]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/wireless/ath/ath5k/base.c
ath5k: fix build break from "ath5k: Print out opmode in debugfs"
[net-next-2.6.git] / drivers / net / wireless / ath / ath5k / base.c
CommitLineData
fa1c114f
JS
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
fa1c114f
JS
43#include <linux/module.h>
44#include <linux/delay.h>
274c7c36 45#include <linux/hardirq.h>
fa1c114f 46#include <linux/if.h>
274c7c36 47#include <linux/io.h>
fa1c114f
JS
48#include <linux/netdevice.h>
49#include <linux/cache.h>
50#include <linux/pci.h>
6ccf15a1 51#include <linux/pci-aspm.h>
fa1c114f
JS
52#include <linux/ethtool.h>
53#include <linux/uaccess.h>
5a0e3ad6 54#include <linux/slab.h>
b1ae1edf 55#include <linux/etherdevice.h>
fa1c114f
JS
56
57#include <net/ieee80211_radiotap.h>
58
59#include <asm/unaligned.h>
60
61#include "base.h"
62#include "reg.h"
63#include "debug.h"
2111ac0d 64#include "ani.h"
62c58fb4 65#include "../debug.h"
fa1c114f 66
9ad9a26e 67static int modparam_nohwcrypt;
46802a4f 68module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
9ad9a26e 69MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
fa1c114f 70
42639fcd 71static int modparam_all_channels;
46802a4f 72module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
42639fcd
BC
73MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
74
fa1c114f
JS
75/* Module info */
76MODULE_AUTHOR("Jiri Slaby");
77MODULE_AUTHOR("Nick Kossifidis");
78MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
79MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
80MODULE_LICENSE("Dual BSD/GPL");
0d5f0316 81MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
fa1c114f 82
8a63facc
BC
83static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan);
84static int ath5k_beacon_update(struct ieee80211_hw *hw,
85 struct ieee80211_vif *vif);
86static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
fa1c114f
JS
87
88/* Known PCI ids */
a3aa1884 89static DEFINE_PCI_DEVICE_TABLE(ath5k_pci_id_table) = {
97a81f5c
PR
90 { PCI_VDEVICE(ATHEROS, 0x0207) }, /* 5210 early */
91 { PCI_VDEVICE(ATHEROS, 0x0007) }, /* 5210 */
92 { PCI_VDEVICE(ATHEROS, 0x0011) }, /* 5311 - this is on AHB bus !*/
93 { PCI_VDEVICE(ATHEROS, 0x0012) }, /* 5211 */
94 { PCI_VDEVICE(ATHEROS, 0x0013) }, /* 5212 */
95 { PCI_VDEVICE(3COM_2, 0x0013) }, /* 3com 5212 */
96 { PCI_VDEVICE(3COM, 0x0013) }, /* 3com 3CRDAG675 5212 */
97 { PCI_VDEVICE(ATHEROS, 0x1014) }, /* IBM minipci 5212 */
98 { PCI_VDEVICE(ATHEROS, 0x0014) }, /* 5212 combatible */
99 { PCI_VDEVICE(ATHEROS, 0x0015) }, /* 5212 combatible */
100 { PCI_VDEVICE(ATHEROS, 0x0016) }, /* 5212 combatible */
101 { PCI_VDEVICE(ATHEROS, 0x0017) }, /* 5212 combatible */
102 { PCI_VDEVICE(ATHEROS, 0x0018) }, /* 5212 combatible */
103 { PCI_VDEVICE(ATHEROS, 0x0019) }, /* 5212 combatible */
104 { PCI_VDEVICE(ATHEROS, 0x001a) }, /* 2413 Griffin-lite */
105 { PCI_VDEVICE(ATHEROS, 0x001b) }, /* 5413 Eagle */
106 { PCI_VDEVICE(ATHEROS, 0x001c) }, /* PCI-E cards */
107 { PCI_VDEVICE(ATHEROS, 0x001d) }, /* 2417 Nala */
fa1c114f
JS
108 { 0 }
109};
110MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
111
112/* Known SREVs */
2c91108c 113static const struct ath5k_srev_name srev_names[] = {
1bef016a
NK
114 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
115 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
116 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
117 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
118 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
119 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
120 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
121 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
122 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
123 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
124 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
125 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
126 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
127 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
128 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
129 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
130 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
131 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
132 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
fa1c114f
JS
133 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
134 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
1bef016a 135 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
fa1c114f
JS
136 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
137 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
138 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
1bef016a 139 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
fa1c114f
JS
140 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
141 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
1bef016a
NK
142 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
143 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
144 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
145 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
146 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
147 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
fa1c114f
JS
148 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
149 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
150};
151
2c91108c 152static const struct ieee80211_rate ath5k_rates[] = {
63266a65
BR
153 { .bitrate = 10,
154 .hw_value = ATH5K_RATE_CODE_1M, },
155 { .bitrate = 20,
156 .hw_value = ATH5K_RATE_CODE_2M,
157 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 { .bitrate = 55,
160 .hw_value = ATH5K_RATE_CODE_5_5M,
161 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163 { .bitrate = 110,
164 .hw_value = ATH5K_RATE_CODE_11M,
165 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167 { .bitrate = 60,
168 .hw_value = ATH5K_RATE_CODE_6M,
169 .flags = 0 },
170 { .bitrate = 90,
171 .hw_value = ATH5K_RATE_CODE_9M,
172 .flags = 0 },
173 { .bitrate = 120,
174 .hw_value = ATH5K_RATE_CODE_12M,
175 .flags = 0 },
176 { .bitrate = 180,
177 .hw_value = ATH5K_RATE_CODE_18M,
178 .flags = 0 },
179 { .bitrate = 240,
180 .hw_value = ATH5K_RATE_CODE_24M,
181 .flags = 0 },
182 { .bitrate = 360,
183 .hw_value = ATH5K_RATE_CODE_36M,
184 .flags = 0 },
185 { .bitrate = 480,
186 .hw_value = ATH5K_RATE_CODE_48M,
187 .flags = 0 },
188 { .bitrate = 540,
189 .hw_value = ATH5K_RATE_CODE_54M,
190 .flags = 0 },
191 /* XR missing */
192};
193
9e4e43f2 194static inline void ath5k_txbuf_free_skb(struct ath5k_softc *sc,
fa1c114f
JS
195 struct ath5k_buf *bf)
196{
197 BUG_ON(!bf);
198 if (!bf->skb)
199 return;
200 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
201 PCI_DMA_TODEVICE);
00482973 202 dev_kfree_skb_any(bf->skb);
fa1c114f 203 bf->skb = NULL;
39d63f2a
BR
204 bf->skbaddr = 0;
205 bf->desc->ds_data = 0;
fa1c114f
JS
206}
207
9e4e43f2 208static inline void ath5k_rxbuf_free_skb(struct ath5k_softc *sc,
a6c8d375
FF
209 struct ath5k_buf *bf)
210{
cc861f74
LR
211 struct ath5k_hw *ah = sc->ah;
212 struct ath_common *common = ath5k_hw_common(ah);
213
a6c8d375
FF
214 BUG_ON(!bf);
215 if (!bf->skb)
216 return;
cc861f74 217 pci_unmap_single(sc->pdev, bf->skbaddr, common->rx_bufsize,
a6c8d375
FF
218 PCI_DMA_FROMDEVICE);
219 dev_kfree_skb_any(bf->skb);
220 bf->skb = NULL;
39d63f2a
BR
221 bf->skbaddr = 0;
222 bf->desc->ds_data = 0;
a6c8d375
FF
223}
224
225
fa1c114f
JS
226static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
227{
228 u64 tsf = ath5k_hw_get_tsf64(ah);
229
230 if ((tsf & 0x7fff) < rstamp)
231 tsf -= 0x8000;
232
233 return (tsf & ~0x7fff) | rstamp;
234}
235
fa1c114f
JS
236static const char *
237ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
238{
239 const char *name = "xxxxx";
240 unsigned int i;
241
242 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
243 if (srev_names[i].sr_type != type)
244 continue;
75d0edb8
NK
245
246 if ((val & 0xf0) == srev_names[i].sr_val)
247 name = srev_names[i].sr_name;
248
249 if ((val & 0xff) == srev_names[i].sr_val) {
fa1c114f
JS
250 name = srev_names[i].sr_name;
251 break;
252 }
253 }
254
255 return name;
256}
e5aa8474
LR
257static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
258{
259 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
260 return ath5k_hw_reg_read(ah, reg_offset);
261}
262
263static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
264{
265 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
266 ath5k_hw_reg_write(ah, val, reg_offset);
267}
268
269static const struct ath_ops ath5k_common_ops = {
270 .read = ath5k_ioread32,
271 .write = ath5k_iowrite32,
272};
fa1c114f 273
8a63facc
BC
274/***********************\
275* Driver Initialization *
276\***********************/
277
278static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
fa1c114f 279{
8a63facc
BC
280 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
281 struct ath5k_softc *sc = hw->priv;
282 struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
fa1c114f 283
8a63facc
BC
284 return ath_reg_notifier_apply(wiphy, request, regulatory);
285}
6ccf15a1 286
8a63facc
BC
287/********************\
288* Channel/mode setup *
289\********************/
fa1c114f 290
8a63facc
BC
291/*
292 * Convert IEEE channel number to MHz frequency.
293 */
294static inline short
295ath5k_ieee2mhz(short chan)
296{
297 if (chan <= 14 || chan >= 27)
298 return ieee80211chan2mhz(chan);
299 else
300 return 2212 + chan * 20;
301}
fa1c114f 302
8a63facc
BC
303/*
304 * Returns true for the channel numbers used without all_channels modparam.
305 */
306static bool ath5k_is_standard_channel(short chan)
307{
308 return ((chan <= 14) ||
309 /* UNII 1,2 */
310 ((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
311 /* midband */
312 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
313 /* UNII-3 */
314 ((chan & 3) == 1 && chan >= 149 && chan <= 165));
315}
fa1c114f 316
8a63facc
BC
317static unsigned int
318ath5k_copy_channels(struct ath5k_hw *ah,
319 struct ieee80211_channel *channels,
320 unsigned int mode,
321 unsigned int max)
322{
323 unsigned int i, count, size, chfreq, freq, ch;
fa1c114f 324
8a63facc
BC
325 if (!test_bit(mode, ah->ah_modes))
326 return 0;
fa1c114f 327
8a63facc
BC
328 switch (mode) {
329 case AR5K_MODE_11A:
330 case AR5K_MODE_11A_TURBO:
331 /* 1..220, but 2GHz frequencies are filtered by check_channel */
332 size = 220 ;
333 chfreq = CHANNEL_5GHZ;
334 break;
335 case AR5K_MODE_11B:
336 case AR5K_MODE_11G:
337 case AR5K_MODE_11G_TURBO:
338 size = 26;
339 chfreq = CHANNEL_2GHZ;
340 break;
341 default:
342 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
343 return 0;
fa1c114f
JS
344 }
345
8a63facc
BC
346 for (i = 0, count = 0; i < size && max > 0; i++) {
347 ch = i + 1 ;
348 freq = ath5k_ieee2mhz(ch);
fa1c114f 349
8a63facc
BC
350 /* Check if channel is supported by the chipset */
351 if (!ath5k_channel_ok(ah, freq, chfreq))
352 continue;
f59ac048 353
8a63facc
BC
354 if (!modparam_all_channels && !ath5k_is_standard_channel(ch))
355 continue;
f59ac048 356
8a63facc
BC
357 /* Write channel info and increment counter */
358 channels[count].center_freq = freq;
359 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
360 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
361 switch (mode) {
362 case AR5K_MODE_11A:
363 case AR5K_MODE_11G:
364 channels[count].hw_value = chfreq | CHANNEL_OFDM;
365 break;
366 case AR5K_MODE_11A_TURBO:
367 case AR5K_MODE_11G_TURBO:
368 channels[count].hw_value = chfreq |
369 CHANNEL_OFDM | CHANNEL_TURBO;
370 break;
371 case AR5K_MODE_11B:
372 channels[count].hw_value = CHANNEL_B;
373 }
fa1c114f 374
8a63facc
BC
375 count++;
376 max--;
377 }
fa1c114f 378
8a63facc
BC
379 return count;
380}
fa1c114f 381
8a63facc
BC
382static void
383ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
384{
385 u8 i;
fa1c114f 386
8a63facc
BC
387 for (i = 0; i < AR5K_MAX_RATES; i++)
388 sc->rate_idx[b->band][i] = -1;
fa1c114f 389
8a63facc
BC
390 for (i = 0; i < b->n_bitrates; i++) {
391 sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
392 if (b->bitrates[i].hw_value_short)
393 sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
fa1c114f 394 }
8a63facc 395}
fa1c114f 396
8a63facc
BC
397static int
398ath5k_setup_bands(struct ieee80211_hw *hw)
399{
400 struct ath5k_softc *sc = hw->priv;
401 struct ath5k_hw *ah = sc->ah;
402 struct ieee80211_supported_band *sband;
403 int max_c, count_c = 0;
404 int i;
fa1c114f 405
8a63facc
BC
406 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
407 max_c = ARRAY_SIZE(sc->channels);
db719718 408
8a63facc
BC
409 /* 2GHz band */
410 sband = &sc->sbands[IEEE80211_BAND_2GHZ];
411 sband->band = IEEE80211_BAND_2GHZ;
412 sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
9adca126 413
8a63facc
BC
414 if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
415 /* G mode */
416 memcpy(sband->bitrates, &ath5k_rates[0],
417 sizeof(struct ieee80211_rate) * 12);
418 sband->n_bitrates = 12;
2f7fe870 419
8a63facc
BC
420 sband->channels = sc->channels;
421 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
422 AR5K_MODE_11G, max_c);
fa1c114f 423
8a63facc
BC
424 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
425 count_c = sband->n_channels;
426 max_c -= count_c;
427 } else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
428 /* B mode */
429 memcpy(sband->bitrates, &ath5k_rates[0],
430 sizeof(struct ieee80211_rate) * 4);
431 sband->n_bitrates = 4;
fa1c114f 432
8a63facc
BC
433 /* 5211 only supports B rates and uses 4bit rate codes
434 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
435 * fix them up here:
436 */
437 if (ah->ah_version == AR5K_AR5211) {
438 for (i = 0; i < 4; i++) {
439 sband->bitrates[i].hw_value =
440 sband->bitrates[i].hw_value & 0xF;
441 sband->bitrates[i].hw_value_short =
442 sband->bitrates[i].hw_value_short & 0xF;
fa1c114f
JS
443 }
444 }
fa1c114f 445
8a63facc
BC
446 sband->channels = sc->channels;
447 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
448 AR5K_MODE_11B, max_c);
fa1c114f 449
8a63facc
BC
450 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
451 count_c = sband->n_channels;
452 max_c -= count_c;
453 }
454 ath5k_setup_rate_idx(sc, sband);
fa1c114f 455
8a63facc
BC
456 /* 5GHz band, A mode */
457 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
458 sband = &sc->sbands[IEEE80211_BAND_5GHZ];
459 sband->band = IEEE80211_BAND_5GHZ;
460 sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
fa1c114f 461
8a63facc
BC
462 memcpy(sband->bitrates, &ath5k_rates[4],
463 sizeof(struct ieee80211_rate) * 8);
464 sband->n_bitrates = 8;
fa1c114f 465
8a63facc
BC
466 sband->channels = &sc->channels[count_c];
467 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
468 AR5K_MODE_11A, max_c);
fa1c114f 469
8a63facc
BC
470 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
471 }
472 ath5k_setup_rate_idx(sc, sband);
473
474 ath5k_debug_dump_bands(sc);
fa1c114f 475
fa1c114f
JS
476 return 0;
477}
478
8a63facc
BC
479/*
480 * Set/change channels. We always reset the chip.
481 * To accomplish this we must first cleanup any pending DMA,
482 * then restart stuff after a la ath5k_init.
483 *
484 * Called with sc->lock.
485 */
486static int
487ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
488{
489 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
490 "channel set, resetting (%u -> %u MHz)\n",
491 sc->curchan->center_freq, chan->center_freq);
492
8451d22d 493 /*
8a63facc
BC
494 * To switch channels clear any pending DMA operations;
495 * wait long enough for the RX fifo to drain, reset the
496 * hardware at the new frequency, and then re-enable
497 * the relevant bits of the h/w.
8451d22d 498 */
8a63facc 499 return ath5k_reset(sc, chan);
fa1c114f 500}
fa1c114f 501
8a63facc
BC
502static void
503ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
f769c36b 504{
8a63facc 505 sc->curmode = mode;
f769c36b 506
8a63facc
BC
507 if (mode == AR5K_MODE_11A) {
508 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
509 } else {
510 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
511 }
f769c36b
BC
512}
513
b1ae1edf
BG
514struct ath_vif_iter_data {
515 const u8 *hw_macaddr;
516 u8 mask[ETH_ALEN];
517 u8 active_mac[ETH_ALEN]; /* first active MAC */
518 bool need_set_hw_addr;
519 bool found_active;
520 bool any_assoc;
62c58fb4 521 enum nl80211_iftype opmode;
b1ae1edf
BG
522};
523
524static void ath_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
525{
526 struct ath_vif_iter_data *iter_data = data;
527 int i;
62c58fb4 528 struct ath5k_vif *avf = (void *)vif->drv_priv;
b1ae1edf
BG
529
530 if (iter_data->hw_macaddr)
531 for (i = 0; i < ETH_ALEN; i++)
532 iter_data->mask[i] &=
533 ~(iter_data->hw_macaddr[i] ^ mac[i]);
534
535 if (!iter_data->found_active) {
536 iter_data->found_active = true;
537 memcpy(iter_data->active_mac, mac, ETH_ALEN);
538 }
539
540 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
541 if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
542 iter_data->need_set_hw_addr = false;
543
544 if (!iter_data->any_assoc) {
b1ae1edf
BG
545 if (avf->assoc)
546 iter_data->any_assoc = true;
547 }
62c58fb4
BG
548
549 /* Calculate combined mode - when APs are active, operate in AP mode.
550 * Otherwise use the mode of the new interface. This can currently
551 * only deal with combinations of APs and STAs. Only one ad-hoc
552 * interfaces is allowed above.
553 */
554 if (avf->opmode == NL80211_IFTYPE_AP)
555 iter_data->opmode = NL80211_IFTYPE_AP;
556 else
557 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
558 iter_data->opmode = avf->opmode;
b1ae1edf
BG
559}
560
62c58fb4
BG
561static void ath_do_set_opmode(struct ath5k_softc *sc)
562{
563 struct ath5k_hw *ah = sc->ah;
564 ath5k_hw_set_opmode(ah, sc->opmode);
565 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
908ebfb9 566 sc->opmode, ath_opmode_to_string(sc->opmode));
62c58fb4
BG
567}
568
569void ath5k_update_bssid_mask_and_opmode(struct ath5k_softc *sc,
570 struct ieee80211_vif *vif)
b1ae1edf
BG
571{
572 struct ath_common *common = ath5k_hw_common(sc->ah);
573 struct ath_vif_iter_data iter_data;
574
575 /*
576 * Use the hardware MAC address as reference, the hardware uses it
577 * together with the BSSID mask when matching addresses.
578 */
579 iter_data.hw_macaddr = common->macaddr;
580 memset(&iter_data.mask, 0xff, ETH_ALEN);
581 iter_data.found_active = false;
582 iter_data.need_set_hw_addr = true;
62c58fb4 583 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
b1ae1edf
BG
584
585 if (vif)
586 ath_vif_iter(&iter_data, vif->addr, vif);
587
588 /* Get list of all active MAC addresses */
589 ieee80211_iterate_active_interfaces_atomic(sc->hw, ath_vif_iter,
590 &iter_data);
591 memcpy(sc->bssidmask, iter_data.mask, ETH_ALEN);
592
62c58fb4
BG
593 sc->opmode = iter_data.opmode;
594 if (sc->opmode == NL80211_IFTYPE_UNSPECIFIED)
595 /* Nothing active, default to station mode */
596 sc->opmode = NL80211_IFTYPE_STATION;
597
598 ath_do_set_opmode(sc);
599
b1ae1edf
BG
600 if (iter_data.need_set_hw_addr && iter_data.found_active)
601 ath5k_hw_set_lladdr(sc->ah, iter_data.active_mac);
602
62c58fb4
BG
603 if (ath5k_hw_hasbssidmask(sc->ah))
604 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
b1ae1edf
BG
605}
606
8a63facc 607static void
b1ae1edf 608ath5k_mode_setup(struct ath5k_softc *sc, struct ieee80211_vif *vif)
fa1c114f 609{
fa1c114f 610 struct ath5k_hw *ah = sc->ah;
8a63facc 611 u32 rfilt;
fa1c114f 612
8a63facc
BC
613 /* configure rx filter */
614 rfilt = sc->filter_flags;
615 ath5k_hw_set_rx_filter(ah, rfilt);
8a63facc 616 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
62c58fb4
BG
617
618 ath5k_update_bssid_mask_and_opmode(sc, vif);
8a63facc 619}
fa1c114f 620
8a63facc
BC
621static inline int
622ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
623{
624 int rix;
fa1c114f 625
8a63facc
BC
626 /* return base rate on errors */
627 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
628 "hw_rix out of bounds: %x\n", hw_rix))
629 return 0;
630
631 rix = sc->rate_idx[sc->curband->band][hw_rix];
632 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
633 rix = 0;
634
635 return rix;
636}
637
638/***************\
639* Buffers setup *
640\***************/
641
642static
643struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
644{
645 struct ath_common *common = ath5k_hw_common(sc->ah);
646 struct sk_buff *skb;
fa1c114f
JS
647
648 /*
8a63facc
BC
649 * Allocate buffer with headroom_needed space for the
650 * fake physical layer header at the start.
fa1c114f 651 */
8a63facc
BC
652 skb = ath_rxbuf_alloc(common,
653 common->rx_bufsize,
654 GFP_ATOMIC);
fa1c114f 655
8a63facc
BC
656 if (!skb) {
657 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
658 common->rx_bufsize);
659 return NULL;
fa1c114f
JS
660 }
661
8a63facc
BC
662 *skb_addr = pci_map_single(sc->pdev,
663 skb->data, common->rx_bufsize,
664 PCI_DMA_FROMDEVICE);
665 if (unlikely(pci_dma_mapping_error(sc->pdev, *skb_addr))) {
666 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
667 dev_kfree_skb(skb);
668 return NULL;
0e149cf5 669 }
8a63facc
BC
670 return skb;
671}
0e149cf5 672
8a63facc
BC
673static int
674ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
675{
676 struct ath5k_hw *ah = sc->ah;
677 struct sk_buff *skb = bf->skb;
678 struct ath5k_desc *ds;
679 int ret;
fa1c114f 680
8a63facc
BC
681 if (!skb) {
682 skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
683 if (!skb)
684 return -ENOMEM;
685 bf->skb = skb;
f769c36b
BC
686 }
687
8a63facc
BC
688 /*
689 * Setup descriptors. For receive we always terminate
690 * the descriptor list with a self-linked entry so we'll
691 * not get overrun under high load (as can happen with a
692 * 5212 when ANI processing enables PHY error frames).
693 *
694 * To ensure the last descriptor is self-linked we create
695 * each descriptor as self-linked and add it to the end. As
696 * each additional descriptor is added the previous self-linked
697 * entry is "fixed" naturally. This should be safe even
698 * if DMA is happening. When processing RX interrupts we
699 * never remove/process the last, self-linked, entry on the
700 * descriptor list. This ensures the hardware always has
701 * someplace to write a new frame.
702 */
703 ds = bf->desc;
704 ds->ds_link = bf->daddr; /* link to self */
705 ds->ds_data = bf->skbaddr;
706 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
fa1c114f 707 if (ret) {
8a63facc
BC
708 ATH5K_ERR(sc, "%s: could not setup RX desc\n", __func__);
709 return ret;
fa1c114f
JS
710 }
711
8a63facc
BC
712 if (sc->rxlink != NULL)
713 *sc->rxlink = bf->daddr;
714 sc->rxlink = &ds->ds_link;
fa1c114f 715 return 0;
fa1c114f
JS
716}
717
8a63facc 718static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
fa1c114f 719{
8a63facc
BC
720 struct ieee80211_hdr *hdr;
721 enum ath5k_pkt_type htype;
722 __le16 fc;
fa1c114f 723
8a63facc
BC
724 hdr = (struct ieee80211_hdr *)skb->data;
725 fc = hdr->frame_control;
fa1c114f 726
8a63facc
BC
727 if (ieee80211_is_beacon(fc))
728 htype = AR5K_PKT_TYPE_BEACON;
729 else if (ieee80211_is_probe_resp(fc))
730 htype = AR5K_PKT_TYPE_PROBE_RESP;
731 else if (ieee80211_is_atim(fc))
732 htype = AR5K_PKT_TYPE_ATIM;
733 else if (ieee80211_is_pspoll(fc))
734 htype = AR5K_PKT_TYPE_PSPOLL;
fa1c114f 735 else
8a63facc 736 htype = AR5K_PKT_TYPE_NORMAL;
fa1c114f 737
8a63facc 738 return htype;
42639fcd
BC
739}
740
8a63facc
BC
741static int
742ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
743 struct ath5k_txq *txq, int padsize)
fa1c114f 744{
8a63facc
BC
745 struct ath5k_hw *ah = sc->ah;
746 struct ath5k_desc *ds = bf->desc;
747 struct sk_buff *skb = bf->skb;
748 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
749 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
750 struct ieee80211_rate *rate;
751 unsigned int mrr_rate[3], mrr_tries[3];
752 int i, ret;
753 u16 hw_rate;
754 u16 cts_rate = 0;
755 u16 duration = 0;
756 u8 rc_flags;
fa1c114f 757
8a63facc 758 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
fa1c114f 759
8a63facc
BC
760 /* XXX endianness */
761 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
762 PCI_DMA_TODEVICE);
fa1c114f 763
8a63facc 764 rate = ieee80211_get_tx_rate(sc->hw, info);
29ad2fac
JL
765 if (!rate) {
766 ret = -EINVAL;
767 goto err_unmap;
768 }
fa1c114f 769
8a63facc
BC
770 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
771 flags |= AR5K_TXDESC_NOACK;
fa1c114f 772
8a63facc
BC
773 rc_flags = info->control.rates[0].flags;
774 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
775 rate->hw_value_short : rate->hw_value;
42639fcd 776
8a63facc
BC
777 pktlen = skb->len;
778
779 /* FIXME: If we are in g mode and rate is a CCK rate
780 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
781 * from tx power (value is in dB units already) */
782 if (info->control.hw_key) {
783 keyidx = info->control.hw_key->hw_key_idx;
784 pktlen += info->control.hw_key->icv_len;
785 }
786 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
787 flags |= AR5K_TXDESC_RTSENA;
788 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
789 duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
b1ae1edf 790 info->control.vif, pktlen, info));
8a63facc
BC
791 }
792 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
793 flags |= AR5K_TXDESC_CTSENA;
794 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
795 duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
b1ae1edf 796 info->control.vif, pktlen, info));
8a63facc
BC
797 }
798 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
799 ieee80211_get_hdrlen_from_skb(skb), padsize,
800 get_hw_packet_type(skb),
801 (sc->power_level * 2),
802 hw_rate,
803 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
804 cts_rate, duration);
805 if (ret)
806 goto err_unmap;
807
808 memset(mrr_rate, 0, sizeof(mrr_rate));
809 memset(mrr_tries, 0, sizeof(mrr_tries));
810 for (i = 0; i < 3; i++) {
811 rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
812 if (!rate)
400ec45a 813 break;
fa1c114f 814
8a63facc
BC
815 mrr_rate[i] = rate->hw_value;
816 mrr_tries[i] = info->control.rates[i + 1].count;
fa1c114f
JS
817 }
818
8a63facc
BC
819 ath5k_hw_setup_mrr_tx_desc(ah, ds,
820 mrr_rate[0], mrr_tries[0],
821 mrr_rate[1], mrr_tries[1],
822 mrr_rate[2], mrr_tries[2]);
fa1c114f 823
8a63facc
BC
824 ds->ds_link = 0;
825 ds->ds_data = bf->skbaddr;
63266a65 826
8a63facc
BC
827 spin_lock_bh(&txq->lock);
828 list_add_tail(&bf->list, &txq->q);
925e0b06 829 txq->txq_len++;
8a63facc
BC
830 if (txq->link == NULL) /* is this first packet? */
831 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
832 else /* no, so only link it */
833 *txq->link = bf->daddr;
63266a65 834
8a63facc
BC
835 txq->link = &ds->ds_link;
836 ath5k_hw_start_tx_dma(ah, txq->qnum);
837 mmiowb();
838 spin_unlock_bh(&txq->lock);
839
840 return 0;
841err_unmap:
842 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
843 return ret;
63266a65
BR
844}
845
8a63facc
BC
846/*******************\
847* Descriptors setup *
848\*******************/
849
d8ee398d 850static int
8a63facc 851ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
fa1c114f 852{
8a63facc
BC
853 struct ath5k_desc *ds;
854 struct ath5k_buf *bf;
855 dma_addr_t da;
856 unsigned int i;
857 int ret;
d8ee398d 858
8a63facc
BC
859 /* allocate descriptors */
860 sc->desc_len = sizeof(struct ath5k_desc) *
861 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
862 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
863 if (sc->desc == NULL) {
864 ATH5K_ERR(sc, "can't allocate descriptors\n");
865 ret = -ENOMEM;
866 goto err;
867 }
868 ds = sc->desc;
869 da = sc->desc_daddr;
870 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
871 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
fa1c114f 872
8a63facc
BC
873 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
874 sizeof(struct ath5k_buf), GFP_KERNEL);
875 if (bf == NULL) {
876 ATH5K_ERR(sc, "can't allocate bufptr\n");
877 ret = -ENOMEM;
878 goto err_free;
879 }
880 sc->bufptr = bf;
fa1c114f 881
8a63facc
BC
882 INIT_LIST_HEAD(&sc->rxbuf);
883 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
884 bf->desc = ds;
885 bf->daddr = da;
886 list_add_tail(&bf->list, &sc->rxbuf);
887 }
d8ee398d 888
8a63facc
BC
889 INIT_LIST_HEAD(&sc->txbuf);
890 sc->txbuf_len = ATH_TXBUF;
891 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
892 da += sizeof(*ds)) {
893 bf->desc = ds;
894 bf->daddr = da;
895 list_add_tail(&bf->list, &sc->txbuf);
fa1c114f
JS
896 }
897
b1ae1edf
BG
898 /* beacon buffers */
899 INIT_LIST_HEAD(&sc->bcbuf);
900 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
901 bf->desc = ds;
902 bf->daddr = da;
903 list_add_tail(&bf->list, &sc->bcbuf);
904 }
fa1c114f 905
8a63facc
BC
906 return 0;
907err_free:
908 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
909err:
910 sc->desc = NULL;
911 return ret;
912}
fa1c114f 913
8a63facc
BC
914static void
915ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
916{
917 struct ath5k_buf *bf;
d8ee398d 918
8a63facc
BC
919 list_for_each_entry(bf, &sc->txbuf, list)
920 ath5k_txbuf_free_skb(sc, bf);
921 list_for_each_entry(bf, &sc->rxbuf, list)
922 ath5k_rxbuf_free_skb(sc, bf);
b1ae1edf
BG
923 list_for_each_entry(bf, &sc->bcbuf, list)
924 ath5k_txbuf_free_skb(sc, bf);
d8ee398d 925
8a63facc
BC
926 /* Free memory associated with all descriptors */
927 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
928 sc->desc = NULL;
929 sc->desc_daddr = 0;
d8ee398d 930
8a63facc
BC
931 kfree(sc->bufptr);
932 sc->bufptr = NULL;
fa1c114f
JS
933}
934
8a63facc
BC
935
936/**************\
937* Queues setup *
938\**************/
939
940static struct ath5k_txq *
941ath5k_txq_setup(struct ath5k_softc *sc,
942 int qtype, int subtype)
fa1c114f 943{
8a63facc
BC
944 struct ath5k_hw *ah = sc->ah;
945 struct ath5k_txq *txq;
946 struct ath5k_txq_info qi = {
947 .tqi_subtype = subtype,
de8af455
BR
948 /* XXX: default values not correct for B and XR channels,
949 * but who cares? */
950 .tqi_aifs = AR5K_TUNE_AIFS,
951 .tqi_cw_min = AR5K_TUNE_CWMIN,
952 .tqi_cw_max = AR5K_TUNE_CWMAX
8a63facc
BC
953 };
954 int qnum;
d8ee398d 955
e30eb4ab 956 /*
8a63facc
BC
957 * Enable interrupts only for EOL and DESC conditions.
958 * We mark tx descriptors to receive a DESC interrupt
959 * when a tx queue gets deep; otherwise we wait for the
960 * EOL to reap descriptors. Note that this is done to
961 * reduce interrupt load and this only defers reaping
962 * descriptors, never transmitting frames. Aside from
963 * reducing interrupts this also permits more concurrency.
964 * The only potential downside is if the tx queue backs
965 * up in which case the top half of the kernel may backup
966 * due to a lack of tx descriptors.
e30eb4ab 967 */
8a63facc
BC
968 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
969 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
970 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
971 if (qnum < 0) {
972 /*
973 * NB: don't print a message, this happens
974 * normally on parts with too few tx queues
975 */
976 return ERR_PTR(qnum);
977 }
978 if (qnum >= ARRAY_SIZE(sc->txqs)) {
979 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
980 qnum, ARRAY_SIZE(sc->txqs));
981 ath5k_hw_release_tx_queue(ah, qnum);
982 return ERR_PTR(-EINVAL);
983 }
984 txq = &sc->txqs[qnum];
985 if (!txq->setup) {
986 txq->qnum = qnum;
987 txq->link = NULL;
988 INIT_LIST_HEAD(&txq->q);
989 spin_lock_init(&txq->lock);
990 txq->setup = true;
925e0b06 991 txq->txq_len = 0;
4edd761f 992 txq->txq_poll_mark = false;
923e5b3d 993 txq->txq_stuck = 0;
8a63facc
BC
994 }
995 return &sc->txqs[qnum];
fa1c114f
JS
996}
997
8a63facc
BC
998static int
999ath5k_beaconq_setup(struct ath5k_hw *ah)
fa1c114f 1000{
8a63facc 1001 struct ath5k_txq_info qi = {
de8af455
BR
1002 /* XXX: default values not correct for B and XR channels,
1003 * but who cares? */
1004 .tqi_aifs = AR5K_TUNE_AIFS,
1005 .tqi_cw_min = AR5K_TUNE_CWMIN,
1006 .tqi_cw_max = AR5K_TUNE_CWMAX,
8a63facc
BC
1007 /* NB: for dynamic turbo, don't enable any other interrupts */
1008 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1009 };
d8ee398d 1010
8a63facc 1011 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
fa1c114f
JS
1012}
1013
8a63facc
BC
1014static int
1015ath5k_beaconq_config(struct ath5k_softc *sc)
fa1c114f
JS
1016{
1017 struct ath5k_hw *ah = sc->ah;
8a63facc
BC
1018 struct ath5k_txq_info qi;
1019 int ret;
fa1c114f 1020
8a63facc
BC
1021 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1022 if (ret)
1023 goto err;
fa1c114f 1024
8a63facc
BC
1025 if (sc->opmode == NL80211_IFTYPE_AP ||
1026 sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1027 /*
1028 * Always burst out beacon and CAB traffic
1029 * (aifs = cwmin = cwmax = 0)
1030 */
1031 qi.tqi_aifs = 0;
1032 qi.tqi_cw_min = 0;
1033 qi.tqi_cw_max = 0;
1034 } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1035 /*
1036 * Adhoc mode; backoff between 0 and (2 * cw_min).
1037 */
1038 qi.tqi_aifs = 0;
1039 qi.tqi_cw_min = 0;
de8af455 1040 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
8a63facc 1041 }
fa1c114f 1042
8a63facc
BC
1043 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1044 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1045 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
fa1c114f 1046
8a63facc
BC
1047 ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1048 if (ret) {
1049 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1050 "hardware queue!\n", __func__);
1051 goto err;
1052 }
1053 ret = ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */
1054 if (ret)
1055 goto err;
b7266047 1056
8a63facc
BC
1057 /* reconfigure cabq with ready time to 80% of beacon_interval */
1058 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1059 if (ret)
1060 goto err;
b7266047 1061
8a63facc
BC
1062 qi.tqi_ready_time = (sc->bintval * 80) / 100;
1063 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1064 if (ret)
1065 goto err;
b7266047 1066
8a63facc
BC
1067 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1068err:
1069 return ret;
d8ee398d
LR
1070}
1071
8a63facc
BC
1072static void
1073ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1074{
1075 struct ath5k_buf *bf, *bf0;
b6ea0356
BC
1076
1077 /*
8a63facc
BC
1078 * NB: this assumes output has been stopped and
1079 * we do not need to block ath5k_tx_tasklet
b6ea0356 1080 */
8a63facc
BC
1081 spin_lock_bh(&txq->lock);
1082 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1083 ath5k_debug_printtxbuf(sc, bf);
b6ea0356 1084
8a63facc 1085 ath5k_txbuf_free_skb(sc, bf);
b6ea0356 1086
8a63facc
BC
1087 spin_lock_bh(&sc->txbuflock);
1088 list_move_tail(&bf->list, &sc->txbuf);
1089 sc->txbuf_len++;
925e0b06 1090 txq->txq_len--;
8a63facc 1091 spin_unlock_bh(&sc->txbuflock);
b6ea0356 1092 }
8a63facc 1093 txq->link = NULL;
4edd761f 1094 txq->txq_poll_mark = false;
8a63facc 1095 spin_unlock_bh(&txq->lock);
b6ea0356
BC
1096}
1097
8a63facc
BC
1098/*
1099 * Drain the transmit queues and reclaim resources.
1100 */
1101static void
1102ath5k_txq_cleanup(struct ath5k_softc *sc)
fa1c114f
JS
1103{
1104 struct ath5k_hw *ah = sc->ah;
8a63facc 1105 unsigned int i;
fa1c114f 1106
8a63facc
BC
1107 /* XXX return value */
1108 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1109 /* don't touch the hardware if marked invalid */
1110 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1111 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1112 ath5k_hw_get_txdp(ah, sc->bhalq));
1113 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1114 if (sc->txqs[i].setup) {
1115 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1116 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1117 "link %p\n",
1118 sc->txqs[i].qnum,
1119 ath5k_hw_get_txdp(ah,
1120 sc->txqs[i].qnum),
1121 sc->txqs[i].link);
1122 }
0452d4a5 1123 }
fa1c114f 1124
8a63facc
BC
1125 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1126 if (sc->txqs[i].setup)
1127 ath5k_txq_drainq(sc, &sc->txqs[i]);
fa1c114f
JS
1128}
1129
8a63facc
BC
1130static void
1131ath5k_txq_release(struct ath5k_softc *sc)
2ac2927a 1132{
8a63facc
BC
1133 struct ath5k_txq *txq = sc->txqs;
1134 unsigned int i;
2ac2927a 1135
8a63facc
BC
1136 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1137 if (txq->setup) {
1138 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1139 txq->setup = false;
1140 }
1141}
2ac2927a 1142
2ac2927a 1143
8a63facc
BC
1144/*************\
1145* RX Handling *
1146\*************/
2ac2927a 1147
8a63facc
BC
1148/*
1149 * Enable the receive h/w following a reset.
1150 */
fa1c114f 1151static int
8a63facc 1152ath5k_rx_start(struct ath5k_softc *sc)
fa1c114f
JS
1153{
1154 struct ath5k_hw *ah = sc->ah;
8a63facc
BC
1155 struct ath_common *common = ath5k_hw_common(ah);
1156 struct ath5k_buf *bf;
1157 int ret;
fa1c114f 1158
8a63facc 1159 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
fa1c114f 1160
8a63facc
BC
1161 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1162 common->cachelsz, common->rx_bufsize);
2f7fe870 1163
8a63facc
BC
1164 spin_lock_bh(&sc->rxbuflock);
1165 sc->rxlink = NULL;
1166 list_for_each_entry(bf, &sc->rxbuf, list) {
1167 ret = ath5k_rxbuf_setup(sc, bf);
1168 if (ret != 0) {
1169 spin_unlock_bh(&sc->rxbuflock);
1170 goto err;
1171 }
2f7fe870 1172 }
8a63facc
BC
1173 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1174 ath5k_hw_set_rxdp(ah, bf->daddr);
1175 spin_unlock_bh(&sc->rxbuflock);
2f7fe870 1176
8a63facc 1177 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
b1ae1edf 1178 ath5k_mode_setup(sc, NULL); /* set filters, etc. */
8a63facc 1179 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
fa1c114f
JS
1180
1181 return 0;
8a63facc 1182err:
fa1c114f
JS
1183 return ret;
1184}
1185
8a63facc
BC
1186/*
1187 * Disable the receive h/w in preparation for a reset.
1188 */
1189static void
1190ath5k_rx_stop(struct ath5k_softc *sc)
fa1c114f 1191{
8a63facc 1192 struct ath5k_hw *ah = sc->ah;
fa1c114f 1193
8a63facc
BC
1194 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1195 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1196 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
fa1c114f 1197
8a63facc
BC
1198 ath5k_debug_printrxbuffs(sc, ah);
1199}
fa1c114f 1200
8a63facc
BC
1201static unsigned int
1202ath5k_rx_decrypted(struct ath5k_softc *sc, struct sk_buff *skb,
1203 struct ath5k_rx_status *rs)
1204{
1205 struct ath5k_hw *ah = sc->ah;
1206 struct ath_common *common = ath5k_hw_common(ah);
1207 struct ieee80211_hdr *hdr = (void *)skb->data;
1208 unsigned int keyix, hlen;
fa1c114f 1209
8a63facc
BC
1210 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1211 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1212 return RX_FLAG_DECRYPTED;
fa1c114f 1213
8a63facc
BC
1214 /* Apparently when a default key is used to decrypt the packet
1215 the hw does not set the index used to decrypt. In such cases
1216 get the index from the packet. */
1217 hlen = ieee80211_hdrlen(hdr->frame_control);
1218 if (ieee80211_has_protected(hdr->frame_control) &&
1219 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1220 skb->len >= hlen + 4) {
1221 keyix = skb->data[hlen + 3] >> 6;
1222
1223 if (test_bit(keyix, common->keymap))
1224 return RX_FLAG_DECRYPTED;
1225 }
fa1c114f
JS
1226
1227 return 0;
fa1c114f
JS
1228}
1229
8a63facc 1230
fa1c114f 1231static void
8a63facc
BC
1232ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1233 struct ieee80211_rx_status *rxs)
fa1c114f 1234{
8a63facc
BC
1235 struct ath_common *common = ath5k_hw_common(sc->ah);
1236 u64 tsf, bc_tstamp;
1237 u32 hw_tu;
1238 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
fa1c114f 1239
8a63facc
BC
1240 if (ieee80211_is_beacon(mgmt->frame_control) &&
1241 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1242 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1243 /*
1244 * Received an IBSS beacon with the same BSSID. Hardware *must*
1245 * have updated the local TSF. We have to work around various
1246 * hardware bugs, though...
1247 */
1248 tsf = ath5k_hw_get_tsf64(sc->ah);
1249 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1250 hw_tu = TSF_TO_TU(tsf);
fa1c114f 1251
8a63facc
BC
1252 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1253 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1254 (unsigned long long)bc_tstamp,
1255 (unsigned long long)rxs->mactime,
1256 (unsigned long long)(rxs->mactime - bc_tstamp),
1257 (unsigned long long)tsf);
fa1c114f 1258
8a63facc
BC
1259 /*
1260 * Sometimes the HW will give us a wrong tstamp in the rx
1261 * status, causing the timestamp extension to go wrong.
1262 * (This seems to happen especially with beacon frames bigger
1263 * than 78 byte (incl. FCS))
1264 * But we know that the receive timestamp must be later than the
1265 * timestamp of the beacon since HW must have synced to that.
1266 *
1267 * NOTE: here we assume mactime to be after the frame was
1268 * received, not like mac80211 which defines it at the start.
1269 */
1270 if (bc_tstamp > rxs->mactime) {
1271 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1272 "fixing mactime from %llx to %llx\n",
1273 (unsigned long long)rxs->mactime,
1274 (unsigned long long)tsf);
1275 rxs->mactime = tsf;
1276 }
fa1c114f 1277
8a63facc
BC
1278 /*
1279 * Local TSF might have moved higher than our beacon timers,
1280 * in that case we have to update them to continue sending
1281 * beacons. This also takes care of synchronizing beacon sending
1282 * times with other stations.
1283 */
1284 if (hw_tu >= sc->nexttbtt)
1285 ath5k_beacon_update_timers(sc, bc_tstamp);
7f896126
BR
1286
1287 /* Check if the beacon timers are still correct, because a TSF
1288 * update might have created a window between them - for a
1289 * longer description see the comment of this function: */
1290 if (!ath5k_hw_check_beacon_timers(sc->ah, sc->bintval)) {
1291 ath5k_beacon_update_timers(sc, bc_tstamp);
1292 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1293 "fixed beacon timers after beacon receive\n");
1294 }
8a63facc
BC
1295 }
1296}
fa1c114f 1297
8a63facc
BC
1298static void
1299ath5k_update_beacon_rssi(struct ath5k_softc *sc, struct sk_buff *skb, int rssi)
1300{
1301 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1302 struct ath5k_hw *ah = sc->ah;
1303 struct ath_common *common = ath5k_hw_common(ah);
fa1c114f 1304
8a63facc
BC
1305 /* only beacons from our BSSID */
1306 if (!ieee80211_is_beacon(mgmt->frame_control) ||
1307 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1308 return;
fa1c114f 1309
8a63facc
BC
1310 ah->ah_beacon_rssi_avg = ath5k_moving_average(ah->ah_beacon_rssi_avg,
1311 rssi);
fa1c114f 1312
8a63facc
BC
1313 /* in IBSS mode we should keep RSSI statistics per neighbour */
1314 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1315}
fa1c114f 1316
8a63facc
BC
1317/*
1318 * Compute padding position. skb must contain an IEEE 802.11 frame
1319 */
1320static int ath5k_common_padpos(struct sk_buff *skb)
fa1c114f 1321{
8a63facc
BC
1322 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1323 __le16 frame_control = hdr->frame_control;
1324 int padpos = 24;
fa1c114f 1325
8a63facc
BC
1326 if (ieee80211_has_a4(frame_control)) {
1327 padpos += ETH_ALEN;
fa1c114f 1328 }
8a63facc
BC
1329 if (ieee80211_is_data_qos(frame_control)) {
1330 padpos += IEEE80211_QOS_CTL_LEN;
fa1c114f 1331 }
8a63facc
BC
1332
1333 return padpos;
fa1c114f
JS
1334}
1335
8a63facc
BC
1336/*
1337 * This function expects an 802.11 frame and returns the number of
1338 * bytes added, or -1 if we don't have enough header room.
1339 */
1340static int ath5k_add_padding(struct sk_buff *skb)
fa1c114f 1341{
8a63facc
BC
1342 int padpos = ath5k_common_padpos(skb);
1343 int padsize = padpos & 3;
fa1c114f 1344
8a63facc 1345 if (padsize && skb->len>padpos) {
fa1c114f 1346
8a63facc
BC
1347 if (skb_headroom(skb) < padsize)
1348 return -1;
fa1c114f 1349
8a63facc
BC
1350 skb_push(skb, padsize);
1351 memmove(skb->data, skb->data+padsize, padpos);
1352 return padsize;
1353 }
a951ae21 1354
8a63facc
BC
1355 return 0;
1356}
fa1c114f 1357
8a63facc
BC
1358/*
1359 * The MAC header is padded to have 32-bit boundary if the
1360 * packet payload is non-zero. The general calculation for
1361 * padsize would take into account odd header lengths:
1362 * padsize = 4 - (hdrlen & 3); however, since only
1363 * even-length headers are used, padding can only be 0 or 2
1364 * bytes and we can optimize this a bit. We must not try to
1365 * remove padding from short control frames that do not have a
1366 * payload.
1367 *
1368 * This function expects an 802.11 frame and returns the number of
1369 * bytes removed.
1370 */
1371static int ath5k_remove_padding(struct sk_buff *skb)
1372{
1373 int padpos = ath5k_common_padpos(skb);
1374 int padsize = padpos & 3;
6d91e1d8 1375
8a63facc
BC
1376 if (padsize && skb->len>=padpos+padsize) {
1377 memmove(skb->data + padsize, skb->data, padpos);
1378 skb_pull(skb, padsize);
1379 return padsize;
fa1c114f 1380 }
a951ae21 1381
8a63facc 1382 return 0;
fa1c114f
JS
1383}
1384
1385static void
8a63facc
BC
1386ath5k_receive_frame(struct ath5k_softc *sc, struct sk_buff *skb,
1387 struct ath5k_rx_status *rs)
fa1c114f 1388{
8a63facc
BC
1389 struct ieee80211_rx_status *rxs;
1390
1391 ath5k_remove_padding(skb);
1392
1393 rxs = IEEE80211_SKB_RXCB(skb);
1394
1395 rxs->flag = 0;
1396 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1397 rxs->flag |= RX_FLAG_MMIC_ERROR;
fa1c114f
JS
1398
1399 /*
8a63facc
BC
1400 * always extend the mac timestamp, since this information is
1401 * also needed for proper IBSS merging.
1402 *
1403 * XXX: it might be too late to do it here, since rs_tstamp is
1404 * 15bit only. that means TSF extension has to be done within
1405 * 32768usec (about 32ms). it might be necessary to move this to
1406 * the interrupt handler, like it is done in madwifi.
1407 *
1408 * Unfortunately we don't know when the hardware takes the rx
1409 * timestamp (beginning of phy frame, data frame, end of rx?).
1410 * The only thing we know is that it is hardware specific...
1411 * On AR5213 it seems the rx timestamp is at the end of the
1412 * frame, but i'm not sure.
1413 *
1414 * NOTE: mac80211 defines mactime at the beginning of the first
1415 * data symbol. Since we don't have any time references it's
1416 * impossible to comply to that. This affects IBSS merge only
1417 * right now, so it's not too bad...
fa1c114f 1418 */
8a63facc
BC
1419 rxs->mactime = ath5k_extend_tsf(sc->ah, rs->rs_tstamp);
1420 rxs->flag |= RX_FLAG_TSFT;
fa1c114f 1421
8a63facc
BC
1422 rxs->freq = sc->curchan->center_freq;
1423 rxs->band = sc->curband->band;
fa1c114f 1424
8a63facc 1425 rxs->signal = sc->ah->ah_noise_floor + rs->rs_rssi;
fa1c114f 1426
8a63facc 1427 rxs->antenna = rs->rs_antenna;
fa1c114f 1428
8a63facc
BC
1429 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1430 sc->stats.antenna_rx[rs->rs_antenna]++;
1431 else
1432 sc->stats.antenna_rx[0]++; /* invalid */
fa1c114f 1433
8a63facc
BC
1434 rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs->rs_rate);
1435 rxs->flag |= ath5k_rx_decrypted(sc, skb, rs);
fa1c114f 1436
8a63facc
BC
1437 if (rxs->rate_idx >= 0 && rs->rs_rate ==
1438 sc->curband->bitrates[rxs->rate_idx].hw_value_short)
1439 rxs->flag |= RX_FLAG_SHORTPRE;
fa1c114f 1440
8a63facc 1441 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
fa1c114f 1442
8a63facc 1443 ath5k_update_beacon_rssi(sc, skb, rs->rs_rssi);
fa1c114f 1444
8a63facc
BC
1445 /* check beacons in IBSS mode */
1446 if (sc->opmode == NL80211_IFTYPE_ADHOC)
1447 ath5k_check_ibss_tsf(sc, skb, rxs);
fa1c114f 1448
8a63facc
BC
1449 ieee80211_rx(sc->hw, skb);
1450}
fa1c114f 1451
8a63facc
BC
1452/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1453 *
1454 * Check if we want to further process this frame or not. Also update
1455 * statistics. Return true if we want this frame, false if not.
fa1c114f 1456 */
8a63facc
BC
1457static bool
1458ath5k_receive_frame_ok(struct ath5k_softc *sc, struct ath5k_rx_status *rs)
fa1c114f 1459{
8a63facc 1460 sc->stats.rx_all_count++;
b72acddb 1461 sc->stats.rx_bytes_count += rs->rs_datalen;
fa1c114f 1462
8a63facc
BC
1463 if (unlikely(rs->rs_status)) {
1464 if (rs->rs_status & AR5K_RXERR_CRC)
1465 sc->stats.rxerr_crc++;
1466 if (rs->rs_status & AR5K_RXERR_FIFO)
1467 sc->stats.rxerr_fifo++;
1468 if (rs->rs_status & AR5K_RXERR_PHY) {
1469 sc->stats.rxerr_phy++;
1470 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1471 sc->stats.rxerr_phy_code[rs->rs_phyerr]++;
1472 return false;
1473 }
1474 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1475 /*
1476 * Decrypt error. If the error occurred
1477 * because there was no hardware key, then
1478 * let the frame through so the upper layers
1479 * can process it. This is necessary for 5210
1480 * parts which have no way to setup a ``clear''
1481 * key cache entry.
1482 *
1483 * XXX do key cache faulting
1484 */
1485 sc->stats.rxerr_decrypt++;
1486 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1487 !(rs->rs_status & AR5K_RXERR_CRC))
1488 return true;
1489 }
1490 if (rs->rs_status & AR5K_RXERR_MIC) {
1491 sc->stats.rxerr_mic++;
1492 return true;
fa1c114f 1493 }
fa1c114f 1494
8a63facc
BC
1495 /* reject any frames with non-crypto errors */
1496 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1497 return false;
1498 }
fa1c114f 1499
8a63facc
BC
1500 if (unlikely(rs->rs_more)) {
1501 sc->stats.rxerr_jumbo++;
1502 return false;
1503 }
1504 return true;
fa1c114f
JS
1505}
1506
fa1c114f 1507static void
8a63facc 1508ath5k_tasklet_rx(unsigned long data)
fa1c114f 1509{
8a63facc
BC
1510 struct ath5k_rx_status rs = {};
1511 struct sk_buff *skb, *next_skb;
1512 dma_addr_t next_skb_addr;
1513 struct ath5k_softc *sc = (void *)data;
dc1e001b
LR
1514 struct ath5k_hw *ah = sc->ah;
1515 struct ath_common *common = ath5k_hw_common(ah);
8a63facc
BC
1516 struct ath5k_buf *bf;
1517 struct ath5k_desc *ds;
1518 int ret;
fa1c114f 1519
8a63facc
BC
1520 spin_lock(&sc->rxbuflock);
1521 if (list_empty(&sc->rxbuf)) {
1522 ATH5K_WARN(sc, "empty rx buf pool\n");
1523 goto unlock;
1524 }
1525 do {
1526 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1527 BUG_ON(bf->skb == NULL);
1528 skb = bf->skb;
1529 ds = bf->desc;
fa1c114f 1530
8a63facc
BC
1531 /* bail if HW is still using self-linked descriptor */
1532 if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1533 break;
fa1c114f 1534
8a63facc
BC
1535 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1536 if (unlikely(ret == -EINPROGRESS))
1537 break;
1538 else if (unlikely(ret)) {
1539 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1540 sc->stats.rxerr_proc++;
1541 break;
1542 }
fa1c114f 1543
8a63facc
BC
1544 if (ath5k_receive_frame_ok(sc, &rs)) {
1545 next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
fa1c114f 1546
8a63facc
BC
1547 /*
1548 * If we can't replace bf->skb with a new skb under
1549 * memory pressure, just skip this packet
1550 */
1551 if (!next_skb)
1552 goto next;
036cd1ec 1553
8a63facc
BC
1554 pci_unmap_single(sc->pdev, bf->skbaddr,
1555 common->rx_bufsize,
1556 PCI_DMA_FROMDEVICE);
036cd1ec 1557
8a63facc 1558 skb_put(skb, rs.rs_datalen);
6ba81c2c 1559
8a63facc 1560 ath5k_receive_frame(sc, skb, &rs);
6ba81c2c 1561
8a63facc
BC
1562 bf->skb = next_skb;
1563 bf->skbaddr = next_skb_addr;
036cd1ec 1564 }
8a63facc
BC
1565next:
1566 list_move_tail(&bf->list, &sc->rxbuf);
1567 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1568unlock:
1569 spin_unlock(&sc->rxbuflock);
036cd1ec
BR
1570}
1571
b4ea449d 1572
8a63facc
BC
1573/*************\
1574* TX Handling *
1575\*************/
b4ea449d 1576
8a63facc
BC
1577static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1578 struct ath5k_txq *txq)
1579{
1580 struct ath5k_softc *sc = hw->priv;
1581 struct ath5k_buf *bf;
1582 unsigned long flags;
1583 int padsize;
b4ea449d 1584
8a63facc 1585 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
b4ea449d 1586
8a63facc
BC
1587 /*
1588 * The hardware expects the header padded to 4 byte boundaries.
1589 * If this is not the case, we add the padding after the header.
1590 */
1591 padsize = ath5k_add_padding(skb);
1592 if (padsize < 0) {
1593 ATH5K_ERR(sc, "tx hdrlen not %%4: not enough"
1594 " headroom to pad");
1595 goto drop_packet;
1596 }
8127fbdc 1597
925e0b06
BR
1598 if (txq->txq_len >= ATH5K_TXQ_LEN_MAX)
1599 ieee80211_stop_queue(hw, txq->qnum);
1600
8a63facc
BC
1601 spin_lock_irqsave(&sc->txbuflock, flags);
1602 if (list_empty(&sc->txbuf)) {
1603 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
1604 spin_unlock_irqrestore(&sc->txbuflock, flags);
651d9375 1605 ieee80211_stop_queues(hw);
8a63facc 1606 goto drop_packet;
8127fbdc 1607 }
8a63facc
BC
1608 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
1609 list_del(&bf->list);
1610 sc->txbuf_len--;
1611 if (list_empty(&sc->txbuf))
1612 ieee80211_stop_queues(hw);
1613 spin_unlock_irqrestore(&sc->txbuflock, flags);
1614
1615 bf->skb = skb;
1616
1617 if (ath5k_txbuf_setup(sc, bf, txq, padsize)) {
1618 bf->skb = NULL;
1619 spin_lock_irqsave(&sc->txbuflock, flags);
1620 list_add_tail(&bf->list, &sc->txbuf);
1621 sc->txbuf_len++;
1622 spin_unlock_irqrestore(&sc->txbuflock, flags);
1623 goto drop_packet;
8127fbdc 1624 }
8a63facc 1625 return NETDEV_TX_OK;
8127fbdc 1626
8a63facc
BC
1627drop_packet:
1628 dev_kfree_skb_any(skb);
1629 return NETDEV_TX_OK;
8127fbdc
BP
1630}
1631
1440401e
BR
1632static void
1633ath5k_tx_frame_completed(struct ath5k_softc *sc, struct sk_buff *skb,
1634 struct ath5k_tx_status *ts)
1635{
1636 struct ieee80211_tx_info *info;
1637 int i;
1638
1639 sc->stats.tx_all_count++;
b72acddb 1640 sc->stats.tx_bytes_count += skb->len;
1440401e
BR
1641 info = IEEE80211_SKB_CB(skb);
1642
1643 ieee80211_tx_info_clear_status(info);
1644 for (i = 0; i < 4; i++) {
1645 struct ieee80211_tx_rate *r =
1646 &info->status.rates[i];
1647
1648 if (ts->ts_rate[i]) {
1649 r->idx = ath5k_hw_to_driver_rix(sc, ts->ts_rate[i]);
1650 r->count = ts->ts_retry[i];
1651 } else {
1652 r->idx = -1;
1653 r->count = 0;
1654 }
1655 }
1656
1657 /* count the successful attempt as well */
1658 info->status.rates[ts->ts_final_idx].count++;
1659
1660 if (unlikely(ts->ts_status)) {
1661 sc->stats.ack_fail++;
1662 if (ts->ts_status & AR5K_TXERR_FILT) {
1663 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1664 sc->stats.txerr_filt++;
1665 }
1666 if (ts->ts_status & AR5K_TXERR_XRETRY)
1667 sc->stats.txerr_retry++;
1668 if (ts->ts_status & AR5K_TXERR_FIFO)
1669 sc->stats.txerr_fifo++;
1670 } else {
1671 info->flags |= IEEE80211_TX_STAT_ACK;
1672 info->status.ack_signal = ts->ts_rssi;
1673 }
1674
1675 /*
1676 * Remove MAC header padding before giving the frame
1677 * back to mac80211.
1678 */
1679 ath5k_remove_padding(skb);
1680
1681 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1682 sc->stats.antenna_tx[ts->ts_antenna]++;
1683 else
1684 sc->stats.antenna_tx[0]++; /* invalid */
1685
1686 ieee80211_tx_status(sc->hw, skb);
1687}
8a63facc
BC
1688
1689static void
1690ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
8127fbdc 1691{
8a63facc
BC
1692 struct ath5k_tx_status ts = {};
1693 struct ath5k_buf *bf, *bf0;
1694 struct ath5k_desc *ds;
1695 struct sk_buff *skb;
1440401e 1696 int ret;
8127fbdc 1697
8a63facc
BC
1698 spin_lock(&txq->lock);
1699 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
23413296
BR
1700
1701 txq->txq_poll_mark = false;
1702
1703 /* skb might already have been processed last time. */
1704 if (bf->skb != NULL) {
1705 ds = bf->desc;
1706
1707 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1708 if (unlikely(ret == -EINPROGRESS))
1709 break;
1710 else if (unlikely(ret)) {
1711 ATH5K_ERR(sc,
1712 "error %d while processing "
1713 "queue %u\n", ret, txq->qnum);
1714 break;
1715 }
1716
1717 skb = bf->skb;
1718 bf->skb = NULL;
1719 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1720 PCI_DMA_TODEVICE);
1721 ath5k_tx_frame_completed(sc, skb, &ts);
1722 }
8127fbdc 1723
8a63facc
BC
1724 /*
1725 * It's possible that the hardware can say the buffer is
1726 * completed when it hasn't yet loaded the ds_link from
23413296
BR
1727 * host memory and moved on.
1728 * Always keep the last descriptor to avoid HW races...
8a63facc 1729 */
23413296
BR
1730 if (ath5k_hw_get_txdp(sc->ah, txq->qnum) != bf->daddr) {
1731 spin_lock(&sc->txbuflock);
1732 list_move_tail(&bf->list, &sc->txbuf);
1733 sc->txbuf_len++;
1734 txq->txq_len--;
1735 spin_unlock(&sc->txbuflock);
8a63facc 1736 }
fa1c114f 1737 }
fa1c114f 1738 spin_unlock(&txq->lock);
4198a8d0 1739 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
925e0b06 1740 ieee80211_wake_queue(sc->hw, txq->qnum);
fa1c114f
JS
1741}
1742
1743static void
1744ath5k_tasklet_tx(unsigned long data)
1745{
8784d2ee 1746 int i;
fa1c114f
JS
1747 struct ath5k_softc *sc = (void *)data;
1748
8784d2ee
BC
1749 for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
1750 if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
1751 ath5k_tx_processq(sc, &sc->txqs[i]);
fa1c114f
JS
1752}
1753
1754
fa1c114f
JS
1755/*****************\
1756* Beacon handling *
1757\*****************/
1758
1759/*
1760 * Setup the beacon frame for transmit.
1761 */
1762static int
e039fa4a 1763ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
fa1c114f
JS
1764{
1765 struct sk_buff *skb = bf->skb;
a888d52d 1766 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
fa1c114f
JS
1767 struct ath5k_hw *ah = sc->ah;
1768 struct ath5k_desc *ds;
2bed03eb
NK
1769 int ret = 0;
1770 u8 antenna;
fa1c114f 1771 u32 flags;
8127fbdc 1772 const int padsize = 0;
fa1c114f
JS
1773
1774 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1775 PCI_DMA_TODEVICE);
1776 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1777 "skbaddr %llx\n", skb, skb->data, skb->len,
1778 (unsigned long long)bf->skbaddr);
8d8bb39b 1779 if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
fa1c114f
JS
1780 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1781 return -EIO;
1782 }
1783
1784 ds = bf->desc;
2bed03eb 1785 antenna = ah->ah_tx_ant;
fa1c114f
JS
1786
1787 flags = AR5K_TXDESC_NOACK;
05c914fe 1788 if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
fa1c114f
JS
1789 ds->ds_link = bf->daddr; /* self-linked */
1790 flags |= AR5K_TXDESC_VEOL;
2bed03eb 1791 } else
fa1c114f 1792 ds->ds_link = 0;
2bed03eb
NK
1793
1794 /*
1795 * If we use multiple antennas on AP and use
1796 * the Sectored AP scenario, switch antenna every
1797 * 4 beacons to make sure everybody hears our AP.
1798 * When a client tries to associate, hw will keep
1799 * track of the tx antenna to be used for this client
1800 * automaticaly, based on ACKed packets.
1801 *
1802 * Note: AP still listens and transmits RTS on the
1803 * default antenna which is supposed to be an omni.
1804 *
1805 * Note2: On sectored scenarios it's possible to have
a180a130
BC
1806 * multiple antennas (1 omni -- the default -- and 14
1807 * sectors), so if we choose to actually support this
1808 * mode, we need to allow the user to set how many antennas
1809 * we have and tweak the code below to send beacons
1810 * on all of them.
2bed03eb
NK
1811 */
1812 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1813 antenna = sc->bsent & 4 ? 2 : 1;
1814
fa1c114f 1815
8f655dde
NK
1816 /* FIXME: If we are in g mode and rate is a CCK rate
1817 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1818 * from tx power (value is in dB units already) */
fa1c114f 1819 ds->ds_data = bf->skbaddr;
281c56dd 1820 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
8127fbdc 1821 ieee80211_get_hdrlen_from_skb(skb), padsize,
400ec45a 1822 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
e039fa4a 1823 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
2e92e6f2 1824 1, AR5K_TXKEYIX_INVALID,
400ec45a 1825 antenna, flags, 0, 0);
fa1c114f
JS
1826 if (ret)
1827 goto err_unmap;
1828
1829 return 0;
1830err_unmap:
1831 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1832 return ret;
1833}
1834
8a63facc
BC
1835/*
1836 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1837 * this is called only once at config_bss time, for AP we do it every
1838 * SWBA interrupt so that the TIM will reflect buffered frames.
1839 *
1840 * Called with the beacon lock.
1841 */
1842static int
1843ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1844{
1845 int ret;
1846 struct ath5k_softc *sc = hw->priv;
b1ae1edf 1847 struct ath5k_vif *avf = (void *)vif->drv_priv;
8a63facc
BC
1848 struct sk_buff *skb;
1849
1850 if (WARN_ON(!vif)) {
1851 ret = -EINVAL;
1852 goto out;
1853 }
1854
1855 skb = ieee80211_beacon_get(hw, vif);
1856
1857 if (!skb) {
1858 ret = -ENOMEM;
1859 goto out;
1860 }
1861
1862 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
1863
b1ae1edf
BG
1864 ath5k_txbuf_free_skb(sc, avf->bbuf);
1865 avf->bbuf->skb = skb;
1866 ret = ath5k_beacon_setup(sc, avf->bbuf);
8a63facc 1867 if (ret)
b1ae1edf 1868 avf->bbuf->skb = NULL;
8a63facc
BC
1869out:
1870 return ret;
1871}
1872
fa1c114f
JS
1873/*
1874 * Transmit a beacon frame at SWBA. Dynamic updates to the
1875 * frame contents are done as needed and the slot time is
1876 * also adjusted based on current state.
1877 *
5faaff74
BC
1878 * This is called from software irq context (beacontq tasklets)
1879 * or user context from ath5k_beacon_config.
fa1c114f
JS
1880 */
1881static void
1882ath5k_beacon_send(struct ath5k_softc *sc)
1883{
fa1c114f 1884 struct ath5k_hw *ah = sc->ah;
b1ae1edf
BG
1885 struct ieee80211_vif *vif;
1886 struct ath5k_vif *avf;
1887 struct ath5k_buf *bf;
cec8db23 1888 struct sk_buff *skb;
fa1c114f 1889
be9b7259 1890 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
fa1c114f 1891
fa1c114f
JS
1892 /*
1893 * Check if the previous beacon has gone out. If
a180a130 1894 * not, don't don't try to post another: skip this
fa1c114f
JS
1895 * period and wait for the next. Missed beacons
1896 * indicate a problem and should not occur. If we
1897 * miss too many consecutive beacons reset the device.
1898 */
1899 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
1900 sc->bmisscount++;
be9b7259 1901 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
fa1c114f 1902 "missed %u consecutive beacons\n", sc->bmisscount);
428cbd4f 1903 if (sc->bmisscount > 10) { /* NB: 10 is a guess */
be9b7259 1904 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
fa1c114f
JS
1905 "stuck beacon time (%u missed)\n",
1906 sc->bmisscount);
8d67a031
BR
1907 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
1908 "stuck beacon, resetting\n");
5faaff74 1909 ieee80211_queue_work(sc->hw, &sc->reset_work);
fa1c114f
JS
1910 }
1911 return;
1912 }
1913 if (unlikely(sc->bmisscount != 0)) {
be9b7259 1914 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
fa1c114f
JS
1915 "resume beacon xmit after %u misses\n",
1916 sc->bmisscount);
1917 sc->bmisscount = 0;
1918 }
1919
b1ae1edf
BG
1920 if (sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) {
1921 u64 tsf = ath5k_hw_get_tsf64(ah);
1922 u32 tsftu = TSF_TO_TU(tsf);
1923 int slot = ((tsftu % sc->bintval) * ATH_BCBUF) / sc->bintval;
1924 vif = sc->bslot[(slot + 1) % ATH_BCBUF];
1925 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1926 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1927 (unsigned long long)tsf, tsftu, sc->bintval, slot, vif);
1928 } else /* only one interface */
1929 vif = sc->bslot[0];
1930
1931 if (!vif)
1932 return;
1933
1934 avf = (void *)vif->drv_priv;
1935 bf = avf->bbuf;
1936 if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
1937 sc->opmode == NL80211_IFTYPE_MONITOR)) {
1938 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1939 return;
1940 }
1941
fa1c114f
JS
1942 /*
1943 * Stop any current dma and put the new frame on the queue.
1944 * This should never fail since we check above that no frames
1945 * are still pending on the queue.
1946 */
1947 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
428cbd4f 1948 ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
fa1c114f
JS
1949 /* NB: hw still stops DMA, so proceed */
1950 }
fa1c114f 1951
1071db86
BC
1952 /* refresh the beacon for AP mode */
1953 if (sc->opmode == NL80211_IFTYPE_AP)
b1ae1edf 1954 ath5k_beacon_update(sc->hw, vif);
1071db86 1955
c6e387a2
NK
1956 ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
1957 ath5k_hw_start_tx_dma(ah, sc->bhalq);
be9b7259 1958 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
fa1c114f
JS
1959 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
1960
b1ae1edf 1961 skb = ieee80211_get_buffered_bc(sc->hw, vif);
cec8db23
BC
1962 while (skb) {
1963 ath5k_tx_queue(sc->hw, skb, sc->cabq);
b1ae1edf 1964 skb = ieee80211_get_buffered_bc(sc->hw, vif);
cec8db23
BC
1965 }
1966
fa1c114f
JS
1967 sc->bsent++;
1968}
1969
9804b98d
BR
1970/**
1971 * ath5k_beacon_update_timers - update beacon timers
1972 *
1973 * @sc: struct ath5k_softc pointer we are operating on
1974 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1975 * beacon timer update based on the current HW TSF.
1976 *
1977 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1978 * of a received beacon or the current local hardware TSF and write it to the
1979 * beacon timer registers.
1980 *
1981 * This is called in a variety of situations, e.g. when a beacon is received,
6ba81c2c 1982 * when a TSF update has been detected, but also when an new IBSS is created or
9804b98d
BR
1983 * when we otherwise know we have to update the timers, but we keep it in this
1984 * function to have it all together in one place.
1985 */
fa1c114f 1986static void
9804b98d 1987ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
fa1c114f
JS
1988{
1989 struct ath5k_hw *ah = sc->ah;
9804b98d
BR
1990 u32 nexttbtt, intval, hw_tu, bc_tu;
1991 u64 hw_tsf;
fa1c114f
JS
1992
1993 intval = sc->bintval & AR5K_BEACON_PERIOD;
b1ae1edf
BG
1994 if (sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) {
1995 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
1996 if (intval < 15)
1997 ATH5K_WARN(sc, "intval %u is too low, min 15\n",
1998 intval);
1999 }
fa1c114f
JS
2000 if (WARN_ON(!intval))
2001 return;
2002
9804b98d
BR
2003 /* beacon TSF converted to TU */
2004 bc_tu = TSF_TO_TU(bc_tsf);
fa1c114f 2005
9804b98d
BR
2006 /* current TSF converted to TU */
2007 hw_tsf = ath5k_hw_get_tsf64(ah);
2008 hw_tu = TSF_TO_TU(hw_tsf);
fa1c114f 2009
11f21df3
BR
2010#define FUDGE AR5K_TUNE_SW_BEACON_RESP + 3
2011 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2012 * Since we later substract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2013 * configuration we need to make sure it is bigger than that. */
2014
9804b98d
BR
2015 if (bc_tsf == -1) {
2016 /*
2017 * no beacons received, called internally.
2018 * just need to refresh timers based on HW TSF.
2019 */
2020 nexttbtt = roundup(hw_tu + FUDGE, intval);
2021 } else if (bc_tsf == 0) {
2022 /*
2023 * no beacon received, probably called by ath5k_reset_tsf().
2024 * reset TSF to start with 0.
2025 */
2026 nexttbtt = intval;
2027 intval |= AR5K_BEACON_RESET_TSF;
2028 } else if (bc_tsf > hw_tsf) {
2029 /*
2030 * beacon received, SW merge happend but HW TSF not yet updated.
2031 * not possible to reconfigure timers yet, but next time we
2032 * receive a beacon with the same BSSID, the hardware will
2033 * automatically update the TSF and then we need to reconfigure
2034 * the timers.
2035 */
2036 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2037 "need to wait for HW TSF sync\n");
2038 return;
2039 } else {
2040 /*
2041 * most important case for beacon synchronization between STA.
2042 *
2043 * beacon received and HW TSF has been already updated by HW.
2044 * update next TBTT based on the TSF of the beacon, but make
2045 * sure it is ahead of our local TSF timer.
2046 */
2047 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2048 }
2049#undef FUDGE
fa1c114f 2050
036cd1ec
BR
2051 sc->nexttbtt = nexttbtt;
2052
fa1c114f 2053 intval |= AR5K_BEACON_ENA;
fa1c114f 2054 ath5k_hw_init_beacon(ah, nexttbtt, intval);
9804b98d
BR
2055
2056 /*
2057 * debugging output last in order to preserve the time critical aspect
2058 * of this function
2059 */
2060 if (bc_tsf == -1)
2061 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2062 "reconfigured timers based on HW TSF\n");
2063 else if (bc_tsf == 0)
2064 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2065 "reset HW TSF and timers\n");
2066 else
2067 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2068 "updated timers based on beacon TSF\n");
2069
2070 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
04f93a87
DM
2071 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2072 (unsigned long long) bc_tsf,
2073 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
9804b98d
BR
2074 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2075 intval & AR5K_BEACON_PERIOD,
2076 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2077 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
fa1c114f
JS
2078}
2079
036cd1ec
BR
2080/**
2081 * ath5k_beacon_config - Configure the beacon queues and interrupts
2082 *
2083 * @sc: struct ath5k_softc pointer we are operating on
fa1c114f 2084 *
036cd1ec 2085 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
6ba81c2c 2086 * interrupts to detect TSF updates only.
fa1c114f
JS
2087 */
2088static void
2089ath5k_beacon_config(struct ath5k_softc *sc)
2090{
2091 struct ath5k_hw *ah = sc->ah;
b5f03956 2092 unsigned long flags;
fa1c114f 2093
21800491 2094 spin_lock_irqsave(&sc->block, flags);
fa1c114f 2095 sc->bmisscount = 0;
dc1968e7 2096 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
fa1c114f 2097
21800491 2098 if (sc->enable_beacon) {
fa1c114f 2099 /*
036cd1ec
BR
2100 * In IBSS mode we use a self-linked tx descriptor and let the
2101 * hardware send the beacons automatically. We have to load it
fa1c114f 2102 * only once here.
036cd1ec 2103 * We use the SWBA interrupt only to keep track of the beacon
6ba81c2c 2104 * timers in order to detect automatic TSF updates.
fa1c114f
JS
2105 */
2106 ath5k_beaconq_config(sc);
fa1c114f 2107
036cd1ec
BR
2108 sc->imask |= AR5K_INT_SWBA;
2109
da966bca 2110 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
21800491 2111 if (ath5k_hw_hasveol(ah))
da966bca 2112 ath5k_beacon_send(sc);
da966bca
JS
2113 } else
2114 ath5k_beacon_update_timers(sc, -1);
21800491
BC
2115 } else {
2116 ath5k_hw_stop_tx_dma(sc->ah, sc->bhalq);
fa1c114f 2117 }
fa1c114f 2118
c6e387a2 2119 ath5k_hw_set_imr(ah, sc->imask);
21800491
BC
2120 mmiowb();
2121 spin_unlock_irqrestore(&sc->block, flags);
fa1c114f
JS
2122}
2123
428cbd4f
NK
2124static void ath5k_tasklet_beacon(unsigned long data)
2125{
2126 struct ath5k_softc *sc = (struct ath5k_softc *) data;
2127
2128 /*
2129 * Software beacon alert--time to send a beacon.
2130 *
2131 * In IBSS mode we use this interrupt just to
2132 * keep track of the next TBTT (target beacon
2133 * transmission time) in order to detect wether
2134 * automatic TSF updates happened.
2135 */
2136 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2137 /* XXX: only if VEOL suppported */
2138 u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2139 sc->nexttbtt += sc->bintval;
2140 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2141 "SWBA nexttbtt: %x hw_tu: %x "
2142 "TSF: %llx\n",
2143 sc->nexttbtt,
2144 TSF_TO_TU(tsf),
2145 (unsigned long long) tsf);
2146 } else {
2147 spin_lock(&sc->block);
2148 ath5k_beacon_send(sc);
2149 spin_unlock(&sc->block);
2150 }
2151}
2152
fa1c114f
JS
2153
2154/********************\
2155* Interrupt handling *
2156\********************/
2157
6a8a3f6b
BR
2158static void
2159ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2160{
2111ac0d
BR
2161 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2162 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2163 /* run ANI only when full calibration is not active */
2164 ah->ah_cal_next_ani = jiffies +
2165 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2166 tasklet_schedule(&ah->ah_sc->ani_tasklet);
2167
2168 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
6a8a3f6b
BR
2169 ah->ah_cal_next_full = jiffies +
2170 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2171 tasklet_schedule(&ah->ah_sc->calib);
2172 }
2173 /* we could use SWI to generate enough interrupts to meet our
2174 * calibration interval requirements, if necessary:
2175 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2176}
2177
fa1c114f
JS
2178static irqreturn_t
2179ath5k_intr(int irq, void *dev_id)
2180{
2181 struct ath5k_softc *sc = dev_id;
2182 struct ath5k_hw *ah = sc->ah;
2183 enum ath5k_int status;
2184 unsigned int counter = 1000;
2185
2186 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2187 !ath5k_hw_is_intr_pending(ah)))
2188 return IRQ_NONE;
2189
2190 do {
fa1c114f
JS
2191 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2192 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2193 status, sc->imask);
fa1c114f
JS
2194 if (unlikely(status & AR5K_INT_FATAL)) {
2195 /*
2196 * Fatal errors are unrecoverable.
2197 * Typically these are caused by DMA errors.
2198 */
8d67a031
BR
2199 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2200 "fatal int, resetting\n");
5faaff74 2201 ieee80211_queue_work(sc->hw, &sc->reset_work);
fa1c114f 2202 } else if (unlikely(status & AR5K_INT_RXORN)) {
87d77c4e
BR
2203 /*
2204 * Receive buffers are full. Either the bus is busy or
2205 * the CPU is not fast enough to process all received
2206 * frames.
2207 * Older chipsets need a reset to come out of this
2208 * condition, but we treat it as RX for newer chips.
2209 * We don't know exactly which versions need a reset -
2210 * this guess is copied from the HAL.
2211 */
2212 sc->stats.rxorn_intr++;
8d67a031
BR
2213 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2214 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2215 "rx overrun, resetting\n");
5faaff74 2216 ieee80211_queue_work(sc->hw, &sc->reset_work);
8d67a031 2217 }
87d77c4e
BR
2218 else
2219 tasklet_schedule(&sc->rxtq);
fa1c114f
JS
2220 } else {
2221 if (status & AR5K_INT_SWBA) {
56d2ac76 2222 tasklet_hi_schedule(&sc->beacontq);
fa1c114f
JS
2223 }
2224 if (status & AR5K_INT_RXEOL) {
2225 /*
2226 * NB: the hardware should re-read the link when
2227 * RXE bit is written, but it doesn't work at
2228 * least on older hardware revs.
2229 */
b3f194e5 2230 sc->stats.rxeol_intr++;
fa1c114f
JS
2231 }
2232 if (status & AR5K_INT_TXURN) {
2233 /* bump tx trigger level */
2234 ath5k_hw_update_tx_triglevel(ah, true);
2235 }
4c674c60 2236 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
fa1c114f 2237 tasklet_schedule(&sc->rxtq);
4c674c60
NK
2238 if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2239 | AR5K_INT_TXERR | AR5K_INT_TXEOL))
fa1c114f
JS
2240 tasklet_schedule(&sc->txtq);
2241 if (status & AR5K_INT_BMISS) {
1e3e6e8f 2242 /* TODO */
fa1c114f
JS
2243 }
2244 if (status & AR5K_INT_MIB) {
2111ac0d 2245 sc->stats.mib_intr++;
495391d7 2246 ath5k_hw_update_mib_counters(ah);
2111ac0d 2247 ath5k_ani_mib_intr(ah);
fa1c114f 2248 }
e6a3b616 2249 if (status & AR5K_INT_GPIO)
e6a3b616 2250 tasklet_schedule(&sc->rf_kill.toggleq);
a6ae0716 2251
fa1c114f 2252 }
2516baa6 2253 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
fa1c114f
JS
2254
2255 if (unlikely(!counter))
2256 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2257
6a8a3f6b 2258 ath5k_intr_calibration_poll(ah);
6e220662 2259
fa1c114f
JS
2260 return IRQ_HANDLED;
2261}
2262
fa1c114f
JS
2263/*
2264 * Periodically recalibrate the PHY to account
2265 * for temperature/environment changes.
2266 */
2267static void
6e220662 2268ath5k_tasklet_calibrate(unsigned long data)
fa1c114f
JS
2269{
2270 struct ath5k_softc *sc = (void *)data;
2271 struct ath5k_hw *ah = sc->ah;
2272
6e220662 2273 /* Only full calibration for now */
e65e1d77 2274 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
6e220662 2275
fa1c114f 2276 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
400ec45a
LR
2277 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2278 sc->curchan->hw_value);
fa1c114f 2279
6f3b414a 2280 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
fa1c114f
JS
2281 /*
2282 * Rfgain is out of bounds, reset the chip
2283 * to load new gain values.
2284 */
2285 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
5faaff74 2286 ieee80211_queue_work(sc->hw, &sc->reset_work);
fa1c114f
JS
2287 }
2288 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2289 ATH5K_ERR(sc, "calibration of channel %u failed\n",
400ec45a
LR
2290 ieee80211_frequency_to_channel(
2291 sc->curchan->center_freq));
fa1c114f 2292
0e8e02dd 2293 /* Noise floor calibration interrupts rx/tx path while I/Q calibration
651d9375
BR
2294 * doesn't.
2295 * TODO: We should stop TX here, so that it doesn't interfere.
2296 * Note that stopping the queues is not enough to stop TX! */
afe86286
BR
2297 if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2298 ah->ah_cal_next_nf = jiffies +
2299 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
afe86286 2300 ath5k_hw_update_noise_floor(ah);
afe86286 2301 }
6e220662 2302
e65e1d77 2303 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
fa1c114f
JS
2304}
2305
2306
2111ac0d
BR
2307static void
2308ath5k_tasklet_ani(unsigned long data)
2309{
2310 struct ath5k_softc *sc = (void *)data;
2311 struct ath5k_hw *ah = sc->ah;
2312
2313 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2314 ath5k_ani_calibration(ah);
2315 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
fa1c114f
JS
2316}
2317
2318
4edd761f
BR
2319static void
2320ath5k_tx_complete_poll_work(struct work_struct *work)
2321{
2322 struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2323 tx_complete_work.work);
2324 struct ath5k_txq *txq;
2325 int i;
2326 bool needreset = false;
2327
2328 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
2329 if (sc->txqs[i].setup) {
2330 txq = &sc->txqs[i];
2331 spin_lock_bh(&txq->lock);
23413296 2332 if (txq->txq_len > 1) {
4edd761f
BR
2333 if (txq->txq_poll_mark) {
2334 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT,
2335 "TX queue stuck %d\n",
2336 txq->qnum);
2337 needreset = true;
923e5b3d 2338 txq->txq_stuck++;
4edd761f
BR
2339 spin_unlock_bh(&txq->lock);
2340 break;
2341 } else {
2342 txq->txq_poll_mark = true;
2343 }
2344 }
2345 spin_unlock_bh(&txq->lock);
2346 }
2347 }
2348
2349 if (needreset) {
2350 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2351 "TX queues stuck, resetting\n");
2352 ath5k_reset(sc, sc->curchan);
2353 }
2354
2355 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2356 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2357}
2358
2359
8a63facc
BC
2360/*************************\
2361* Initialization routines *
2362\*************************/
fa1c114f
JS
2363
2364static int
8a63facc 2365ath5k_stop_locked(struct ath5k_softc *sc)
cec8db23 2366{
8a63facc 2367 struct ath5k_hw *ah = sc->ah;
cec8db23 2368
8a63facc
BC
2369 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2370 test_bit(ATH_STAT_INVALID, sc->status));
2371
2372 /*
2373 * Shutdown the hardware and driver:
2374 * stop output from above
2375 * disable interrupts
2376 * turn off timers
2377 * turn off the radio
2378 * clear transmit machinery
2379 * clear receive machinery
2380 * drain and release tx queues
2381 * reclaim beacon resources
2382 * power down hardware
2383 *
2384 * Note that some of this work is not possible if the
2385 * hardware is gone (invalid).
2386 */
2387 ieee80211_stop_queues(sc->hw);
2388
2389 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2390 ath5k_led_off(sc);
2391 ath5k_hw_set_imr(ah, 0);
2392 synchronize_irq(sc->pdev->irq);
2393 }
2394 ath5k_txq_cleanup(sc);
2395 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2396 ath5k_rx_stop(sc);
2397 ath5k_hw_phy_disable(ah);
2398 }
2399
2400 return 0;
cec8db23
BC
2401}
2402
8a63facc
BC
2403static int
2404ath5k_init(struct ath5k_softc *sc)
fa1c114f 2405{
8a63facc
BC
2406 struct ath5k_hw *ah = sc->ah;
2407 struct ath_common *common = ath5k_hw_common(ah);
2408 int ret, i;
fa1c114f 2409
8a63facc
BC
2410 mutex_lock(&sc->lock);
2411
2412 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
fa1c114f 2413
fa1c114f 2414 /*
8a63facc
BC
2415 * Stop anything previously setup. This is safe
2416 * no matter this is the first time through or not.
fa1c114f 2417 */
8a63facc 2418 ath5k_stop_locked(sc);
fa1c114f 2419
8a63facc
BC
2420 /*
2421 * The basic interface to setting the hardware in a good
2422 * state is ``reset''. On return the hardware is known to
2423 * be powered up and with interrupts disabled. This must
2424 * be followed by initialization of the appropriate bits
2425 * and then setup of the interrupt mask.
2426 */
2427 sc->curchan = sc->hw->conf.channel;
2428 sc->curband = &sc->sbands[sc->curchan->band];
2429 sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2430 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2431 AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
fa1c114f 2432
8a63facc
BC
2433 ret = ath5k_reset(sc, NULL);
2434 if (ret)
2435 goto done;
fa1c114f 2436
8a63facc
BC
2437 ath5k_rfkill_hw_start(ah);
2438
2439 /*
2440 * Reset the key cache since some parts do not reset the
2441 * contents on initial power up or resume from suspend.
2442 */
2443 for (i = 0; i < common->keymax; i++)
2444 ath_hw_keyreset(common, (u16) i);
2445
2446 ath5k_hw_set_ack_bitrate_high(ah, true);
b1ae1edf
BG
2447
2448 for (i = 0; i < ARRAY_SIZE(sc->bslot); i++)
2449 sc->bslot[i] = NULL;
2450
8a63facc
BC
2451 ret = 0;
2452done:
2453 mmiowb();
2454 mutex_unlock(&sc->lock);
4edd761f
BR
2455
2456 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2457 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2458
8a63facc
BC
2459 return ret;
2460}
2461
2462static void stop_tasklets(struct ath5k_softc *sc)
2463{
2464 tasklet_kill(&sc->rxtq);
2465 tasklet_kill(&sc->txtq);
2466 tasklet_kill(&sc->calib);
2467 tasklet_kill(&sc->beacontq);
2468 tasklet_kill(&sc->ani_tasklet);
2469}
2470
2471/*
2472 * Stop the device, grabbing the top-level lock to protect
2473 * against concurrent entry through ath5k_init (which can happen
2474 * if another thread does a system call and the thread doing the
2475 * stop is preempted).
2476 */
2477static int
2478ath5k_stop_hw(struct ath5k_softc *sc)
2479{
2480 int ret;
2481
2482 mutex_lock(&sc->lock);
2483 ret = ath5k_stop_locked(sc);
2484 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2485 /*
2486 * Don't set the card in full sleep mode!
2487 *
2488 * a) When the device is in this state it must be carefully
2489 * woken up or references to registers in the PCI clock
2490 * domain may freeze the bus (and system). This varies
2491 * by chip and is mostly an issue with newer parts
2492 * (madwifi sources mentioned srev >= 0x78) that go to
2493 * sleep more quickly.
2494 *
2495 * b) On older chips full sleep results a weird behaviour
2496 * during wakeup. I tested various cards with srev < 0x78
2497 * and they don't wake up after module reload, a second
2498 * module reload is needed to bring the card up again.
2499 *
2500 * Until we figure out what's going on don't enable
2501 * full chip reset on any chip (this is what Legacy HAL
2502 * and Sam's HAL do anyway). Instead Perform a full reset
2503 * on the device (same as initial state after attach) and
2504 * leave it idle (keep MAC/BB on warm reset) */
2505 ret = ath5k_hw_on_hold(sc->ah);
2506
2507 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2508 "putting device to sleep\n");
fa1c114f
JS
2509 }
2510
8a63facc
BC
2511 mmiowb();
2512 mutex_unlock(&sc->lock);
2513
2514 stop_tasklets(sc);
2515
4edd761f
BR
2516 cancel_delayed_work_sync(&sc->tx_complete_work);
2517
8a63facc
BC
2518 ath5k_rfkill_hw_stop(sc->ah);
2519
2520 return ret;
fa1c114f
JS
2521}
2522
209d889b
BC
2523/*
2524 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2525 * and change to the given channel.
5faaff74
BC
2526 *
2527 * This should be called with sc->lock.
209d889b 2528 */
fa1c114f 2529static int
209d889b 2530ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan)
fa1c114f 2531{
fa1c114f
JS
2532 struct ath5k_hw *ah = sc->ah;
2533 int ret;
2534
2535 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
fa1c114f 2536
450464de
BC
2537 ath5k_hw_set_imr(ah, 0);
2538 synchronize_irq(sc->pdev->irq);
2539 stop_tasklets(sc);
2540
209d889b 2541 if (chan) {
d7dc1003
JS
2542 ath5k_txq_cleanup(sc);
2543 ath5k_rx_stop(sc);
209d889b
BC
2544
2545 sc->curchan = chan;
2546 sc->curband = &sc->sbands[chan->band];
d7dc1003 2547 }
3355443a 2548 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, chan != NULL);
d7dc1003 2549 if (ret) {
fa1c114f
JS
2550 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2551 goto err;
2552 }
d7dc1003 2553
fa1c114f 2554 ret = ath5k_rx_start(sc);
d7dc1003 2555 if (ret) {
fa1c114f
JS
2556 ATH5K_ERR(sc, "can't start recv logic\n");
2557 goto err;
2558 }
d7dc1003 2559
2111ac0d
BR
2560 ath5k_ani_init(ah, ah->ah_sc->ani_state.ani_mode);
2561
ac559526
BR
2562 ah->ah_cal_next_full = jiffies;
2563 ah->ah_cal_next_ani = jiffies;
afe86286
BR
2564 ah->ah_cal_next_nf = jiffies;
2565
fa1c114f 2566 /*
d7dc1003
JS
2567 * Change channels and update the h/w rate map if we're switching;
2568 * e.g. 11a to 11b/g.
2569 *
2570 * We may be doing a reset in response to an ioctl that changes the
2571 * channel so update any state that might change as a result.
fa1c114f
JS
2572 *
2573 * XXX needed?
2574 */
2575/* ath5k_chan_change(sc, c); */
fa1c114f 2576
d7dc1003
JS
2577 ath5k_beacon_config(sc);
2578 /* intrs are enabled by ath5k_beacon_config */
fa1c114f 2579
397f385b
BR
2580 ieee80211_wake_queues(sc->hw);
2581
fa1c114f
JS
2582 return 0;
2583err:
2584 return ret;
2585}
2586
5faaff74
BC
2587static void ath5k_reset_work(struct work_struct *work)
2588{
2589 struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2590 reset_work);
2591
2592 mutex_lock(&sc->lock);
2593 ath5k_reset(sc, sc->curchan);
2594 mutex_unlock(&sc->lock);
2595}
2596
8a63facc
BC
2597static int
2598ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
fa1c114f
JS
2599{
2600 struct ath5k_softc *sc = hw->priv;
8a63facc
BC
2601 struct ath5k_hw *ah = sc->ah;
2602 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
925e0b06 2603 struct ath5k_txq *txq;
8a63facc 2604 u8 mac[ETH_ALEN] = {};
fa1c114f
JS
2605 int ret;
2606
8a63facc 2607 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
fa1c114f 2608
8a63facc
BC
2609 /*
2610 * Check if the MAC has multi-rate retry support.
2611 * We do this by trying to setup a fake extended
2612 * descriptor. MACs that don't have support will
2613 * return false w/o doing anything. MACs that do
2614 * support it will return true w/o doing anything.
2615 */
2616 ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
67d2e2df 2617
8a63facc
BC
2618 if (ret < 0)
2619 goto err;
2620 if (ret > 0)
2621 __set_bit(ATH_STAT_MRRETRY, sc->status);
ccfe5552 2622
8a63facc
BC
2623 /*
2624 * Collect the channel list. The 802.11 layer
2625 * is resposible for filtering this list based
2626 * on settings like the phy mode and regulatory
2627 * domain restrictions.
2628 */
2629 ret = ath5k_setup_bands(hw);
2630 if (ret) {
2631 ATH5K_ERR(sc, "can't get channels\n");
2632 goto err;
2633 }
67d2e2df 2634
8a63facc
BC
2635 /* NB: setup here so ath5k_rate_update is happy */
2636 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
2637 ath5k_setcurmode(sc, AR5K_MODE_11A);
2638 else
2639 ath5k_setcurmode(sc, AR5K_MODE_11B);
fa1c114f 2640
8a63facc
BC
2641 /*
2642 * Allocate tx+rx descriptors and populate the lists.
2643 */
2644 ret = ath5k_desc_alloc(sc, pdev);
2645 if (ret) {
2646 ATH5K_ERR(sc, "can't allocate descriptors\n");
2647 goto err;
2648 }
fa1c114f 2649
8a63facc
BC
2650 /*
2651 * Allocate hardware transmit queues: one queue for
2652 * beacon frames and one data queue for each QoS
2653 * priority. Note that hw functions handle resetting
2654 * these queues at the needed time.
2655 */
2656 ret = ath5k_beaconq_setup(ah);
2657 if (ret < 0) {
2658 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
2659 goto err_desc;
2660 }
2661 sc->bhalq = ret;
2662 sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
2663 if (IS_ERR(sc->cabq)) {
2664 ATH5K_ERR(sc, "can't setup cab queue\n");
2665 ret = PTR_ERR(sc->cabq);
2666 goto err_bhal;
2667 }
fa1c114f 2668
925e0b06
BR
2669 /* This order matches mac80211's queue priority, so we can
2670 * directly use the mac80211 queue number without any mapping */
2671 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2672 if (IS_ERR(txq)) {
2673 ATH5K_ERR(sc, "can't setup xmit queue\n");
2674 ret = PTR_ERR(txq);
2675 goto err_queues;
2676 }
2677 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2678 if (IS_ERR(txq)) {
8a63facc 2679 ATH5K_ERR(sc, "can't setup xmit queue\n");
925e0b06 2680 ret = PTR_ERR(txq);
8a63facc
BC
2681 goto err_queues;
2682 }
925e0b06
BR
2683 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2684 if (IS_ERR(txq)) {
2685 ATH5K_ERR(sc, "can't setup xmit queue\n");
2686 ret = PTR_ERR(txq);
2687 goto err_queues;
2688 }
2689 txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2690 if (IS_ERR(txq)) {
2691 ATH5K_ERR(sc, "can't setup xmit queue\n");
2692 ret = PTR_ERR(txq);
2693 goto err_queues;
2694 }
2695 hw->queues = 4;
fa1c114f 2696
8a63facc
BC
2697 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
2698 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
2699 tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
2700 tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
2701 tasklet_init(&sc->ani_tasklet, ath5k_tasklet_ani, (unsigned long)sc);
be009370 2702
8a63facc 2703 INIT_WORK(&sc->reset_work, ath5k_reset_work);
4edd761f 2704 INIT_DELAYED_WORK(&sc->tx_complete_work, ath5k_tx_complete_poll_work);
fa1c114f 2705
8a63facc
BC
2706 ret = ath5k_eeprom_read_mac(ah, mac);
2707 if (ret) {
2708 ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
2709 sc->pdev->device);
2710 goto err_queues;
e30eb4ab 2711 }
2bed03eb 2712
8a63facc 2713 SET_IEEE80211_PERM_ADDR(hw, mac);
b1ae1edf 2714 memcpy(&sc->lladdr, mac, ETH_ALEN);
8a63facc 2715 /* All MAC address bits matter for ACKs */
62c58fb4 2716 ath5k_update_bssid_mask_and_opmode(sc, NULL);
8a63facc
BC
2717
2718 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2719 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2720 if (ret) {
2721 ATH5K_ERR(sc, "can't initialize regulatory system\n");
2722 goto err_queues;
2723 }
2724
2725 ret = ieee80211_register_hw(hw);
2726 if (ret) {
2727 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
2728 goto err_queues;
2729 }
2730
2731 if (!ath_is_world_regd(regulatory))
2732 regulatory_hint(hw->wiphy, regulatory->alpha2);
2733
2734 ath5k_init_leds(sc);
2735
2736 ath5k_sysfs_register(sc);
2737
2738 return 0;
2739err_queues:
2740 ath5k_txq_release(sc);
2741err_bhal:
2742 ath5k_hw_release_tx_queue(ah, sc->bhalq);
2743err_desc:
2744 ath5k_desc_free(sc, pdev);
2745err:
2746 return ret;
2747}
2748
2749static void
2750ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
2751{
2752 struct ath5k_softc *sc = hw->priv;
2753
2754 /*
2755 * NB: the order of these is important:
2756 * o call the 802.11 layer before detaching ath5k_hw to
2757 * ensure callbacks into the driver to delete global
2758 * key cache entries can be handled
2759 * o reclaim the tx queue data structures after calling
2760 * the 802.11 layer as we'll get called back to reclaim
2761 * node state and potentially want to use them
2762 * o to cleanup the tx queues the hal is called, so detach
2763 * it last
2764 * XXX: ??? detach ath5k_hw ???
2765 * Other than that, it's straightforward...
2766 */
2767 ieee80211_unregister_hw(hw);
2768 ath5k_desc_free(sc, pdev);
2769 ath5k_txq_release(sc);
2770 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
2771 ath5k_unregister_leds(sc);
2772
2773 ath5k_sysfs_unregister(sc);
2774 /*
2775 * NB: can't reclaim these until after ieee80211_ifdetach
2776 * returns because we'll get called back to reclaim node
2777 * state and potentially want to use them.
2778 */
2779}
2780
2781/********************\
2782* Mac80211 functions *
2783\********************/
2784
2785static int
2786ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2787{
2788 struct ath5k_softc *sc = hw->priv;
925e0b06
BR
2789 u16 qnum = skb_get_queue_mapping(skb);
2790
2791 if (WARN_ON(qnum >= sc->ah->ah_capabilities.cap_queues.q_tx_num)) {
2792 dev_kfree_skb_any(skb);
2793 return 0;
2794 }
8a63facc 2795
925e0b06 2796 return ath5k_tx_queue(hw, skb, &sc->txqs[qnum]);
8a63facc
BC
2797}
2798
2799static int ath5k_start(struct ieee80211_hw *hw)
2800{
2801 return ath5k_init(hw->priv);
2802}
2803
2804static void ath5k_stop(struct ieee80211_hw *hw)
2805{
2806 ath5k_stop_hw(hw->priv);
2807}
2808
2809static int ath5k_add_interface(struct ieee80211_hw *hw,
2810 struct ieee80211_vif *vif)
2811{
2812 struct ath5k_softc *sc = hw->priv;
2813 int ret;
b1ae1edf 2814 struct ath5k_vif *avf = (void *)vif->drv_priv;
8a63facc
BC
2815
2816 mutex_lock(&sc->lock);
b1ae1edf
BG
2817
2818 if ((vif->type == NL80211_IFTYPE_AP ||
2819 vif->type == NL80211_IFTYPE_ADHOC)
2820 && (sc->num_ap_vifs + sc->num_adhoc_vifs) >= ATH_BCBUF) {
2821 ret = -ELNRNG;
8a63facc
BC
2822 goto end;
2823 }
2824
b1ae1edf
BG
2825 /* Don't allow other interfaces if one ad-hoc is configured.
2826 * TODO: Fix the problems with ad-hoc and multiple other interfaces.
2827 * We would need to operate the HW in ad-hoc mode to allow TSF updates
2828 * for the IBSS, but this breaks with additional AP or STA interfaces
2829 * at the moment. */
2830 if (sc->num_adhoc_vifs ||
2831 (sc->nvifs && vif->type == NL80211_IFTYPE_ADHOC)) {
2832 ATH5K_ERR(sc, "Only one single ad-hoc interface is allowed.\n");
2833 ret = -ELNRNG;
2834 goto end;
2835 }
8a63facc
BC
2836
2837 switch (vif->type) {
2838 case NL80211_IFTYPE_AP:
2839 case NL80211_IFTYPE_STATION:
2840 case NL80211_IFTYPE_ADHOC:
2841 case NL80211_IFTYPE_MESH_POINT:
b1ae1edf 2842 avf->opmode = vif->type;
8a63facc
BC
2843 break;
2844 default:
2845 ret = -EOPNOTSUPP;
2846 goto end;
2847 }
2848
b1ae1edf
BG
2849 sc->nvifs++;
2850 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "add interface mode %d\n", avf->opmode);
8a63facc 2851
b1ae1edf
BG
2852 /* Assign the vap/adhoc to a beacon xmit slot. */
2853 if ((avf->opmode == NL80211_IFTYPE_AP) ||
2854 (avf->opmode == NL80211_IFTYPE_ADHOC)) {
2855 int slot;
2856
2857 WARN_ON(list_empty(&sc->bcbuf));
2858 avf->bbuf = list_first_entry(&sc->bcbuf, struct ath5k_buf,
2859 list);
2860 list_del(&avf->bbuf->list);
2861
2862 avf->bslot = 0;
2863 for (slot = 0; slot < ATH_BCBUF; slot++) {
2864 if (!sc->bslot[slot]) {
2865 avf->bslot = slot;
2866 break;
2867 }
2868 }
2869 BUG_ON(sc->bslot[avf->bslot] != NULL);
2870 sc->bslot[avf->bslot] = vif;
2871 if (avf->opmode == NL80211_IFTYPE_AP)
2872 sc->num_ap_vifs++;
2873 else
2874 sc->num_adhoc_vifs++;
2875 }
2876
b1ae1edf
BG
2877 /* Any MAC address is fine, all others are included through the
2878 * filter.
2879 */
2880 memcpy(&sc->lladdr, vif->addr, ETH_ALEN);
8a63facc 2881 ath5k_hw_set_lladdr(sc->ah, vif->addr);
b1ae1edf
BG
2882
2883 memcpy(&avf->lladdr, vif->addr, ETH_ALEN);
2884
2885 ath5k_mode_setup(sc, vif);
8a63facc
BC
2886
2887 ret = 0;
2888end:
2889 mutex_unlock(&sc->lock);
2890 return ret;
2891}
2892
2893static void
2894ath5k_remove_interface(struct ieee80211_hw *hw,
2895 struct ieee80211_vif *vif)
2896{
2897 struct ath5k_softc *sc = hw->priv;
b1ae1edf
BG
2898 struct ath5k_vif *avf = (void *)vif->drv_priv;
2899 unsigned int i;
8a63facc
BC
2900
2901 mutex_lock(&sc->lock);
b1ae1edf
BG
2902 sc->nvifs--;
2903
2904 if (avf->bbuf) {
2905 ath5k_txbuf_free_skb(sc, avf->bbuf);
2906 list_add_tail(&avf->bbuf->list, &sc->bcbuf);
2907 for (i = 0; i < ATH_BCBUF; i++) {
2908 if (sc->bslot[i] == vif) {
2909 sc->bslot[i] = NULL;
2910 break;
2911 }
2912 }
2913 avf->bbuf = NULL;
2914 }
2915 if (avf->opmode == NL80211_IFTYPE_AP)
2916 sc->num_ap_vifs--;
2917 else if (avf->opmode == NL80211_IFTYPE_ADHOC)
2918 sc->num_adhoc_vifs--;
8a63facc 2919
62c58fb4 2920 ath5k_update_bssid_mask_and_opmode(sc, NULL);
8a63facc
BC
2921 mutex_unlock(&sc->lock);
2922}
2923
2924/*
2925 * TODO: Phy disable/diversity etc
2926 */
2927static int
2928ath5k_config(struct ieee80211_hw *hw, u32 changed)
2929{
2930 struct ath5k_softc *sc = hw->priv;
2931 struct ath5k_hw *ah = sc->ah;
2932 struct ieee80211_conf *conf = &hw->conf;
2933 int ret = 0;
2934
2935 mutex_lock(&sc->lock);
2936
2937 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2938 ret = ath5k_chan_set(sc, conf->channel);
2939 if (ret < 0)
2940 goto unlock;
2941 }
2942
2943 if ((changed & IEEE80211_CONF_CHANGE_POWER) &&
2944 (sc->power_level != conf->power_level)) {
a0823810
NK
2945 sc->power_level = conf->power_level;
2946
2947 /* Half dB steps */
2948 ath5k_hw_set_txpower_limit(ah, (conf->power_level * 2));
2949 }
fa1c114f 2950
2bed03eb
NK
2951 /* TODO:
2952 * 1) Move this on config_interface and handle each case
2953 * separately eg. when we have only one STA vif, use
2954 * AR5K_ANTMODE_SINGLE_AP
2955 *
2956 * 2) Allow the user to change antenna mode eg. when only
2957 * one antenna is present
2958 *
2959 * 3) Allow the user to set default/tx antenna when possible
2960 *
2961 * 4) Default mode should handle 90% of the cases, together
2962 * with fixed a/b and single AP modes we should be able to
2963 * handle 99%. Sectored modes are extreme cases and i still
2964 * haven't found a usage for them. If we decide to support them,
2965 * then we must allow the user to set how many tx antennas we
2966 * have available
2967 */
caec9112 2968 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
be009370 2969
55aa4e0f 2970unlock:
be009370 2971 mutex_unlock(&sc->lock);
55aa4e0f 2972 return ret;
fa1c114f
JS
2973}
2974
3ac64bee 2975static u64 ath5k_prepare_multicast(struct ieee80211_hw *hw,
22bedad3 2976 struct netdev_hw_addr_list *mc_list)
3ac64bee
JB
2977{
2978 u32 mfilt[2], val;
3ac64bee 2979 u8 pos;
22bedad3 2980 struct netdev_hw_addr *ha;
3ac64bee
JB
2981
2982 mfilt[0] = 0;
2983 mfilt[1] = 1;
2984
22bedad3 2985 netdev_hw_addr_list_for_each(ha, mc_list) {
3ac64bee 2986 /* calculate XOR of eight 6-bit values */
22bedad3 2987 val = get_unaligned_le32(ha->addr + 0);
3ac64bee 2988 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
22bedad3 2989 val = get_unaligned_le32(ha->addr + 3);
3ac64bee
JB
2990 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2991 pos &= 0x3f;
2992 mfilt[pos / 32] |= (1 << (pos % 32));
2993 /* XXX: we might be able to just do this instead,
2994 * but not sure, needs testing, if we do use this we'd
2995 * neet to inform below to not reset the mcast */
2996 /* ath5k_hw_set_mcast_filterindex(ah,
22bedad3 2997 * ha->addr[5]); */
3ac64bee
JB
2998 }
2999
3000 return ((u64)(mfilt[1]) << 32) | mfilt[0];
3001}
3002
b1ae1edf
BG
3003static bool ath_any_vif_assoc(struct ath5k_softc *sc)
3004{
3005 struct ath_vif_iter_data iter_data;
3006 iter_data.hw_macaddr = NULL;
3007 iter_data.any_assoc = false;
3008 iter_data.need_set_hw_addr = false;
3009 iter_data.found_active = true;
3010
3011 ieee80211_iterate_active_interfaces_atomic(sc->hw, ath_vif_iter,
3012 &iter_data);
3013 return iter_data.any_assoc;
3014}
3015
fa1c114f
JS
3016#define SUPPORTED_FIF_FLAGS \
3017 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
3018 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
3019 FIF_BCN_PRBRESP_PROMISC
3020/*
3021 * o always accept unicast, broadcast, and multicast traffic
3022 * o multicast traffic for all BSSIDs will be enabled if mac80211
3023 * says it should be
3024 * o maintain current state of phy ofdm or phy cck error reception.
3025 * If the hardware detects any of these type of errors then
3026 * ath5k_hw_get_rx_filter() will pass to us the respective
3027 * hardware filters to be able to receive these type of frames.
3028 * o probe request frames are accepted only when operating in
3029 * hostap, adhoc, or monitor modes
3030 * o enable promiscuous mode according to the interface state
3031 * o accept beacons:
3032 * - when operating in adhoc mode so the 802.11 layer creates
3033 * node table entries for peers,
3034 * - when operating in station mode for collecting rssi data when
3035 * the station is otherwise quiet, or
3036 * - when scanning
3037 */
3038static void ath5k_configure_filter(struct ieee80211_hw *hw,
3039 unsigned int changed_flags,
3040 unsigned int *new_flags,
3ac64bee 3041 u64 multicast)
fa1c114f
JS
3042{
3043 struct ath5k_softc *sc = hw->priv;
3044 struct ath5k_hw *ah = sc->ah;
3ac64bee 3045 u32 mfilt[2], rfilt;
fa1c114f 3046
56d1de0a
BC
3047 mutex_lock(&sc->lock);
3048
3ac64bee
JB
3049 mfilt[0] = multicast;
3050 mfilt[1] = multicast >> 32;
fa1c114f
JS
3051
3052 /* Only deal with supported flags */
3053 changed_flags &= SUPPORTED_FIF_FLAGS;
3054 *new_flags &= SUPPORTED_FIF_FLAGS;
3055
3056 /* If HW detects any phy or radar errors, leave those filters on.
3057 * Also, always enable Unicast, Broadcasts and Multicast
3058 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
3059 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
3060 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
3061 AR5K_RX_FILTER_MCAST);
3062
3063 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
3064 if (*new_flags & FIF_PROMISC_IN_BSS) {
fa1c114f 3065 __set_bit(ATH_STAT_PROMISC, sc->status);
0bbac08f 3066 } else {
fa1c114f 3067 __clear_bit(ATH_STAT_PROMISC, sc->status);
0bbac08f 3068 }
fa1c114f
JS
3069 }
3070
6b5dcccb
BC
3071 if (test_bit(ATH_STAT_PROMISC, sc->status))
3072 rfilt |= AR5K_RX_FILTER_PROM;
3073
fa1c114f
JS
3074 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
3075 if (*new_flags & FIF_ALLMULTI) {
3076 mfilt[0] = ~0;
3077 mfilt[1] = ~0;
fa1c114f
JS
3078 }
3079
3080 /* This is the best we can do */
3081 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
3082 rfilt |= AR5K_RX_FILTER_PHYERR;
3083
3084 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
30bf4169 3085 * and probes for any BSSID */
b1ae1edf 3086 if ((*new_flags & FIF_BCN_PRBRESP_PROMISC) || (sc->nvifs > 1))
30bf4169 3087 rfilt |= AR5K_RX_FILTER_BEACON;
fa1c114f
JS
3088
3089 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
3090 * set we should only pass on control frames for this
3091 * station. This needs testing. I believe right now this
3092 * enables *all* control frames, which is OK.. but
3093 * but we should see if we can improve on granularity */
3094 if (*new_flags & FIF_CONTROL)
3095 rfilt |= AR5K_RX_FILTER_CONTROL;
3096
3097 /* Additional settings per mode -- this is per ath5k */
3098
3099 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
3100
56d1de0a
BC
3101 switch (sc->opmode) {
3102 case NL80211_IFTYPE_MESH_POINT:
56d1de0a
BC
3103 rfilt |= AR5K_RX_FILTER_CONTROL |
3104 AR5K_RX_FILTER_BEACON |
3105 AR5K_RX_FILTER_PROBEREQ |
3106 AR5K_RX_FILTER_PROM;
3107 break;
3108 case NL80211_IFTYPE_AP:
3109 case NL80211_IFTYPE_ADHOC:
3110 rfilt |= AR5K_RX_FILTER_PROBEREQ |
3111 AR5K_RX_FILTER_BEACON;
3112 break;
3113 case NL80211_IFTYPE_STATION:
3114 if (sc->assoc)
3115 rfilt |= AR5K_RX_FILTER_BEACON;
3116 default:
3117 break;
3118 }
fa1c114f
JS
3119
3120 /* Set filters */
0bbac08f 3121 ath5k_hw_set_rx_filter(ah, rfilt);
fa1c114f
JS
3122
3123 /* Set multicast bits */
3124 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
a180a130 3125 /* Set the cached hw filter flags, this will later actually
fa1c114f
JS
3126 * be set in HW */
3127 sc->filter_flags = rfilt;
56d1de0a
BC
3128
3129 mutex_unlock(&sc->lock);
fa1c114f
JS
3130}
3131
3132static int
3133ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
dc822b5d
JB
3134 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
3135 struct ieee80211_key_conf *key)
fa1c114f
JS
3136{
3137 struct ath5k_softc *sc = hw->priv;
dc1e001b
LR
3138 struct ath5k_hw *ah = sc->ah;
3139 struct ath_common *common = ath5k_hw_common(ah);
fa1c114f
JS
3140 int ret = 0;
3141
9ad9a26e
BC
3142 if (modparam_nohwcrypt)
3143 return -EOPNOTSUPP;
3144
97359d12
JB
3145 switch (key->cipher) {
3146 case WLAN_CIPHER_SUITE_WEP40:
3147 case WLAN_CIPHER_SUITE_WEP104:
3148 case WLAN_CIPHER_SUITE_TKIP:
3f64b435 3149 break;
97359d12 3150 case WLAN_CIPHER_SUITE_CCMP:
781f3136 3151 if (common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)
1c818740 3152 break;
fa1c114f
JS
3153 return -EOPNOTSUPP;
3154 default:
3155 WARN_ON(1);
3156 return -EINVAL;
3157 }
3158
3159 mutex_lock(&sc->lock);
3160
3161 switch (cmd) {
3162 case SET_KEY:
e0f8c2a9
BR
3163 ret = ath_key_config(common, vif, sta, key);
3164 if (ret >= 0) {
3165 key->hw_key_idx = ret;
3166 /* push IV and Michael MIC generation to stack */
3167 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
3168 if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
3169 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
3170 if (key->cipher == WLAN_CIPHER_SUITE_CCMP)
3171 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
3172 ret = 0;
fa1c114f 3173 }
fa1c114f
JS
3174 break;
3175 case DISABLE_KEY:
e0f8c2a9 3176 ath_key_delete(common, key);
fa1c114f
JS
3177 break;
3178 default:
3179 ret = -EINVAL;
fa1c114f
JS
3180 }
3181
8a63facc
BC
3182 mmiowb();
3183 mutex_unlock(&sc->lock);
3184 return ret;
3185}
3186
3187static int
3188ath5k_get_stats(struct ieee80211_hw *hw,
3189 struct ieee80211_low_level_stats *stats)
3190{
3191 struct ath5k_softc *sc = hw->priv;
3192
3193 /* Force update */
3194 ath5k_hw_update_mib_counters(sc->ah);
3195
3196 stats->dot11ACKFailureCount = sc->stats.ack_fail;
3197 stats->dot11RTSFailureCount = sc->stats.rts_fail;
3198 stats->dot11RTSSuccessCount = sc->stats.rts_ok;
3199 stats->dot11FCSErrorCount = sc->stats.fcs_error;
3200
3201 return 0;
3202}
3203
3204static int ath5k_get_survey(struct ieee80211_hw *hw, int idx,
3205 struct survey_info *survey)
3206{
3207 struct ath5k_softc *sc = hw->priv;
3208 struct ieee80211_conf *conf = &hw->conf;
3209
3210 if (idx != 0)
3211 return -ENOENT;
3212
3213 survey->channel = conf->channel;
3214 survey->filled = SURVEY_INFO_NOISE_DBM;
3215 survey->noise = sc->ah->ah_noise_floor;
3216
3217 return 0;
3218}
3219
3220static u64
3221ath5k_get_tsf(struct ieee80211_hw *hw)
3222{
3223 struct ath5k_softc *sc = hw->priv;
3224
3225 return ath5k_hw_get_tsf64(sc->ah);
3226}
3227
3228static void
3229ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3230{
3231 struct ath5k_softc *sc = hw->priv;
3232
3233 ath5k_hw_set_tsf64(sc->ah, tsf);
3234}
3235
3236static void
3237ath5k_reset_tsf(struct ieee80211_hw *hw)
3238{
3239 struct ath5k_softc *sc = hw->priv;
3240
3241 /*
3242 * in IBSS mode we need to update the beacon timers too.
3243 * this will also reset the TSF if we call it with 0
3244 */
3245 if (sc->opmode == NL80211_IFTYPE_ADHOC)
3246 ath5k_beacon_update_timers(sc, 0);
3247 else
3248 ath5k_hw_reset_tsf(sc->ah);
3249}
3250
3251static void
3252set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3253{
3254 struct ath5k_softc *sc = hw->priv;
3255 struct ath5k_hw *ah = sc->ah;
3256 u32 rfilt;
3257 rfilt = ath5k_hw_get_rx_filter(ah);
3258 if (enable)
3259 rfilt |= AR5K_RX_FILTER_BEACON;
3260 else
3261 rfilt &= ~AR5K_RX_FILTER_BEACON;
3262 ath5k_hw_set_rx_filter(ah, rfilt);
3263 sc->filter_flags = rfilt;
3264}
3265
3266static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
3267 struct ieee80211_vif *vif,
3268 struct ieee80211_bss_conf *bss_conf,
3269 u32 changes)
3270{
b1ae1edf 3271 struct ath5k_vif *avf = (void *)vif->drv_priv;
8a63facc
BC
3272 struct ath5k_softc *sc = hw->priv;
3273 struct ath5k_hw *ah = sc->ah;
3274 struct ath_common *common = ath5k_hw_common(ah);
3275 unsigned long flags;
3276
3277 mutex_lock(&sc->lock);
8a63facc
BC
3278
3279 if (changes & BSS_CHANGED_BSSID) {
3280 /* Cache for later use during resets */
3281 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
3282 common->curaid = 0;
3283 ath5k_hw_set_bssid(ah);
3284 mmiowb();
3285 }
3286
3287 if (changes & BSS_CHANGED_BEACON_INT)
3288 sc->bintval = bss_conf->beacon_int;
3289
3290 if (changes & BSS_CHANGED_ASSOC) {
b1ae1edf
BG
3291 avf->assoc = bss_conf->assoc;
3292 if (bss_conf->assoc)
3293 sc->assoc = bss_conf->assoc;
3294 else
3295 sc->assoc = ath_any_vif_assoc(sc);
3296
8a63facc
BC
3297 if (sc->opmode == NL80211_IFTYPE_STATION)
3298 set_beacon_filter(hw, sc->assoc);
3299 ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
3300 AR5K_LED_ASSOC : AR5K_LED_INIT);
3301 if (bss_conf->assoc) {
3302 ATH5K_DBG(sc, ATH5K_DEBUG_ANY,
3303 "Bss Info ASSOC %d, bssid: %pM\n",
3304 bss_conf->aid, common->curbssid);
3305 common->curaid = bss_conf->aid;
3306 ath5k_hw_set_bssid(ah);
3307 /* Once ANI is available you would start it here */
3308 }
3309 }
3310
3311 if (changes & BSS_CHANGED_BEACON) {
3312 spin_lock_irqsave(&sc->block, flags);
3313 ath5k_beacon_update(hw, vif);
3314 spin_unlock_irqrestore(&sc->block, flags);
3315 }
3316
3317 if (changes & BSS_CHANGED_BEACON_ENABLED)
3318 sc->enable_beacon = bss_conf->enable_beacon;
3319
3320 if (changes & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED |
3321 BSS_CHANGED_BEACON_INT))
3322 ath5k_beacon_config(sc);
3323
8a63facc
BC
3324 mutex_unlock(&sc->lock);
3325}
3326
3327static void ath5k_sw_scan_start(struct ieee80211_hw *hw)
3328{
3329 struct ath5k_softc *sc = hw->priv;
3330 if (!sc->assoc)
3331 ath5k_hw_set_ledstate(sc->ah, AR5K_LED_SCAN);
3332}
3333
3334static void ath5k_sw_scan_complete(struct ieee80211_hw *hw)
3335{
3336 struct ath5k_softc *sc = hw->priv;
3337 ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
3338 AR5K_LED_ASSOC : AR5K_LED_INIT);
3339}
3340
3341/**
3342 * ath5k_set_coverage_class - Set IEEE 802.11 coverage class
3343 *
3344 * @hw: struct ieee80211_hw pointer
3345 * @coverage_class: IEEE 802.11 coverage class number
3346 *
3347 * Mac80211 callback. Sets slot time, ACK timeout and CTS timeout for given
3348 * coverage class. The values are persistent, they are restored after device
3349 * reset.
3350 */
3351static void ath5k_set_coverage_class(struct ieee80211_hw *hw, u8 coverage_class)
3352{
3353 struct ath5k_softc *sc = hw->priv;
3354
3355 mutex_lock(&sc->lock);
3356 ath5k_hw_set_coverage_class(sc->ah, coverage_class);
3357 mutex_unlock(&sc->lock);
3358}
3359
e0b1cc52
BR
3360static int ath5k_conf_tx(struct ieee80211_hw *hw, u16 queue,
3361 const struct ieee80211_tx_queue_params *params)
3362{
3363 struct ath5k_softc *sc = hw->priv;
3364 struct ath5k_hw *ah = sc->ah;
3365 struct ath5k_txq_info qi;
3366 int ret = 0;
3367
3368 if (queue >= ah->ah_capabilities.cap_queues.q_tx_num)
3369 return 0;
3370
3371 mutex_lock(&sc->lock);
3372
3373 ath5k_hw_get_tx_queueprops(ah, queue, &qi);
3374
3375 qi.tqi_aifs = params->aifs;
3376 qi.tqi_cw_min = params->cw_min;
3377 qi.tqi_cw_max = params->cw_max;
3378 qi.tqi_burst_time = params->txop;
3379
3380 ATH5K_DBG(sc, ATH5K_DEBUG_ANY,
3381 "Configure tx [queue %d], "
3382 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
3383 queue, params->aifs, params->cw_min,
3384 params->cw_max, params->txop);
3385
3386 if (ath5k_hw_set_tx_queueprops(ah, queue, &qi)) {
3387 ATH5K_ERR(sc,
3388 "Unable to update hardware queue %u!\n", queue);
3389 ret = -EIO;
3390 } else
3391 ath5k_hw_reset_tx_queue(ah, queue);
3392
3393 mutex_unlock(&sc->lock);
3394
3395 return ret;
3396}
3397
8a63facc
BC
3398static const struct ieee80211_ops ath5k_hw_ops = {
3399 .tx = ath5k_tx,
3400 .start = ath5k_start,
3401 .stop = ath5k_stop,
3402 .add_interface = ath5k_add_interface,
3403 .remove_interface = ath5k_remove_interface,
3404 .config = ath5k_config,
3405 .prepare_multicast = ath5k_prepare_multicast,
3406 .configure_filter = ath5k_configure_filter,
3407 .set_key = ath5k_set_key,
3408 .get_stats = ath5k_get_stats,
3409 .get_survey = ath5k_get_survey,
e0b1cc52 3410 .conf_tx = ath5k_conf_tx,
8a63facc
BC
3411 .get_tsf = ath5k_get_tsf,
3412 .set_tsf = ath5k_set_tsf,
3413 .reset_tsf = ath5k_reset_tsf,
3414 .bss_info_changed = ath5k_bss_info_changed,
3415 .sw_scan_start = ath5k_sw_scan_start,
3416 .sw_scan_complete = ath5k_sw_scan_complete,
3417 .set_coverage_class = ath5k_set_coverage_class,
3418};
3419
3420/********************\
3421* PCI Initialization *
3422\********************/
3423
3424static int __devinit
3425ath5k_pci_probe(struct pci_dev *pdev,
3426 const struct pci_device_id *id)
3427{
3428 void __iomem *mem;
3429 struct ath5k_softc *sc;
3430 struct ath_common *common;
3431 struct ieee80211_hw *hw;
3432 int ret;
3433 u8 csz;
3434
3435 /*
3436 * L0s needs to be disabled on all ath5k cards.
3437 *
3438 * For distributions shipping with CONFIG_PCIEASPM (this will be enabled
3439 * by default in the future in 2.6.36) this will also mean both L1 and
3440 * L0s will be disabled when a pre 1.1 PCIe device is detected. We do
3441 * know L1 works correctly even for all ath5k pre 1.1 PCIe devices
3442 * though but cannot currently undue the effect of a blacklist, for
3443 * details you can read pcie_aspm_sanity_check() and see how it adjusts
3444 * the device link capability.
3445 *
3446 * It may be possible in the future to implement some PCI API to allow
3447 * drivers to override blacklists for pre 1.1 PCIe but for now it is
3448 * best to accept that both L0s and L1 will be disabled completely for
3449 * distributions shipping with CONFIG_PCIEASPM rather than having this
3450 * issue present. Motivation for adding this new API will be to help
3451 * with power consumption for some of these devices.
3452 */
3453 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S);
3454
3455 ret = pci_enable_device(pdev);
3456 if (ret) {
3457 dev_err(&pdev->dev, "can't enable device\n");
3458 goto err;
3459 }
3460
3461 /* XXX 32-bit addressing only */
3462 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3463 if (ret) {
3464 dev_err(&pdev->dev, "32-bit DMA not available\n");
3465 goto err_dis;
3466 }
3467
3468 /*
3469 * Cache line size is used to size and align various
3470 * structures used to communicate with the hardware.
3471 */
3472 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
3473 if (csz == 0) {
3474 /*
3475 * Linux 2.4.18 (at least) writes the cache line size
3476 * register as a 16-bit wide register which is wrong.
3477 * We must have this setup properly for rx buffer
3478 * DMA to work so force a reasonable value here if it
3479 * comes up zero.
3480 */
3481 csz = L1_CACHE_BYTES >> 2;
3482 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
3483 }
3484 /*
3485 * The default setting of latency timer yields poor results,
3486 * set it to the value used by other systems. It may be worth
3487 * tweaking this setting more.
3488 */
3489 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
3490
3491 /* Enable bus mastering */
3492 pci_set_master(pdev);
3493
3494 /*
3495 * Disable the RETRY_TIMEOUT register (0x41) to keep
3496 * PCI Tx retries from interfering with C3 CPU state.
3497 */
3498 pci_write_config_byte(pdev, 0x41, 0);
3499
3500 ret = pci_request_region(pdev, 0, "ath5k");
3501 if (ret) {
3502 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
3503 goto err_dis;
3504 }
3505
3506 mem = pci_iomap(pdev, 0, 0);
3507 if (!mem) {
3508 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
3509 ret = -EIO;
3510 goto err_reg;
3511 }
3512
3513 /*
3514 * Allocate hw (mac80211 main struct)
3515 * and hw->priv (driver private data)
3516 */
3517 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
3518 if (hw == NULL) {
3519 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
3520 ret = -ENOMEM;
3521 goto err_map;
3522 }
3523
3524 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
3525
3526 /* Initialize driver private data */
3527 SET_IEEE80211_DEV(hw, &pdev->dev);
3528 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
3529 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
3530 IEEE80211_HW_SIGNAL_DBM;
3531
3532 hw->wiphy->interface_modes =
3533 BIT(NL80211_IFTYPE_AP) |
3534 BIT(NL80211_IFTYPE_STATION) |
3535 BIT(NL80211_IFTYPE_ADHOC) |
3536 BIT(NL80211_IFTYPE_MESH_POINT);
3537
3538 hw->extra_tx_headroom = 2;
3539 hw->channel_change_time = 5000;
3540 sc = hw->priv;
3541 sc->hw = hw;
3542 sc->pdev = pdev;
3543
3544 ath5k_debug_init_device(sc);
3545
3546 /*
3547 * Mark the device as detached to avoid processing
3548 * interrupts until setup is complete.
3549 */
3550 __set_bit(ATH_STAT_INVALID, sc->status);
3551
3552 sc->iobase = mem; /* So we can unmap it on detach */
3553 sc->opmode = NL80211_IFTYPE_STATION;
3554 sc->bintval = 1000;
3555 mutex_init(&sc->lock);
3556 spin_lock_init(&sc->rxbuflock);
3557 spin_lock_init(&sc->txbuflock);
3558 spin_lock_init(&sc->block);
3559
3560 /* Set private data */
3561 pci_set_drvdata(pdev, sc);
3562
3563 /* Setup interrupt handler */
3564 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
3565 if (ret) {
3566 ATH5K_ERR(sc, "request_irq failed\n");
3567 goto err_free;
3568 }
3569
3570 /* If we passed the test, malloc an ath5k_hw struct */
3571 sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
3572 if (!sc->ah) {
3573 ret = -ENOMEM;
3574 ATH5K_ERR(sc, "out of memory\n");
3575 goto err_irq;
3576 }
3577
3578 sc->ah->ah_sc = sc;
3579 sc->ah->ah_iobase = sc->iobase;
3580 common = ath5k_hw_common(sc->ah);
3581 common->ops = &ath5k_common_ops;
3582 common->ah = sc->ah;
3583 common->hw = hw;
3584 common->cachelsz = csz << 2; /* convert to bytes */
3585
3586 /* Initialize device */
3587 ret = ath5k_hw_attach(sc);
3588 if (ret) {
3589 goto err_free_ah;
3590 }
3591
3592 /* set up multi-rate retry capabilities */
3593 if (sc->ah->ah_version == AR5K_AR5212) {
3594 hw->max_rates = 4;
3595 hw->max_rate_tries = 11;
3596 }
3597
b1ae1edf
BG
3598 hw->vif_data_size = sizeof(struct ath5k_vif);
3599
8a63facc
BC
3600 /* Finish private driver data initialization */
3601 ret = ath5k_attach(pdev, hw);
3602 if (ret)
3603 goto err_ah;
3604
3605 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
3606 ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
3607 sc->ah->ah_mac_srev,
3608 sc->ah->ah_phy_revision);
3609
3610 if (!sc->ah->ah_single_chip) {
3611 /* Single chip radio (!RF5111) */
3612 if (sc->ah->ah_radio_5ghz_revision &&
3613 !sc->ah->ah_radio_2ghz_revision) {
3614 /* No 5GHz support -> report 2GHz radio */
3615 if (!test_bit(AR5K_MODE_11A,
3616 sc->ah->ah_capabilities.cap_mode)) {
3617 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
3618 ath5k_chip_name(AR5K_VERSION_RAD,
3619 sc->ah->ah_radio_5ghz_revision),
3620 sc->ah->ah_radio_5ghz_revision);
3621 /* No 2GHz support (5110 and some
3622 * 5Ghz only cards) -> report 5Ghz radio */
3623 } else if (!test_bit(AR5K_MODE_11B,
3624 sc->ah->ah_capabilities.cap_mode)) {
3625 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
3626 ath5k_chip_name(AR5K_VERSION_RAD,
3627 sc->ah->ah_radio_5ghz_revision),
3628 sc->ah->ah_radio_5ghz_revision);
3629 /* Multiband radio */
3630 } else {
3631 ATH5K_INFO(sc, "RF%s multiband radio found"
3632 " (0x%x)\n",
3633 ath5k_chip_name(AR5K_VERSION_RAD,
3634 sc->ah->ah_radio_5ghz_revision),
3635 sc->ah->ah_radio_5ghz_revision);
3636 }
3637 }
3638 /* Multi chip radio (RF5111 - RF2111) ->
3639 * report both 2GHz/5GHz radios */
3640 else if (sc->ah->ah_radio_5ghz_revision &&
3641 sc->ah->ah_radio_2ghz_revision){
3642 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
3643 ath5k_chip_name(AR5K_VERSION_RAD,
3644 sc->ah->ah_radio_5ghz_revision),
3645 sc->ah->ah_radio_5ghz_revision);
3646 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
3647 ath5k_chip_name(AR5K_VERSION_RAD,
3648 sc->ah->ah_radio_2ghz_revision),
3649 sc->ah->ah_radio_2ghz_revision);
3650 }
3651 }
3652
55ee82b5 3653
8a63facc
BC
3654 /* ready to process interrupts */
3655 __clear_bit(ATH_STAT_INVALID, sc->status);
55ee82b5
HS
3656
3657 return 0;
8a63facc
BC
3658err_ah:
3659 ath5k_hw_detach(sc->ah);
3660err_free_ah:
3661 kfree(sc->ah);
3662err_irq:
3663 free_irq(pdev->irq, sc);
3664err_free:
3665 ieee80211_free_hw(hw);
3666err_map:
3667 pci_iounmap(pdev, mem);
3668err_reg:
3669 pci_release_region(pdev, 0);
3670err_dis:
3671 pci_disable_device(pdev);
3672err:
3673 return ret;
55ee82b5
HS
3674}
3675
8a63facc
BC
3676static void __devexit
3677ath5k_pci_remove(struct pci_dev *pdev)
fa1c114f 3678{
8a63facc 3679 struct ath5k_softc *sc = pci_get_drvdata(pdev);
fa1c114f 3680
8a63facc
BC
3681 ath5k_debug_finish_device(sc);
3682 ath5k_detach(pdev, sc->hw);
3683 ath5k_hw_detach(sc->ah);
3684 kfree(sc->ah);
3685 free_irq(pdev->irq, sc);
3686 pci_iounmap(pdev, sc->iobase);
3687 pci_release_region(pdev, 0);
3688 pci_disable_device(pdev);
3689 ieee80211_free_hw(sc->hw);
fa1c114f
JS
3690}
3691
8a63facc
BC
3692#ifdef CONFIG_PM_SLEEP
3693static int ath5k_pci_suspend(struct device *dev)
3b5d665b 3694{
8a63facc 3695 struct ath5k_softc *sc = pci_get_drvdata(to_pci_dev(dev));
3b5d665b 3696
8a63facc
BC
3697 ath5k_led_off(sc);
3698 return 0;
3b5d665b
AF
3699}
3700
8a63facc 3701static int ath5k_pci_resume(struct device *dev)
fa1c114f 3702{
8a63facc
BC
3703 struct pci_dev *pdev = to_pci_dev(dev);
3704 struct ath5k_softc *sc = pci_get_drvdata(pdev);
fa1c114f 3705
9804b98d 3706 /*
8a63facc
BC
3707 * Suspend/Resume resets the PCI configuration space, so we have to
3708 * re-disable the RETRY_TIMEOUT register (0x41) to keep
3709 * PCI Tx retries from interfering with C3 CPU state
9804b98d 3710 */
8a63facc
BC
3711 pci_write_config_byte(pdev, 0x41, 0);
3712
3713 ath5k_led_enable(sc);
3714 return 0;
fa1c114f
JS
3715}
3716
8a63facc
BC
3717static SIMPLE_DEV_PM_OPS(ath5k_pm_ops, ath5k_pci_suspend, ath5k_pci_resume);
3718#define ATH5K_PM_OPS (&ath5k_pm_ops)
3719#else
3720#define ATH5K_PM_OPS NULL
3721#endif /* CONFIG_PM_SLEEP */
3722
3723static struct pci_driver ath5k_pci_driver = {
3724 .name = KBUILD_MODNAME,
3725 .id_table = ath5k_pci_id_table,
3726 .probe = ath5k_pci_probe,
3727 .remove = __devexit_p(ath5k_pci_remove),
3728 .driver.pm = ATH5K_PM_OPS,
3729};
3730
1071db86 3731/*
8a63facc 3732 * Module init/exit functions
1071db86 3733 */
8a63facc
BC
3734static int __init
3735init_ath5k_pci(void)
fa1c114f 3736{
fa1c114f 3737 int ret;
57c4d7b4 3738
8a63facc 3739 ath5k_debug_init();
2d0ddec5 3740
8a63facc
BC
3741 ret = pci_register_driver(&ath5k_pci_driver);
3742 if (ret) {
3743 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
3744 return ret;
2d0ddec5
JB
3745 }
3746
8a63facc 3747 return 0;
02969b38 3748}
f0f3d388 3749
8a63facc
BC
3750static void __exit
3751exit_ath5k_pci(void)
f0f3d388 3752{
8a63facc 3753 pci_unregister_driver(&ath5k_pci_driver);
f0f3d388 3754
8a63facc 3755 ath5k_debug_finish();
f0f3d388 3756}
6e08d228 3757
8a63facc
BC
3758module_init(init_ath5k_pci);
3759module_exit(exit_ath5k_pci);