]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/ixgbe/ixgbe_common.c
ixgbe: make silicon specific functions generic
[net-next-2.6.git] / drivers / net / ixgbe / ixgbe_common.c
CommitLineData
9a799d71
AK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
8c47eaa7 4 Copyright(c) 1999 - 2010 Intel Corporation.
9a799d71
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
9a799d71
AK
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
ccffad25 31#include <linux/netdevice.h>
9a799d71 32
11afc1b1 33#include "ixgbe.h"
9a799d71
AK
34#include "ixgbe_common.h"
35#include "ixgbe_phy.h"
36
c44ade9e 37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
9a799d71
AK
38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
c44ade9e
JB
40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43 u16 count);
44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
9a799d71 48
c44ade9e
JB
49static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
50static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
9a799d71 51static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
c44ade9e 52static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
7b25cdba 53static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
9a799d71
AK
54
55/**
c44ade9e 56 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
9a799d71
AK
57 * @hw: pointer to hardware structure
58 *
59 * Starts the hardware by filling the bus info structure and media type, clears
60 * all on chip counters, initializes receive address registers, multicast
61 * table, VLAN filter table, calls routine to set up link and flow control
62 * settings, and leaves transmit and receive units disabled and uninitialized
63 **/
c44ade9e 64s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
9a799d71
AK
65{
66 u32 ctrl_ext;
67
68 /* Set the media type */
69 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
70
71 /* Identify the PHY */
c44ade9e 72 hw->phy.ops.identify(hw);
9a799d71 73
9a799d71 74 /* Clear the VLAN filter table */
c44ade9e 75 hw->mac.ops.clear_vfta(hw);
9a799d71 76
9a799d71 77 /* Clear statistics registers */
c44ade9e 78 hw->mac.ops.clear_hw_cntrs(hw);
9a799d71
AK
79
80 /* Set No Snoop Disable */
81 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
82 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
83 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
3957d63d 84 IXGBE_WRITE_FLUSH(hw);
9a799d71 85
620fa036
MC
86 /* Setup flow control */
87 ixgbe_setup_fc(hw, 0);
88
9a799d71
AK
89 /* Clear adapter stopped flag */
90 hw->adapter_stopped = false;
91
92 return 0;
93}
94
95/**
c44ade9e 96 * ixgbe_init_hw_generic - Generic hardware initialization
9a799d71
AK
97 * @hw: pointer to hardware structure
98 *
c44ade9e 99 * Initialize the hardware by resetting the hardware, filling the bus info
9a799d71
AK
100 * structure and media type, clears all on chip counters, initializes receive
101 * address registers, multicast table, VLAN filter table, calls routine to set
102 * up link and flow control settings, and leaves transmit and receive units
103 * disabled and uninitialized
104 **/
c44ade9e 105s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
9a799d71 106{
794caeb2
PWJ
107 s32 status;
108
9a799d71 109 /* Reset the hardware */
794caeb2 110 status = hw->mac.ops.reset_hw(hw);
9a799d71 111
794caeb2
PWJ
112 if (status == 0) {
113 /* Start the HW */
114 status = hw->mac.ops.start_hw(hw);
115 }
9a799d71 116
794caeb2 117 return status;
9a799d71
AK
118}
119
120/**
c44ade9e 121 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
9a799d71
AK
122 * @hw: pointer to hardware structure
123 *
124 * Clears all hardware statistics counters by reading them from the hardware
125 * Statistics counters are clear on read.
126 **/
c44ade9e 127s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
128{
129 u16 i = 0;
130
131 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
132 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
133 IXGBE_READ_REG(hw, IXGBE_ERRBC);
134 IXGBE_READ_REG(hw, IXGBE_MSPDC);
135 for (i = 0; i < 8; i++)
136 IXGBE_READ_REG(hw, IXGBE_MPC(i));
137
138 IXGBE_READ_REG(hw, IXGBE_MLFC);
139 IXGBE_READ_REG(hw, IXGBE_MRFC);
140 IXGBE_READ_REG(hw, IXGBE_RLEC);
141 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
142 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
143 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
144 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
145
146 for (i = 0; i < 8; i++) {
147 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
148 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
149 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
150 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
151 }
152
153 IXGBE_READ_REG(hw, IXGBE_PRC64);
154 IXGBE_READ_REG(hw, IXGBE_PRC127);
155 IXGBE_READ_REG(hw, IXGBE_PRC255);
156 IXGBE_READ_REG(hw, IXGBE_PRC511);
157 IXGBE_READ_REG(hw, IXGBE_PRC1023);
158 IXGBE_READ_REG(hw, IXGBE_PRC1522);
159 IXGBE_READ_REG(hw, IXGBE_GPRC);
160 IXGBE_READ_REG(hw, IXGBE_BPRC);
161 IXGBE_READ_REG(hw, IXGBE_MPRC);
162 IXGBE_READ_REG(hw, IXGBE_GPTC);
163 IXGBE_READ_REG(hw, IXGBE_GORCL);
164 IXGBE_READ_REG(hw, IXGBE_GORCH);
165 IXGBE_READ_REG(hw, IXGBE_GOTCL);
166 IXGBE_READ_REG(hw, IXGBE_GOTCH);
167 for (i = 0; i < 8; i++)
168 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
169 IXGBE_READ_REG(hw, IXGBE_RUC);
170 IXGBE_READ_REG(hw, IXGBE_RFC);
171 IXGBE_READ_REG(hw, IXGBE_ROC);
172 IXGBE_READ_REG(hw, IXGBE_RJC);
173 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
174 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
175 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
176 IXGBE_READ_REG(hw, IXGBE_TORL);
177 IXGBE_READ_REG(hw, IXGBE_TORH);
178 IXGBE_READ_REG(hw, IXGBE_TPR);
179 IXGBE_READ_REG(hw, IXGBE_TPT);
180 IXGBE_READ_REG(hw, IXGBE_PTC64);
181 IXGBE_READ_REG(hw, IXGBE_PTC127);
182 IXGBE_READ_REG(hw, IXGBE_PTC255);
183 IXGBE_READ_REG(hw, IXGBE_PTC511);
184 IXGBE_READ_REG(hw, IXGBE_PTC1023);
185 IXGBE_READ_REG(hw, IXGBE_PTC1522);
186 IXGBE_READ_REG(hw, IXGBE_MPTC);
187 IXGBE_READ_REG(hw, IXGBE_BPTC);
188 for (i = 0; i < 16; i++) {
189 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
190 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
191 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
192 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
193 }
194
195 return 0;
196}
197
198/**
c44ade9e
JB
199 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
200 * @hw: pointer to hardware structure
201 * @pba_num: stores the part number from the EEPROM
202 *
203 * Reads the part number from the EEPROM.
204 **/
205s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
206{
207 s32 ret_val;
208 u16 data;
209
210 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
211 if (ret_val) {
212 hw_dbg(hw, "NVM Read Error\n");
213 return ret_val;
214 }
215 *pba_num = (u32)(data << 16);
216
217 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
218 if (ret_val) {
219 hw_dbg(hw, "NVM Read Error\n");
220 return ret_val;
221 }
222 *pba_num |= data;
223
224 return 0;
225}
226
227/**
228 * ixgbe_get_mac_addr_generic - Generic get MAC address
9a799d71
AK
229 * @hw: pointer to hardware structure
230 * @mac_addr: Adapter MAC address
231 *
232 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
233 * A reset of the adapter must be performed prior to calling this function
234 * in order for the MAC address to have been loaded from the EEPROM into RAR0
235 **/
c44ade9e 236s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
9a799d71
AK
237{
238 u32 rar_high;
239 u32 rar_low;
240 u16 i;
241
242 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
243 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
244
245 for (i = 0; i < 4; i++)
246 mac_addr[i] = (u8)(rar_low >> (i*8));
247
248 for (i = 0; i < 2; i++)
249 mac_addr[i+4] = (u8)(rar_high >> (i*8));
250
251 return 0;
252}
253
11afc1b1
PW
254/**
255 * ixgbe_get_bus_info_generic - Generic set PCI bus info
256 * @hw: pointer to hardware structure
257 *
258 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
259 **/
260s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
261{
262 struct ixgbe_adapter *adapter = hw->back;
263 struct ixgbe_mac_info *mac = &hw->mac;
264 u16 link_status;
265
266 hw->bus.type = ixgbe_bus_type_pci_express;
267
268 /* Get the negotiated link width and speed from PCI config space */
269 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
270 &link_status);
271
272 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
273 case IXGBE_PCI_LINK_WIDTH_1:
274 hw->bus.width = ixgbe_bus_width_pcie_x1;
275 break;
276 case IXGBE_PCI_LINK_WIDTH_2:
277 hw->bus.width = ixgbe_bus_width_pcie_x2;
278 break;
279 case IXGBE_PCI_LINK_WIDTH_4:
280 hw->bus.width = ixgbe_bus_width_pcie_x4;
281 break;
282 case IXGBE_PCI_LINK_WIDTH_8:
283 hw->bus.width = ixgbe_bus_width_pcie_x8;
284 break;
285 default:
286 hw->bus.width = ixgbe_bus_width_unknown;
287 break;
288 }
289
290 switch (link_status & IXGBE_PCI_LINK_SPEED) {
291 case IXGBE_PCI_LINK_SPEED_2500:
292 hw->bus.speed = ixgbe_bus_speed_2500;
293 break;
294 case IXGBE_PCI_LINK_SPEED_5000:
295 hw->bus.speed = ixgbe_bus_speed_5000;
296 break;
297 default:
298 hw->bus.speed = ixgbe_bus_speed_unknown;
299 break;
300 }
301
302 mac->ops.set_lan_id(hw);
303
304 return 0;
305}
306
307/**
308 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
309 * @hw: pointer to the HW structure
310 *
311 * Determines the LAN function id by reading memory-mapped registers
312 * and swaps the port value if requested.
313 **/
314void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
315{
316 struct ixgbe_bus_info *bus = &hw->bus;
317 u32 reg;
318
319 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
320 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
321 bus->lan_id = bus->func;
322
323 /* check for a port swap */
324 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
325 if (reg & IXGBE_FACTPS_LFS)
326 bus->func ^= 0x1;
327}
328
9a799d71 329/**
c44ade9e 330 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
9a799d71
AK
331 * @hw: pointer to hardware structure
332 *
333 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
334 * disables transmit and receive units. The adapter_stopped flag is used by
335 * the shared code and drivers to determine if the adapter is in a stopped
336 * state and should not touch the hardware.
337 **/
c44ade9e 338s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
9a799d71
AK
339{
340 u32 number_of_queues;
341 u32 reg_val;
342 u16 i;
343
344 /*
345 * Set the adapter_stopped flag so other driver functions stop touching
346 * the hardware
347 */
348 hw->adapter_stopped = true;
349
350 /* Disable the receive unit */
351 reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
352 reg_val &= ~(IXGBE_RXCTRL_RXEN);
353 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
c44ade9e 354 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
355 msleep(2);
356
357 /* Clear interrupt mask to stop from interrupts being generated */
358 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
359
360 /* Clear any pending interrupts */
361 IXGBE_READ_REG(hw, IXGBE_EICR);
362
363 /* Disable the transmit unit. Each queue must be disabled. */
c44ade9e 364 number_of_queues = hw->mac.max_tx_queues;
9a799d71
AK
365 for (i = 0; i < number_of_queues; i++) {
366 reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
367 if (reg_val & IXGBE_TXDCTL_ENABLE) {
368 reg_val &= ~IXGBE_TXDCTL_ENABLE;
369 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
370 }
371 }
372
c44ade9e
JB
373 /*
374 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
375 * access and verify no pending requests
376 */
377 if (ixgbe_disable_pcie_master(hw) != 0)
378 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
379
9a799d71
AK
380 return 0;
381}
382
383/**
c44ade9e 384 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
9a799d71
AK
385 * @hw: pointer to hardware structure
386 * @index: led number to turn on
387 **/
c44ade9e 388s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
389{
390 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
391
392 /* To turn on the LED, set mode to ON. */
393 led_reg &= ~IXGBE_LED_MODE_MASK(index);
394 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
395 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 396 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
397
398 return 0;
399}
400
401/**
c44ade9e 402 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
9a799d71
AK
403 * @hw: pointer to hardware structure
404 * @index: led number to turn off
405 **/
c44ade9e 406s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
407{
408 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
409
410 /* To turn off the LED, set mode to OFF. */
411 led_reg &= ~IXGBE_LED_MODE_MASK(index);
412 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
413 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 414 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
415
416 return 0;
417}
418
9a799d71 419/**
c44ade9e 420 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
9a799d71
AK
421 * @hw: pointer to hardware structure
422 *
423 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
424 * ixgbe_hw struct in order to set up EEPROM access.
425 **/
c44ade9e 426s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
9a799d71
AK
427{
428 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
429 u32 eec;
430 u16 eeprom_size;
431
432 if (eeprom->type == ixgbe_eeprom_uninitialized) {
433 eeprom->type = ixgbe_eeprom_none;
c44ade9e
JB
434 /* Set default semaphore delay to 10ms which is a well
435 * tested value */
436 eeprom->semaphore_delay = 10;
9a799d71
AK
437
438 /*
439 * Check for EEPROM present first.
440 * If not present leave as none
441 */
442 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
443 if (eec & IXGBE_EEC_PRES) {
444 eeprom->type = ixgbe_eeprom_spi;
445
446 /*
447 * SPI EEPROM is assumed here. This code would need to
448 * change if a future EEPROM is not SPI.
449 */
450 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
451 IXGBE_EEC_SIZE_SHIFT);
452 eeprom->word_size = 1 << (eeprom_size +
453 IXGBE_EEPROM_WORD_SIZE_SHIFT);
454 }
455
456 if (eec & IXGBE_EEC_ADDR_SIZE)
457 eeprom->address_bits = 16;
458 else
459 eeprom->address_bits = 8;
460 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
461 "%d\n", eeprom->type, eeprom->word_size,
462 eeprom->address_bits);
463 }
464
465 return 0;
466}
467
11afc1b1
PW
468/**
469 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
470 * @hw: pointer to hardware structure
471 * @offset: offset within the EEPROM to be written to
472 * @data: 16 bit word to be written to the EEPROM
473 *
474 * If ixgbe_eeprom_update_checksum is not called after this function, the
475 * EEPROM will most likely contain an invalid checksum.
476 **/
477s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
478{
479 s32 status;
480 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
481
482 hw->eeprom.ops.init_params(hw);
483
484 if (offset >= hw->eeprom.word_size) {
485 status = IXGBE_ERR_EEPROM;
486 goto out;
487 }
488
489 /* Prepare the EEPROM for writing */
490 status = ixgbe_acquire_eeprom(hw);
491
492 if (status == 0) {
493 if (ixgbe_ready_eeprom(hw) != 0) {
494 ixgbe_release_eeprom(hw);
495 status = IXGBE_ERR_EEPROM;
496 }
497 }
498
499 if (status == 0) {
500 ixgbe_standby_eeprom(hw);
501
502 /* Send the WRITE ENABLE command (8 bit opcode ) */
503 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
504 IXGBE_EEPROM_OPCODE_BITS);
505
506 ixgbe_standby_eeprom(hw);
507
508 /*
509 * Some SPI eeproms use the 8th address bit embedded in the
510 * opcode
511 */
512 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
513 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
514
515 /* Send the Write command (8-bit opcode + addr) */
516 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
517 IXGBE_EEPROM_OPCODE_BITS);
518 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
519 hw->eeprom.address_bits);
520
521 /* Send the data */
522 data = (data >> 8) | (data << 8);
523 ixgbe_shift_out_eeprom_bits(hw, data, 16);
524 ixgbe_standby_eeprom(hw);
525
526 msleep(hw->eeprom.semaphore_delay);
527 /* Done with writing - release the EEPROM */
528 ixgbe_release_eeprom(hw);
529 }
530
531out:
532 return status;
533}
534
9a799d71 535/**
c44ade9e
JB
536 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
537 * @hw: pointer to hardware structure
538 * @offset: offset within the EEPROM to be read
539 * @data: read 16 bit value from EEPROM
540 *
541 * Reads 16 bit value from EEPROM through bit-bang method
542 **/
543s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
544 u16 *data)
545{
546 s32 status;
547 u16 word_in;
548 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
549
550 hw->eeprom.ops.init_params(hw);
551
552 if (offset >= hw->eeprom.word_size) {
553 status = IXGBE_ERR_EEPROM;
554 goto out;
555 }
556
557 /* Prepare the EEPROM for reading */
558 status = ixgbe_acquire_eeprom(hw);
559
560 if (status == 0) {
561 if (ixgbe_ready_eeprom(hw) != 0) {
562 ixgbe_release_eeprom(hw);
563 status = IXGBE_ERR_EEPROM;
564 }
565 }
566
567 if (status == 0) {
568 ixgbe_standby_eeprom(hw);
569
570 /*
571 * Some SPI eeproms use the 8th address bit embedded in the
572 * opcode
573 */
574 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
575 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
576
577 /* Send the READ command (opcode + addr) */
578 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
579 IXGBE_EEPROM_OPCODE_BITS);
580 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
581 hw->eeprom.address_bits);
582
583 /* Read the data. */
584 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
585 *data = (word_in >> 8) | (word_in << 8);
586
587 /* End this read operation */
588 ixgbe_release_eeprom(hw);
589 }
590
591out:
592 return status;
593}
594
595/**
21ce849b 596 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
9a799d71
AK
597 * @hw: pointer to hardware structure
598 * @offset: offset of word in the EEPROM to read
599 * @data: word read from the EEPROM
600 *
601 * Reads a 16 bit word from the EEPROM using the EERD register.
602 **/
21ce849b 603s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
9a799d71
AK
604{
605 u32 eerd;
606 s32 status;
607
c44ade9e
JB
608 hw->eeprom.ops.init_params(hw);
609
610 if (offset >= hw->eeprom.word_size) {
611 status = IXGBE_ERR_EEPROM;
612 goto out;
613 }
614
21ce849b
MC
615 eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) +
616 IXGBE_EEPROM_RW_REG_START;
9a799d71
AK
617
618 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
21ce849b 619 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
9a799d71
AK
620
621 if (status == 0)
622 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
21ce849b 623 IXGBE_EEPROM_RW_REG_DATA);
9a799d71
AK
624 else
625 hw_dbg(hw, "Eeprom read timed out\n");
626
c44ade9e 627out:
9a799d71
AK
628 return status;
629}
630
631/**
21ce849b 632 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
9a799d71 633 * @hw: pointer to hardware structure
21ce849b 634 * @ee_reg: EEPROM flag for polling
9a799d71 635 *
21ce849b
MC
636 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
637 * read or write is done respectively.
9a799d71 638 **/
a391f1d5 639s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
9a799d71
AK
640{
641 u32 i;
642 u32 reg;
643 s32 status = IXGBE_ERR_EEPROM;
644
21ce849b
MC
645 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
646 if (ee_reg == IXGBE_NVM_POLL_READ)
647 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
648 else
649 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
650
651 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
9a799d71
AK
652 status = 0;
653 break;
654 }
655 udelay(5);
656 }
657 return status;
658}
659
c44ade9e
JB
660/**
661 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
662 * @hw: pointer to hardware structure
663 *
664 * Prepares EEPROM for access using bit-bang method. This function should
665 * be called before issuing a command to the EEPROM.
666 **/
667static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
668{
669 s32 status = 0;
fc1f2095 670 u32 eec = 0;
c44ade9e
JB
671 u32 i;
672
673 if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
674 status = IXGBE_ERR_SWFW_SYNC;
675
676 if (status == 0) {
677 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
678
679 /* Request EEPROM Access */
680 eec |= IXGBE_EEC_REQ;
681 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
682
683 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
684 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
685 if (eec & IXGBE_EEC_GNT)
686 break;
687 udelay(5);
688 }
689
690 /* Release if grant not acquired */
691 if (!(eec & IXGBE_EEC_GNT)) {
692 eec &= ~IXGBE_EEC_REQ;
693 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
694 hw_dbg(hw, "Could not acquire EEPROM grant\n");
695
696 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
697 status = IXGBE_ERR_EEPROM;
698 }
699 }
700
701 /* Setup EEPROM for Read/Write */
702 if (status == 0) {
703 /* Clear CS and SK */
704 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
705 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
706 IXGBE_WRITE_FLUSH(hw);
707 udelay(1);
708 }
709 return status;
710}
711
9a799d71
AK
712/**
713 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
714 * @hw: pointer to hardware structure
715 *
716 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
717 **/
718static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
719{
720 s32 status = IXGBE_ERR_EEPROM;
721 u32 timeout;
722 u32 i;
723 u32 swsm;
724
725 /* Set timeout value based on size of EEPROM */
726 timeout = hw->eeprom.word_size + 1;
727
728 /* Get SMBI software semaphore between device drivers first */
729 for (i = 0; i < timeout; i++) {
730 /*
731 * If the SMBI bit is 0 when we read it, then the bit will be
732 * set and we have the semaphore
733 */
734 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
735 if (!(swsm & IXGBE_SWSM_SMBI)) {
736 status = 0;
737 break;
738 }
739 msleep(1);
740 }
741
742 /* Now get the semaphore between SW/FW through the SWESMBI bit */
743 if (status == 0) {
744 for (i = 0; i < timeout; i++) {
745 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
746
747 /* Set the SW EEPROM semaphore bit to request access */
748 swsm |= IXGBE_SWSM_SWESMBI;
749 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
750
751 /*
752 * If we set the bit successfully then we got the
753 * semaphore.
754 */
755 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
756 if (swsm & IXGBE_SWSM_SWESMBI)
757 break;
758
759 udelay(50);
760 }
761
762 /*
763 * Release semaphores and return error if SW EEPROM semaphore
764 * was not granted because we don't have access to the EEPROM
765 */
766 if (i >= timeout) {
767 hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
b4617240 768 "not granted.\n");
9a799d71
AK
769 ixgbe_release_eeprom_semaphore(hw);
770 status = IXGBE_ERR_EEPROM;
771 }
772 }
773
774 return status;
775}
776
777/**
778 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
779 * @hw: pointer to hardware structure
780 *
781 * This function clears hardware semaphore bits.
782 **/
783static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
784{
785 u32 swsm;
786
787 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
788
789 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
790 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
791 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
3957d63d 792 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
793}
794
c44ade9e
JB
795/**
796 * ixgbe_ready_eeprom - Polls for EEPROM ready
797 * @hw: pointer to hardware structure
798 **/
799static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
800{
801 s32 status = 0;
802 u16 i;
803 u8 spi_stat_reg;
804
805 /*
806 * Read "Status Register" repeatedly until the LSB is cleared. The
807 * EEPROM will signal that the command has been completed by clearing
808 * bit 0 of the internal status register. If it's not cleared within
809 * 5 milliseconds, then error out.
810 */
811 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
812 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
813 IXGBE_EEPROM_OPCODE_BITS);
814 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
815 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
816 break;
817
818 udelay(5);
819 ixgbe_standby_eeprom(hw);
820 };
821
822 /*
823 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
824 * devices (and only 0-5mSec on 5V devices)
825 */
826 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
827 hw_dbg(hw, "SPI EEPROM Status error\n");
828 status = IXGBE_ERR_EEPROM;
829 }
830
831 return status;
832}
833
834/**
835 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
836 * @hw: pointer to hardware structure
837 **/
838static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
839{
840 u32 eec;
841
842 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
843
844 /* Toggle CS to flush commands */
845 eec |= IXGBE_EEC_CS;
846 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
847 IXGBE_WRITE_FLUSH(hw);
848 udelay(1);
849 eec &= ~IXGBE_EEC_CS;
850 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
851 IXGBE_WRITE_FLUSH(hw);
852 udelay(1);
853}
854
855/**
856 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
857 * @hw: pointer to hardware structure
858 * @data: data to send to the EEPROM
859 * @count: number of bits to shift out
860 **/
861static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
862 u16 count)
863{
864 u32 eec;
865 u32 mask;
866 u32 i;
867
868 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
869
870 /*
871 * Mask is used to shift "count" bits of "data" out to the EEPROM
872 * one bit at a time. Determine the starting bit based on count
873 */
874 mask = 0x01 << (count - 1);
875
876 for (i = 0; i < count; i++) {
877 /*
878 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
879 * "1", and then raising and then lowering the clock (the SK
880 * bit controls the clock input to the EEPROM). A "0" is
881 * shifted out to the EEPROM by setting "DI" to "0" and then
882 * raising and then lowering the clock.
883 */
884 if (data & mask)
885 eec |= IXGBE_EEC_DI;
886 else
887 eec &= ~IXGBE_EEC_DI;
888
889 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
890 IXGBE_WRITE_FLUSH(hw);
891
892 udelay(1);
893
894 ixgbe_raise_eeprom_clk(hw, &eec);
895 ixgbe_lower_eeprom_clk(hw, &eec);
896
897 /*
898 * Shift mask to signify next bit of data to shift in to the
899 * EEPROM
900 */
901 mask = mask >> 1;
902 };
903
904 /* We leave the "DI" bit set to "0" when we leave this routine. */
905 eec &= ~IXGBE_EEC_DI;
906 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
907 IXGBE_WRITE_FLUSH(hw);
908}
909
910/**
911 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
912 * @hw: pointer to hardware structure
913 **/
914static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
915{
916 u32 eec;
917 u32 i;
918 u16 data = 0;
919
920 /*
921 * In order to read a register from the EEPROM, we need to shift
922 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
923 * the clock input to the EEPROM (setting the SK bit), and then reading
924 * the value of the "DO" bit. During this "shifting in" process the
925 * "DI" bit should always be clear.
926 */
927 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
928
929 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
930
931 for (i = 0; i < count; i++) {
932 data = data << 1;
933 ixgbe_raise_eeprom_clk(hw, &eec);
934
935 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
936
937 eec &= ~(IXGBE_EEC_DI);
938 if (eec & IXGBE_EEC_DO)
939 data |= 1;
940
941 ixgbe_lower_eeprom_clk(hw, &eec);
942 }
943
944 return data;
945}
946
947/**
948 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
949 * @hw: pointer to hardware structure
950 * @eec: EEC register's current value
951 **/
952static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
953{
954 /*
955 * Raise the clock input to the EEPROM
956 * (setting the SK bit), then delay
957 */
958 *eec = *eec | IXGBE_EEC_SK;
959 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
960 IXGBE_WRITE_FLUSH(hw);
961 udelay(1);
962}
963
964/**
965 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
966 * @hw: pointer to hardware structure
967 * @eecd: EECD's current value
968 **/
969static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
970{
971 /*
972 * Lower the clock input to the EEPROM (clearing the SK bit), then
973 * delay
974 */
975 *eec = *eec & ~IXGBE_EEC_SK;
976 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
977 IXGBE_WRITE_FLUSH(hw);
978 udelay(1);
979}
980
981/**
982 * ixgbe_release_eeprom - Release EEPROM, release semaphores
983 * @hw: pointer to hardware structure
984 **/
985static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
986{
987 u32 eec;
988
989 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
990
991 eec |= IXGBE_EEC_CS; /* Pull CS high */
992 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
993
994 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
995 IXGBE_WRITE_FLUSH(hw);
996
997 udelay(1);
998
999 /* Stop requesting EEPROM access */
1000 eec &= ~IXGBE_EEC_REQ;
1001 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1002
1003 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1004}
1005
9a799d71
AK
1006/**
1007 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
1008 * @hw: pointer to hardware structure
1009 **/
a391f1d5 1010u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
9a799d71
AK
1011{
1012 u16 i;
1013 u16 j;
1014 u16 checksum = 0;
1015 u16 length = 0;
1016 u16 pointer = 0;
1017 u16 word = 0;
1018
1019 /* Include 0x0-0x3F in the checksum */
1020 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
c44ade9e 1021 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
9a799d71
AK
1022 hw_dbg(hw, "EEPROM read failed\n");
1023 break;
1024 }
1025 checksum += word;
1026 }
1027
1028 /* Include all data from pointers except for the fw pointer */
1029 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
c44ade9e 1030 hw->eeprom.ops.read(hw, i, &pointer);
9a799d71
AK
1031
1032 /* Make sure the pointer seems valid */
1033 if (pointer != 0xFFFF && pointer != 0) {
c44ade9e 1034 hw->eeprom.ops.read(hw, pointer, &length);
9a799d71
AK
1035
1036 if (length != 0xFFFF && length != 0) {
1037 for (j = pointer+1; j <= pointer+length; j++) {
c44ade9e 1038 hw->eeprom.ops.read(hw, j, &word);
9a799d71
AK
1039 checksum += word;
1040 }
1041 }
1042 }
1043 }
1044
1045 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1046
1047 return checksum;
1048}
1049
1050/**
c44ade9e 1051 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
9a799d71
AK
1052 * @hw: pointer to hardware structure
1053 * @checksum_val: calculated checksum
1054 *
1055 * Performs checksum calculation and validates the EEPROM checksum. If the
1056 * caller does not need checksum_val, the value can be NULL.
1057 **/
c44ade9e
JB
1058s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1059 u16 *checksum_val)
9a799d71
AK
1060{
1061 s32 status;
1062 u16 checksum;
1063 u16 read_checksum = 0;
1064
1065 /*
1066 * Read the first word from the EEPROM. If this times out or fails, do
1067 * not continue or we could be in for a very long wait while every
1068 * EEPROM read fails
1069 */
c44ade9e 1070 status = hw->eeprom.ops.read(hw, 0, &checksum);
9a799d71
AK
1071
1072 if (status == 0) {
a391f1d5 1073 checksum = hw->eeprom.ops.calc_checksum(hw);
9a799d71 1074
c44ade9e 1075 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
9a799d71
AK
1076
1077 /*
1078 * Verify read checksum from EEPROM is the same as
1079 * calculated checksum
1080 */
1081 if (read_checksum != checksum)
1082 status = IXGBE_ERR_EEPROM_CHECKSUM;
1083
1084 /* If the user cares, return the calculated checksum */
1085 if (checksum_val)
1086 *checksum_val = checksum;
1087 } else {
1088 hw_dbg(hw, "EEPROM read failed\n");
1089 }
1090
1091 return status;
1092}
1093
c44ade9e
JB
1094/**
1095 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1096 * @hw: pointer to hardware structure
1097 **/
1098s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1099{
1100 s32 status;
1101 u16 checksum;
1102
1103 /*
1104 * Read the first word from the EEPROM. If this times out or fails, do
1105 * not continue or we could be in for a very long wait while every
1106 * EEPROM read fails
1107 */
1108 status = hw->eeprom.ops.read(hw, 0, &checksum);
1109
1110 if (status == 0) {
a391f1d5 1111 checksum = hw->eeprom.ops.calc_checksum(hw);
c44ade9e
JB
1112 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1113 checksum);
1114 } else {
1115 hw_dbg(hw, "EEPROM read failed\n");
1116 }
1117
1118 return status;
1119}
1120
9a799d71
AK
1121/**
1122 * ixgbe_validate_mac_addr - Validate MAC address
1123 * @mac_addr: pointer to MAC address.
1124 *
1125 * Tests a MAC address to ensure it is a valid Individual Address
1126 **/
1127s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1128{
1129 s32 status = 0;
1130
1131 /* Make sure it is not a multicast address */
1132 if (IXGBE_IS_MULTICAST(mac_addr))
1133 status = IXGBE_ERR_INVALID_MAC_ADDR;
1134 /* Not a broadcast address */
1135 else if (IXGBE_IS_BROADCAST(mac_addr))
1136 status = IXGBE_ERR_INVALID_MAC_ADDR;
1137 /* Reject the zero address */
1138 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
c44ade9e 1139 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
9a799d71
AK
1140 status = IXGBE_ERR_INVALID_MAC_ADDR;
1141
1142 return status;
1143}
1144
1145/**
c44ade9e 1146 * ixgbe_set_rar_generic - Set Rx address register
9a799d71 1147 * @hw: pointer to hardware structure
9a799d71 1148 * @index: Receive address register to write
c44ade9e
JB
1149 * @addr: Address to put into receive address register
1150 * @vmdq: VMDq "set" or "pool" index
9a799d71
AK
1151 * @enable_addr: set flag that address is active
1152 *
1153 * Puts an ethernet address into a receive address register.
1154 **/
c44ade9e
JB
1155s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1156 u32 enable_addr)
9a799d71
AK
1157{
1158 u32 rar_low, rar_high;
c44ade9e
JB
1159 u32 rar_entries = hw->mac.num_rar_entries;
1160
1161 /* setup VMDq pool selection before this RAR gets enabled */
1162 hw->mac.ops.set_vmdq(hw, index, vmdq);
9a799d71 1163
c44ade9e
JB
1164 /* Make sure we are using a valid rar index range */
1165 if (index < rar_entries) {
b4617240 1166 /*
c44ade9e
JB
1167 * HW expects these in little endian so we reverse the byte
1168 * order from network order (big endian) to little endian
b4617240
PW
1169 */
1170 rar_low = ((u32)addr[0] |
1171 ((u32)addr[1] << 8) |
1172 ((u32)addr[2] << 16) |
1173 ((u32)addr[3] << 24));
c44ade9e
JB
1174 /*
1175 * Some parts put the VMDq setting in the extra RAH bits,
1176 * so save everything except the lower 16 bits that hold part
1177 * of the address and the address valid bit.
1178 */
1179 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1180 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1181 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
9a799d71 1182
b4617240
PW
1183 if (enable_addr != 0)
1184 rar_high |= IXGBE_RAH_AV;
9a799d71 1185
b4617240
PW
1186 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1187 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
c44ade9e
JB
1188 } else {
1189 hw_dbg(hw, "RAR index %d is out of range.\n", index);
a1868dc2 1190 return IXGBE_ERR_RAR_INDEX;
c44ade9e
JB
1191 }
1192
1193 return 0;
1194}
1195
1196/**
1197 * ixgbe_clear_rar_generic - Remove Rx address register
1198 * @hw: pointer to hardware structure
1199 * @index: Receive address register to write
1200 *
1201 * Clears an ethernet address from a receive address register.
1202 **/
1203s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1204{
1205 u32 rar_high;
1206 u32 rar_entries = hw->mac.num_rar_entries;
1207
1208 /* Make sure we are using a valid rar index range */
1209 if (index < rar_entries) {
1210 /*
1211 * Some parts put the VMDq setting in the extra RAH bits,
1212 * so save everything except the lower 16 bits that hold part
1213 * of the address and the address valid bit.
1214 */
1215 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1216 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1217
1218 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1219 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1220 } else {
1221 hw_dbg(hw, "RAR index %d is out of range.\n", index);
a1868dc2 1222 return IXGBE_ERR_RAR_INDEX;
c44ade9e
JB
1223 }
1224
1225 /* clear VMDq pool/queue selection for this RAR */
1226 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
9a799d71
AK
1227
1228 return 0;
1229}
1230
1231/**
c44ade9e
JB
1232 * ixgbe_enable_rar - Enable Rx address register
1233 * @hw: pointer to hardware structure
1234 * @index: index into the RAR table
1235 *
1236 * Enables the select receive address register.
1237 **/
1238static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
1239{
1240 u32 rar_high;
1241
1242 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1243 rar_high |= IXGBE_RAH_AV;
1244 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1245}
1246
1247/**
1248 * ixgbe_disable_rar - Disable Rx address register
1249 * @hw: pointer to hardware structure
1250 * @index: index into the RAR table
1251 *
1252 * Disables the select receive address register.
1253 **/
1254static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
1255{
1256 u32 rar_high;
1257
1258 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1259 rar_high &= (~IXGBE_RAH_AV);
1260 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1261}
1262
1263/**
1264 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
9a799d71
AK
1265 * @hw: pointer to hardware structure
1266 *
1267 * Places the MAC address in receive address register 0 and clears the rest
c44ade9e 1268 * of the receive address registers. Clears the multicast table. Assumes
9a799d71
AK
1269 * the receiver is in reset when the routine is called.
1270 **/
c44ade9e 1271s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
1272{
1273 u32 i;
2c5645cf 1274 u32 rar_entries = hw->mac.num_rar_entries;
9a799d71
AK
1275
1276 /*
1277 * If the current mac address is valid, assume it is a software override
1278 * to the permanent address.
1279 * Otherwise, use the permanent address from the eeprom.
1280 */
1281 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1282 IXGBE_ERR_INVALID_MAC_ADDR) {
1283 /* Get the MAC address from the RAR0 for later reference */
c44ade9e 1284 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
9a799d71 1285
ce7194d8 1286 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
9a799d71
AK
1287 } else {
1288 /* Setup the receive address. */
1289 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
ce7194d8 1290 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
9a799d71 1291
c44ade9e 1292 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
9a799d71 1293 }
c44ade9e 1294 hw->addr_ctrl.overflow_promisc = 0;
9a799d71
AK
1295
1296 hw->addr_ctrl.rar_used_count = 1;
1297
1298 /* Zero out the other receive addresses. */
c44ade9e 1299 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
9a799d71
AK
1300 for (i = 1; i < rar_entries; i++) {
1301 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1302 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1303 }
1304
1305 /* Clear the MTA */
1306 hw->addr_ctrl.mc_addr_in_rar_count = 0;
1307 hw->addr_ctrl.mta_in_use = 0;
1308 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1309
1310 hw_dbg(hw, " Clearing MTA\n");
2c5645cf 1311 for (i = 0; i < hw->mac.mcft_size; i++)
9a799d71
AK
1312 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1313
c44ade9e
JB
1314 if (hw->mac.ops.init_uta_tables)
1315 hw->mac.ops.init_uta_tables(hw);
1316
9a799d71
AK
1317 return 0;
1318}
1319
2c5645cf
CL
1320/**
1321 * ixgbe_add_uc_addr - Adds a secondary unicast address.
1322 * @hw: pointer to hardware structure
1323 * @addr: new address
1324 *
1325 * Adds it to unused receive address register or goes into promiscuous mode.
1326 **/
c44ade9e 1327static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2c5645cf
CL
1328{
1329 u32 rar_entries = hw->mac.num_rar_entries;
1330 u32 rar;
1331
1332 hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1333 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1334
1335 /*
1336 * Place this address in the RAR if there is room,
1337 * else put the controller into promiscuous mode
1338 */
1339 if (hw->addr_ctrl.rar_used_count < rar_entries) {
1340 rar = hw->addr_ctrl.rar_used_count -
1341 hw->addr_ctrl.mc_addr_in_rar_count;
c44ade9e 1342 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2c5645cf
CL
1343 hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
1344 hw->addr_ctrl.rar_used_count++;
1345 } else {
1346 hw->addr_ctrl.overflow_promisc++;
1347 }
1348
1349 hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
1350}
1351
1352/**
c44ade9e 1353 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2c5645cf 1354 * @hw: pointer to hardware structure
32e7bfc4 1355 * @netdev: pointer to net device structure
2c5645cf
CL
1356 *
1357 * The given list replaces any existing list. Clears the secondary addrs from
1358 * receive address registers. Uses unused receive address registers for the
1359 * first secondary addresses, and falls back to promiscuous mode as needed.
1360 *
1361 * Drivers using secondary unicast addresses must set user_set_promisc when
1362 * manually putting the device into promiscuous mode.
1363 **/
ccffad25 1364s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw,
32e7bfc4 1365 struct net_device *netdev)
2c5645cf 1366{
2c5645cf
CL
1367 u32 i;
1368 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
1369 u32 uc_addr_in_use;
1370 u32 fctrl;
ccffad25 1371 struct netdev_hw_addr *ha;
2c5645cf
CL
1372
1373 /*
1374 * Clear accounting of old secondary address list,
1375 * don't count RAR[0]
1376 */
495dce12 1377 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2c5645cf
CL
1378 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
1379 hw->addr_ctrl.overflow_promisc = 0;
1380
1381 /* Zero out the other receive addresses */
91152c32
SN
1382 hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use + 1);
1383 for (i = 0; i < uc_addr_in_use; i++) {
1384 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
1385 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2c5645cf
CL
1386 }
1387
1388 /* Add the new addresses */
32e7bfc4 1389 netdev_for_each_uc_addr(ha, netdev) {
2c5645cf 1390 hw_dbg(hw, " Adding the secondary addresses:\n");
ccffad25 1391 ixgbe_add_uc_addr(hw, ha->addr, 0);
2c5645cf
CL
1392 }
1393
1394 if (hw->addr_ctrl.overflow_promisc) {
1395 /* enable promisc if not already in overflow or set by user */
1396 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1397 hw_dbg(hw, " Entering address overflow promisc mode\n");
1398 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1399 fctrl |= IXGBE_FCTRL_UPE;
1400 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
e433ea1f 1401 hw->addr_ctrl.uc_set_promisc = true;
2c5645cf
CL
1402 }
1403 } else {
1404 /* only disable if set by overflow, not by user */
e433ea1f
ET
1405 if ((old_promisc_setting && hw->addr_ctrl.uc_set_promisc) &&
1406 !(hw->addr_ctrl.user_set_promisc)) {
2c5645cf
CL
1407 hw_dbg(hw, " Leaving address overflow promisc mode\n");
1408 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1409 fctrl &= ~IXGBE_FCTRL_UPE;
1410 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
e433ea1f 1411 hw->addr_ctrl.uc_set_promisc = false;
2c5645cf
CL
1412 }
1413 }
1414
c44ade9e 1415 hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
2c5645cf
CL
1416 return 0;
1417}
1418
9a799d71
AK
1419/**
1420 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1421 * @hw: pointer to hardware structure
1422 * @mc_addr: the multicast address
1423 *
1424 * Extracts the 12 bits, from a multicast address, to determine which
1425 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1426 * incoming rx multicast addresses, to determine the bit-vector to check in
1427 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
c44ade9e 1428 * by the MO field of the MCSTCTRL. The MO field is set during initialization
9a799d71
AK
1429 * to mc_filter_type.
1430 **/
1431static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1432{
1433 u32 vector = 0;
1434
1435 switch (hw->mac.mc_filter_type) {
b4617240 1436 case 0: /* use bits [47:36] of the address */
9a799d71
AK
1437 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1438 break;
b4617240 1439 case 1: /* use bits [46:35] of the address */
9a799d71
AK
1440 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1441 break;
b4617240 1442 case 2: /* use bits [45:34] of the address */
9a799d71
AK
1443 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1444 break;
b4617240 1445 case 3: /* use bits [43:32] of the address */
9a799d71
AK
1446 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1447 break;
b4617240 1448 default: /* Invalid mc_filter_type */
9a799d71
AK
1449 hw_dbg(hw, "MC filter type param set incorrectly\n");
1450 break;
1451 }
1452
1453 /* vector can only be 12-bits or boundary will be exceeded */
1454 vector &= 0xFFF;
1455 return vector;
1456}
1457
1458/**
1459 * ixgbe_set_mta - Set bit-vector in multicast table
1460 * @hw: pointer to hardware structure
1461 * @hash_value: Multicast address hash value
1462 *
1463 * Sets the bit-vector in the multicast table.
1464 **/
1465static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1466{
1467 u32 vector;
1468 u32 vector_bit;
1469 u32 vector_reg;
1470 u32 mta_reg;
1471
1472 hw->addr_ctrl.mta_in_use++;
1473
1474 vector = ixgbe_mta_vector(hw, mc_addr);
1475 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1476
1477 /*
1478 * The MTA is a register array of 128 32-bit registers. It is treated
1479 * like an array of 4096 bits. We want to set bit
1480 * BitArray[vector_value]. So we figure out what register the bit is
1481 * in, read it, OR in the new bit, then write back the new value. The
1482 * register is determined by the upper 7 bits of the vector value and
1483 * the bit within that register are determined by the lower 5 bits of
1484 * the value.
1485 */
1486 vector_reg = (vector >> 5) & 0x7F;
1487 vector_bit = vector & 0x1F;
1488 mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
1489 mta_reg |= (1 << vector_bit);
1490 IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
1491}
1492
9a799d71 1493/**
c44ade9e 1494 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
9a799d71 1495 * @hw: pointer to hardware structure
2853eb89 1496 * @netdev: pointer to net device structure
9a799d71
AK
1497 *
1498 * The given list replaces any existing list. Clears the MC addrs from receive
c44ade9e 1499 * address registers and the multicast table. Uses unused receive address
9a799d71
AK
1500 * registers for the first multicast addresses, and hashes the rest into the
1501 * multicast table.
1502 **/
2853eb89
JP
1503s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1504 struct net_device *netdev)
9a799d71 1505{
22bedad3 1506 struct netdev_hw_addr *ha;
9a799d71 1507 u32 i;
9a799d71
AK
1508
1509 /*
1510 * Set the new number of MC addresses that we are being requested to
1511 * use.
1512 */
2853eb89 1513 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
9a799d71
AK
1514 hw->addr_ctrl.mta_in_use = 0;
1515
9a799d71
AK
1516 /* Clear the MTA */
1517 hw_dbg(hw, " Clearing MTA\n");
2c5645cf 1518 for (i = 0; i < hw->mac.mcft_size; i++)
9a799d71
AK
1519 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1520
1521 /* Add the new addresses */
22bedad3 1522 netdev_for_each_mc_addr(ha, netdev) {
9a799d71 1523 hw_dbg(hw, " Adding the multicast addresses:\n");
22bedad3 1524 ixgbe_set_mta(hw, ha->addr);
9a799d71
AK
1525 }
1526
1527 /* Enable mta */
1528 if (hw->addr_ctrl.mta_in_use > 0)
1529 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
b4617240 1530 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
9a799d71 1531
c44ade9e 1532 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
9a799d71
AK
1533 return 0;
1534}
1535
1536/**
c44ade9e 1537 * ixgbe_enable_mc_generic - Enable multicast address in RAR
9a799d71
AK
1538 * @hw: pointer to hardware structure
1539 *
c44ade9e 1540 * Enables multicast address in RAR and the use of the multicast hash table.
9a799d71 1541 **/
c44ade9e 1542s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
9a799d71 1543{
c44ade9e
JB
1544 u32 i;
1545 u32 rar_entries = hw->mac.num_rar_entries;
1546 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
9a799d71 1547
c44ade9e
JB
1548 if (a->mc_addr_in_rar_count > 0)
1549 for (i = (rar_entries - a->mc_addr_in_rar_count);
1550 i < rar_entries; i++)
1551 ixgbe_enable_rar(hw, i);
9a799d71 1552
c44ade9e
JB
1553 if (a->mta_in_use > 0)
1554 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1555 hw->mac.mc_filter_type);
9a799d71
AK
1556
1557 return 0;
1558}
1559
1560/**
c44ade9e 1561 * ixgbe_disable_mc_generic - Disable multicast address in RAR
9a799d71 1562 * @hw: pointer to hardware structure
9a799d71 1563 *
c44ade9e 1564 * Disables multicast address in RAR and the use of the multicast hash table.
9a799d71 1565 **/
c44ade9e 1566s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
9a799d71 1567{
c44ade9e
JB
1568 u32 i;
1569 u32 rar_entries = hw->mac.num_rar_entries;
1570 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2b9ade93 1571
c44ade9e
JB
1572 if (a->mc_addr_in_rar_count > 0)
1573 for (i = (rar_entries - a->mc_addr_in_rar_count);
1574 i < rar_entries; i++)
1575 ixgbe_disable_rar(hw, i);
9a799d71 1576
c44ade9e
JB
1577 if (a->mta_in_use > 0)
1578 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
9a799d71
AK
1579
1580 return 0;
1581}
1582
11afc1b1 1583/**
620fa036 1584 * ixgbe_fc_enable_generic - Enable flow control
11afc1b1
PW
1585 * @hw: pointer to hardware structure
1586 * @packetbuf_num: packet buffer number (0-7)
1587 *
1588 * Enable flow control according to the current settings.
1589 **/
620fa036 1590s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
11afc1b1
PW
1591{
1592 s32 ret_val = 0;
620fa036 1593 u32 mflcn_reg, fccfg_reg;
11afc1b1 1594 u32 reg;
70b77628 1595 u32 rx_pba_size;
16b61beb 1596 u32 fcrtl, fcrth;
70b77628
PWJ
1597
1598#ifdef CONFIG_DCB
1599 if (hw->fc.requested_mode == ixgbe_fc_pfc)
1600 goto out;
1601
1602#endif /* CONFIG_DCB */
620fa036
MC
1603 /* Negotiate the fc mode to use */
1604 ret_val = ixgbe_fc_autoneg(hw);
1605 if (ret_val)
1606 goto out;
11afc1b1 1607
620fa036 1608 /* Disable any previous flow control settings */
11afc1b1
PW
1609 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1610 mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1611
1612 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1613 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1614
1615 /*
1616 * The possible values of fc.current_mode are:
1617 * 0: Flow control is completely disabled
1618 * 1: Rx flow control is enabled (we can receive pause frames,
1619 * but not send pause frames).
bb3daa4a
PW
1620 * 2: Tx flow control is enabled (we can send pause frames but
1621 * we do not support receiving pause frames).
11afc1b1 1622 * 3: Both Rx and Tx flow control (symmetric) are enabled.
bb3daa4a 1623 * 4: Priority Flow Control is enabled.
11afc1b1
PW
1624 * other: Invalid.
1625 */
1626 switch (hw->fc.current_mode) {
1627 case ixgbe_fc_none:
620fa036
MC
1628 /*
1629 * Flow control is disabled by software override or autoneg.
1630 * The code below will actually disable it in the HW.
1631 */
11afc1b1
PW
1632 break;
1633 case ixgbe_fc_rx_pause:
1634 /*
1635 * Rx Flow control is enabled and Tx Flow control is
1636 * disabled by software override. Since there really
1637 * isn't a way to advertise that we are capable of RX
1638 * Pause ONLY, we will advertise that we support both
1639 * symmetric and asymmetric Rx PAUSE. Later, we will
1640 * disable the adapter's ability to send PAUSE frames.
1641 */
1642 mflcn_reg |= IXGBE_MFLCN_RFCE;
1643 break;
1644 case ixgbe_fc_tx_pause:
1645 /*
1646 * Tx Flow control is enabled, and Rx Flow control is
1647 * disabled by software override.
1648 */
1649 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1650 break;
1651 case ixgbe_fc_full:
1652 /* Flow control (both Rx and Tx) is enabled by SW override. */
1653 mflcn_reg |= IXGBE_MFLCN_RFCE;
1654 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1655 break;
bb3daa4a
PW
1656#ifdef CONFIG_DCB
1657 case ixgbe_fc_pfc:
1658 goto out;
1659 break;
620fa036 1660#endif /* CONFIG_DCB */
11afc1b1
PW
1661 default:
1662 hw_dbg(hw, "Flow control param set incorrectly\n");
539e5f02 1663 ret_val = IXGBE_ERR_CONFIG;
11afc1b1
PW
1664 goto out;
1665 break;
1666 }
1667
620fa036 1668 /* Set 802.3x based flow control settings. */
2132d381 1669 mflcn_reg |= IXGBE_MFLCN_DPF;
11afc1b1
PW
1670 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
1671 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
1672
16b61beb
JF
1673 rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
1674 rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT;
620fa036 1675
16b61beb
JF
1676 fcrth = (rx_pba_size - hw->fc.high_water) << 10;
1677 fcrtl = (rx_pba_size - hw->fc.low_water) << 10;
264857b8 1678
16b61beb
JF
1679 if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
1680 fcrth |= IXGBE_FCRTH_FCEN;
1681 if (hw->fc.send_xon)
1682 fcrtl |= IXGBE_FCRTL_XONE;
11afc1b1
PW
1683 }
1684
16b61beb
JF
1685 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
1686 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
1687
11afc1b1 1688 /* Configure pause time (2 TCs per register) */
70b77628 1689 reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
11afc1b1
PW
1690 if ((packetbuf_num & 1) == 0)
1691 reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
1692 else
1693 reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
1694 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
1695
1696 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1697
1698out:
1699 return ret_val;
1700}
1701
0ecc061d
PWJ
1702/**
1703 * ixgbe_fc_autoneg - Configure flow control
1704 * @hw: pointer to hardware structure
1705 *
620fa036
MC
1706 * Compares our advertised flow control capabilities to those advertised by
1707 * our link partner, and determines the proper flow control mode to use.
0ecc061d
PWJ
1708 **/
1709s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
1710{
1711 s32 ret_val = 0;
620fa036
MC
1712 ixgbe_link_speed speed;
1713 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
539e5f02 1714 u32 links2, anlp1_reg, autoc_reg, links;
620fa036 1715 bool link_up;
0ecc061d
PWJ
1716
1717 /*
620fa036
MC
1718 * AN should have completed when the cable was plugged in.
1719 * Look for reasons to bail out. Bail out if:
1720 * - FC autoneg is disabled, or if
539e5f02 1721 * - link is not up.
620fa036 1722 *
539e5f02 1723 * Since we're being called from an LSC, link is already known to be up.
620fa036 1724 * So use link_up_wait_to_complete=false.
0ecc061d 1725 */
620fa036 1726 hw->mac.ops.check_link(hw, &speed, &link_up, false);
539e5f02
PWJ
1727
1728 if (hw->fc.disable_fc_autoneg || (!link_up)) {
620fa036
MC
1729 hw->fc.fc_was_autonegged = false;
1730 hw->fc.current_mode = hw->fc.requested_mode;
0ecc061d
PWJ
1731 goto out;
1732 }
1733
539e5f02
PWJ
1734 /*
1735 * On backplane, bail out if
1736 * - backplane autoneg was not completed, or if
000c486d 1737 * - we are 82599 and link partner is not AN enabled
539e5f02
PWJ
1738 */
1739 if (hw->phy.media_type == ixgbe_media_type_backplane) {
1740 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
000c486d 1741 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
539e5f02
PWJ
1742 hw->fc.fc_was_autonegged = false;
1743 hw->fc.current_mode = hw->fc.requested_mode;
1744 goto out;
1745 }
000c486d
DS
1746
1747 if (hw->mac.type == ixgbe_mac_82599EB) {
1748 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
1749 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
1750 hw->fc.fc_was_autonegged = false;
1751 hw->fc.current_mode = hw->fc.requested_mode;
1752 goto out;
1753 }
1754 }
539e5f02
PWJ
1755 }
1756
1757 /*
1758 * On multispeed fiber at 1g, bail out if
1759 * - link is up but AN did not complete, or if
1760 * - link is up and AN completed but timed out
1761 */
1762 if (hw->phy.multispeed_fiber && (speed == IXGBE_LINK_SPEED_1GB_FULL)) {
1763 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
1764 if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
1765 ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
1766 hw->fc.fc_was_autonegged = false;
1767 hw->fc.current_mode = hw->fc.requested_mode;
1768 goto out;
1769 }
1770 }
1771
9bbe3a57
PW
1772 /*
1773 * Bail out on
1774 * - copper or CX4 adapters
1775 * - fiber adapters running at 10gig
1776 */
1777 if ((hw->phy.media_type == ixgbe_media_type_copper) ||
1778 (hw->phy.media_type == ixgbe_media_type_cx4) ||
1779 ((hw->phy.media_type == ixgbe_media_type_fiber) &&
1780 (speed == IXGBE_LINK_SPEED_10GB_FULL))) {
1781 hw->fc.fc_was_autonegged = false;
1782 hw->fc.current_mode = hw->fc.requested_mode;
1783 goto out;
1784 }
1785
0ecc061d
PWJ
1786 /*
1787 * Read the AN advertisement and LP ability registers and resolve
1788 * local flow control settings accordingly
1789 */
539e5f02
PWJ
1790 if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
1791 (hw->phy.media_type != ixgbe_media_type_backplane)) {
1792 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1793 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
1794 if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1795 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE)) {
1796 /*
1797 * Now we need to check if the user selected Rx ONLY
1798 * of pause frames. In this case, we had to advertise
1799 * FULL flow control because we could not advertise RX
1800 * ONLY. Hence, we must now check to see if we need to
1801 * turn OFF the TRANSMISSION of PAUSE frames.
1802 */
1803 if (hw->fc.requested_mode == ixgbe_fc_full) {
1804 hw->fc.current_mode = ixgbe_fc_full;
1805 hw_dbg(hw, "Flow Control = FULL.\n");
1806 } else {
1807 hw->fc.current_mode = ixgbe_fc_rx_pause;
1808 hw_dbg(hw, "Flow Control=RX PAUSE only\n");
1809 }
1810 } else if (!(pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1811 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1812 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1813 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1814 hw->fc.current_mode = ixgbe_fc_tx_pause;
1815 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1816 } else if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1817 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1818 !(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1819 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1820 hw->fc.current_mode = ixgbe_fc_rx_pause;
1821 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1822 } else {
1823 hw->fc.current_mode = ixgbe_fc_none;
1824 hw_dbg(hw, "Flow Control = NONE.\n");
1825 }
1826 }
1827
1828 if (hw->phy.media_type == ixgbe_media_type_backplane) {
0ecc061d 1829 /*
539e5f02
PWJ
1830 * Read the 10g AN autoc and LP ability registers and resolve
1831 * local flow control settings accordingly
0ecc061d 1832 */
539e5f02
PWJ
1833 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
1834 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
1835
1836 if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1837 (anlp1_reg & IXGBE_ANLP1_SYM_PAUSE)) {
1838 /*
1839 * Now we need to check if the user selected Rx ONLY
1840 * of pause frames. In this case, we had to advertise
1841 * FULL flow control because we could not advertise RX
1842 * ONLY. Hence, we must now check to see if we need to
1843 * turn OFF the TRANSMISSION of PAUSE frames.
1844 */
1845 if (hw->fc.requested_mode == ixgbe_fc_full) {
1846 hw->fc.current_mode = ixgbe_fc_full;
1847 hw_dbg(hw, "Flow Control = FULL.\n");
1848 } else {
1849 hw->fc.current_mode = ixgbe_fc_rx_pause;
1850 hw_dbg(hw, "Flow Control=RX PAUSE only\n");
1851 }
1852 } else if (!(autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1853 (autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
1854 (anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
1855 (anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
1856 hw->fc.current_mode = ixgbe_fc_tx_pause;
1857 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1858 } else if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
1859 (autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
1860 !(anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
1861 (anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
0ecc061d
PWJ
1862 hw->fc.current_mode = ixgbe_fc_rx_pause;
1863 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
539e5f02
PWJ
1864 } else {
1865 hw->fc.current_mode = ixgbe_fc_none;
1866 hw_dbg(hw, "Flow Control = NONE.\n");
0ecc061d 1867 }
0ecc061d 1868 }
620fa036
MC
1869 /* Record that current_mode is the result of a successful autoneg */
1870 hw->fc.fc_was_autonegged = true;
1871
0ecc061d
PWJ
1872out:
1873 return ret_val;
1874}
1875
11afc1b1 1876/**
620fa036 1877 * ixgbe_setup_fc - Set up flow control
11afc1b1
PW
1878 * @hw: pointer to hardware structure
1879 *
620fa036 1880 * Called at init time to set up flow control.
11afc1b1 1881 **/
7b25cdba 1882static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
11afc1b1
PW
1883{
1884 s32 ret_val = 0;
620fa036 1885 u32 reg;
11afc1b1 1886
bb3daa4a
PW
1887#ifdef CONFIG_DCB
1888 if (hw->fc.requested_mode == ixgbe_fc_pfc) {
1889 hw->fc.current_mode = hw->fc.requested_mode;
1890 goto out;
1891 }
1892
1893#endif
11afc1b1
PW
1894 /* Validate the packetbuf configuration */
1895 if (packetbuf_num < 0 || packetbuf_num > 7) {
1896 hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
1897 "is 0-7\n", packetbuf_num);
1898 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1899 goto out;
1900 }
1901
1902 /*
1903 * Validate the water mark configuration. Zero water marks are invalid
1904 * because it causes the controller to just blast out fc packets.
1905 */
1906 if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
620fa036
MC
1907 hw_dbg(hw, "Invalid water mark configuration\n");
1908 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1909 goto out;
11afc1b1
PW
1910 }
1911
1912 /*
1913 * Validate the requested mode. Strict IEEE mode does not allow
620fa036 1914 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
11afc1b1
PW
1915 */
1916 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
1917 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
1918 "IEEE mode\n");
1919 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1920 goto out;
1921 }
1922
1923 /*
1924 * 10gig parts do not have a word in the EEPROM to determine the
1925 * default flow control setting, so we explicitly set it to full.
1926 */
1927 if (hw->fc.requested_mode == ixgbe_fc_default)
1928 hw->fc.requested_mode = ixgbe_fc_full;
1929
1930 /*
620fa036
MC
1931 * Set up the 1G flow control advertisement registers so the HW will be
1932 * able to do fc autoneg once the cable is plugged in. If we end up
1933 * using 10g instead, this is harmless.
11afc1b1 1934 */
620fa036 1935 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
11afc1b1 1936
620fa036
MC
1937 /*
1938 * The possible values of fc.requested_mode are:
1939 * 0: Flow control is completely disabled
1940 * 1: Rx flow control is enabled (we can receive pause frames,
1941 * but not send pause frames).
1942 * 2: Tx flow control is enabled (we can send pause frames but
1943 * we do not support receiving pause frames).
1944 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1945#ifdef CONFIG_DCB
1946 * 4: Priority Flow Control is enabled.
1947#endif
1948 * other: Invalid.
1949 */
1950 switch (hw->fc.requested_mode) {
1951 case ixgbe_fc_none:
1952 /* Flow control completely disabled by software override. */
1953 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1954 break;
1955 case ixgbe_fc_rx_pause:
1956 /*
1957 * Rx Flow control is enabled and Tx Flow control is
1958 * disabled by software override. Since there really
1959 * isn't a way to advertise that we are capable of RX
1960 * Pause ONLY, we will advertise that we support both
1961 * symmetric and asymmetric Rx PAUSE. Later, we will
1962 * disable the adapter's ability to send PAUSE frames.
1963 */
1964 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1965 break;
1966 case ixgbe_fc_tx_pause:
1967 /*
1968 * Tx Flow control is enabled, and Rx Flow control is
1969 * disabled by software override.
1970 */
1971 reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
1972 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
1973 break;
1974 case ixgbe_fc_full:
1975 /* Flow control (both Rx and Tx) is enabled by SW override. */
1976 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1977 break;
1978#ifdef CONFIG_DCB
1979 case ixgbe_fc_pfc:
11afc1b1 1980 goto out;
620fa036
MC
1981 break;
1982#endif /* CONFIG_DCB */
1983 default:
1984 hw_dbg(hw, "Flow control param set incorrectly\n");
539e5f02 1985 ret_val = IXGBE_ERR_CONFIG;
620fa036
MC
1986 goto out;
1987 break;
1988 }
1989
1990 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
1991 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
11afc1b1 1992
620fa036
MC
1993 /* Disable AN timeout */
1994 if (hw->fc.strict_ieee)
1995 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
1996
1997 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
1998 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
11afc1b1 1999
539e5f02
PWJ
2000 /*
2001 * Set up the 10G flow control advertisement registers so the HW
2002 * can do fc autoneg once the cable is plugged in. If we end up
2003 * using 1g instead, this is harmless.
2004 */
2005 reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2006
2007 /*
2008 * The possible values of fc.requested_mode are:
2009 * 0: Flow control is completely disabled
2010 * 1: Rx flow control is enabled (we can receive pause frames,
2011 * but not send pause frames).
2012 * 2: Tx flow control is enabled (we can send pause frames but
2013 * we do not support receiving pause frames).
2014 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2015 * other: Invalid.
2016 */
2017 switch (hw->fc.requested_mode) {
2018 case ixgbe_fc_none:
2019 /* Flow control completely disabled by software override. */
2020 reg &= ~(IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2021 break;
2022 case ixgbe_fc_rx_pause:
2023 /*
2024 * Rx Flow control is enabled and Tx Flow control is
2025 * disabled by software override. Since there really
2026 * isn't a way to advertise that we are capable of RX
2027 * Pause ONLY, we will advertise that we support both
2028 * symmetric and asymmetric Rx PAUSE. Later, we will
2029 * disable the adapter's ability to send PAUSE frames.
2030 */
2031 reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2032 break;
2033 case ixgbe_fc_tx_pause:
2034 /*
2035 * Tx Flow control is enabled, and Rx Flow control is
2036 * disabled by software override.
2037 */
2038 reg |= (IXGBE_AUTOC_ASM_PAUSE);
2039 reg &= ~(IXGBE_AUTOC_SYM_PAUSE);
2040 break;
2041 case ixgbe_fc_full:
2042 /* Flow control (both Rx and Tx) is enabled by SW override. */
2043 reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
2044 break;
2045#ifdef CONFIG_DCB
2046 case ixgbe_fc_pfc:
2047 goto out;
2048 break;
2049#endif /* CONFIG_DCB */
2050 default:
2051 hw_dbg(hw, "Flow control param set incorrectly\n");
2052 ret_val = IXGBE_ERR_CONFIG;
2053 goto out;
2054 break;
2055 }
2056 /*
2057 * AUTOC restart handles negotiation of 1G and 10G. There is
2058 * no need to set the PCS1GCTL register.
2059 */
2060 reg |= IXGBE_AUTOC_AN_RESTART;
2061 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg);
2062 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2063
11afc1b1
PW
2064out:
2065 return ret_val;
2066}
2067
9a799d71
AK
2068/**
2069 * ixgbe_disable_pcie_master - Disable PCI-express master access
2070 * @hw: pointer to hardware structure
2071 *
2072 * Disables PCI-Express master access and verifies there are no pending
2073 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2074 * bit hasn't caused the master requests to be disabled, else 0
2075 * is returned signifying master requests disabled.
2076 **/
2077s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2078{
c44ade9e
JB
2079 u32 i;
2080 u32 reg_val;
2081 u32 number_of_queues;
9a799d71
AK
2082 s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2083
c44ade9e
JB
2084 /* Disable the receive unit by stopping each queue */
2085 number_of_queues = hw->mac.max_rx_queues;
2086 for (i = 0; i < number_of_queues; i++) {
2087 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
2088 if (reg_val & IXGBE_RXDCTL_ENABLE) {
2089 reg_val &= ~IXGBE_RXDCTL_ENABLE;
2090 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
2091 }
2092 }
2093
2094 reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
2095 reg_val |= IXGBE_CTRL_GIO_DIS;
2096 IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
9a799d71
AK
2097
2098 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2099 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
2100 status = 0;
2101 break;
2102 }
2103 udelay(100);
2104 }
2105
2106 return status;
2107}
2108
2109
2110/**
c44ade9e 2111 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
9a799d71 2112 * @hw: pointer to hardware structure
c44ade9e 2113 * @mask: Mask to specify which semaphore to acquire
9a799d71 2114 *
c44ade9e 2115 * Acquires the SWFW semaphore thought the GSSR register for the specified
9a799d71
AK
2116 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2117 **/
2118s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2119{
2120 u32 gssr;
2121 u32 swmask = mask;
2122 u32 fwmask = mask << 5;
2123 s32 timeout = 200;
2124
2125 while (timeout) {
2126 if (ixgbe_get_eeprom_semaphore(hw))
539e5f02 2127 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2128
2129 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2130 if (!(gssr & (fwmask | swmask)))
2131 break;
2132
2133 /*
2134 * Firmware currently using resource (fwmask) or other software
2135 * thread currently using resource (swmask)
2136 */
2137 ixgbe_release_eeprom_semaphore(hw);
2138 msleep(5);
2139 timeout--;
2140 }
2141
2142 if (!timeout) {
2143 hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
539e5f02 2144 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2145 }
2146
2147 gssr |= swmask;
2148 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2149
2150 ixgbe_release_eeprom_semaphore(hw);
2151 return 0;
2152}
2153
2154/**
2155 * ixgbe_release_swfw_sync - Release SWFW semaphore
2156 * @hw: pointer to hardware structure
c44ade9e 2157 * @mask: Mask to specify which semaphore to release
9a799d71 2158 *
c44ade9e 2159 * Releases the SWFW semaphore thought the GSSR register for the specified
9a799d71
AK
2160 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2161 **/
2162void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2163{
2164 u32 gssr;
2165 u32 swmask = mask;
2166
2167 ixgbe_get_eeprom_semaphore(hw);
2168
2169 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2170 gssr &= ~swmask;
2171 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2172
2173 ixgbe_release_eeprom_semaphore(hw);
2174}
2175
11afc1b1
PW
2176/**
2177 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2178 * @hw: pointer to hardware structure
2179 * @regval: register value to write to RXCTRL
2180 *
2181 * Enables the Rx DMA unit
2182 **/
2183s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2184{
2185 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2186
2187 return 0;
2188}
87c12017
PW
2189
2190/**
2191 * ixgbe_blink_led_start_generic - Blink LED based on index.
2192 * @hw: pointer to hardware structure
2193 * @index: led number to blink
2194 **/
2195s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2196{
2197 ixgbe_link_speed speed = 0;
2198 bool link_up = 0;
2199 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2200 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2201
2202 /*
2203 * Link must be up to auto-blink the LEDs;
2204 * Force it if link is down.
2205 */
2206 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2207
2208 if (!link_up) {
50ac58ba 2209 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
87c12017
PW
2210 autoc_reg |= IXGBE_AUTOC_FLU;
2211 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2212 msleep(10);
2213 }
2214
2215 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2216 led_reg |= IXGBE_LED_BLINK(index);
2217 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2218 IXGBE_WRITE_FLUSH(hw);
2219
2220 return 0;
2221}
2222
2223/**
2224 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2225 * @hw: pointer to hardware structure
2226 * @index: led number to stop blinking
2227 **/
2228s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2229{
2230 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2231 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2232
2233 autoc_reg &= ~IXGBE_AUTOC_FLU;
2234 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2235 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2236
2237 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2238 led_reg &= ~IXGBE_LED_BLINK(index);
2239 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2240 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2241 IXGBE_WRITE_FLUSH(hw);
2242
2243 return 0;
2244}
21ce849b
MC
2245
2246/**
2247 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2248 * @hw: pointer to hardware structure
2249 * @san_mac_offset: SAN MAC address offset
2250 *
2251 * This function will read the EEPROM location for the SAN MAC address
2252 * pointer, and returns the value at that location. This is used in both
2253 * get and set mac_addr routines.
2254 **/
2255static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2256 u16 *san_mac_offset)
2257{
2258 /*
2259 * First read the EEPROM pointer to see if the MAC addresses are
2260 * available.
2261 */
2262 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2263
2264 return 0;
2265}
2266
2267/**
2268 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2269 * @hw: pointer to hardware structure
2270 * @san_mac_addr: SAN MAC address
2271 *
2272 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2273 * per-port, so set_lan_id() must be called before reading the addresses.
2274 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2275 * upon for non-SFP connections, so we must call it here.
2276 **/
2277s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2278{
2279 u16 san_mac_data, san_mac_offset;
2280 u8 i;
2281
2282 /*
2283 * First read the EEPROM pointer to see if the MAC addresses are
2284 * available. If they're not, no point in calling set_lan_id() here.
2285 */
2286 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2287
2288 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2289 /*
2290 * No addresses available in this EEPROM. It's not an
2291 * error though, so just wipe the local address and return.
2292 */
2293 for (i = 0; i < 6; i++)
2294 san_mac_addr[i] = 0xFF;
2295
2296 goto san_mac_addr_out;
2297 }
2298
2299 /* make sure we know which port we need to program */
2300 hw->mac.ops.set_lan_id(hw);
2301 /* apply the port offset to the address offset */
2302 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2303 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2304 for (i = 0; i < 3; i++) {
2305 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2306 san_mac_addr[i * 2] = (u8)(san_mac_data);
2307 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2308 san_mac_offset++;
2309 }
2310
2311san_mac_addr_out:
2312 return 0;
2313}
2314
2315/**
2316 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2317 * @hw: pointer to hardware structure
2318 *
2319 * Read PCIe configuration space, and get the MSI-X vector count from
2320 * the capabilities table.
2321 **/
2322u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2323{
2324 struct ixgbe_adapter *adapter = hw->back;
2325 u16 msix_count;
2326 pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
2327 &msix_count);
2328 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2329
2330 /* MSI-X count is zero-based in HW, so increment to give proper value */
2331 msix_count++;
2332
2333 return msix_count;
2334}
2335
2336/**
2337 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2338 * @hw: pointer to hardware struct
2339 * @rar: receive address register index to disassociate
2340 * @vmdq: VMDq pool index to remove from the rar
2341 **/
2342s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2343{
2344 u32 mpsar_lo, mpsar_hi;
2345 u32 rar_entries = hw->mac.num_rar_entries;
2346
2347 if (rar < rar_entries) {
2348 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2349 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2350
2351 if (!mpsar_lo && !mpsar_hi)
2352 goto done;
2353
2354 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2355 if (mpsar_lo) {
2356 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2357 mpsar_lo = 0;
2358 }
2359 if (mpsar_hi) {
2360 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2361 mpsar_hi = 0;
2362 }
2363 } else if (vmdq < 32) {
2364 mpsar_lo &= ~(1 << vmdq);
2365 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2366 } else {
2367 mpsar_hi &= ~(1 << (vmdq - 32));
2368 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2369 }
2370
2371 /* was that the last pool using this rar? */
2372 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2373 hw->mac.ops.clear_rar(hw, rar);
2374 } else {
2375 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2376 }
2377
2378done:
2379 return 0;
2380}
2381
2382/**
2383 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2384 * @hw: pointer to hardware struct
2385 * @rar: receive address register index to associate with a VMDq index
2386 * @vmdq: VMDq pool index
2387 **/
2388s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2389{
2390 u32 mpsar;
2391 u32 rar_entries = hw->mac.num_rar_entries;
2392
2393 if (rar < rar_entries) {
2394 if (vmdq < 32) {
2395 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2396 mpsar |= 1 << vmdq;
2397 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2398 } else {
2399 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2400 mpsar |= 1 << (vmdq - 32);
2401 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2402 }
2403 } else {
2404 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2405 }
2406 return 0;
2407}
2408
2409/**
2410 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2411 * @hw: pointer to hardware structure
2412 **/
2413s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2414{
2415 int i;
2416
2417
2418 for (i = 0; i < 128; i++)
2419 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2420
2421 return 0;
2422}
2423
2424/**
2425 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2426 * @hw: pointer to hardware structure
2427 * @vlan: VLAN id to write to VLAN filter
2428 *
2429 * return the VLVF index where this VLAN id should be placed
2430 *
2431 **/
5d5b7c39 2432static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
21ce849b
MC
2433{
2434 u32 bits = 0;
2435 u32 first_empty_slot = 0;
2436 s32 regindex;
2437
2438 /* short cut the special case */
2439 if (vlan == 0)
2440 return 0;
2441
2442 /*
2443 * Search for the vlan id in the VLVF entries. Save off the first empty
2444 * slot found along the way
2445 */
2446 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2447 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2448 if (!bits && !(first_empty_slot))
2449 first_empty_slot = regindex;
2450 else if ((bits & 0x0FFF) == vlan)
2451 break;
2452 }
2453
2454 /*
2455 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2456 * in the VLVF. Else use the first empty VLVF register for this
2457 * vlan id.
2458 */
2459 if (regindex >= IXGBE_VLVF_ENTRIES) {
2460 if (first_empty_slot)
2461 regindex = first_empty_slot;
2462 else {
2463 hw_dbg(hw, "No space in VLVF.\n");
2464 regindex = IXGBE_ERR_NO_SPACE;
2465 }
2466 }
2467
2468 return regindex;
2469}
2470
2471/**
2472 * ixgbe_set_vfta_generic - Set VLAN filter table
2473 * @hw: pointer to hardware structure
2474 * @vlan: VLAN id to write to VLAN filter
2475 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2476 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2477 *
2478 * Turn on/off specified VLAN in the VLAN filter table.
2479 **/
2480s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2481 bool vlan_on)
2482{
2483 s32 regindex;
2484 u32 bitindex;
2485 u32 vfta;
2486 u32 bits;
2487 u32 vt;
2488 u32 targetbit;
2489 bool vfta_changed = false;
2490
2491 if (vlan > 4095)
2492 return IXGBE_ERR_PARAM;
2493
2494 /*
2495 * this is a 2 part operation - first the VFTA, then the
2496 * VLVF and VLVFB if VT Mode is set
2497 * We don't write the VFTA until we know the VLVF part succeeded.
2498 */
2499
2500 /* Part 1
2501 * The VFTA is a bitstring made up of 128 32-bit registers
2502 * that enable the particular VLAN id, much like the MTA:
2503 * bits[11-5]: which register
2504 * bits[4-0]: which bit in the register
2505 */
2506 regindex = (vlan >> 5) & 0x7F;
2507 bitindex = vlan & 0x1F;
2508 targetbit = (1 << bitindex);
2509 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2510
2511 if (vlan_on) {
2512 if (!(vfta & targetbit)) {
2513 vfta |= targetbit;
2514 vfta_changed = true;
2515 }
2516 } else {
2517 if ((vfta & targetbit)) {
2518 vfta &= ~targetbit;
2519 vfta_changed = true;
2520 }
2521 }
2522
2523 /* Part 2
2524 * If VT Mode is set
2525 * Either vlan_on
2526 * make sure the vlan is in VLVF
2527 * set the vind bit in the matching VLVFB
2528 * Or !vlan_on
2529 * clear the pool bit and possibly the vind
2530 */
2531 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2532 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2533 s32 vlvf_index;
2534
2535 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2536 if (vlvf_index < 0)
2537 return vlvf_index;
2538
2539 if (vlan_on) {
2540 /* set the pool bit */
2541 if (vind < 32) {
2542 bits = IXGBE_READ_REG(hw,
2543 IXGBE_VLVFB(vlvf_index*2));
2544 bits |= (1 << vind);
2545 IXGBE_WRITE_REG(hw,
2546 IXGBE_VLVFB(vlvf_index*2),
2547 bits);
2548 } else {
2549 bits = IXGBE_READ_REG(hw,
2550 IXGBE_VLVFB((vlvf_index*2)+1));
2551 bits |= (1 << (vind-32));
2552 IXGBE_WRITE_REG(hw,
2553 IXGBE_VLVFB((vlvf_index*2)+1),
2554 bits);
2555 }
2556 } else {
2557 /* clear the pool bit */
2558 if (vind < 32) {
2559 bits = IXGBE_READ_REG(hw,
2560 IXGBE_VLVFB(vlvf_index*2));
2561 bits &= ~(1 << vind);
2562 IXGBE_WRITE_REG(hw,
2563 IXGBE_VLVFB(vlvf_index*2),
2564 bits);
2565 bits |= IXGBE_READ_REG(hw,
2566 IXGBE_VLVFB((vlvf_index*2)+1));
2567 } else {
2568 bits = IXGBE_READ_REG(hw,
2569 IXGBE_VLVFB((vlvf_index*2)+1));
2570 bits &= ~(1 << (vind-32));
2571 IXGBE_WRITE_REG(hw,
2572 IXGBE_VLVFB((vlvf_index*2)+1),
2573 bits);
2574 bits |= IXGBE_READ_REG(hw,
2575 IXGBE_VLVFB(vlvf_index*2));
2576 }
2577 }
2578
2579 /*
2580 * If there are still bits set in the VLVFB registers
2581 * for the VLAN ID indicated we need to see if the
2582 * caller is requesting that we clear the VFTA entry bit.
2583 * If the caller has requested that we clear the VFTA
2584 * entry bit but there are still pools/VFs using this VLAN
2585 * ID entry then ignore the request. We're not worried
2586 * about the case where we're turning the VFTA VLAN ID
2587 * entry bit on, only when requested to turn it off as
2588 * there may be multiple pools and/or VFs using the
2589 * VLAN ID entry. In that case we cannot clear the
2590 * VFTA bit until all pools/VFs using that VLAN ID have also
2591 * been cleared. This will be indicated by "bits" being
2592 * zero.
2593 */
2594 if (bits) {
2595 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
2596 (IXGBE_VLVF_VIEN | vlan));
2597 if (!vlan_on) {
2598 /* someone wants to clear the vfta entry
2599 * but some pools/VFs are still using it.
2600 * Ignore it. */
2601 vfta_changed = false;
2602 }
2603 }
2604 else
2605 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
2606 }
2607
2608 if (vfta_changed)
2609 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
2610
2611 return 0;
2612}
2613
2614/**
2615 * ixgbe_clear_vfta_generic - Clear VLAN filter table
2616 * @hw: pointer to hardware structure
2617 *
2618 * Clears the VLAN filer table, and the VMDq index associated with the filter
2619 **/
2620s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
2621{
2622 u32 offset;
2623
2624 for (offset = 0; offset < hw->mac.vft_size; offset++)
2625 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
2626
2627 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
2628 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
2629 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
2630 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
2631 }
2632
2633 return 0;
2634}
2635
2636/**
2637 * ixgbe_check_mac_link_generic - Determine link and speed status
2638 * @hw: pointer to hardware structure
2639 * @speed: pointer to link speed
2640 * @link_up: true when link is up
2641 * @link_up_wait_to_complete: bool used to wait for link up or not
2642 *
2643 * Reads the links register to determine if link is up and the current speed
2644 **/
2645s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
2646 bool *link_up, bool link_up_wait_to_complete)
2647{
2648 u32 links_reg;
2649 u32 i;
2650
2651 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
2652 if (link_up_wait_to_complete) {
2653 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
2654 if (links_reg & IXGBE_LINKS_UP) {
2655 *link_up = true;
2656 break;
2657 } else {
2658 *link_up = false;
2659 }
2660 msleep(100);
2661 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
2662 }
2663 } else {
2664 if (links_reg & IXGBE_LINKS_UP)
2665 *link_up = true;
2666 else
2667 *link_up = false;
2668 }
2669
2670 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2671 IXGBE_LINKS_SPEED_10G_82599)
2672 *speed = IXGBE_LINK_SPEED_10GB_FULL;
2673 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
2674 IXGBE_LINKS_SPEED_1G_82599)
2675 *speed = IXGBE_LINK_SPEED_1GB_FULL;
2676 else
2677 *speed = IXGBE_LINK_SPEED_100_FULL;
2678
2679 /* if link is down, zero out the current_mode */
2680 if (*link_up == false) {
2681 hw->fc.current_mode = ixgbe_fc_none;
2682 hw->fc.fc_was_autonegged = false;
2683 }
2684
2685 return 0;
2686}
a391f1d5
DS
2687
2688/**
2689 * ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
2690 * the EEPROM
2691 * @hw: pointer to hardware structure
2692 * @wwnn_prefix: the alternative WWNN prefix
2693 * @wwpn_prefix: the alternative WWPN prefix
2694 *
2695 * This function will read the EEPROM from the alternative SAN MAC address
2696 * block to check the support for the alternative WWNN/WWPN prefix support.
2697 **/
2698s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
2699 u16 *wwpn_prefix)
2700{
2701 u16 offset, caps;
2702 u16 alt_san_mac_blk_offset;
2703
2704 /* clear output first */
2705 *wwnn_prefix = 0xFFFF;
2706 *wwpn_prefix = 0xFFFF;
2707
2708 /* check if alternative SAN MAC is supported */
2709 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
2710 &alt_san_mac_blk_offset);
2711
2712 if ((alt_san_mac_blk_offset == 0) ||
2713 (alt_san_mac_blk_offset == 0xFFFF))
2714 goto wwn_prefix_out;
2715
2716 /* check capability in alternative san mac address block */
2717 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
2718 hw->eeprom.ops.read(hw, offset, &caps);
2719 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
2720 goto wwn_prefix_out;
2721
2722 /* get the corresponding prefix for WWNN/WWPN */
2723 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
2724 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
2725
2726 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
2727 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
2728
2729wwn_prefix_out:
2730 return 0;
2731}