]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/stmmac/stmmac_main.c
stmmac: convert to dev_pm_ops.
[net-next-2.6.git] / drivers / net / stmmac / stmmac_main.c
CommitLineData
47dd7a54
GC
1/*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright (C) 2007-2009 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29*******************************************************************************/
30
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/kernel.h>
34#include <linux/interrupt.h>
47dd7a54
GC
35#include <linux/etherdevice.h>
36#include <linux/platform_device.h>
37#include <linux/ip.h>
38#include <linux/tcp.h>
39#include <linux/skbuff.h>
40#include <linux/ethtool.h>
41#include <linux/if_ether.h>
42#include <linux/crc32.h>
43#include <linux/mii.h>
44#include <linux/phy.h>
45#include <linux/if_vlan.h>
46#include <linux/dma-mapping.h>
5a0e3ad6 47#include <linux/slab.h>
47dd7a54
GC
48#include "stmmac.h"
49
50#define STMMAC_RESOURCE_NAME "stmmaceth"
51#define PHY_RESOURCE_NAME "stmmacphy"
52
53#undef STMMAC_DEBUG
54/*#define STMMAC_DEBUG*/
55#ifdef STMMAC_DEBUG
56#define DBG(nlevel, klevel, fmt, args...) \
57 ((void)(netif_msg_##nlevel(priv) && \
58 printk(KERN_##klevel fmt, ## args)))
59#else
60#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
61#endif
62
63#undef STMMAC_RX_DEBUG
64/*#define STMMAC_RX_DEBUG*/
65#ifdef STMMAC_RX_DEBUG
66#define RX_DBG(fmt, args...) printk(fmt, ## args)
67#else
68#define RX_DBG(fmt, args...) do { } while (0)
69#endif
70
71#undef STMMAC_XMIT_DEBUG
72/*#define STMMAC_XMIT_DEBUG*/
73#ifdef STMMAC_TX_DEBUG
74#define TX_DBG(fmt, args...) printk(fmt, ## args)
75#else
76#define TX_DBG(fmt, args...) do { } while (0)
77#endif
78
79#define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
80#define JUMBO_LEN 9000
81
82/* Module parameters */
83#define TX_TIMEO 5000 /* default 5 seconds */
84static int watchdog = TX_TIMEO;
85module_param(watchdog, int, S_IRUGO | S_IWUSR);
86MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
87
88static int debug = -1; /* -1: default, 0: no output, 16: all */
89module_param(debug, int, S_IRUGO | S_IWUSR);
90MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
91
92static int phyaddr = -1;
93module_param(phyaddr, int, S_IRUGO);
94MODULE_PARM_DESC(phyaddr, "Physical device address");
95
96#define DMA_TX_SIZE 256
97static int dma_txsize = DMA_TX_SIZE;
98module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
99MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
100
101#define DMA_RX_SIZE 256
102static int dma_rxsize = DMA_RX_SIZE;
103module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
104MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
105
106static int flow_ctrl = FLOW_OFF;
107module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
108MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
109
110static int pause = PAUSE_TIME;
111module_param(pause, int, S_IRUGO | S_IWUSR);
112MODULE_PARM_DESC(pause, "Flow Control Pause Time");
113
114#define TC_DEFAULT 64
115static int tc = TC_DEFAULT;
116module_param(tc, int, S_IRUGO | S_IWUSR);
117MODULE_PARM_DESC(tc, "DMA threshold control value");
118
119#define RX_NO_COALESCE 1 /* Always interrupt on completion */
120#define TX_NO_COALESCE -1 /* No moderation by default */
121
122/* Pay attention to tune this parameter; take care of both
123 * hardware capability and network stabitily/performance impact.
124 * Many tests showed that ~4ms latency seems to be good enough. */
125#ifdef CONFIG_STMMAC_TIMER
126#define DEFAULT_PERIODIC_RATE 256
127static int tmrate = DEFAULT_PERIODIC_RATE;
128module_param(tmrate, int, S_IRUGO | S_IWUSR);
129MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
130#endif
131
132#define DMA_BUFFER_SIZE BUF_SIZE_2KiB
133static int buf_sz = DMA_BUFFER_SIZE;
134module_param(buf_sz, int, S_IRUGO | S_IWUSR);
135MODULE_PARM_DESC(buf_sz, "DMA buffer size");
136
47dd7a54
GC
137static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
138 NETIF_MSG_LINK | NETIF_MSG_IFUP |
139 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
140
141static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
142static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev);
143
144/**
145 * stmmac_verify_args - verify the driver parameters.
146 * Description: it verifies if some wrong parameter is passed to the driver.
147 * Note that wrong parameters are replaced with the default values.
148 */
149static void stmmac_verify_args(void)
150{
151 if (unlikely(watchdog < 0))
152 watchdog = TX_TIMEO;
153 if (unlikely(dma_rxsize < 0))
154 dma_rxsize = DMA_RX_SIZE;
155 if (unlikely(dma_txsize < 0))
156 dma_txsize = DMA_TX_SIZE;
157 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
158 buf_sz = DMA_BUFFER_SIZE;
159 if (unlikely(flow_ctrl > 1))
160 flow_ctrl = FLOW_AUTO;
161 else if (likely(flow_ctrl < 0))
162 flow_ctrl = FLOW_OFF;
163 if (unlikely((pause < 0) || (pause > 0xffff)))
164 pause = PAUSE_TIME;
47dd7a54
GC
165}
166
167#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
168static void print_pkt(unsigned char *buf, int len)
169{
170 int j;
171 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
172 for (j = 0; j < len; j++) {
173 if ((j % 16) == 0)
174 pr_info("\n %03x:", j);
175 pr_info(" %02x", buf[j]);
176 }
177 pr_info("\n");
47dd7a54
GC
178}
179#endif
180
181/* minimum number of free TX descriptors required to wake up TX process */
182#define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
183
184static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
185{
186 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
187}
188
9dfeb4d9
GC
189/* On some ST platforms, some HW system configuraton registers have to be
190 * set according to the link speed negotiated.
191 */
192static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
193{
194 struct phy_device *phydev = priv->phydev;
195
196 if (likely(priv->plat->fix_mac_speed))
197 priv->plat->fix_mac_speed(priv->plat->bsp_priv,
198 phydev->speed);
199}
200
47dd7a54
GC
201/**
202 * stmmac_adjust_link
203 * @dev: net device structure
204 * Description: it adjusts the link parameters.
205 */
206static void stmmac_adjust_link(struct net_device *dev)
207{
208 struct stmmac_priv *priv = netdev_priv(dev);
209 struct phy_device *phydev = priv->phydev;
47dd7a54
GC
210 unsigned long flags;
211 int new_state = 0;
212 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
213
214 if (phydev == NULL)
215 return;
216
217 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
218 phydev->addr, phydev->link);
219
220 spin_lock_irqsave(&priv->lock, flags);
221 if (phydev->link) {
ad01b7d4 222 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
47dd7a54
GC
223
224 /* Now we make sure that we can be in full duplex mode.
225 * If not, we operate in half-duplex mode. */
226 if (phydev->duplex != priv->oldduplex) {
227 new_state = 1;
228 if (!(phydev->duplex))
db98a0b0 229 ctrl &= ~priv->hw->link.duplex;
47dd7a54 230 else
db98a0b0 231 ctrl |= priv->hw->link.duplex;
47dd7a54
GC
232 priv->oldduplex = phydev->duplex;
233 }
234 /* Flow Control operation */
235 if (phydev->pause)
ad01b7d4 236 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
db98a0b0 237 fc, pause_time);
47dd7a54
GC
238
239 if (phydev->speed != priv->speed) {
240 new_state = 1;
241 switch (phydev->speed) {
242 case 1000:
9dfeb4d9 243 if (likely(priv->plat->has_gmac))
db98a0b0 244 ctrl &= ~priv->hw->link.port;
9dfeb4d9 245 stmmac_hw_fix_mac_speed(priv);
47dd7a54
GC
246 break;
247 case 100:
248 case 10:
9dfeb4d9 249 if (priv->plat->has_gmac) {
db98a0b0 250 ctrl |= priv->hw->link.port;
47dd7a54 251 if (phydev->speed == SPEED_100) {
db98a0b0 252 ctrl |= priv->hw->link.speed;
47dd7a54 253 } else {
db98a0b0 254 ctrl &= ~(priv->hw->link.speed);
47dd7a54
GC
255 }
256 } else {
db98a0b0 257 ctrl &= ~priv->hw->link.port;
47dd7a54 258 }
9dfeb4d9 259 stmmac_hw_fix_mac_speed(priv);
47dd7a54
GC
260 break;
261 default:
262 if (netif_msg_link(priv))
263 pr_warning("%s: Speed (%d) is not 10"
264 " or 100!\n", dev->name, phydev->speed);
265 break;
266 }
267
268 priv->speed = phydev->speed;
269 }
270
ad01b7d4 271 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
47dd7a54
GC
272
273 if (!priv->oldlink) {
274 new_state = 1;
275 priv->oldlink = 1;
276 }
277 } else if (priv->oldlink) {
278 new_state = 1;
279 priv->oldlink = 0;
280 priv->speed = 0;
281 priv->oldduplex = -1;
282 }
283
284 if (new_state && netif_msg_link(priv))
285 phy_print_status(phydev);
286
287 spin_unlock_irqrestore(&priv->lock, flags);
288
289 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
290}
291
292/**
293 * stmmac_init_phy - PHY initialization
294 * @dev: net device structure
295 * Description: it initializes the driver's PHY state, and attaches the PHY
296 * to the mac driver.
297 * Return value:
298 * 0 on success
299 */
300static int stmmac_init_phy(struct net_device *dev)
301{
302 struct stmmac_priv *priv = netdev_priv(dev);
303 struct phy_device *phydev;
109cdd66
GC
304 char phy_id[MII_BUS_ID_SIZE + 3];
305 char bus_id[MII_BUS_ID_SIZE];
47dd7a54
GC
306
307 priv->oldlink = 0;
308 priv->speed = 0;
309 priv->oldduplex = -1;
310
311 if (priv->phy_addr == -1) {
312 /* We don't have a PHY, so do nothing */
313 return 0;
314 }
315
9dfeb4d9 316 snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->plat->bus_id);
109cdd66
GC
317 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
318 priv->phy_addr);
47dd7a54
GC
319 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id);
320
321 phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0,
322 priv->phy_interface);
323
324 if (IS_ERR(phydev)) {
325 pr_err("%s: Could not attach to PHY\n", dev->name);
326 return PTR_ERR(phydev);
327 }
328
329 /*
330 * Broken HW is sometimes missing the pull-up resistor on the
331 * MDIO line, which results in reads to non-existent devices returning
332 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
333 * device as well.
334 * Note: phydev->phy_id is the result of reading the UID PHY registers.
335 */
336 if (phydev->phy_id == 0) {
337 phy_disconnect(phydev);
338 return -ENODEV;
339 }
340 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
341 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
342
343 priv->phydev = phydev;
344
345 return 0;
346}
347
19449bfc 348static inline void stmmac_enable_mac(void __iomem *ioaddr)
47dd7a54
GC
349{
350 u32 value = readl(ioaddr + MAC_CTRL_REG);
47dd7a54 351
19449bfc 352 value |= MAC_RNABLE_RX | MAC_ENABLE_TX;
47dd7a54
GC
353 writel(value, ioaddr + MAC_CTRL_REG);
354}
355
19449bfc 356static inline void stmmac_disable_mac(void __iomem *ioaddr)
47dd7a54
GC
357{
358 u32 value = readl(ioaddr + MAC_CTRL_REG);
47dd7a54 359
19449bfc 360 value &= ~(MAC_ENABLE_TX | MAC_RNABLE_RX);
47dd7a54
GC
361 writel(value, ioaddr + MAC_CTRL_REG);
362}
363
364/**
365 * display_ring
366 * @p: pointer to the ring.
367 * @size: size of the ring.
368 * Description: display all the descriptors within the ring.
369 */
370static void display_ring(struct dma_desc *p, int size)
371{
372 struct tmp_s {
373 u64 a;
374 unsigned int b;
375 unsigned int c;
376 };
377 int i;
378 for (i = 0; i < size; i++) {
379 struct tmp_s *x = (struct tmp_s *)(p + i);
380 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
381 i, (unsigned int)virt_to_phys(&p[i]),
382 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
383 x->b, x->c);
384 pr_info("\n");
385 }
386}
387
388/**
389 * init_dma_desc_rings - init the RX/TX descriptor rings
390 * @dev: net device structure
391 * Description: this function initializes the DMA RX/TX descriptors
392 * and allocates the socket buffers.
393 */
394static void init_dma_desc_rings(struct net_device *dev)
395{
396 int i;
397 struct stmmac_priv *priv = netdev_priv(dev);
398 struct sk_buff *skb;
399 unsigned int txsize = priv->dma_tx_size;
400 unsigned int rxsize = priv->dma_rx_size;
401 unsigned int bfsize = priv->dma_buf_sz;
73cfe264 402 int buff2_needed = 0, dis_ic = 0;
47dd7a54 403
47dd7a54
GC
404 /* Set the Buffer size according to the MTU;
405 * indeed, in case of jumbo we need to bump-up the buffer sizes.
406 */
407 if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
408 bfsize = BUF_SIZE_16KiB;
409 else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
410 bfsize = BUF_SIZE_8KiB;
411 else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
412 bfsize = BUF_SIZE_4KiB;
413 else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
414 bfsize = BUF_SIZE_2KiB;
415 else
416 bfsize = DMA_BUFFER_SIZE;
417
73cfe264
GC
418#ifdef CONFIG_STMMAC_TIMER
419 /* Disable interrupts on completion for the reception if timer is on */
420 if (likely(priv->tm->enable))
421 dis_ic = 1;
422#endif
47dd7a54
GC
423 /* If the MTU exceeds 8k so use the second buffer in the chain */
424 if (bfsize >= BUF_SIZE_8KiB)
425 buff2_needed = 1;
426
427 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
428 txsize, rxsize, bfsize);
429
430 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
431 priv->rx_skbuff =
432 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
433 priv->dma_rx =
434 (struct dma_desc *)dma_alloc_coherent(priv->device,
435 rxsize *
436 sizeof(struct dma_desc),
437 &priv->dma_rx_phy,
438 GFP_KERNEL);
439 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
440 GFP_KERNEL);
441 priv->dma_tx =
442 (struct dma_desc *)dma_alloc_coherent(priv->device,
443 txsize *
444 sizeof(struct dma_desc),
445 &priv->dma_tx_phy,
446 GFP_KERNEL);
447
448 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
449 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
450 return;
451 }
452
453 DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
454 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
455 dev->name, priv->dma_rx, priv->dma_tx,
456 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
457
458 /* RX INITIALIZATION */
459 DBG(probe, INFO, "stmmac: SKB addresses:\n"
460 "skb\t\tskb data\tdma data\n");
461
462 for (i = 0; i < rxsize; i++) {
463 struct dma_desc *p = priv->dma_rx + i;
464
465 skb = netdev_alloc_skb_ip_align(dev, bfsize);
466 if (unlikely(skb == NULL)) {
467 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
468 break;
469 }
470 priv->rx_skbuff[i] = skb;
471 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
472 bfsize, DMA_FROM_DEVICE);
473
474 p->des2 = priv->rx_skbuff_dma[i];
475 if (unlikely(buff2_needed))
476 p->des3 = p->des2 + BUF_SIZE_8KiB;
477 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
478 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
479 }
480 priv->cur_rx = 0;
481 priv->dirty_rx = (unsigned int)(i - rxsize);
482 priv->dma_buf_sz = bfsize;
483 buf_sz = bfsize;
484
485 /* TX INITIALIZATION */
486 for (i = 0; i < txsize; i++) {
487 priv->tx_skbuff[i] = NULL;
488 priv->dma_tx[i].des2 = 0;
489 }
490 priv->dirty_tx = 0;
491 priv->cur_tx = 0;
492
493 /* Clear the Rx/Tx descriptors */
db98a0b0
GC
494 priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
495 priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
47dd7a54
GC
496
497 if (netif_msg_hw(priv)) {
498 pr_info("RX descriptor ring:\n");
499 display_ring(priv->dma_rx, rxsize);
500 pr_info("TX descriptor ring:\n");
501 display_ring(priv->dma_tx, txsize);
502 }
47dd7a54
GC
503}
504
505static void dma_free_rx_skbufs(struct stmmac_priv *priv)
506{
507 int i;
508
509 for (i = 0; i < priv->dma_rx_size; i++) {
510 if (priv->rx_skbuff[i]) {
511 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
512 priv->dma_buf_sz, DMA_FROM_DEVICE);
513 dev_kfree_skb_any(priv->rx_skbuff[i]);
514 }
515 priv->rx_skbuff[i] = NULL;
516 }
47dd7a54
GC
517}
518
519static void dma_free_tx_skbufs(struct stmmac_priv *priv)
520{
521 int i;
522
523 for (i = 0; i < priv->dma_tx_size; i++) {
524 if (priv->tx_skbuff[i] != NULL) {
525 struct dma_desc *p = priv->dma_tx + i;
526 if (p->des2)
527 dma_unmap_single(priv->device, p->des2,
db98a0b0
GC
528 priv->hw->desc->get_tx_len(p),
529 DMA_TO_DEVICE);
47dd7a54
GC
530 dev_kfree_skb_any(priv->tx_skbuff[i]);
531 priv->tx_skbuff[i] = NULL;
532 }
533 }
47dd7a54
GC
534}
535
536static void free_dma_desc_resources(struct stmmac_priv *priv)
537{
538 /* Release the DMA TX/RX socket buffers */
539 dma_free_rx_skbufs(priv);
540 dma_free_tx_skbufs(priv);
541
542 /* Free the region of consistent memory previously allocated for
543 * the DMA */
544 dma_free_coherent(priv->device,
545 priv->dma_tx_size * sizeof(struct dma_desc),
546 priv->dma_tx, priv->dma_tx_phy);
547 dma_free_coherent(priv->device,
548 priv->dma_rx_size * sizeof(struct dma_desc),
549 priv->dma_rx, priv->dma_rx_phy);
550 kfree(priv->rx_skbuff_dma);
551 kfree(priv->rx_skbuff);
552 kfree(priv->tx_skbuff);
47dd7a54
GC
553}
554
47dd7a54
GC
555/**
556 * stmmac_dma_operation_mode - HW DMA operation mode
557 * @priv : pointer to the private device structure.
558 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
ebbb293f 559 * or Store-And-Forward capability.
47dd7a54
GC
560 */
561static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
562{
9dfeb4d9 563 if (likely((priv->plat->tx_coe) && (!priv->no_csum_insertion))) {
ebbb293f
GC
564 /* In case of GMAC, SF mode has to be enabled
565 * to perform the TX COE. This depends on:
566 * 1) TX COE if actually supported
567 * 2) There is no bugged Jumbo frame support
568 * that needs to not insert csum in the TDES.
569 */
570 priv->hw->dma->dma_mode(priv->ioaddr,
571 SF_DMA_MODE, SF_DMA_MODE);
572 tc = SF_DMA_MODE;
573 } else
574 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
47dd7a54
GC
575}
576
47dd7a54
GC
577/**
578 * stmmac_tx:
579 * @priv: private driver structure
580 * Description: it reclaims resources after transmission completes.
581 */
582static void stmmac_tx(struct stmmac_priv *priv)
583{
584 unsigned int txsize = priv->dma_tx_size;
47dd7a54
GC
585
586 while (priv->dirty_tx != priv->cur_tx) {
587 int last;
588 unsigned int entry = priv->dirty_tx % txsize;
589 struct sk_buff *skb = priv->tx_skbuff[entry];
590 struct dma_desc *p = priv->dma_tx + entry;
591
592 /* Check if the descriptor is owned by the DMA. */
db98a0b0 593 if (priv->hw->desc->get_tx_owner(p))
47dd7a54
GC
594 break;
595
596 /* Verify tx error by looking at the last segment */
db98a0b0 597 last = priv->hw->desc->get_tx_ls(p);
47dd7a54
GC
598 if (likely(last)) {
599 int tx_error =
db98a0b0
GC
600 priv->hw->desc->tx_status(&priv->dev->stats,
601 &priv->xstats, p,
ad01b7d4 602 priv->ioaddr);
47dd7a54
GC
603 if (likely(tx_error == 0)) {
604 priv->dev->stats.tx_packets++;
605 priv->xstats.tx_pkt_n++;
606 } else
607 priv->dev->stats.tx_errors++;
608 }
609 TX_DBG("%s: curr %d, dirty %d\n", __func__,
610 priv->cur_tx, priv->dirty_tx);
611
612 if (likely(p->des2))
613 dma_unmap_single(priv->device, p->des2,
db98a0b0 614 priv->hw->desc->get_tx_len(p),
47dd7a54
GC
615 DMA_TO_DEVICE);
616 if (unlikely(p->des3))
617 p->des3 = 0;
618
619 if (likely(skb != NULL)) {
620 /*
621 * If there's room in the queue (limit it to size)
622 * we add this skb back into the pool,
623 * if it's the right size.
624 */
625 if ((skb_queue_len(&priv->rx_recycle) <
626 priv->dma_rx_size) &&
627 skb_recycle_check(skb, priv->dma_buf_sz))
628 __skb_queue_head(&priv->rx_recycle, skb);
629 else
630 dev_kfree_skb(skb);
631
632 priv->tx_skbuff[entry] = NULL;
633 }
634
db98a0b0 635 priv->hw->desc->release_tx_desc(p);
47dd7a54
GC
636
637 entry = (++priv->dirty_tx) % txsize;
638 }
639 if (unlikely(netif_queue_stopped(priv->dev) &&
640 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
641 netif_tx_lock(priv->dev);
642 if (netif_queue_stopped(priv->dev) &&
643 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
644 TX_DBG("%s: restart transmit\n", __func__);
645 netif_wake_queue(priv->dev);
646 }
647 netif_tx_unlock(priv->dev);
648 }
47dd7a54
GC
649}
650
651static inline void stmmac_enable_irq(struct stmmac_priv *priv)
652{
73cfe264
GC
653#ifdef CONFIG_STMMAC_TIMER
654 if (likely(priv->tm->enable))
655 priv->tm->timer_start(tmrate);
656 else
47dd7a54 657#endif
ad01b7d4 658 priv->hw->dma->enable_dma_irq(priv->ioaddr);
47dd7a54
GC
659}
660
661static inline void stmmac_disable_irq(struct stmmac_priv *priv)
662{
73cfe264
GC
663#ifdef CONFIG_STMMAC_TIMER
664 if (likely(priv->tm->enable))
665 priv->tm->timer_stop();
666 else
47dd7a54 667#endif
ad01b7d4 668 priv->hw->dma->disable_dma_irq(priv->ioaddr);
47dd7a54
GC
669}
670
671static int stmmac_has_work(struct stmmac_priv *priv)
672{
673 unsigned int has_work = 0;
674 int rxret, tx_work = 0;
675
db98a0b0 676 rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
47dd7a54
GC
677 (priv->cur_rx % priv->dma_rx_size));
678
679 if (priv->dirty_tx != priv->cur_tx)
680 tx_work = 1;
681
682 if (likely(!rxret || tx_work))
683 has_work = 1;
684
685 return has_work;
686}
687
688static inline void _stmmac_schedule(struct stmmac_priv *priv)
689{
690 if (likely(stmmac_has_work(priv))) {
691 stmmac_disable_irq(priv);
692 napi_schedule(&priv->napi);
693 }
694}
695
696#ifdef CONFIG_STMMAC_TIMER
697void stmmac_schedule(struct net_device *dev)
698{
699 struct stmmac_priv *priv = netdev_priv(dev);
700
701 priv->xstats.sched_timer_n++;
702
703 _stmmac_schedule(priv);
47dd7a54
GC
704}
705
706static void stmmac_no_timer_started(unsigned int x)
707{;
708};
709
710static void stmmac_no_timer_stopped(void)
711{;
712};
713#endif
714
715/**
716 * stmmac_tx_err:
717 * @priv: pointer to the private device structure
718 * Description: it cleans the descriptors and restarts the transmission
719 * in case of errors.
720 */
721static void stmmac_tx_err(struct stmmac_priv *priv)
722{
ad01b7d4 723
47dd7a54
GC
724 netif_stop_queue(priv->dev);
725
ad01b7d4 726 priv->hw->dma->stop_tx(priv->ioaddr);
47dd7a54 727 dma_free_tx_skbufs(priv);
db98a0b0 728 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
47dd7a54
GC
729 priv->dirty_tx = 0;
730 priv->cur_tx = 0;
ad01b7d4 731 priv->hw->dma->start_tx(priv->ioaddr);
47dd7a54
GC
732
733 priv->dev->stats.tx_errors++;
734 netif_wake_queue(priv->dev);
47dd7a54
GC
735}
736
47dd7a54 737
aec7ff27
GC
738static void stmmac_dma_interrupt(struct stmmac_priv *priv)
739{
aec7ff27
GC
740 int status;
741
ad01b7d4 742 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
aec7ff27
GC
743 if (likely(status == handle_tx_rx))
744 _stmmac_schedule(priv);
745
746 else if (unlikely(status == tx_hard_error_bump_tc)) {
747 /* Try to bump up the dma threshold on this failure */
748 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
749 tc += 64;
ad01b7d4 750 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
aec7ff27 751 priv->xstats.threshold = tc;
47dd7a54 752 }
aec7ff27
GC
753 stmmac_tx_err(priv);
754 } else if (unlikely(status == tx_hard_error))
755 stmmac_tx_err(priv);
47dd7a54
GC
756}
757
758/**
759 * stmmac_open - open entry point of the driver
760 * @dev : pointer to the device structure.
761 * Description:
762 * This function is the open entry point of the driver.
763 * Return value:
764 * 0 on success and an appropriate (-)ve integer as defined in errno.h
765 * file on failure.
766 */
767static int stmmac_open(struct net_device *dev)
768{
769 struct stmmac_priv *priv = netdev_priv(dev);
47dd7a54
GC
770 int ret;
771
772 /* Check that the MAC address is valid. If its not, refuse
773 * to bring the device up. The user must specify an
774 * address using the following linux command:
775 * ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */
776 if (!is_valid_ether_addr(dev->dev_addr)) {
777 random_ether_addr(dev->dev_addr);
778 pr_warning("%s: generated random MAC address %pM\n", dev->name,
779 dev->dev_addr);
780 }
781
782 stmmac_verify_args();
783
784 ret = stmmac_init_phy(dev);
785 if (unlikely(ret)) {
786 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
787 return ret;
788 }
789
790 /* Request the IRQ lines */
a0607fd3 791 ret = request_irq(dev->irq, stmmac_interrupt,
47dd7a54
GC
792 IRQF_SHARED, dev->name, dev);
793 if (unlikely(ret < 0)) {
794 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
795 __func__, dev->irq, ret);
796 return ret;
797 }
798
799#ifdef CONFIG_STMMAC_TIMER
73cfe264 800 priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
47dd7a54 801 if (unlikely(priv->tm == NULL)) {
2381a55c 802 pr_err("%s: ERROR: timer memory alloc failed\n", __func__);
47dd7a54
GC
803 return -ENOMEM;
804 }
805 priv->tm->freq = tmrate;
806
73cfe264
GC
807 /* Test if the external timer can be actually used.
808 * In case of failure continue without timer. */
47dd7a54 809 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
73cfe264 810 pr_warning("stmmaceth: cannot attach the external timer.\n");
47dd7a54
GC
811 priv->tm->freq = 0;
812 priv->tm->timer_start = stmmac_no_timer_started;
813 priv->tm->timer_stop = stmmac_no_timer_stopped;
73cfe264
GC
814 } else
815 priv->tm->enable = 1;
47dd7a54
GC
816#endif
817
818 /* Create and initialize the TX/RX descriptors chains. */
819 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
820 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
821 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
822 init_dma_desc_rings(dev);
823
824 /* DMA initialization and SW reset */
9dfeb4d9 825 if (unlikely(priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
ad01b7d4 826 priv->dma_tx_phy,
db98a0b0 827 priv->dma_rx_phy) < 0)) {
47dd7a54
GC
828
829 pr_err("%s: DMA initialization failed\n", __func__);
830 return -1;
831 }
832
833 /* Copy the MAC addr into the HW */
ad01b7d4 834 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
ca5f12c1 835 /* If required, perform hw setup of the bus. */
9dfeb4d9
GC
836 if (priv->plat->bus_setup)
837 priv->plat->bus_setup(priv->ioaddr);
47dd7a54 838 /* Initialize the MAC Core */
ad01b7d4 839 priv->hw->mac->core_init(priv->ioaddr);
47dd7a54 840
ebbb293f
GC
841 priv->rx_coe = priv->hw->mac->rx_coe(priv->ioaddr);
842 if (priv->rx_coe)
843 pr_info("stmmac: Rx Checksum Offload Engine supported\n");
9dfeb4d9 844 if (priv->plat->tx_coe)
ebbb293f
GC
845 pr_info("\tTX Checksum insertion supported\n");
846
47dd7a54 847 /* Initialise the MMC (if present) to disable all interrupts. */
ad01b7d4
GC
848 writel(0xffffffff, priv->ioaddr + MMC_HIGH_INTR_MASK);
849 writel(0xffffffff, priv->ioaddr + MMC_LOW_INTR_MASK);
47dd7a54
GC
850
851 /* Enable the MAC Rx/Tx */
19449bfc 852 stmmac_enable_mac(priv->ioaddr);
47dd7a54
GC
853
854 /* Set the HW DMA mode and the COE */
855 stmmac_dma_operation_mode(priv);
856
857 /* Extra statistics */
858 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
859 priv->xstats.threshold = tc;
860
861 /* Start the ball rolling... */
862 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
ad01b7d4
GC
863 priv->hw->dma->start_tx(priv->ioaddr);
864 priv->hw->dma->start_rx(priv->ioaddr);
47dd7a54
GC
865
866#ifdef CONFIG_STMMAC_TIMER
867 priv->tm->timer_start(tmrate);
868#endif
869 /* Dump DMA/MAC registers */
870 if (netif_msg_hw(priv)) {
ad01b7d4
GC
871 priv->hw->mac->dump_regs(priv->ioaddr);
872 priv->hw->dma->dump_regs(priv->ioaddr);
47dd7a54
GC
873 }
874
875 if (priv->phydev)
876 phy_start(priv->phydev);
877
878 napi_enable(&priv->napi);
879 skb_queue_head_init(&priv->rx_recycle);
880 netif_start_queue(dev);
881 return 0;
882}
883
884/**
885 * stmmac_release - close entry point of the driver
886 * @dev : device pointer.
887 * Description:
888 * This is the stop entry point of the driver.
889 */
890static int stmmac_release(struct net_device *dev)
891{
892 struct stmmac_priv *priv = netdev_priv(dev);
893
894 /* Stop and disconnect the PHY */
895 if (priv->phydev) {
896 phy_stop(priv->phydev);
897 phy_disconnect(priv->phydev);
898 priv->phydev = NULL;
899 }
900
901 netif_stop_queue(dev);
902
903#ifdef CONFIG_STMMAC_TIMER
904 /* Stop and release the timer */
905 stmmac_close_ext_timer();
906 if (priv->tm != NULL)
907 kfree(priv->tm);
908#endif
909 napi_disable(&priv->napi);
910 skb_queue_purge(&priv->rx_recycle);
911
912 /* Free the IRQ lines */
913 free_irq(dev->irq, dev);
914
915 /* Stop TX/RX DMA and clear the descriptors */
ad01b7d4
GC
916 priv->hw->dma->stop_tx(priv->ioaddr);
917 priv->hw->dma->stop_rx(priv->ioaddr);
47dd7a54
GC
918
919 /* Release and free the Rx/Tx resources */
920 free_dma_desc_resources(priv);
921
19449bfc 922 /* Disable the MAC Rx/Tx */
923 stmmac_disable_mac(priv->ioaddr);
47dd7a54
GC
924
925 netif_carrier_off(dev);
926
927 return 0;
928}
929
930/*
931 * To perform emulated hardware segmentation on skb.
932 */
933static int stmmac_sw_tso(struct stmmac_priv *priv, struct sk_buff *skb)
934{
935 struct sk_buff *segs, *curr_skb;
936 int gso_segs = skb_shinfo(skb)->gso_segs;
937
938 /* Estimate the number of fragments in the worst case */
939 if (unlikely(stmmac_tx_avail(priv) < gso_segs)) {
940 netif_stop_queue(priv->dev);
941 TX_DBG(KERN_ERR "%s: TSO BUG! Tx Ring full when queue awake\n",
942 __func__);
943 if (stmmac_tx_avail(priv) < gso_segs)
944 return NETDEV_TX_BUSY;
945
946 netif_wake_queue(priv->dev);
947 }
948 TX_DBG("\tstmmac_sw_tso: segmenting: skb %p (len %d)\n",
949 skb, skb->len);
950
951 segs = skb_gso_segment(skb, priv->dev->features & ~NETIF_F_TSO);
952 if (unlikely(IS_ERR(segs)))
953 goto sw_tso_end;
954
955 do {
956 curr_skb = segs;
957 segs = segs->next;
958 TX_DBG("\t\tcurrent skb->len: %d, *curr %p,"
959 "*next %p\n", curr_skb->len, curr_skb, segs);
960 curr_skb->next = NULL;
961 stmmac_xmit(curr_skb, priv->dev);
962 } while (segs);
963
964sw_tso_end:
965 dev_kfree_skb(skb);
966
967 return NETDEV_TX_OK;
968}
969
970static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
971 struct net_device *dev,
972 int csum_insertion)
973{
974 struct stmmac_priv *priv = netdev_priv(dev);
975 unsigned int nopaged_len = skb_headlen(skb);
976 unsigned int txsize = priv->dma_tx_size;
977 unsigned int entry = priv->cur_tx % txsize;
978 struct dma_desc *desc = priv->dma_tx + entry;
979
980 if (nopaged_len > BUF_SIZE_8KiB) {
981
982 int buf2_size = nopaged_len - BUF_SIZE_8KiB;
983
984 desc->des2 = dma_map_single(priv->device, skb->data,
985 BUF_SIZE_8KiB, DMA_TO_DEVICE);
986 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
db98a0b0
GC
987 priv->hw->desc->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
988 csum_insertion);
47dd7a54
GC
989
990 entry = (++priv->cur_tx) % txsize;
991 desc = priv->dma_tx + entry;
992
993 desc->des2 = dma_map_single(priv->device,
994 skb->data + BUF_SIZE_8KiB,
995 buf2_size, DMA_TO_DEVICE);
996 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
db98a0b0
GC
997 priv->hw->desc->prepare_tx_desc(desc, 0, buf2_size,
998 csum_insertion);
999 priv->hw->desc->set_tx_owner(desc);
47dd7a54
GC
1000 priv->tx_skbuff[entry] = NULL;
1001 } else {
1002 desc->des2 = dma_map_single(priv->device, skb->data,
1003 nopaged_len, DMA_TO_DEVICE);
1004 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
db98a0b0
GC
1005 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1006 csum_insertion);
47dd7a54
GC
1007 }
1008 return entry;
1009}
1010
1011/**
1012 * stmmac_xmit:
1013 * @skb : the socket buffer
1014 * @dev : device pointer
1015 * Description : Tx entry point of the driver.
1016 */
1017static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1018{
1019 struct stmmac_priv *priv = netdev_priv(dev);
1020 unsigned int txsize = priv->dma_tx_size;
1021 unsigned int entry;
1022 int i, csum_insertion = 0;
1023 int nfrags = skb_shinfo(skb)->nr_frags;
1024 struct dma_desc *desc, *first;
1025
1026 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1027 if (!netif_queue_stopped(dev)) {
1028 netif_stop_queue(dev);
1029 /* This is a hard error, log it. */
1030 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1031 __func__);
1032 }
1033 return NETDEV_TX_BUSY;
1034 }
1035
1036 entry = priv->cur_tx % txsize;
1037
1038#ifdef STMMAC_XMIT_DEBUG
1039 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1040 pr_info("stmmac xmit:\n"
1041 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1042 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1043 skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
1044 !skb_is_gso(skb) ? "isn't" : "is");
1045#endif
1046
1047 if (unlikely(skb_is_gso(skb)))
1048 return stmmac_sw_tso(priv, skb);
1049
1050 if (likely((skb->ip_summed == CHECKSUM_PARTIAL))) {
9dfeb4d9
GC
1051 if (unlikely((!priv->plat->tx_coe) ||
1052 (priv->no_csum_insertion)))
47dd7a54
GC
1053 skb_checksum_help(skb);
1054 else
1055 csum_insertion = 1;
1056 }
1057
1058 desc = priv->dma_tx + entry;
1059 first = desc;
1060
1061#ifdef STMMAC_XMIT_DEBUG
1062 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1063 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1064 "\t\tn_frags: %d, ip_summed: %d\n",
1065 skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
1066#endif
1067 priv->tx_skbuff[entry] = skb;
1068 if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
1069 entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
1070 desc = priv->dma_tx + entry;
1071 } else {
1072 unsigned int nopaged_len = skb_headlen(skb);
1073 desc->des2 = dma_map_single(priv->device, skb->data,
1074 nopaged_len, DMA_TO_DEVICE);
db98a0b0
GC
1075 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1076 csum_insertion);
47dd7a54
GC
1077 }
1078
1079 for (i = 0; i < nfrags; i++) {
1080 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1081 int len = frag->size;
1082
1083 entry = (++priv->cur_tx) % txsize;
1084 desc = priv->dma_tx + entry;
1085
1086 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1087 desc->des2 = dma_map_page(priv->device, frag->page,
1088 frag->page_offset,
1089 len, DMA_TO_DEVICE);
1090 priv->tx_skbuff[entry] = NULL;
db98a0b0
GC
1091 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1092 priv->hw->desc->set_tx_owner(desc);
47dd7a54
GC
1093 }
1094
1095 /* Interrupt on completition only for the latest segment */
db98a0b0 1096 priv->hw->desc->close_tx_desc(desc);
73cfe264 1097
47dd7a54 1098#ifdef CONFIG_STMMAC_TIMER
73cfe264
GC
1099 /* Clean IC while using timer */
1100 if (likely(priv->tm->enable))
db98a0b0 1101 priv->hw->desc->clear_tx_ic(desc);
47dd7a54
GC
1102#endif
1103 /* To avoid raise condition */
db98a0b0 1104 priv->hw->desc->set_tx_owner(first);
47dd7a54
GC
1105
1106 priv->cur_tx++;
1107
1108#ifdef STMMAC_XMIT_DEBUG
1109 if (netif_msg_pktdata(priv)) {
1110 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1111 "first=%p, nfrags=%d\n",
1112 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1113 entry, first, nfrags);
1114 display_ring(priv->dma_tx, txsize);
1115 pr_info(">>> frame to be transmitted: ");
1116 print_pkt(skb->data, skb->len);
1117 }
1118#endif
1119 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1120 TX_DBG("%s: stop transmitted packets\n", __func__);
1121 netif_stop_queue(dev);
1122 }
1123
1124 dev->stats.tx_bytes += skb->len;
1125
ad01b7d4 1126 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
47dd7a54
GC
1127
1128 return NETDEV_TX_OK;
1129}
1130
1131static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1132{
1133 unsigned int rxsize = priv->dma_rx_size;
1134 int bfsize = priv->dma_buf_sz;
1135 struct dma_desc *p = priv->dma_rx;
1136
1137 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1138 unsigned int entry = priv->dirty_rx % rxsize;
1139 if (likely(priv->rx_skbuff[entry] == NULL)) {
1140 struct sk_buff *skb;
1141
1142 skb = __skb_dequeue(&priv->rx_recycle);
1143 if (skb == NULL)
1144 skb = netdev_alloc_skb_ip_align(priv->dev,
1145 bfsize);
1146
1147 if (unlikely(skb == NULL))
1148 break;
1149
1150 priv->rx_skbuff[entry] = skb;
1151 priv->rx_skbuff_dma[entry] =
1152 dma_map_single(priv->device, skb->data, bfsize,
1153 DMA_FROM_DEVICE);
1154
1155 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
9dfeb4d9 1156 if (unlikely(priv->plat->has_gmac)) {
47dd7a54
GC
1157 if (bfsize >= BUF_SIZE_8KiB)
1158 (p + entry)->des3 =
1159 (p + entry)->des2 + BUF_SIZE_8KiB;
1160 }
1161 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1162 }
db98a0b0 1163 priv->hw->desc->set_rx_owner(p + entry);
47dd7a54 1164 }
47dd7a54
GC
1165}
1166
1167static int stmmac_rx(struct stmmac_priv *priv, int limit)
1168{
1169 unsigned int rxsize = priv->dma_rx_size;
1170 unsigned int entry = priv->cur_rx % rxsize;
1171 unsigned int next_entry;
1172 unsigned int count = 0;
1173 struct dma_desc *p = priv->dma_rx + entry;
1174 struct dma_desc *p_next;
1175
1176#ifdef STMMAC_RX_DEBUG
1177 if (netif_msg_hw(priv)) {
1178 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1179 display_ring(priv->dma_rx, rxsize);
1180 }
1181#endif
1182 count = 0;
db98a0b0 1183 while (!priv->hw->desc->get_rx_owner(p)) {
47dd7a54
GC
1184 int status;
1185
1186 if (count >= limit)
1187 break;
1188
1189 count++;
1190
1191 next_entry = (++priv->cur_rx) % rxsize;
1192 p_next = priv->dma_rx + next_entry;
1193 prefetch(p_next);
1194
1195 /* read the status of the incoming frame */
db98a0b0
GC
1196 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1197 &priv->xstats, p));
47dd7a54
GC
1198 if (unlikely(status == discard_frame))
1199 priv->dev->stats.rx_errors++;
1200 else {
1201 struct sk_buff *skb;
3eeb2997 1202 int frame_len;
47dd7a54 1203
3eeb2997
GC
1204 frame_len = priv->hw->desc->get_rx_frame_len(p);
1205 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1206 * Type frames (LLC/LLC-SNAP) */
1207 if (unlikely(status != llc_snap))
1208 frame_len -= ETH_FCS_LEN;
47dd7a54
GC
1209#ifdef STMMAC_RX_DEBUG
1210 if (frame_len > ETH_FRAME_LEN)
1211 pr_debug("\tRX frame size %d, COE status: %d\n",
1212 frame_len, status);
1213
1214 if (netif_msg_hw(priv))
1215 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1216 p, entry, p->des2);
1217#endif
1218 skb = priv->rx_skbuff[entry];
1219 if (unlikely(!skb)) {
1220 pr_err("%s: Inconsistent Rx descriptor chain\n",
1221 priv->dev->name);
1222 priv->dev->stats.rx_dropped++;
1223 break;
1224 }
1225 prefetch(skb->data - NET_IP_ALIGN);
1226 priv->rx_skbuff[entry] = NULL;
1227
1228 skb_put(skb, frame_len);
1229 dma_unmap_single(priv->device,
1230 priv->rx_skbuff_dma[entry],
1231 priv->dma_buf_sz, DMA_FROM_DEVICE);
1232#ifdef STMMAC_RX_DEBUG
1233 if (netif_msg_pktdata(priv)) {
1234 pr_info(" frame received (%dbytes)", frame_len);
1235 print_pkt(skb->data, frame_len);
1236 }
1237#endif
1238 skb->protocol = eth_type_trans(skb, priv->dev);
1239
1240 if (unlikely(status == csum_none)) {
1241 /* always for the old mac 10/100 */
bc8acf2c 1242 skb_checksum_none_assert(skb);
47dd7a54
GC
1243 netif_receive_skb(skb);
1244 } else {
1245 skb->ip_summed = CHECKSUM_UNNECESSARY;
1246 napi_gro_receive(&priv->napi, skb);
1247 }
1248
1249 priv->dev->stats.rx_packets++;
1250 priv->dev->stats.rx_bytes += frame_len;
47dd7a54
GC
1251 }
1252 entry = next_entry;
1253 p = p_next; /* use prefetched values */
1254 }
1255
1256 stmmac_rx_refill(priv);
1257
1258 priv->xstats.rx_pkt_n += count;
1259
1260 return count;
1261}
1262
1263/**
1264 * stmmac_poll - stmmac poll method (NAPI)
1265 * @napi : pointer to the napi structure.
1266 * @budget : maximum number of packets that the current CPU can receive from
1267 * all interfaces.
1268 * Description :
1269 * This function implements the the reception process.
1270 * Also it runs the TX completion thread
1271 */
1272static int stmmac_poll(struct napi_struct *napi, int budget)
1273{
1274 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1275 int work_done = 0;
1276
1277 priv->xstats.poll_n++;
1278 stmmac_tx(priv);
1279 work_done = stmmac_rx(priv, budget);
1280
1281 if (work_done < budget) {
1282 napi_complete(napi);
1283 stmmac_enable_irq(priv);
1284 }
1285 return work_done;
1286}
1287
1288/**
1289 * stmmac_tx_timeout
1290 * @dev : Pointer to net device structure
1291 * Description: this function is called when a packet transmission fails to
1292 * complete within a reasonable tmrate. The driver will mark the error in the
1293 * netdev structure and arrange for the device to be reset to a sane state
1294 * in order to transmit a new packet.
1295 */
1296static void stmmac_tx_timeout(struct net_device *dev)
1297{
1298 struct stmmac_priv *priv = netdev_priv(dev);
1299
1300 /* Clear Tx resources and restart transmitting again */
1301 stmmac_tx_err(priv);
47dd7a54
GC
1302}
1303
1304/* Configuration changes (passed on by ifconfig) */
1305static int stmmac_config(struct net_device *dev, struct ifmap *map)
1306{
1307 if (dev->flags & IFF_UP) /* can't act on a running interface */
1308 return -EBUSY;
1309
1310 /* Don't allow changing the I/O address */
1311 if (map->base_addr != dev->base_addr) {
1312 pr_warning("%s: can't change I/O address\n", dev->name);
1313 return -EOPNOTSUPP;
1314 }
1315
1316 /* Don't allow changing the IRQ */
1317 if (map->irq != dev->irq) {
1318 pr_warning("%s: can't change IRQ number %d\n",
1319 dev->name, dev->irq);
1320 return -EOPNOTSUPP;
1321 }
1322
1323 /* ignore other fields */
1324 return 0;
1325}
1326
1327/**
1328 * stmmac_multicast_list - entry point for multicast addressing
1329 * @dev : pointer to the device structure
1330 * Description:
1331 * This function is a driver entry point which gets called by the kernel
1332 * whenever multicast addresses must be enabled/disabled.
1333 * Return value:
1334 * void.
1335 */
1336static void stmmac_multicast_list(struct net_device *dev)
1337{
1338 struct stmmac_priv *priv = netdev_priv(dev);
1339
1340 spin_lock(&priv->lock);
db98a0b0 1341 priv->hw->mac->set_filter(dev);
47dd7a54 1342 spin_unlock(&priv->lock);
47dd7a54
GC
1343}
1344
1345/**
1346 * stmmac_change_mtu - entry point to change MTU size for the device.
1347 * @dev : device pointer.
1348 * @new_mtu : the new MTU size for the device.
1349 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1350 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1351 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1352 * Return value:
1353 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1354 * file on failure.
1355 */
1356static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1357{
1358 struct stmmac_priv *priv = netdev_priv(dev);
1359 int max_mtu;
1360
1361 if (netif_running(dev)) {
1362 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1363 return -EBUSY;
1364 }
1365
9dfeb4d9 1366 if (priv->plat->has_gmac)
47dd7a54
GC
1367 max_mtu = JUMBO_LEN;
1368 else
1369 max_mtu = ETH_DATA_LEN;
1370
1371 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1372 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1373 return -EINVAL;
1374 }
1375
ebbb293f
GC
1376 /* Some GMAC devices have a bugged Jumbo frame support that
1377 * needs to have the Tx COE disabled for oversized frames
1378 * (due to limited buffer sizes). In this case we disable
1379 * the TX csum insertionin the TDES and not use SF. */
9dfeb4d9 1380 if ((priv->plat->bugged_jumbo) && (priv->dev->mtu > ETH_DATA_LEN))
ebbb293f
GC
1381 priv->no_csum_insertion = 1;
1382 else
1383 priv->no_csum_insertion = 0;
1384
47dd7a54
GC
1385 dev->mtu = new_mtu;
1386
1387 return 0;
1388}
1389
1390static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1391{
1392 struct net_device *dev = (struct net_device *)dev_id;
1393 struct stmmac_priv *priv = netdev_priv(dev);
1394
1395 if (unlikely(!dev)) {
1396 pr_err("%s: invalid dev pointer\n", __func__);
1397 return IRQ_NONE;
1398 }
1399
9dfeb4d9 1400 if (priv->plat->has_gmac)
47dd7a54 1401 /* To handle GMAC own interrupts */
ad01b7d4 1402 priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
aec7ff27
GC
1403
1404 stmmac_dma_interrupt(priv);
47dd7a54
GC
1405
1406 return IRQ_HANDLED;
1407}
1408
1409#ifdef CONFIG_NET_POLL_CONTROLLER
1410/* Polling receive - used by NETCONSOLE and other diagnostic tools
1411 * to allow network I/O with interrupts disabled. */
1412static void stmmac_poll_controller(struct net_device *dev)
1413{
1414 disable_irq(dev->irq);
1415 stmmac_interrupt(dev->irq, dev);
1416 enable_irq(dev->irq);
1417}
1418#endif
1419
1420/**
1421 * stmmac_ioctl - Entry point for the Ioctl
1422 * @dev: Device pointer.
1423 * @rq: An IOCTL specefic structure, that can contain a pointer to
1424 * a proprietary structure used to pass information to the driver.
1425 * @cmd: IOCTL command
1426 * Description:
1427 * Currently there are no special functionality supported in IOCTL, just the
1428 * phy_mii_ioctl(...) can be invoked.
1429 */
1430static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1431{
1432 struct stmmac_priv *priv = netdev_priv(dev);
28b04113 1433 int ret;
47dd7a54
GC
1434
1435 if (!netif_running(dev))
1436 return -EINVAL;
1437
28b04113
RC
1438 if (!priv->phydev)
1439 return -EINVAL;
1440
1441 spin_lock(&priv->lock);
1442 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1443 spin_unlock(&priv->lock);
1444
47dd7a54
GC
1445 return ret;
1446}
1447
1448#ifdef STMMAC_VLAN_TAG_USED
1449static void stmmac_vlan_rx_register(struct net_device *dev,
1450 struct vlan_group *grp)
1451{
1452 struct stmmac_priv *priv = netdev_priv(dev);
1453
1454 DBG(probe, INFO, "%s: Setting vlgrp to %p\n", dev->name, grp);
1455
1456 spin_lock(&priv->lock);
1457 priv->vlgrp = grp;
1458 spin_unlock(&priv->lock);
47dd7a54
GC
1459}
1460#endif
1461
1462static const struct net_device_ops stmmac_netdev_ops = {
1463 .ndo_open = stmmac_open,
1464 .ndo_start_xmit = stmmac_xmit,
1465 .ndo_stop = stmmac_release,
1466 .ndo_change_mtu = stmmac_change_mtu,
1467 .ndo_set_multicast_list = stmmac_multicast_list,
1468 .ndo_tx_timeout = stmmac_tx_timeout,
1469 .ndo_do_ioctl = stmmac_ioctl,
1470 .ndo_set_config = stmmac_config,
1471#ifdef STMMAC_VLAN_TAG_USED
1472 .ndo_vlan_rx_register = stmmac_vlan_rx_register,
1473#endif
1474#ifdef CONFIG_NET_POLL_CONTROLLER
1475 .ndo_poll_controller = stmmac_poll_controller,
1476#endif
1477 .ndo_set_mac_address = eth_mac_addr,
1478};
1479
1480/**
1481 * stmmac_probe - Initialization of the adapter .
1482 * @dev : device pointer
1483 * Description: The function initializes the network device structure for
1484 * the STMMAC driver. It also calls the low level routines
1485 * in order to init the HW (i.e. the DMA engine)
1486 */
1487static int stmmac_probe(struct net_device *dev)
1488{
1489 int ret = 0;
1490 struct stmmac_priv *priv = netdev_priv(dev);
1491
1492 ether_setup(dev);
1493
1494 dev->netdev_ops = &stmmac_netdev_ops;
1495 stmmac_set_ethtool_ops(dev);
1496
1497 dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA);
1498 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1499#ifdef STMMAC_VLAN_TAG_USED
1500 /* Both mac100 and gmac support receive VLAN tag detection */
1501 dev->features |= NETIF_F_HW_VLAN_RX;
1502#endif
1503 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1504
47dd7a54
GC
1505 if (flow_ctrl)
1506 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
1507
1508 priv->pause = pause;
1509 netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1510
1511 /* Get the MAC address */
ad01b7d4
GC
1512 priv->hw->mac->get_umac_addr((void __iomem *) dev->base_addr,
1513 dev->dev_addr, 0);
47dd7a54
GC
1514
1515 if (!is_valid_ether_addr(dev->dev_addr))
1516 pr_warning("\tno valid MAC address;"
1517 "please, use ifconfig or nwhwconfig!\n");
1518
1519 ret = register_netdev(dev);
1520 if (ret) {
1521 pr_err("%s: ERROR %i registering the device\n",
1522 __func__, ret);
1523 return -ENODEV;
1524 }
1525
1526 DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1527 dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1528 (dev->features & NETIF_F_HW_CSUM) ? "on" : "off");
1529
1530 spin_lock_init(&priv->lock);
1531
1532 return ret;
1533}
1534
1535/**
1536 * stmmac_mac_device_setup
1537 * @dev : device pointer
1538 * Description: select and initialise the mac device (mac100 or Gmac).
1539 */
1540static int stmmac_mac_device_setup(struct net_device *dev)
1541{
1542 struct stmmac_priv *priv = netdev_priv(dev);
47dd7a54
GC
1543
1544 struct mac_device_info *device;
1545
9dfeb4d9 1546 if (priv->plat->has_gmac)
ad01b7d4 1547 device = dwmac1000_setup(priv->ioaddr);
3d90c508 1548 else
ad01b7d4 1549 device = dwmac100_setup(priv->ioaddr);
3d90c508 1550
1ff21906
DC
1551 if (!device)
1552 return -ENOMEM;
1553
9dfeb4d9 1554 if (priv->plat->enh_desc) {
3d90c508
GC
1555 device->desc = &enh_desc_ops;
1556 pr_info("\tEnhanced descriptor structure\n");
1557 } else
56b106ae 1558 device->desc = &ndesc_ops;
47dd7a54 1559
db98a0b0 1560 priv->hw = device;
47dd7a54 1561
543876c9
GC
1562 if (device_can_wakeup(priv->device))
1563 priv->wolopts = WAKE_MAGIC; /* Magic Frame as default */
47dd7a54
GC
1564
1565 return 0;
1566}
1567
1568static int stmmacphy_dvr_probe(struct platform_device *pdev)
1569{
ee7946a7 1570 struct plat_stmmacphy_data *plat_dat = pdev->dev.platform_data;
47dd7a54
GC
1571
1572 pr_debug("stmmacphy_dvr_probe: added phy for bus %d\n",
1573 plat_dat->bus_id);
1574
1575 return 0;
1576}
1577
1578static int stmmacphy_dvr_remove(struct platform_device *pdev)
1579{
1580 return 0;
1581}
1582
1583static struct platform_driver stmmacphy_driver = {
1584 .driver = {
1585 .name = PHY_RESOURCE_NAME,
1586 },
1587 .probe = stmmacphy_dvr_probe,
1588 .remove = stmmacphy_dvr_remove,
1589};
1590
1591/**
1592 * stmmac_associate_phy
1593 * @dev: pointer to device structure
1594 * @data: points to the private structure.
1595 * Description: Scans through all the PHYs we have registered and checks if
1596 * any are associated with our MAC. If so, then just fill in
1597 * the blanks in our local context structure
1598 */
1599static int stmmac_associate_phy(struct device *dev, void *data)
1600{
1601 struct stmmac_priv *priv = (struct stmmac_priv *)data;
ee7946a7 1602 struct plat_stmmacphy_data *plat_dat = dev->platform_data;
47dd7a54
GC
1603
1604 DBG(probe, DEBUG, "%s: checking phy for bus %d\n", __func__,
1605 plat_dat->bus_id);
1606
1607 /* Check that this phy is for the MAC being initialised */
9dfeb4d9 1608 if (priv->plat->bus_id != plat_dat->bus_id)
47dd7a54
GC
1609 return 0;
1610
1611 /* OK, this PHY is connected to the MAC.
1612 Go ahead and get the parameters */
1613 DBG(probe, DEBUG, "%s: OK. Found PHY config\n", __func__);
1614 priv->phy_irq =
1615 platform_get_irq_byname(to_platform_device(dev), "phyirq");
1616 DBG(probe, DEBUG, "%s: PHY irq on bus %d is %d\n", __func__,
1617 plat_dat->bus_id, priv->phy_irq);
1618
1619 /* Override with kernel parameters if supplied XXX CRS XXX
1620 * this needs to have multiple instances */
1621 if ((phyaddr >= 0) && (phyaddr <= 31))
1622 plat_dat->phy_addr = phyaddr;
1623
1624 priv->phy_addr = plat_dat->phy_addr;
1625 priv->phy_mask = plat_dat->phy_mask;
1626 priv->phy_interface = plat_dat->interface;
1627 priv->phy_reset = plat_dat->phy_reset;
1628
1629 DBG(probe, DEBUG, "%s: exiting\n", __func__);
1630 return 1; /* forces exit of driver_for_each_device() */
1631}
1632
1633/**
1634 * stmmac_dvr_probe
1635 * @pdev: platform device pointer
1636 * Description: the driver is initialized through platform_device.
1637 */
1638static int stmmac_dvr_probe(struct platform_device *pdev)
1639{
1640 int ret = 0;
1641 struct resource *res;
ad01b7d4 1642 void __iomem *addr = NULL;
47dd7a54 1643 struct net_device *ndev = NULL;
293bb1c4 1644 struct stmmac_priv *priv = NULL;
47dd7a54
GC
1645 struct plat_stmmacenet_data *plat_dat;
1646
1647 pr_info("STMMAC driver:\n\tplatform registration... ");
1648 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1649 if (!res) {
1650 ret = -ENODEV;
1651 goto out;
1652 }
ebbb293f 1653 pr_info("\tdone!\n");
47dd7a54 1654
b6222682 1655 if (!request_mem_region(res->start, resource_size(res),
47dd7a54
GC
1656 pdev->name)) {
1657 pr_err("%s: ERROR: memory allocation failed"
1658 "cannot get the I/O addr 0x%x\n",
1659 __func__, (unsigned int)res->start);
1660 ret = -EBUSY;
1661 goto out;
1662 }
1663
7c5365bc 1664 addr = ioremap(res->start, resource_size(res));
47dd7a54 1665 if (!addr) {
7c5365bc 1666 pr_err("%s: ERROR: memory mapping failed\n", __func__);
47dd7a54
GC
1667 ret = -ENOMEM;
1668 goto out;
1669 }
1670
1671 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1672 if (!ndev) {
1673 pr_err("%s: ERROR: allocating the device\n", __func__);
1674 ret = -ENOMEM;
1675 goto out;
1676 }
1677
1678 SET_NETDEV_DEV(ndev, &pdev->dev);
1679
1680 /* Get the MAC information */
1681 ndev->irq = platform_get_irq_byname(pdev, "macirq");
1682 if (ndev->irq == -ENXIO) {
1683 pr_err("%s: ERROR: MAC IRQ configuration "
1684 "information not found\n", __func__);
1685 ret = -ENODEV;
1686 goto out;
1687 }
1688
1689 priv = netdev_priv(ndev);
1690 priv->device = &(pdev->dev);
1691 priv->dev = ndev;
ee7946a7 1692 plat_dat = pdev->dev.platform_data;
9dfeb4d9
GC
1693
1694 priv->plat = plat_dat;
1695
ad01b7d4 1696 priv->ioaddr = addr;
47dd7a54 1697
543876c9
GC
1698 /* PMT module is not integrated in all the MAC devices. */
1699 if (plat_dat->pmt) {
1700 pr_info("\tPMT module supported\n");
1701 device_set_wakeup_capable(&pdev->dev, 1);
1702 }
1703
47dd7a54
GC
1704 platform_set_drvdata(pdev, ndev);
1705
1706 /* Set the I/O base addr */
1707 ndev->base_addr = (unsigned long)addr;
1708
293bb1c4
GC
1709 /* Custom initialisation */
1710 if (priv->plat->init) {
1711 ret = priv->plat->init(pdev);
1712 if (unlikely(ret))
1713 goto out;
1714 }
ee7946a7 1715
47dd7a54
GC
1716 /* MAC HW revice detection */
1717 ret = stmmac_mac_device_setup(ndev);
1718 if (ret < 0)
1719 goto out;
1720
1721 /* Network Device Registration */
1722 ret = stmmac_probe(ndev);
1723 if (ret < 0)
1724 goto out;
1725
1726 /* associate a PHY - it is provided by another platform bus */
1727 if (!driver_for_each_device
1728 (&(stmmacphy_driver.driver), NULL, (void *)priv,
1729 stmmac_associate_phy)) {
1730 pr_err("No PHY device is associated with this MAC!\n");
1731 ret = -ENODEV;
1732 goto out;
1733 }
1734
47dd7a54 1735 pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1f0f6388
DM
1736 "\tIO base addr: 0x%p)\n", ndev->name, pdev->name,
1737 pdev->id, ndev->irq, addr);
47dd7a54
GC
1738
1739 /* MDIO bus Registration */
9dfeb4d9 1740 pr_debug("\tMDIO bus (id: %d)...", priv->plat->bus_id);
47dd7a54
GC
1741 ret = stmmac_mdio_register(ndev);
1742 if (ret < 0)
1743 goto out;
1744 pr_debug("registered!\n");
1745
1746out:
1747 if (ret < 0) {
293bb1c4
GC
1748 if (priv->plat->exit)
1749 priv->plat->exit(pdev);
1750
47dd7a54 1751 platform_set_drvdata(pdev, NULL);
7c5365bc 1752 release_mem_region(res->start, resource_size(res));
47dd7a54
GC
1753 if (addr != NULL)
1754 iounmap(addr);
1755 }
1756
1757 return ret;
1758}
1759
1760/**
1761 * stmmac_dvr_remove
1762 * @pdev: platform device pointer
1763 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1764 * changes the link status, releases the DMA descriptor rings,
1765 * unregisters the MDIO bus and unmaps the allocated memory.
1766 */
1767static int stmmac_dvr_remove(struct platform_device *pdev)
1768{
1769 struct net_device *ndev = platform_get_drvdata(pdev);
aec7ff27 1770 struct stmmac_priv *priv = netdev_priv(ndev);
47dd7a54
GC
1771 struct resource *res;
1772
1773 pr_info("%s:\n\tremoving driver", __func__);
1774
ad01b7d4
GC
1775 priv->hw->dma->stop_rx(priv->ioaddr);
1776 priv->hw->dma->stop_tx(priv->ioaddr);
47dd7a54 1777
19449bfc 1778 stmmac_disable_mac(priv->ioaddr);
47dd7a54
GC
1779
1780 netif_carrier_off(ndev);
1781
1782 stmmac_mdio_unregister(ndev);
1783
293bb1c4
GC
1784 if (priv->plat->exit)
1785 priv->plat->exit(pdev);
1786
47dd7a54
GC
1787 platform_set_drvdata(pdev, NULL);
1788 unregister_netdev(ndev);
1789
ad01b7d4 1790 iounmap((void *)priv->ioaddr);
47dd7a54 1791 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
7c5365bc 1792 release_mem_region(res->start, resource_size(res));
47dd7a54
GC
1793
1794 free_netdev(ndev);
1795
1796 return 0;
1797}
1798
1799#ifdef CONFIG_PM
874bd42d 1800static int stmmac_suspend(struct device *dev)
47dd7a54 1801{
874bd42d
GC
1802 struct net_device *ndev = dev_get_drvdata(dev);
1803 struct stmmac_priv *priv = netdev_priv(ndev);
47dd7a54
GC
1804 int dis_ic = 0;
1805
874bd42d 1806 if (!ndev || !netif_running(ndev))
47dd7a54
GC
1807 return 0;
1808
1809 spin_lock(&priv->lock);
1810
874bd42d
GC
1811 netif_device_detach(ndev);
1812 netif_stop_queue(ndev);
1813 if (priv->phydev)
1814 phy_stop(priv->phydev);
47dd7a54
GC
1815
1816#ifdef CONFIG_STMMAC_TIMER
874bd42d
GC
1817 priv->tm->timer_stop();
1818 if (likely(priv->tm->enable))
1819 dis_ic = 1;
47dd7a54 1820#endif
874bd42d
GC
1821 napi_disable(&priv->napi);
1822
1823 /* Stop TX/RX DMA */
1824 priv->hw->dma->stop_tx(priv->ioaddr);
1825 priv->hw->dma->stop_rx(priv->ioaddr);
1826 /* Clear the Rx/Tx descriptors */
1827 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
1828 dis_ic);
1829 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
1830
1831 /* Enable Power down mode by programming the PMT regs */
1832 if (device_may_wakeup(priv->device))
1833 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
1834 else
1835 stmmac_disable_mac(priv->ioaddr);
47dd7a54
GC
1836
1837 spin_unlock(&priv->lock);
1838 return 0;
1839}
1840
874bd42d 1841static int stmmac_resume(struct device *dev)
47dd7a54 1842{
874bd42d
GC
1843 struct net_device *ndev = dev_get_drvdata(dev);
1844 struct stmmac_priv *priv = netdev_priv(ndev);
47dd7a54 1845
874bd42d 1846 if (!netif_running(ndev))
47dd7a54
GC
1847 return 0;
1848
47dd7a54
GC
1849 if (priv->shutdown) {
1850 /* Re-open the interface and re-init the MAC/DMA
c4433be6 1851 and the rings (i.e. on hibernation stage) */
47dd7a54 1852 stmmac_open(dev);
c4433be6 1853 return 0;
47dd7a54
GC
1854 }
1855
c4433be6
GC
1856 spin_lock(&priv->lock);
1857
47dd7a54
GC
1858 /* Power Down bit, into the PM register, is cleared
1859 * automatically as soon as a magic packet or a Wake-up frame
1860 * is received. Anyway, it's better to manually clear
1861 * this bit because it can generate problems while resuming
1862 * from another devices (e.g. serial console). */
874bd42d 1863 if (device_may_wakeup(priv->device))
543876c9 1864 priv->hw->mac->pmt(priv->ioaddr, 0);
47dd7a54 1865
874bd42d 1866 netif_device_attach(ndev);
47dd7a54
GC
1867
1868 /* Enable the MAC and DMA */
19449bfc 1869 stmmac_enable_mac(priv->ioaddr);
ad01b7d4
GC
1870 priv->hw->dma->start_tx(priv->ioaddr);
1871 priv->hw->dma->start_rx(priv->ioaddr);
47dd7a54
GC
1872
1873#ifdef CONFIG_STMMAC_TIMER
874bd42d
GC
1874 if (likely(priv->tm->enable))
1875 priv->tm->timer_start(tmrate);
47dd7a54
GC
1876#endif
1877 napi_enable(&priv->napi);
1878
1879 if (priv->phydev)
1880 phy_start(priv->phydev);
1881
874bd42d 1882 netif_start_queue(ndev);
47dd7a54 1883
47dd7a54
GC
1884 spin_unlock(&priv->lock);
1885 return 0;
1886}
47dd7a54 1887
874bd42d
GC
1888static int stmmac_freeze(struct device *dev)
1889{
1890 struct net_device *ndev = dev_get_drvdata(dev);
1891
1892 if (!ndev || !netif_running(ndev))
1893 return 0;
1894
1895 return stmmac_release(ndev);
1896}
1897
1898static int stmmac_restore(struct device *dev)
1899{
1900 struct net_device *ndev = dev_get_drvdata(dev);
1901
1902 if (!ndev || !netif_running(ndev))
1903 return 0;
1904
1905 return stmmac_open(ndev);
1906}
1907
1908static const struct dev_pm_ops stmmac_pm_ops = {
47dd7a54
GC
1909 .suspend = stmmac_suspend,
1910 .resume = stmmac_resume,
874bd42d
GC
1911 .freeze = stmmac_freeze,
1912 .thaw = stmmac_restore,
1913 .restore = stmmac_restore,
1914};
1915#else
1916static const struct dev_pm_ops stmmac_pm_ops;
1917#endif /* CONFIG_PM */
47dd7a54 1918
874bd42d
GC
1919static struct platform_driver stmmac_driver = {
1920 .probe = stmmac_dvr_probe,
1921 .remove = stmmac_dvr_remove,
1922 .driver = {
1923 .name = STMMAC_RESOURCE_NAME,
1924 .owner = THIS_MODULE,
1925 .pm = &stmmac_pm_ops,
1926 },
47dd7a54
GC
1927};
1928
1929/**
1930 * stmmac_init_module - Entry point for the driver
1931 * Description: This function is the entry point for the driver.
1932 */
1933static int __init stmmac_init_module(void)
1934{
1935 int ret;
1936
1937 if (platform_driver_register(&stmmacphy_driver)) {
1938 pr_err("No PHY devices registered!\n");
1939 return -ENODEV;
1940 }
1941
1942 ret = platform_driver_register(&stmmac_driver);
1943 return ret;
1944}
1945
1946/**
1947 * stmmac_cleanup_module - Cleanup routine for the driver
1948 * Description: This function is the cleanup routine for the driver.
1949 */
1950static void __exit stmmac_cleanup_module(void)
1951{
1952 platform_driver_unregister(&stmmacphy_driver);
1953 platform_driver_unregister(&stmmac_driver);
1954}
1955
1956#ifndef MODULE
1957static int __init stmmac_cmdline_opt(char *str)
1958{
1959 char *opt;
1960
1961 if (!str || !*str)
1962 return -EINVAL;
1963 while ((opt = strsep(&str, ",")) != NULL) {
1964 if (!strncmp(opt, "debug:", 6))
1965 strict_strtoul(opt + 6, 0, (unsigned long *)&debug);
1966 else if (!strncmp(opt, "phyaddr:", 8))
1967 strict_strtoul(opt + 8, 0, (unsigned long *)&phyaddr);
1968 else if (!strncmp(opt, "dma_txsize:", 11))
1969 strict_strtoul(opt + 11, 0,
1970 (unsigned long *)&dma_txsize);
1971 else if (!strncmp(opt, "dma_rxsize:", 11))
1972 strict_strtoul(opt + 11, 0,
1973 (unsigned long *)&dma_rxsize);
1974 else if (!strncmp(opt, "buf_sz:", 7))
1975 strict_strtoul(opt + 7, 0, (unsigned long *)&buf_sz);
1976 else if (!strncmp(opt, "tc:", 3))
1977 strict_strtoul(opt + 3, 0, (unsigned long *)&tc);
47dd7a54
GC
1978 else if (!strncmp(opt, "watchdog:", 9))
1979 strict_strtoul(opt + 9, 0, (unsigned long *)&watchdog);
1980 else if (!strncmp(opt, "flow_ctrl:", 10))
1981 strict_strtoul(opt + 10, 0,
1982 (unsigned long *)&flow_ctrl);
1983 else if (!strncmp(opt, "pause:", 6))
1984 strict_strtoul(opt + 6, 0, (unsigned long *)&pause);
1985#ifdef CONFIG_STMMAC_TIMER
1986 else if (!strncmp(opt, "tmrate:", 7))
1987 strict_strtoul(opt + 7, 0, (unsigned long *)&tmrate);
1988#endif
1989 }
1990 return 0;
1991}
1992
1993__setup("stmmaceth=", stmmac_cmdline_opt);
1994#endif
1995
1996module_init(stmmac_init_module);
1997module_exit(stmmac_cleanup_module);
1998
1999MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
2000MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2001MODULE_LICENSE("GPL");