCB_ACTIVE))
10389 return FAILED;
10390
10391 pause_sequencer(p);
10392 lastphase = aic_inb(p, LASTPHASE);
10393 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10394 {
10395 printk(INFO_LEAD "Bus Device reset, scb flags 0x%x, ",
10396 p->host_no, CTL_OF_SCB(scb), scb->flags);
10397 switch (lastphase)
10398 {
10399 case P_DATAOUT:
10400 printk("Data-Out phase\n");
10401 break;
10402 case P_DATAIN:
10403 printk("Data-In phase\n");
10404 break;
10405 case P_COMMAND:
10406 printk("Command phase\n");
10407 break;
10408 case P_MESGOUT:
10409 printk("Message-Out phase\n");
10410 break;
10411 case P_STATUS:
10412 printk("Status phase\n");
10413 break;
10414 case P_MESGIN:
10415 printk("Message-In phase\n");
10416 break;
10417 default:
10418 /*
10419 * We're not in a valid phase, so assume we're idle.
10420 */
10421 printk("while idle, LASTPHASE = 0x%x\n", lastphase);
10422 break;
10423 }
10424 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
10425 "0x%x\n", p->host_no, CTL_OF_SCB(scb),
10426 aic_inb(p, SCSISIGI),
10427 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10428 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
10429 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n", p->host_no,
10430 CTL_OF_SCB(scb),
10431 (p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
10432 aic_inb(p, SSTAT2),
10433 aic_inb(p, STCNT + 2) << 16 | aic_inb(p, STCNT + 1) << 8 |
10434 aic_inb(p, STCNT));
10435 }
10436
10437 channel = cmd->device->channel;
10438
10439 /*
10440 * Send a Device Reset Message:
10441 * The target that is holding up the bus may not be the same as
10442 * the one that triggered this timeout (different commands have
10443 * different timeout lengths). Our strategy here is to queue an
10444 * abort message to the timed out target if it is disconnected.
10445 * Otherwise, if we have an active target we stuff the message buffer
10446 * with an abort message and assert ATN in the hopes that the target
10447 * will let go of the bus and go to the mesgout phase. If this
10448 * fails, we'll get another timeout a few seconds later which will
10449 * attempt a bus reset.
10450 */
10451 saved_scbptr = aic_inb(p, SCBPTR);
10452 disconnected = FALSE;
10453
10454 if (lastphase != P_BUSFREE)
10455 {
10456 if (aic_inb(p, SCB_TAG) >= p->scb_data->numscbs)
10457 {
10458 printk(WARN_LEAD "Invalid SCB ID %d is active, "
10459 "SCB flags = 0x%x.\n", p->host_no,
10460 CTL_OF_CMD(cmd), scb->hscb->tag, scb->flags);
10461 unpause_sequencer(p, FALSE);
10462 return FAILED;
10463 }
10464 if (scb->hscb->tag == aic_inb(p, SCB_TAG))
10465 {
10466 if ( (lastphase == P_MESGOUT) || (lastphase == P_MESGIN) )
10467 {
10468 printk(WARN_LEAD "Device reset, Message buffer "
10469 "in use\n", p->host_no, CTL_OF_SCB(scb));
10470 unpause_sequencer(p, FALSE);
10471 return FAILED;
10472 }
10473
10474 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10475 printk(INFO_LEAD "Device reset message in "
10476 "message buffer\n", p->host_no, CTL_OF_SCB(scb));
10477 scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10478 aic7xxx_error(cmd) = DID_RESET;
10479 aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10480 /* Send the abort message to the active SCB. */
10481 aic_outb(p, HOST_MSG, MSG_OUT);
10482 aic_outb(p, lastphase | ATNO, SCSISIGO);
10483 unpause_sequencer(p, FALSE);
10484 spin_unlock_irq(p->host->host_lock);
10485 ssleep(1);
10486 spin_lock_irq(p->host->host_lock);
10487 if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10488 return FAILED;
10489 else
10490 return SUCCESS;
10491 }
10492 } /* if (last_phase != P_BUSFREE).....indicates we are idle and can work */
10493 /*
10494 * Simply set the MK_MESSAGE flag and the SEQINT handler will do
10495 * the rest on a reconnect/connect.
10496 */
10497 scb->hscb->control |= MK_MESSAGE;
10498 scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10499 aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10500 /*
10501 * Check to see if the command is on the qinfifo. If it is, then we will
10502 * not need to queue the command again since the card should start it soon
10503 */
10504 if (aic7xxx_search_qinfifo(p, cmd->device->channel, cmd->device->id, cmd->device->lun, hscb->tag,
10505 0, TRUE, NULL) == 0)
10506 {
10507 disconnected = TRUE;
10508 if ((hscb_index = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10509 {
10510 unsigned char scb_control;
10511
10512 aic_outb(p, hscb_index, SCBPTR);
10513 scb_control = aic_inb(p, SCB_CONTROL);
10514 /*
10515 * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10516 * actually on the waiting list, not disconnected, and we don't
10517 * need to requeue the command.
10518 */
10519 disconnected = (scb_control & DISCONNECTED);
10520 aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
10521 }
10522 if (disconnected)
10523 {
10524 /*
10525 * Actually requeue this SCB in case we can select the
10526 * device before it reconnects. This can result in the command
10527 * being on the qinfifo twice, but we don't care because it will
10528 * all get cleaned up if/when the reset takes place.
10529 */
10530 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10531 printk(INFO_LEAD "Queueing device reset command.\n", p->host_no,
10532 CTL_OF_SCB(scb));
10533 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10534 if (p->features & AHC_QUEUE_REGS)
10535 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10536 else
10537 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10538 scb->flags |= SCB_QUEUED_ABORT;
10539 }
10540 }
10541 aic_outb(p, saved_scbptr, SCBPTR);
10542 unpause_sequencer(p, FALSE);
10543 spin_unlock_irq(p->host->host_lock);
10544 msleep(1000/4);
10545 spin_lock_irq(p->host->host_lock);
10546 if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10547 return FAILED;
10548 else
10549 return SUCCESS;
10550}
10551
94d0e7b8
JG
10552static int
10553aic7xxx_bus_device_reset(Scsi_Cmnd *cmd)
10554{
10555 int rc;
10556
10557 spin_lock_irq(cmd->device->host->host_lock);
10558 rc = __aic7xxx_bus_device_reset(cmd);
10559 spin_unlock_irq(cmd->device->host->host_lock);
10560
10561 return rc;
10562}
10563
1da177e4
LT
10564
10565/*+F*************************************************************************
10566 * Function:
10567 * aic7xxx_panic_abort
10568 *
10569 * Description:
10570 * Abort the current SCSI command(s).
10571 *-F*************************************************************************/
10572static void
10573aic7xxx_panic_abort(struct aic7xxx_host *p, Scsi_Cmnd *cmd)
10574{
10575
10576 printk("aic7xxx driver version %s\n", AIC7XXX_C_VERSION);
10577 printk("Controller type:\n %s\n", board_names[p->board_name_index]);
10578 printk("p->flags=0x%lx, p->chip=0x%x, p->features=0x%x, "
10579 "sequencer %s paused\n",
10580 p->flags, p->chip, p->features,
10581 (aic_inb(p, HCNTRL) & PAUSE) ? "is" : "isn't" );
10582 pause_sequencer(p);
10583 disable_irq(p->irq);
10584 aic7xxx_print_card(p);
10585 aic7xxx_print_scratch_ram(p);
10586 spin_unlock_irq(p->host->host_lock);
10587 for(;;) barrier();
10588}
10589
10590/*+F*************************************************************************
10591 * Function:
10592 * aic7xxx_abort
10593 *
10594 * Description:
10595 * Abort the current SCSI command(s).
10596 *-F*************************************************************************/
10597static int
8fa728a2 10598__aic7xxx_abort(Scsi_Cmnd *cmd)
1da177e4
LT
10599{
10600 struct aic7xxx_scb *scb = NULL;
10601 struct aic7xxx_host *p;
10602 int found=0, disconnected;
10603 unsigned char saved_hscbptr, hscbptr, scb_control;
10604 struct aic_dev_data *aic_dev;
10605
10606 if(cmd == NULL)
10607 {
10608 printk(KERN_ERR "aic7xxx_abort: called with NULL cmd!\n");
10609 return FAILED;
10610 }
10611 p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10612 aic_dev = AIC_DEV(cmd);
10613 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10614 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10615 else
10616 return FAILED;
10617
10618 aic7xxx_isr(p->irq, (void *)p, NULL);
10619 aic7xxx_done_cmds_complete(p);
10620 /* If the command was already complete or just completed, then we didn't
10621 * do a reset, return FAILED */
10622 if(!(scb->flags & SCB_ACTIVE))
10623 return FAILED;
10624
10625 pause_sequencer(p);
10626
10627 /*
10628 * I added a new config option to the driver: "panic_on_abort" that will
10629 * cause the driver to panic and the machine to stop on the first abort
10630 * or reset call into the driver. At that point, it prints out a lot of
10631 * useful information for me which I can then use to try and debug the
10632 * problem. Simply enable the boot time prompt in order to activate this
10633 * code.
10634 */
10635 if (aic7xxx_panic_on_abort)
10636 aic7xxx_panic_abort(p, cmd);
10637
10638 if (aic7xxx_verbose & VERBOSE_ABORT)
10639 {
10640 printk(INFO_LEAD "Aborting scb %d, flags 0x%x, SEQADDR 0x%x, LASTPHASE "
10641 "0x%x\n",
10642 p->host_no, CTL_OF_SCB(scb), scb->hscb->tag, scb->flags,
10643 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10644 aic_inb(p, LASTPHASE));
10645 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
10646 p->host_no, CTL_OF_SCB(scb), (p->features & AHC_ULTRA2) ?
10647 aic_inb(p, SG_CACHEPTR) : 0, aic_inb(p, SG_COUNT),
10648 aic_inb(p, SCSISIGI));
10649 printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
10650 p->host_no, CTL_OF_SCB(scb), aic_inb(p, SSTAT0),
10651 aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
10652 }
10653
10654 if (scb->flags & SCB_WAITINGQ)
10655 {
10656 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10657 printk(INFO_LEAD "SCB found on waiting list and "
10658 "aborted.\n", p->host_no, CTL_OF_SCB(scb));
10659 scbq_remove(&p->waiting_scbs, scb);
10660 scbq_remove(&aic_dev->delayed_scbs, scb);
10661 aic_dev->active_cmds++;
10662 p->activescbs++;
10663 scb->flags &= ~(SCB_WAITINGQ | SCB_ACTIVE);
10664 scb->flags |= SCB_ABORT | SCB_QUEUED_FOR_DONE;
10665 goto success;
10666 }
10667
10668/*
10669 * We just checked the waiting_q, now for the QINFIFO
10670 */
10671 if ( ((found = aic7xxx_search_qinfifo(p, cmd->device->id, cmd->device->channel,
10672 cmd->device->lun, scb->hscb->tag, SCB_ABORT | SCB_QUEUED_FOR_DONE,
10673 FALSE, NULL)) != 0) &&
10674 (aic7xxx_verbose & VERBOSE_ABORT_PROCESS))
10675 {
10676 printk(INFO_LEAD "SCB found in QINFIFO and aborted.\n", p->host_no,
10677 CTL_OF_SCB(scb));
10678 goto success;
10679 }
10680
10681/*
10682 * QINFIFO, waitingq, completeq done. Next, check WAITING_SCB list in card
10683 */
10684
10685 saved_hscbptr = aic_inb(p, SCBPTR);
10686 if ((hscbptr = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10687 {
10688 aic_outb(p, hscbptr, SCBPTR);
10689 scb_control = aic_inb(p, SCB_CONTROL);
10690 disconnected = scb_control & DISCONNECTED;
10691 /*
10692 * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10693 * either currently active or on the waiting list.
10694 */
10695 if(!disconnected && aic_inb(p, LASTPHASE) == P_BUSFREE) {
10696 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10697 printk(INFO_LEAD "SCB found on hardware waiting"
10698 " list and aborted.\n", p->host_no, CTL_OF_SCB(scb));
10699 /* If we are the only waiting command, stop the selection engine */
10700 if (aic_inb(p, WAITING_SCBH) == hscbptr && aic_inb(p, SCB_NEXT) ==
10701 SCB_LIST_NULL)
10702 {
10703 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
10704 aic_outb(p, CLRSELTIMEO, CLRSINT1);
10705 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
10706 }
10707 else
10708 {
10709 unsigned char prev, next;
10710 prev = SCB_LIST_NULL;
10711 next = aic_inb(p, WAITING_SCBH);
10712 while(next != SCB_LIST_NULL)
10713 {
10714 aic_outb(p, next, SCBPTR);
10715 if (next == hscbptr)
10716 {
10717 next = aic_inb(p, SCB_NEXT);
10718 if (prev != SCB_LIST_NULL)
10719 {
10720 aic_outb(p, prev, SCBPTR);
10721 aic_outb(p, next, SCB_NEXT);
10722 }
10723 else
10724 aic_outb(p, next, WAITING_SCBH);
10725 aic_outb(p, hscbptr, SCBPTR);
10726 next = SCB_LIST_NULL;
10727 }
10728 else
10729 {
10730 prev = next;
10731 next = aic_inb(p, SCB_NEXT);
10732 }
10733 }
10734 }
10735 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
10736 aic_outb(p, 0, SCB_CONTROL);
10737 aic7xxx_add_curscb_to_free_list(p);
10738 scb->flags = SCB_ABORT | SCB_QUEUED_FOR_DONE;
10739 goto success;
10740 }
10741 else if (!disconnected)
10742 {
10743 /*
10744 * We are the currently active command
10745 */
10746 if((aic_inb(p, LASTPHASE) == P_MESGIN) ||
10747 (aic_inb(p, LASTPHASE) == P_MESGOUT))
10748 {
10749 /*
10750 * Message buffer busy, unable to abort
10751 */
10752 printk(INFO_LEAD "message buffer busy, unable to abort.\n",
10753 p->host_no, CTL_OF_SCB(scb));
10754 unpause_sequencer(p, FALSE);
10755 return FAILED;
10756 }
10757 /* Fallthrough to below, set ATNO after we set SCB_CONTROL */
10758 }
10759 aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
10760 if(!disconnected)
10761 {
10762 aic_outb(p, HOST_MSG, MSG_OUT);
10763 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
10764 }
10765 aic_outb(p, saved_hscbptr, SCBPTR);
10766 }
10767 else
10768 {
10769 /*
10770 * The scb isn't in the card at all and it is active and it isn't in
10771 * any of the queues, so it must be disconnected and paged out. Fall
10772 * through to the code below.
10773 */
10774 disconnected = 1;
10775 }
10776
10777 p->flags |= AHC_ABORT_PENDING;
10778 scb->flags |= SCB_QUEUED_ABORT | SCB_ABORT | SCB_RECOVERY_SCB;
10779 scb->hscb->control |= MK_MESSAGE;
10780 if(disconnected)
10781 {
10782 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10783 printk(INFO_LEAD "SCB disconnected. Queueing Abort"
10784 " SCB.\n", p->host_no, CTL_OF_SCB(scb));
10785 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10786 if (p->features & AHC_QUEUE_REGS)
10787 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10788 else
10789 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10790 }
10791 unpause_sequencer(p, FALSE);
10792 spin_unlock_irq(p->host->host_lock);
10793 msleep(1000/4);
10794 spin_lock_irq(p->host->host_lock);
10795 if (p->flags & AHC_ABORT_PENDING)
10796 {
10797 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10798 printk(INFO_LEAD "Abort never delivered, returning FAILED\n", p->host_no,
10799 CTL_OF_CMD(cmd));
10800 p->flags &= ~AHC_ABORT_PENDING;
10801 return FAILED;
10802 }
10803 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10804 printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10805 return SUCCESS;
10806
10807success:
10808 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10809 printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10810 aic7xxx_run_done_queue(p, TRUE);
10811 unpause_sequencer(p, FALSE);
10812 return SUCCESS;
10813}
10814
8fa728a2
JG
10815static int
10816aic7xxx_abort(Scsi_Cmnd *cmd)
10817{
10818 int rc;
10819
10820 spin_lock_irq(cmd->device->host->host_lock);
10821 rc = __aic7xxx_abort(cmd);
10822 spin_unlock_irq(cmd->device->host->host_lock);
10823
10824 return rc;
10825}
10826
10827
1da177e4
LT
10828/*+F*************************************************************************
10829 * Function:
10830 * aic7xxx_reset
10831 *
10832 * Description:
10833 * Resetting the bus always succeeds - is has to, otherwise the
10834 * kernel will panic! Try a surgical technique - sending a BUS
10835 * DEVICE RESET message - on the offending target before pulling
10836 * the SCSI bus reset line.
10837 *-F*************************************************************************/
10838static int
10839aic7xxx_reset(Scsi_Cmnd *cmd)
10840{
10841 struct aic7xxx_scb *scb;
10842 struct aic7xxx_host *p;
10843 struct aic_dev_data *aic_dev;
10844
10845 p = (struct aic7xxx_host *) cmd->device->host->hostdata;
df0ae249
JG
10846 spin_lock_irq(p->host->host_lock);
10847
1da177e4
LT
10848 aic_dev = AIC_DEV(cmd);
10849 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10850 {
10851 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10852 if (scb->cmd != cmd)
10853 scb = NULL;
10854 }
10855 else
10856 {
10857 scb = NULL;
10858 }
10859
10860 /*
10861 * I added a new config option to the driver: "panic_on_abort" that will
10862 * cause the driver to panic and the machine to stop on the first abort
10863 * or reset call into the driver. At that point, it prints out a lot of
10864 * useful information for me which I can then use to try and debug the
10865 * problem. Simply enable the boot time prompt in order to activate this
10866 * code.
10867 */
10868 if (aic7xxx_panic_on_abort)
10869 aic7xxx_panic_abort(p, cmd);
10870
10871 pause_sequencer(p);
10872
10873 while((aic_inb(p, INTSTAT) & INT_PEND) && !(p->flags & AHC_IN_ISR))
10874 {
10875 aic7xxx_isr(p->irq, p, (void *)NULL );
10876 pause_sequencer(p);
10877 }
10878 aic7xxx_done_cmds_complete(p);
10879
10880 if(scb && (scb->cmd == NULL))
10881 {
10882 /*
10883 * We just completed the command when we ran the isr stuff, so we no
10884 * longer have it.
10885 */
10886 unpause_sequencer(p, FALSE);
df0ae249 10887 spin_unlock_irq(p->host->host_lock);
1da177e4
LT
10888 return SUCCESS;
10889 }
10890
10891/*
10892 * By this point, we want to already know what we are going to do and
10893 * only have the following code implement our course of action.
10894 */
10895 aic7xxx_reset_channel(p, cmd->device->channel, TRUE);
10896 if (p->features & AHC_TWIN)
10897 {
10898 aic7xxx_reset_channel(p, cmd->device->channel ^ 0x01, TRUE);
10899 restart_sequencer(p);
10900 }
10901 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
10902 aic7xxx_clear_intstat(p);
10903 p->flags &= ~AHC_HANDLING_REQINITS;
10904 p->msg_type = MSG_TYPE_NONE;
10905 p->msg_index = 0;
10906 p->msg_len = 0;
10907 aic7xxx_run_done_queue(p, TRUE);
10908 unpause_sequencer(p, FALSE);
10909 spin_unlock_irq(p->host->host_lock);
10910 ssleep(2);
1da177e4
LT
10911 return SUCCESS;
10912}
10913
10914/*+F*************************************************************************
10915 * Function:
10916 * aic7xxx_biosparam
10917 *
10918 * Description:
10919 * Return the disk geometry for the given SCSI device.
10920 *
10921 * Note:
10922 * This function is broken for today's really large drives and needs
10923 * fixed.
10924 *-F*************************************************************************/
10925static int
10926aic7xxx_biosparam(struct scsi_device *sdev, struct block_device *bdev,
10927 sector_t capacity, int geom[])
10928{
10929 sector_t heads, sectors, cylinders;
10930 int ret;
10931 struct aic7xxx_host *p;
10932 unsigned char *buf;
10933
10934 p = (struct aic7xxx_host *) sdev->host->hostdata;
10935 buf = scsi_bios_ptable(bdev);
10936
10937 if ( buf )
10938 {
10939 ret = scsi_partsize(buf, capacity, &geom[2], &geom[0], &geom[1]);
10940 kfree(buf);
10941 if ( ret != -1 )
10942 return(ret);
10943 }
10944
10945 heads = 64;
10946 sectors = 32;
10947 cylinders = capacity >> 11;
10948
10949 if ((p->flags & AHC_EXTEND_TRANS_A) && (cylinders > 1024))
10950 {
10951 heads = 255;
10952 sectors = 63;
10953 cylinders = capacity >> 14;
10954 if(capacity > (65535 * heads * sectors))
10955 cylinders = 65535;
10956 else
10957 cylinders = ((unsigned int)capacity) / (unsigned int)(heads * sectors);
10958 }
10959
10960 geom[0] = (int)heads;
10961 geom[1] = (int)sectors;
10962 geom[2] = (int)cylinders;
10963
10964 return (0);
10965}
10966
10967/*+F*************************************************************************
10968 * Function:
10969 * aic7xxx_release
10970 *
10971 * Description:
10972 * Free the passed in Scsi_Host memory structures prior to unloading the
10973 * module.
10974 *-F*************************************************************************/
10975static int
10976aic7xxx_release(struct Scsi_Host *host)
10977{
10978 struct aic7xxx_host *p = (struct aic7xxx_host *) host->hostdata;
10979 struct aic7xxx_host *next, *prev;
10980
10981 if(p->irq)
10982 free_irq(p->irq, p);
10983#ifdef MMAPIO
10984 if(p->maddr)
10985 {
10986 iounmap(p->maddr);
10987 }
10988#endif /* MMAPIO */
10989 if(!p->pdev)
10990 release_region(p->base, MAXREG - MINREG);
10991#ifdef CONFIG_PCI
10992 else
10993 pci_release_regions(p->pdev);
10994#endif
10995 prev = NULL;
10996 next = first_aic7xxx;
10997 while(next != NULL)
10998 {
10999 if(next == p)
11000 {
11001 if(prev == NULL)
11002 first_aic7xxx = next->next;
11003 else
11004 prev->next = next->next;
11005 }
11006 else
11007 {
11008 prev = next;
11009 }
11010 next = next->next;
11011 }
11012 aic7xxx_free(p);
11013 return(0);
11014}
11015
11016/*+F*************************************************************************
11017 * Function:
11018 * aic7xxx_print_card
11019 *
11020 * Description:
11021 * Print out all of the control registers on the card
11022 *
11023 * NOTE: This function is not yet safe for use on the VLB and EISA
11024 * controllers, so it isn't used on those controllers at all.
11025 *-F*************************************************************************/
11026static void
11027aic7xxx_print_card(struct aic7xxx_host *p)
11028{
11029 int i, j, k, chip;
11030 static struct register_ranges {
11031 int num_ranges;
11032 int range_val[32];
11033 } cards_ds[] = {
11034 { 0, {0,} }, /* none */
11035 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1f, 0x1f, 0x60, 0x60, /*7771*/
11036 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9b, 0x9f} },
11037 { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7850*/
11038 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11039 { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7860*/
11040 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11041 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1c, 0x1f, 0x60, 0x60, /*7870*/
11042 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11043 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1a, 0x1c, 0x1f, 0x60, 0x60, /*7880*/
11044 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11045 {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7890*/
11046 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
11047 0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
11048 0xfe, 0xff} },
11049 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1b, 0x1f, 0x60, 0x60, /*7895*/
11050 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a,
11051 0x9f, 0x9f, 0xe0, 0xf1} },
11052 {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7896*/
11053 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
11054 0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
11055 0xfe, 0xff} },
11056 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7892*/
11057 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11058 0xe0, 0xf1, 0xf4, 0xfc} },
11059 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7899*/
11060 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11061 0xe0, 0xf1, 0xf4, 0xfc} },
11062 };
11063 chip = p->chip & AHC_CHIPID_MASK;
11064 printk("%s at ",
11065 board_names[p->board_name_index]);
11066 switch(p->chip & ~AHC_CHIPID_MASK)
11067 {
11068 case AHC_VL:
11069 printk("VLB Slot %d.\n", p->pci_device_fn);
11070 break;
11071 case AHC_EISA:
11072 printk("EISA Slot %d.\n", p->pci_device_fn);
11073 break;
11074 case AHC_PCI:
11075 default:
11076 printk("PCI %d/%d/%d.\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
11077 PCI_FUNC(p->pci_device_fn));
11078 break;
11079 }
11080
11081 /*
11082 * the registers on the card....
11083 */
11084 printk("Card Dump:\n");
11085 k = 0;
11086 for(i=0; i<cards_ds[chip].num_ranges; i++)
11087 {
11088 for(j = cards_ds[chip].range_val[ i * 2 ];
11089 j <= cards_ds[chip].range_val[ i * 2 + 1 ] ;
11090 j++)
11091 {
11092 printk("%02x:%02x ", j, aic_inb(p, j));
11093 if(++k == 13)
11094 {
11095 printk("\n");
11096 k=0;
11097 }
11098 }
11099 }
11100 if(k != 0)
11101 printk("\n");
11102
11103 /*
11104 * If this was an Ultra2 controller, then we just hosed the card in terms
11105 * of the QUEUE REGS. This function is only called at init time or by
11106 * the panic_abort function, so it's safe to assume a generic init time
11107 * setting here
11108 */
11109
11110 if(p->features & AHC_QUEUE_REGS)
11111 {
11112 aic_outb(p, 0, SDSCB_QOFF);
11113 aic_outb(p, 0, SNSCB_QOFF);
11114 aic_outb(p, 0, HNSCB_QOFF);
11115 }
11116
11117}
11118
11119/*+F*************************************************************************
11120 * Function:
11121 * aic7xxx_print_scratch_ram
11122 *
11123 * Description:
11124 * Print out the scratch RAM values on the card.
11125 *-F*************************************************************************/
11126static void
11127aic7xxx_print_scratch_ram(struct aic7xxx_host *p)
11128{
11129 int i, k;
11130
11131 k = 0;
11132 printk("Scratch RAM:\n");
11133 for(i = SRAM_BASE; i < SEQCTL; i++)
11134 {
11135 printk("%02x:%02x ", i, aic_inb(p, i));
11136 if(++k == 13)
11137 {
11138 printk("\n");
11139 k=0;
11140 }
11141 }
11142 if (p->features & AHC_MORE_SRAM)
11143 {
11144 for(i = TARG_OFFSET; i < 0x80; i++)
11145 {
11146 printk("%02x:%02x ", i, aic_inb(p, i));
11147 if(++k == 13)
11148 {
11149 printk("\n");
11150 k=0;
11151 }
11152 }
11153 }
11154 printk("\n");
11155}
11156
11157
11158#include "aic7xxx_old/aic7xxx_proc.c"
11159
11160MODULE_LICENSE("Dual BSD/GPL");
11161MODULE_VERSION(AIC7XXX_H_VERSION);
11162
11163
d0be4a7d 11164static struct scsi_host_template driver_template = {
1da177e4
LT
11165 .proc_info = aic7xxx_proc_info,
11166 .detect = aic7xxx_detect,
11167 .release = aic7xxx_release,
11168 .info = aic7xxx_info,
11169 .queuecommand = aic7xxx_queue,
11170 .slave_alloc = aic7xxx_slave_alloc,
11171 .slave_configure = aic7xxx_slave_configure,
11172 .slave_destroy = aic7xxx_slave_destroy,
11173 .bios_param = aic7xxx_biosparam,
11174 .eh_abort_handler = aic7xxx_abort,
11175 .eh_device_reset_handler = aic7xxx_bus_device_reset,
11176 .eh_host_reset_handler = aic7xxx_reset,
11177 .can_queue = 255,
11178 .this_id = -1,
11179 .max_sectors = 2048,
11180 .cmd_per_lun = 3,
11181 .use_clustering = ENABLE_CLUSTERING,
11182};
11183
11184#include "scsi_module.c"
11185
11186/*
11187 * Overrides for Emacs so that we almost follow Linus's tabbing style.
11188 * Emacs will notice this stuff at the end of the file and automatically
11189 * adjust the settings for this buffer only. This must remain at the end
11190 * of the file.
11191 * ---------------------------------------------------------------------------
11192 * Local variables:
11193 * c-indent-level: 2
11194 * c-brace-imaginary-offset: 0
11195 * c-brace-offset: -2
11196 * c-argdecl-indent: 2
11197 * c-label-offset: -2
11198 * c-continued-statement-offset: 2
11199 * c-continued-brace-offset: 0
11200 * indent-tabs-mode: nil
11201 * tab-width: 8
11202 * End:
11203 */