]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ixgbe/ixgbe_phy.c
ixgbe: make silicon specific functions generic
[net-next-2.6.git] / drivers / net / ixgbe / ixgbe_phy.c
CommitLineData
9a799d71
AK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
8c47eaa7 4 Copyright(c) 1999 - 2010 Intel Corporation.
9a799d71
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
9a799d71
AK
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
31
32#include "ixgbe_common.h"
33#include "ixgbe_phy.h"
34
11afc1b1
PW
35static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45static bool ixgbe_get_i2c_data(u32 *i2cctl);
46static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
9a799d71
AK
47static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
9a799d71
AK
49
50/**
c44ade9e 51 * ixgbe_identify_phy_generic - Get physical layer module
9a799d71
AK
52 * @hw: pointer to hardware structure
53 *
54 * Determines the physical layer module found on the current adapter.
55 **/
c44ade9e 56s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
9a799d71
AK
57{
58 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59 u32 phy_addr;
60
c44ade9e
JB
61 if (hw->phy.type == ixgbe_phy_unknown) {
62 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63d6e1d8 63 hw->phy.mdio.prtad = phy_addr;
6b73e10d 64 if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
c44ade9e
JB
65 ixgbe_get_phy_id(hw);
66 hw->phy.type =
67 ixgbe_get_phy_type_from_id(hw->phy.id);
68 status = 0;
69 break;
70 }
9a799d71 71 }
63d6e1d8
DS
72 /* clear value if nothing found */
73 hw->phy.mdio.prtad = 0;
c44ade9e
JB
74 } else {
75 status = 0;
9a799d71 76 }
c44ade9e 77
9a799d71
AK
78 return status;
79}
80
9a799d71
AK
81/**
82 * ixgbe_get_phy_id - Get the phy type
83 * @hw: pointer to hardware structure
84 *
85 **/
86static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
87{
88 u32 status;
89 u16 phy_id_high = 0;
90 u16 phy_id_low = 0;
91
6b73e10d 92 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
c44ade9e 93 &phy_id_high);
9a799d71
AK
94
95 if (status == 0) {
96 hw->phy.id = (u32)(phy_id_high << 16);
6b73e10d 97 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
c44ade9e 98 &phy_id_low);
9a799d71
AK
99 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
100 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
101 }
9a799d71
AK
102 return status;
103}
104
105/**
106 * ixgbe_get_phy_type_from_id - Get the phy type
107 * @hw: pointer to hardware structure
108 *
109 **/
110static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
111{
112 enum ixgbe_phy_type phy_type;
113
114 switch (phy_id) {
0befdb3e
JB
115 case TN1010_PHY_ID:
116 phy_type = ixgbe_phy_tn;
117 break;
9a799d71
AK
118 case QT2022_PHY_ID:
119 phy_type = ixgbe_phy_qt;
120 break;
c4900be0
DS
121 case ATH_PHY_ID:
122 phy_type = ixgbe_phy_nl;
123 break;
9a799d71
AK
124 default:
125 phy_type = ixgbe_phy_unknown;
126 break;
127 }
128
129 return phy_type;
130}
131
132/**
c44ade9e 133 * ixgbe_reset_phy_generic - Performs a PHY reset
9a799d71
AK
134 * @hw: pointer to hardware structure
135 **/
c44ade9e 136s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
9a799d71 137{
119fc60a
MC
138 /* Don't reset PHY if it's shut down due to overtemp. */
139 if (!hw->phy.reset_if_overtemp &&
140 (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
141 return 0;
142
9a799d71
AK
143 /*
144 * Perform soft PHY reset to the PHY_XS.
145 * This will cause a soft reset to the PHY
146 */
6b73e10d
BH
147 return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
148 MDIO_CTRL1_RESET);
9a799d71
AK
149}
150
151/**
c44ade9e 152 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
9a799d71
AK
153 * @hw: pointer to hardware structure
154 * @reg_addr: 32 bit address of PHY register to read
155 * @phy_data: Pointer to read data from PHY register
156 **/
c44ade9e
JB
157s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
158 u32 device_type, u16 *phy_data)
9a799d71
AK
159{
160 u32 command;
161 u32 i;
9a799d71
AK
162 u32 data;
163 s32 status = 0;
164 u16 gssr;
165
166 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
167 gssr = IXGBE_GSSR_PHY1_SM;
168 else
169 gssr = IXGBE_GSSR_PHY0_SM;
170
171 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
172 status = IXGBE_ERR_SWFW_SYNC;
173
174 if (status == 0) {
175 /* Setup and write the address cycle command */
176 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 177 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d 178 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 179 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
180
181 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
182
183 /*
184 * Check every 10 usec to see if the address cycle completed.
185 * The MDI Command bit will clear when the operation is
186 * complete
187 */
c44ade9e 188 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
189 udelay(10);
190
191 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
192
193 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
194 break;
195 }
196
197 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
198 hw_dbg(hw, "PHY address command did not complete.\n");
199 status = IXGBE_ERR_PHY;
200 }
201
202 if (status == 0) {
203 /*
204 * Address cycle complete, setup and write the read
205 * command
206 */
207 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 208 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d
BH
209 (hw->phy.mdio.prtad <<
210 IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 211 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
212
213 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
214
215 /*
216 * Check every 10 usec to see if the address cycle
217 * completed. The MDI Command bit will clear when the
218 * operation is complete
219 */
c44ade9e 220 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
221 udelay(10);
222
223 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
224
225 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
226 break;
227 }
228
229 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
c44ade9e 230 hw_dbg(hw, "PHY read command didn't complete\n");
9a799d71
AK
231 status = IXGBE_ERR_PHY;
232 } else {
233 /*
234 * Read operation is complete. Get the data
235 * from MSRWD
236 */
237 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
238 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
239 *phy_data = (u16)(data);
240 }
241 }
242
243 ixgbe_release_swfw_sync(hw, gssr);
244 }
c44ade9e 245
9a799d71
AK
246 return status;
247}
248
249/**
c44ade9e 250 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
9a799d71
AK
251 * @hw: pointer to hardware structure
252 * @reg_addr: 32 bit PHY register to write
253 * @device_type: 5 bit device type
254 * @phy_data: Data to write to the PHY register
255 **/
c44ade9e
JB
256s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
257 u32 device_type, u16 phy_data)
9a799d71
AK
258{
259 u32 command;
260 u32 i;
9a799d71
AK
261 s32 status = 0;
262 u16 gssr;
263
264 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
265 gssr = IXGBE_GSSR_PHY1_SM;
266 else
267 gssr = IXGBE_GSSR_PHY0_SM;
268
269 if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
270 status = IXGBE_ERR_SWFW_SYNC;
271
272 if (status == 0) {
273 /* Put the data in the MDI single read and write data register*/
274 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
275
276 /* Setup and write the address cycle command */
277 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 278 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d 279 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 280 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
281
282 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
283
284 /*
285 * Check every 10 usec to see if the address cycle completed.
286 * The MDI Command bit will clear when the operation is
287 * complete
288 */
c44ade9e 289 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
290 udelay(10);
291
292 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
293
c44ade9e 294 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
9a799d71 295 break;
9a799d71
AK
296 }
297
c44ade9e
JB
298 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
299 hw_dbg(hw, "PHY address cmd didn't complete\n");
9a799d71 300 status = IXGBE_ERR_PHY;
c44ade9e 301 }
9a799d71
AK
302
303 if (status == 0) {
304 /*
305 * Address cycle complete, setup and write the write
306 * command
307 */
308 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
c44ade9e 309 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
6b73e10d
BH
310 (hw->phy.mdio.prtad <<
311 IXGBE_MSCA_PHY_ADDR_SHIFT) |
c44ade9e 312 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
9a799d71
AK
313
314 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
315
316 /*
317 * Check every 10 usec to see if the address cycle
318 * completed. The MDI Command bit will clear when the
319 * operation is complete
320 */
c44ade9e 321 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
9a799d71
AK
322 udelay(10);
323
324 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
325
c44ade9e 326 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
9a799d71 327 break;
9a799d71
AK
328 }
329
c44ade9e
JB
330 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
331 hw_dbg(hw, "PHY address cmd didn't complete\n");
9a799d71 332 status = IXGBE_ERR_PHY;
c44ade9e 333 }
9a799d71
AK
334 }
335
336 ixgbe_release_swfw_sync(hw, gssr);
337 }
338
339 return status;
340}
341
342/**
c44ade9e 343 * ixgbe_setup_phy_link_generic - Set and restart autoneg
9a799d71
AK
344 * @hw: pointer to hardware structure
345 *
346 * Restart autonegotiation and PHY and waits for completion.
347 **/
c44ade9e 348s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
9a799d71
AK
349{
350 s32 status = IXGBE_NOT_IMPLEMENTED;
351 u32 time_out;
352 u32 max_time_out = 10;
6b73e10d 353 u16 autoneg_reg;
9a799d71
AK
354
355 /*
356 * Set advertisement settings in PHY based on autoneg_advertised
357 * settings. If autoneg_advertised = 0, then advertise default values
c44ade9e 358 * tnx devices cannot be "forced" to a autoneg 10G and fail. But can
9a799d71
AK
359 * for a 1G.
360 */
6b73e10d 361 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
9a799d71
AK
362
363 if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
6b73e10d 364 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
9a799d71 365 else
6b73e10d 366 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
9a799d71 367
6b73e10d 368 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
9a799d71
AK
369
370 /* Restart PHY autonegotiation and wait for completion */
6b73e10d 371 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
9a799d71 372
6b73e10d 373 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
9a799d71 374
6b73e10d 375 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
9a799d71
AK
376
377 /* Wait for autonegotiation to finish */
378 for (time_out = 0; time_out < max_time_out; time_out++) {
379 udelay(10);
380 /* Restart PHY autonegotiation and wait for completion */
6b73e10d 381 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
c44ade9e 382 &autoneg_reg);
9a799d71 383
6b73e10d
BH
384 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
385 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
9a799d71
AK
386 status = 0;
387 break;
388 }
389 }
390
391 if (time_out == max_time_out)
392 status = IXGBE_ERR_LINK_SETUP;
393
394 return status;
395}
396
397/**
c44ade9e 398 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
9a799d71
AK
399 * @hw: pointer to hardware structure
400 * @speed: new link speed
401 * @autoneg: true if autonegotiation enabled
402 **/
c44ade9e
JB
403s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
404 ixgbe_link_speed speed,
405 bool autoneg,
406 bool autoneg_wait_to_complete)
9a799d71 407{
c44ade9e 408
9a799d71
AK
409 /*
410 * Clear autoneg_advertised and set new values based on input link
411 * speed.
412 */
413 hw->phy.autoneg_advertised = 0;
414
415 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
416 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
c44ade9e 417
9a799d71
AK
418 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
419 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
420
421 /* Setup link based on the new speed settings */
c44ade9e 422 hw->phy.ops.setup_link(hw);
9a799d71
AK
423
424 return 0;
425}
c44ade9e 426
a391f1d5
DS
427/**
428 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
429 * @hw: pointer to hardware structure
430 * @speed: pointer to link speed
431 * @autoneg: boolean auto-negotiation value
432 *
433 * Determines the link capabilities by reading the AUTOC register.
434 */
435s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
436 ixgbe_link_speed *speed,
437 bool *autoneg)
438{
439 s32 status = IXGBE_ERR_LINK_SETUP;
440 u16 speed_ability;
441
442 *speed = 0;
443 *autoneg = true;
444
445 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
446 &speed_ability);
447
448 if (status == 0) {
449 if (speed_ability & MDIO_SPEED_10G)
450 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
451 if (speed_ability & MDIO_PMA_SPEED_1000)
452 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
453 if (speed_ability & MDIO_PMA_SPEED_100)
454 *speed |= IXGBE_LINK_SPEED_100_FULL;
455 }
456
457 return status;
458}
459
c4900be0
DS
460/**
461 * ixgbe_reset_phy_nl - Performs a PHY reset
462 * @hw: pointer to hardware structure
463 **/
464s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
465{
466 u16 phy_offset, control, eword, edata, block_crc;
467 bool end_data = false;
468 u16 list_offset, data_offset;
469 u16 phy_data = 0;
470 s32 ret_val = 0;
471 u32 i;
472
6b73e10d 473 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
c4900be0
DS
474
475 /* reset the PHY and poll for completion */
6b73e10d
BH
476 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
477 (phy_data | MDIO_CTRL1_RESET));
c4900be0
DS
478
479 for (i = 0; i < 100; i++) {
6b73e10d
BH
480 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
481 &phy_data);
482 if ((phy_data & MDIO_CTRL1_RESET) == 0)
c4900be0
DS
483 break;
484 msleep(10);
485 }
486
6b73e10d 487 if ((phy_data & MDIO_CTRL1_RESET) != 0) {
c4900be0
DS
488 hw_dbg(hw, "PHY reset did not complete.\n");
489 ret_val = IXGBE_ERR_PHY;
490 goto out;
491 }
492
493 /* Get init offsets */
494 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
495 &data_offset);
496 if (ret_val != 0)
497 goto out;
498
499 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
500 data_offset++;
501 while (!end_data) {
502 /*
503 * Read control word from PHY init contents offset
504 */
505 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
506 control = (eword & IXGBE_CONTROL_MASK_NL) >>
507 IXGBE_CONTROL_SHIFT_NL;
508 edata = eword & IXGBE_DATA_MASK_NL;
509 switch (control) {
510 case IXGBE_DELAY_NL:
511 data_offset++;
512 hw_dbg(hw, "DELAY: %d MS\n", edata);
513 msleep(edata);
514 break;
515 case IXGBE_DATA_NL:
d6dbee86 516 hw_dbg(hw, "DATA:\n");
c4900be0
DS
517 data_offset++;
518 hw->eeprom.ops.read(hw, data_offset++,
519 &phy_offset);
520 for (i = 0; i < edata; i++) {
521 hw->eeprom.ops.read(hw, data_offset, &eword);
522 hw->phy.ops.write_reg(hw, phy_offset,
6b73e10d 523 MDIO_MMD_PMAPMD, eword);
c4900be0
DS
524 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
525 phy_offset);
526 data_offset++;
527 phy_offset++;
528 }
529 break;
530 case IXGBE_CONTROL_NL:
531 data_offset++;
d6dbee86 532 hw_dbg(hw, "CONTROL:\n");
c4900be0
DS
533 if (edata == IXGBE_CONTROL_EOL_NL) {
534 hw_dbg(hw, "EOL\n");
535 end_data = true;
536 } else if (edata == IXGBE_CONTROL_SOL_NL) {
537 hw_dbg(hw, "SOL\n");
538 } else {
539 hw_dbg(hw, "Bad control value\n");
540 ret_val = IXGBE_ERR_PHY;
541 goto out;
542 }
543 break;
544 default:
545 hw_dbg(hw, "Bad control type\n");
546 ret_val = IXGBE_ERR_PHY;
547 goto out;
548 }
549 }
550
551out:
552 return ret_val;
553}
554
555/**
556 * ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
557 * the PHY type.
558 * @hw: pointer to hardware structure
559 *
560 * Searches for and indentifies the SFP module. Assings appropriate PHY type.
561 **/
562s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
563{
564 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
565 u32 vendor_oui = 0;
553b4497 566 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
c4900be0
DS
567 u8 identifier = 0;
568 u8 comp_codes_1g = 0;
569 u8 comp_codes_10g = 0;
11afc1b1 570 u8 oui_bytes[3] = {0, 0, 0};
537d58a0 571 u8 cable_tech = 0;
ea0a04df 572 u8 cable_spec = 0;
11afc1b1 573 u16 enforce_sfp = 0;
c4900be0 574
8ca783ab
DS
575 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
576 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
577 status = IXGBE_ERR_SFP_NOT_PRESENT;
578 goto out;
579 }
580
c4900be0
DS
581 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
582 &identifier);
583
8ca783ab
DS
584 if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
585 status = IXGBE_ERR_SFP_NOT_PRESENT;
c4900be0 586 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
8ca783ab
DS
587 if (hw->phy.type != ixgbe_phy_nl) {
588 hw->phy.id = 0;
589 hw->phy.type = ixgbe_phy_unknown;
590 }
c4900be0
DS
591 goto out;
592 }
593
594 if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
595 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
596 &comp_codes_1g);
597 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
598 &comp_codes_10g);
537d58a0
PWJ
599 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
600 &cable_tech);
c4900be0
DS
601
602 /* ID Module
603 * =========
11afc1b1
PW
604 * 0 SFP_DA_CU
605 * 1 SFP_SR
606 * 2 SFP_LR
607 * 3 SFP_DA_CORE0 - 82599-specific
608 * 4 SFP_DA_CORE1 - 82599-specific
609 * 5 SFP_SR/LR_CORE0 - 82599-specific
610 * 6 SFP_SR/LR_CORE1 - 82599-specific
75672506
DS
611 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific
612 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific
cb836a97
DS
613 * 9 SFP_1g_cu_CORE0 - 82599-specific
614 * 10 SFP_1g_cu_CORE1 - 82599-specific
c4900be0 615 */
11afc1b1 616 if (hw->mac.type == ixgbe_mac_82598EB) {
537d58a0 617 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
11afc1b1
PW
618 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
619 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
620 hw->phy.sfp_type = ixgbe_sfp_type_sr;
621 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
622 hw->phy.sfp_type = ixgbe_sfp_type_lr;
623 else
624 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
625 } else if (hw->mac.type == ixgbe_mac_82599EB) {
ea0a04df 626 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
11afc1b1
PW
627 if (hw->bus.lan_id == 0)
628 hw->phy.sfp_type =
629 ixgbe_sfp_type_da_cu_core0;
630 else
631 hw->phy.sfp_type =
632 ixgbe_sfp_type_da_cu_core1;
ea0a04df
DS
633 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
634 hw->phy.ops.read_i2c_eeprom(
635 hw, IXGBE_SFF_CABLE_SPEC_COMP,
636 &cable_spec);
637 if (cable_spec &
638 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
639 if (hw->bus.lan_id == 0)
640 hw->phy.sfp_type =
641 ixgbe_sfp_type_da_act_lmt_core0;
642 else
643 hw->phy.sfp_type =
644 ixgbe_sfp_type_da_act_lmt_core1;
645 } else {
646 hw->phy.sfp_type =
647 ixgbe_sfp_type_unknown;
648 }
649 } else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
11afc1b1
PW
650 if (hw->bus.lan_id == 0)
651 hw->phy.sfp_type =
652 ixgbe_sfp_type_srlr_core0;
653 else
654 hw->phy.sfp_type =
655 ixgbe_sfp_type_srlr_core1;
656 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
657 if (hw->bus.lan_id == 0)
658 hw->phy.sfp_type =
659 ixgbe_sfp_type_srlr_core0;
660 else
661 hw->phy.sfp_type =
662 ixgbe_sfp_type_srlr_core1;
cb836a97
DS
663 else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE)
664 if (hw->bus.lan_id == 0)
665 hw->phy.sfp_type =
666 ixgbe_sfp_type_1g_cu_core0;
667 else
668 hw->phy.sfp_type =
669 ixgbe_sfp_type_1g_cu_core1;
11afc1b1
PW
670 else
671 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
672 }
c4900be0 673
553b4497
PW
674 if (hw->phy.sfp_type != stored_sfp_type)
675 hw->phy.sfp_setup_needed = true;
676
677 /* Determine if the SFP+ PHY is dual speed or not. */
50ac58ba 678 hw->phy.multispeed_fiber = false;
553b4497
PW
679 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
680 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
681 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
682 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
683 hw->phy.multispeed_fiber = true;
684
c4900be0 685 /* Determine PHY vendor */
04193058 686 if (hw->phy.type != ixgbe_phy_nl) {
c4900be0
DS
687 hw->phy.id = identifier;
688 hw->phy.ops.read_i2c_eeprom(hw,
689 IXGBE_SFF_VENDOR_OUI_BYTE0,
690 &oui_bytes[0]);
691 hw->phy.ops.read_i2c_eeprom(hw,
692 IXGBE_SFF_VENDOR_OUI_BYTE1,
693 &oui_bytes[1]);
694 hw->phy.ops.read_i2c_eeprom(hw,
695 IXGBE_SFF_VENDOR_OUI_BYTE2,
696 &oui_bytes[2]);
697
698 vendor_oui =
699 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
700 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
701 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
702
703 switch (vendor_oui) {
704 case IXGBE_SFF_VENDOR_OUI_TYCO:
537d58a0 705 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
ea0a04df
DS
706 hw->phy.type =
707 ixgbe_phy_sfp_passive_tyco;
c4900be0
DS
708 break;
709 case IXGBE_SFF_VENDOR_OUI_FTL:
ea0a04df
DS
710 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
711 hw->phy.type = ixgbe_phy_sfp_ftl_active;
712 else
713 hw->phy.type = ixgbe_phy_sfp_ftl;
c4900be0
DS
714 break;
715 case IXGBE_SFF_VENDOR_OUI_AVAGO:
716 hw->phy.type = ixgbe_phy_sfp_avago;
717 break;
11afc1b1
PW
718 case IXGBE_SFF_VENDOR_OUI_INTEL:
719 hw->phy.type = ixgbe_phy_sfp_intel;
720 break;
c4900be0 721 default:
537d58a0 722 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
ea0a04df
DS
723 hw->phy.type =
724 ixgbe_phy_sfp_passive_unknown;
725 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
726 hw->phy.type =
727 ixgbe_phy_sfp_active_unknown;
c4900be0
DS
728 else
729 hw->phy.type = ixgbe_phy_sfp_unknown;
730 break;
731 }
732 }
fa466e91 733
537d58a0 734 /* All passive DA cables are supported */
ea0a04df
DS
735 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
736 IXGBE_SFF_DA_ACTIVE_CABLE)) {
fa466e91
WJP
737 status = 0;
738 goto out;
739 }
740
cb836a97
DS
741 /* Verify supported 1G SFP modules */
742 if (comp_codes_10g == 0 &&
743 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
744 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0)) {
fa466e91
WJP
745 hw->phy.type = ixgbe_phy_sfp_unsupported;
746 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
747 goto out;
748 }
749
750 /* Anything else 82598-based is supported */
751 if (hw->mac.type == ixgbe_mac_82598EB) {
11afc1b1
PW
752 status = 0;
753 goto out;
754 }
755
04193058
PWJ
756 /* This is guaranteed to be 82599, no need to check for NULL */
757 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
cb836a97
DS
758 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
759 !((hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0) ||
760 (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1))) {
11afc1b1
PW
761 /* Make sure we're a supported PHY type */
762 if (hw->phy.type == ixgbe_phy_sfp_intel) {
763 status = 0;
764 } else {
765 hw_dbg(hw, "SFP+ module not supported\n");
fa466e91 766 hw->phy.type = ixgbe_phy_sfp_unsupported;
11afc1b1
PW
767 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
768 }
769 } else {
770 status = 0;
771 }
c4900be0
DS
772 }
773
774out:
775 return status;
776}
777
778/**
779 * ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
780 * if it supports a given SFP+ module type, if so it returns the offsets to the
781 * phy init sequence block.
782 * @hw: pointer to hardware structure
783 * @list_offset: offset to the SFP ID list
784 * @data_offset: offset to the SFP data block
785 **/
786s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
787 u16 *list_offset,
788 u16 *data_offset)
789{
790 u16 sfp_id;
cb836a97 791 u16 sfp_type = hw->phy.sfp_type;
c4900be0
DS
792
793 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
794 return IXGBE_ERR_SFP_NOT_SUPPORTED;
795
796 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
797 return IXGBE_ERR_SFP_NOT_PRESENT;
798
799 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
800 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
801 return IXGBE_ERR_SFP_NOT_SUPPORTED;
802
cb836a97
DS
803 /*
804 * Limiting active cables and 1G Phys must be initialized as
805 * SR modules
806 */
807 if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
808 sfp_type == ixgbe_sfp_type_1g_cu_core0)
809 sfp_type = ixgbe_sfp_type_srlr_core0;
810 else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
811 sfp_type == ixgbe_sfp_type_1g_cu_core1)
812 sfp_type = ixgbe_sfp_type_srlr_core1;
813
c4900be0
DS
814 /* Read offset to PHY init contents */
815 hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
816
817 if ((!*list_offset) || (*list_offset == 0xFFFF))
11afc1b1 818 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
c4900be0
DS
819
820 /* Shift offset to first ID word */
821 (*list_offset)++;
822
823 /*
824 * Find the matching SFP ID in the EEPROM
825 * and program the init sequence
826 */
827 hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
828
829 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
cb836a97 830 if (sfp_id == sfp_type) {
c4900be0
DS
831 (*list_offset)++;
832 hw->eeprom.ops.read(hw, *list_offset, data_offset);
833 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
834 hw_dbg(hw, "SFP+ module not supported\n");
835 return IXGBE_ERR_SFP_NOT_SUPPORTED;
836 } else {
837 break;
838 }
839 } else {
840 (*list_offset) += 2;
841 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
842 return IXGBE_ERR_PHY;
843 }
844 }
845
846 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
847 hw_dbg(hw, "No matching SFP+ module found\n");
848 return IXGBE_ERR_SFP_NOT_SUPPORTED;
849 }
850
851 return 0;
852}
853
11afc1b1
PW
854/**
855 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
856 * @hw: pointer to hardware structure
857 * @byte_offset: EEPROM byte offset to read
858 * @eeprom_data: value read
859 *
860 * Performs byte read operation to SFP module's EEPROM over I2C interface.
861 **/
862s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
863 u8 *eeprom_data)
864{
865 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
866 IXGBE_I2C_EEPROM_DEV_ADDR,
867 eeprom_data);
868}
869
870/**
871 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
872 * @hw: pointer to hardware structure
873 * @byte_offset: EEPROM byte offset to write
874 * @eeprom_data: value to write
875 *
876 * Performs byte write operation to SFP module's EEPROM over I2C interface.
877 **/
878s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
879 u8 eeprom_data)
880{
881 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
882 IXGBE_I2C_EEPROM_DEV_ADDR,
883 eeprom_data);
884}
885
886/**
887 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
888 * @hw: pointer to hardware structure
889 * @byte_offset: byte offset to read
890 * @data: value read
891 *
892 * Performs byte read operation to SFP module's EEPROM over I2C interface at
893 * a specified deivce address.
894 **/
895s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
896 u8 dev_addr, u8 *data)
897{
898 s32 status = 0;
899 u32 max_retry = 1;
900 u32 retry = 0;
901 bool nack = 1;
902
903 do {
904 ixgbe_i2c_start(hw);
905
906 /* Device Address and write indication */
907 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
908 if (status != 0)
909 goto fail;
910
911 status = ixgbe_get_i2c_ack(hw);
912 if (status != 0)
913 goto fail;
914
915 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
916 if (status != 0)
917 goto fail;
918
919 status = ixgbe_get_i2c_ack(hw);
920 if (status != 0)
921 goto fail;
922
923 ixgbe_i2c_start(hw);
924
925 /* Device Address and read indication */
926 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
927 if (status != 0)
928 goto fail;
929
930 status = ixgbe_get_i2c_ack(hw);
931 if (status != 0)
932 goto fail;
933
934 status = ixgbe_clock_in_i2c_byte(hw, data);
935 if (status != 0)
936 goto fail;
937
938 status = ixgbe_clock_out_i2c_bit(hw, nack);
939 if (status != 0)
940 goto fail;
941
942 ixgbe_i2c_stop(hw);
943 break;
944
945fail:
946 ixgbe_i2c_bus_clear(hw);
947 retry++;
948 if (retry < max_retry)
949 hw_dbg(hw, "I2C byte read error - Retrying.\n");
950 else
951 hw_dbg(hw, "I2C byte read error.\n");
952
953 } while (retry < max_retry);
954
955 return status;
956}
957
958/**
959 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
960 * @hw: pointer to hardware structure
961 * @byte_offset: byte offset to write
962 * @data: value to write
963 *
964 * Performs byte write operation to SFP module's EEPROM over I2C interface at
965 * a specified device address.
966 **/
967s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
968 u8 dev_addr, u8 data)
969{
970 s32 status = 0;
971 u32 max_retry = 1;
972 u32 retry = 0;
973
974 do {
975 ixgbe_i2c_start(hw);
976
977 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
978 if (status != 0)
979 goto fail;
980
981 status = ixgbe_get_i2c_ack(hw);
982 if (status != 0)
983 goto fail;
984
985 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
986 if (status != 0)
987 goto fail;
988
989 status = ixgbe_get_i2c_ack(hw);
990 if (status != 0)
991 goto fail;
992
993 status = ixgbe_clock_out_i2c_byte(hw, data);
994 if (status != 0)
995 goto fail;
996
997 status = ixgbe_get_i2c_ack(hw);
998 if (status != 0)
999 goto fail;
1000
1001 ixgbe_i2c_stop(hw);
1002 break;
1003
1004fail:
1005 ixgbe_i2c_bus_clear(hw);
1006 retry++;
1007 if (retry < max_retry)
1008 hw_dbg(hw, "I2C byte write error - Retrying.\n");
1009 else
1010 hw_dbg(hw, "I2C byte write error.\n");
1011 } while (retry < max_retry);
1012
1013 return status;
1014}
1015
1016/**
1017 * ixgbe_i2c_start - Sets I2C start condition
1018 * @hw: pointer to hardware structure
1019 *
1020 * Sets I2C start condition (High -> Low on SDA while SCL is High)
1021 **/
1022static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1023{
1024 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1025
1026 /* Start condition must begin with data and clock high */
1027 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1028 ixgbe_raise_i2c_clk(hw, &i2cctl);
1029
1030 /* Setup time for start condition (4.7us) */
1031 udelay(IXGBE_I2C_T_SU_STA);
1032
1033 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1034
1035 /* Hold time for start condition (4us) */
1036 udelay(IXGBE_I2C_T_HD_STA);
1037
1038 ixgbe_lower_i2c_clk(hw, &i2cctl);
1039
1040 /* Minimum low period of clock is 4.7 us */
1041 udelay(IXGBE_I2C_T_LOW);
1042
1043}
1044
1045/**
1046 * ixgbe_i2c_stop - Sets I2C stop condition
1047 * @hw: pointer to hardware structure
1048 *
1049 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
1050 **/
1051static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1052{
1053 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1054
1055 /* Stop condition must begin with data low and clock high */
1056 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1057 ixgbe_raise_i2c_clk(hw, &i2cctl);
1058
1059 /* Setup time for stop condition (4us) */
1060 udelay(IXGBE_I2C_T_SU_STO);
1061
1062 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1063
1064 /* bus free time between stop and start (4.7us)*/
1065 udelay(IXGBE_I2C_T_BUF);
1066}
1067
1068/**
1069 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1070 * @hw: pointer to hardware structure
1071 * @data: data byte to clock in
1072 *
1073 * Clocks in one byte data via I2C data/clock
1074 **/
1075static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1076{
1077 s32 status = 0;
1078 s32 i;
1079 bool bit = 0;
1080
1081 for (i = 7; i >= 0; i--) {
1082 status = ixgbe_clock_in_i2c_bit(hw, &bit);
1083 *data |= bit << i;
1084
1085 if (status != 0)
1086 break;
1087 }
1088
1089 return status;
1090}
1091
1092/**
1093 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1094 * @hw: pointer to hardware structure
1095 * @data: data byte clocked out
1096 *
1097 * Clocks out one byte data via I2C data/clock
1098 **/
1099static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1100{
1101 s32 status = 0;
1102 s32 i;
1103 u32 i2cctl;
1104 bool bit = 0;
1105
1106 for (i = 7; i >= 0; i--) {
1107 bit = (data >> i) & 0x1;
1108 status = ixgbe_clock_out_i2c_bit(hw, bit);
1109
1110 if (status != 0)
1111 break;
1112 }
1113
1114 /* Release SDA line (set high) */
1115 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1116 i2cctl |= IXGBE_I2C_DATA_OUT;
1117 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1118
1119 return status;
1120}
1121
1122/**
1123 * ixgbe_get_i2c_ack - Polls for I2C ACK
1124 * @hw: pointer to hardware structure
1125 *
1126 * Clocks in/out one bit via I2C data/clock
1127 **/
1128static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1129{
1130 s32 status;
1131 u32 i = 0;
1132 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1133 u32 timeout = 10;
1134 bool ack = 1;
1135
1136 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1137
1138 if (status != 0)
1139 goto out;
1140
1141 /* Minimum high period of clock is 4us */
1142 udelay(IXGBE_I2C_T_HIGH);
1143
1144 /* Poll for ACK. Note that ACK in I2C spec is
1145 * transition from 1 to 0 */
1146 for (i = 0; i < timeout; i++) {
1147 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1148 ack = ixgbe_get_i2c_data(&i2cctl);
1149
1150 udelay(1);
1151 if (ack == 0)
1152 break;
1153 }
1154
1155 if (ack == 1) {
1156 hw_dbg(hw, "I2C ack was not received.\n");
1157 status = IXGBE_ERR_I2C;
1158 }
1159
1160 ixgbe_lower_i2c_clk(hw, &i2cctl);
1161
1162 /* Minimum low period of clock is 4.7 us */
1163 udelay(IXGBE_I2C_T_LOW);
1164
1165out:
1166 return status;
1167}
1168
1169/**
1170 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1171 * @hw: pointer to hardware structure
1172 * @data: read data value
1173 *
1174 * Clocks in one bit via I2C data/clock
1175 **/
1176static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1177{
1178 s32 status;
1179 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1180
1181 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1182
1183 /* Minimum high period of clock is 4us */
1184 udelay(IXGBE_I2C_T_HIGH);
1185
1186 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1187 *data = ixgbe_get_i2c_data(&i2cctl);
1188
1189 ixgbe_lower_i2c_clk(hw, &i2cctl);
1190
1191 /* Minimum low period of clock is 4.7 us */
1192 udelay(IXGBE_I2C_T_LOW);
1193
1194 return status;
1195}
1196
1197/**
1198 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1199 * @hw: pointer to hardware structure
1200 * @data: data value to write
1201 *
1202 * Clocks out one bit via I2C data/clock
1203 **/
1204static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1205{
1206 s32 status;
1207 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1208
1209 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1210 if (status == 0) {
1211 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1212
1213 /* Minimum high period of clock is 4us */
1214 udelay(IXGBE_I2C_T_HIGH);
1215
1216 ixgbe_lower_i2c_clk(hw, &i2cctl);
1217
1218 /* Minimum low period of clock is 4.7 us.
1219 * This also takes care of the data hold time.
1220 */
1221 udelay(IXGBE_I2C_T_LOW);
1222 } else {
1223 status = IXGBE_ERR_I2C;
1224 hw_dbg(hw, "I2C data was not set to %X\n", data);
1225 }
1226
1227 return status;
1228}
1229/**
1230 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1231 * @hw: pointer to hardware structure
1232 * @i2cctl: Current value of I2CCTL register
1233 *
1234 * Raises the I2C clock line '0'->'1'
1235 **/
1236static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1237{
1238 s32 status = 0;
1239
1240 *i2cctl |= IXGBE_I2C_CLK_OUT;
1241
1242 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1243
1244 /* SCL rise time (1000ns) */
1245 udelay(IXGBE_I2C_T_RISE);
1246
1247 return status;
1248}
1249
1250/**
1251 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1252 * @hw: pointer to hardware structure
1253 * @i2cctl: Current value of I2CCTL register
1254 *
1255 * Lowers the I2C clock line '1'->'0'
1256 **/
1257static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1258{
1259
1260 *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1261
1262 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1263
1264 /* SCL fall time (300ns) */
1265 udelay(IXGBE_I2C_T_FALL);
1266}
1267
1268/**
1269 * ixgbe_set_i2c_data - Sets the I2C data bit
1270 * @hw: pointer to hardware structure
1271 * @i2cctl: Current value of I2CCTL register
1272 * @data: I2C data value (0 or 1) to set
1273 *
1274 * Sets the I2C data bit
1275 **/
1276static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1277{
1278 s32 status = 0;
1279
1280 if (data)
1281 *i2cctl |= IXGBE_I2C_DATA_OUT;
1282 else
1283 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1284
1285 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1286
1287 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1288 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1289
1290 /* Verify data was set correctly */
1291 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1292 if (data != ixgbe_get_i2c_data(i2cctl)) {
1293 status = IXGBE_ERR_I2C;
1294 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1295 }
1296
1297 return status;
1298}
1299
1300/**
1301 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
1302 * @hw: pointer to hardware structure
1303 * @i2cctl: Current value of I2CCTL register
1304 *
1305 * Returns the I2C data bit value
1306 **/
1307static bool ixgbe_get_i2c_data(u32 *i2cctl)
1308{
1309 bool data;
1310
1311 if (*i2cctl & IXGBE_I2C_DATA_IN)
1312 data = 1;
1313 else
1314 data = 0;
1315
1316 return data;
1317}
1318
1319/**
1320 * ixgbe_i2c_bus_clear - Clears the I2C bus
1321 * @hw: pointer to hardware structure
1322 *
1323 * Clears the I2C bus by sending nine clock pulses.
1324 * Used when data line is stuck low.
1325 **/
1326static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1327{
1328 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1329 u32 i;
1330
1331 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1332
1333 for (i = 0; i < 9; i++) {
1334 ixgbe_raise_i2c_clk(hw, &i2cctl);
1335
1336 /* Min high period of clock is 4us */
1337 udelay(IXGBE_I2C_T_HIGH);
1338
1339 ixgbe_lower_i2c_clk(hw, &i2cctl);
1340
1341 /* Min low period of clock is 4.7us*/
1342 udelay(IXGBE_I2C_T_LOW);
1343 }
1344
1345 /* Put the i2c bus back to default state */
1346 ixgbe_i2c_stop(hw);
1347}
1348
0befdb3e
JB
1349/**
1350 * ixgbe_check_phy_link_tnx - Determine link and speed status
1351 * @hw: pointer to hardware structure
1352 *
1353 * Reads the VS1 register to determine if link is up and the current speed for
1354 * the PHY.
1355 **/
1356s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1357 bool *link_up)
1358{
1359 s32 status = 0;
1360 u32 time_out;
1361 u32 max_time_out = 10;
1362 u16 phy_link = 0;
1363 u16 phy_speed = 0;
1364 u16 phy_data = 0;
1365
1366 /* Initialize speed and link to default case */
1367 *link_up = false;
1368 *speed = IXGBE_LINK_SPEED_10GB_FULL;
1369
1370 /*
1371 * Check current speed and link status of the PHY register.
1372 * This is a vendor specific register and may have to
1373 * be changed for other copper PHYs.
1374 */
1375 for (time_out = 0; time_out < max_time_out; time_out++) {
1376 udelay(10);
1377 status = hw->phy.ops.read_reg(hw,
1378 IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
6b73e10d 1379 MDIO_MMD_VEND1,
0befdb3e
JB
1380 &phy_data);
1381 phy_link = phy_data &
1382 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1383 phy_speed = phy_data &
1384 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1385 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1386 *link_up = true;
1387 if (phy_speed ==
1388 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1389 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1390 break;
1391 }
1392 }
1393
1394 return status;
1395}
1396
1397/**
1398 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1399 * @hw: pointer to hardware structure
1400 * @firmware_version: pointer to the PHY Firmware Version
1401 **/
1402s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1403 u16 *firmware_version)
1404{
1405 s32 status = 0;
1406
6b73e10d 1407 status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
0befdb3e
JB
1408 firmware_version);
1409
1410 return status;
1411}
1412
119fc60a
MC
1413/**
1414 * ixgbe_tn_check_overtemp - Checks if an overtemp occured.
1415 * @hw: pointer to hardware structure
1416 *
1417 * Checks if the LASI temp alarm status was triggered due to overtemp
1418 **/
1419s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1420{
1421 s32 status = 0;
1422 u16 phy_data = 0;
1423
1424 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1425 goto out;
1426
1427 /* Check that the LASI temp alarm status was triggered */
1428 hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1429 MDIO_MMD_PMAPMD, &phy_data);
1430
1431 if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1432 goto out;
1433
1434 status = IXGBE_ERR_OVERTEMP;
1435out:
1436 return status;
1437}